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Abstract

The use of power production efficiency metrics for wind turbines is important
for evaluating their productivity and quantifying the effectiveness of actions
that are meant to improve the energy production. The goal of this research
is not to propose a new efficiency metric since there are already multiple
efficiency metrics widely used in practice: availability, power generation ra-
tio, and power coefficient. Our objective here is to sort out the question of
how these efficiency metrics are related to, or different from, one another.
We believe addressing this research question has a great degree of practical
significance as it is a question practitioners are often puzzled with. Under-
standing the similarities and differences of multiple efficiency metrics may
even lay a foundation for the future proposals of new efficiency metrics. Our
evaluation of whether the existing metrics are consistent with each other is
driven by the use of actual data from an offshore wind farm. We observe that
the three metrics show some degree of consistency but the power generation
ratio, albeit the least popular, appears more representative of all metrics and
more illustrative of the underlying efficiency. We also found that there is
about 4% efficiency difference between wake-free and in-the-wake turbines
for this specific wind farm.
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1. Introduction1

Wind energy is a sector of renewable energy production that relies on2

capturing energy from the wind. The wind, the source of this energy, is3

highly stochastic and intermittent, so maintaining the efficiency of the energy4

production at a satisfactory level is critical for its broader usage as a power5

supply. The efficiency of the energy production can be improved by effective6

operational controls [1], condition monitoring and preventive maintenance7

[2], and/or timely upgrade and replacement of turbine components [3]. A8

well-defined efficiency metric, therefore, not only provides a better overview9

of how efficiently a turbine is running but also supports various decision-10

making processes regarding the operations and maintenance (O&M) of wind11

turbines and farms by quantifying the impact and effectiveness of an action12

that had been performed or is to be performed.13

Various types of efficiency metrics for wind turbines and farms are avail-14

able in literature. Depending on context, one may distinguish between tur-15

bine efficiency, generator efficiency, and transmission and storage efficiency16

[4], between aerodynamic efficiency, transmission efficiency, and conversion17

efficiency [5], or between power extraction efficiency and power generation18

efficiency [6]. To make it clear, in this paper, we focus on wind power pro-19

duction efficiency—how well a turbine, as a holistic system, produces power20

output given wind resources. We refer to this power production efficiency21

simply as efficiency throughout this paper.22

Quantifying the efficiency of wind power production is a challenging task23

as the power production involves sophisticated aerodynamics and multiple24

factors, with some of them unknown or unobservable, affecting the efficiency.25

Currently, the industry standard, under IEC 61400-12-1, recommends using26

power coefficient [7] established upon significant simplification of the compli-27

cated nature of the power production system. Such simplification sometimes28

renders the metric inadequate for a proper representation of the efficiency29

of wind turbines in operation. Due to these challenges in efficiency quantifi-30

cation, it is common in practice to use multiple metrics for evaluating the31

efficiency of wind turbines and farms [8].32

When evaluating the efficiency based on multiple metrics, an immediate33

question to be addressed is whether or not the evaluation from each metric34

draws the same conclusion. In this paper, we consider three metrics that are35

most commonly used in practice, namely, availability, power generation ratio,36

and power coefficient, and aim to address the aforementioned question. If37
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the metrics do not always agree with one another (they indeed do not), then38

subsequent questions are how consistent the results based on the different39

metrics are and which metric provides better insight concerning the efficiency40

of turbines and farms. We try to answer these questions and make suggestions41

accordingly.42

Other than the three efficiency metrics stated above, there are more com-43

plicated efficiency metrics emerging in the literature, for example, the new44

metric recently introduced in [9]. Although the efficiency metric proposed45

in [9] is more advanced and may gain popularity in the long run, it is not46

yet widely used as the aforementioned three metrics and its computation is47

much more involved. We decide to exclude this new metric for the compar-48

ison in this paper. On the other hand, the metric in [9] is calculated based49

on power curves (as the fraction of average power curve over full potential50

power curve), so it is similar to power generation ratio in nature. The insight51

garnered for the power generation ratio could be possibly used to shed lights52

on the relationship between the metric in [9] and others.53

We would like to stress that the goal of this research is not to propose54

a new efficiency metric, but instead, it is to address the question of how55

the existing metrics are related to, or different from, one another. We be-56

lieve addressing this research question is sufficiently meaningful, as keeping57

adding new efficiency metrics without thoroughly understanding the existing58

ones tends to confuse the practitioners, rather than helps clarify the matter.59

Understanding the similarities and differences of the existing efficiency met-60

rics may in fact lay the foundation for the future proposals of new efficiency61

metrics.62

The task of evaluating the alternative efficiency metrics is not trivial,63

primarily because there is no universal criterion determining the consistency64

of the metrics. In addition, the intrinsic efficiency of turbine itself is not65

directly observable nor is the underlying truth known, so it is difficult to66

decide which metric is better and in what aspect. We compare and evaluate67

the three metrics concerning how they are related to one another by using68

a set of tools of probability distribution, pairwise difference, correlation and69

linearity. As the metrics are defined over a given time duration, the analysis70

results may depend on the length of the time duration. We consider different71

time resolutions in analysis to address this issue.72

The subsequent sections proceed as follows. Section 2 presents the defini-73

tions of the three metrics and describes how to calculate them using turbine74

operational data. Section 3 examines the relations and differences of the75
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calculated metrics at multiple time resolutions and determines if they are76

consistent with each other. We also analyze whether one metric is superior77

to the others if they are not always consistent. Based on the findings in Sec-78

tion 3, Section 4 applies the efficiency metric(s) to characterize the efficiency79

of an offshore wind farm with a special focus on the wake effect. Section 580

concludes the paper.81

2. Common Efficiency Metrics for Wind Power Production82

In this section, we describe three efficiency metrics for wind power pro-83

duction: availability, power generation ratio (PGR), and power coefficient.84

We also explain their calculation procedures.85

Following the industry standard IEC 61400-12-1 [7], we use 10-minute86

averaged measurements for calculation of the metrics. Based on the IEC87

standard, wind speed is first adjusted by air density through88

V = V ′
(
ρ

ρ0

)1/3

, (1)

where V ′ and V are the wind velocity measurements before and after the89

adjustment, respectively, ρ denotes air density calculated from the measure-90

ments of air pressure and air temperature, and ρ0 = 1.225 kg/m3 is the91

international standard atmosphere air density at sea level and 15 ◦C.92

Suppose that we are interested in the efficiency of wind turbines measured93

for a specific time duration, which could be a week, a month, or a year.94

Consider a weekly resolution as an example. We then calculate efficiency95

metrics for every single week and evaluate the time series of the metrics with96

the unit time of a week. The same calculation can be easily extended to other97

time resolutions. Let (Vt, ρt, Pt) for t = 1, . . . , T denote a data pair observed98

during a given time period (a week for weekly resolution), where P represents99

the power output measurements and T is the total number of the data pairs100

observed during the time period. We calculate a single value of an efficiency101

metric for each given time period using (Vt, ρt, Pt) for ∀t = 1, . . . , T .102

2.1. Availability103

One of the efficiency metrics used broadly in the wind industry is avail-104

ability [10, 11] described in the industry standard IEC TS 61400-26-1 [12].105

The availability tracks the amount of time in which power is produced by106
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a turbine and then compares it to the total amount of time for which the107

turbine could have produced power. A wind turbine is supposed to produce108

power when the wind speed is between the cut-in and cut-out wind speeds,109

which are the design characteristics of a given turbine. The cut-in speed110

is the minimum wind speed needed for the turbine to begin operating and111

generating power. The cut-out speed is the point at which the wind speed112

reaches its maximum level allowed for safe operation of the turbine. At this113

speed, the blades are braked and feathered to stop operation, preventing the114

turbine from damages that may be caused by a harsh wind condition [13].115

Turbines are expected to produce power at all times when recorded wind116

speeds are within these two limits. If a turbine does not produce power117

when the wind conditions are allowing, the turbine is then deemed unavail-118

able. The availability is thus defined as119

Availability =
#{(Vt, ρt, Pt) : Pt > 0, Vci ≤ Vt ≤ Vco, t = 1, . . . , T}

#{(Vt, ρt, Pt) : Vci ≤ Vt ≤ Vco, t = 1, . . . , T}
, (2)

where #{·} counts the number of elements in the set defined by the brackets,120

and Vci and Vco, respectively, are the cut-in and cut-out wind speeds. The121

denominator in (2) approximates the total time (in terms of the number of 10-122

min intervals) that a turbine is expected to produce power [14], whereas the123

numerator approximates the total time that a turbine does produce power.124

2.2. Power generation ratio125

While the availability calculates a ratio in terms of the amount of up run-126

ning time, PGR defines a ratio relevant to the amount of power output. The127

idea is similar to that of production-based availability, recently advocated by128

the industry standard IEC TS 61400-26-2 [15]. By contrast, the availability129

discussed in the preceding section is referred to as time-based availability. The130

production-based availability calculates the ratio of actual energy production131

to potential energy production, where the potential energy production is the132

sum of actual energy production and lost production that is caused by an133

abnormal operational status of a turbine (e.g., downtime, curtailment). The134

lost production needs to be estimated and its estimation requires detailed in-135

formation about a turbine’s operating status, not easily accessible to anyone136

outside the immediate operator of a wind turbine or wind farm.137

Instead of estimating the lost production, we make a revision in this138

paper, making the assessment easier to carry out. Our revision is to use a139
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Figure 1: Manufacturer’s power curve. The dots indicate the power curve estimates
evaluated at each bin, and the piecewise linear curve connecting all the dots forms the
nominal power curve. The dashed vertical lines illustrate the wind speed bins.

nominal power curve provided by a turbine’s manufacturer for calculating140

the value of potential energy production. The resulting ratio is in fact the141

PGR mentioned earlier, which is in spirit similar to the production-based142

availability.143

A power curve defines power output as a function of wind speed and es-144

timates power output for a given wind speed. As such, the potential energy145

production in the PGR can be written as P̂ (Vt) for given Vt where the func-146

tion P̂ (·) denotes a nominal power curve. Then, the PGR of a given time147

duration (including T observations) can be computed as148

PGR =

∑T
t=1 Pt∑T

t=1 P̂ (Vt)
. (3)

IEC recommends that the nominal power curve be estimated by the149

method of binning [7]; see Figure 1. The method first generates multiple150

bins with equal size (e.g., 1m/s) partitioning the domain of wind speed. For151

each bin, the sample mean of power output is calculated from the power data152

whose wind speed falls into the specific bin. The sample mean together with153

the middle point of the bin provide a point-wise estimate of the power curve154

evaluated at the middle point of the bin. Connecting these estimates de-155

rives a piece-wise linear curve defining the nominal power curve. A nominal156

power cure, in terms of the point-wise estimates, is usually provided by the157

turbine’s manufacturer.158
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2.3. Power coefficient159

Different from the availability and PGR, power coefficient explicitly re-160

flects a law of physics, and it measures the aerodynamic efficiency of a wind161

turbine. Power coefficient (Cp) refers to the ratio of actual energy production162

to the energy available in the ambient wind flowing into the turbine blades163

[16]. The available energy in the wind can be characterized by air density,164

turbine’s blade swept area (A), and wind velocity. As such, Cp is calculated165

as166

Cp(t) =
2Pt

ρtAV ′t
3 , (4)

for any given observation t. Note here that the Cp calculation uses the wind167

speed V ′ (without air density adjustment) since the calculation itself involves168

air density.169

For a given time period (say, a week), there are multiple Cp values; in170

fact, T of them in total. The Cp values can be plotted against the wind171

speed. Then, one can bin the Cp values by groups of 1 m/s according to their172

respective wind speeds and get the averages of Cp for individual bins. By173

doing so, a Cp curve is produced, in a similar fashion as how the nominal174

power curve is produced. The maximum value on the Cp curve is chosen as175

the turbine’s representative power coefficient [9, 17]. Hereafter, we refer to176

this peak value on a power coefficient curve as the power coefficient unless177

otherwise stated.178

3. Comparison of the Metrics179

We compare the metrics described in the previous section by using actual180

operational data provided by an offshore wind farm. Table 1 and Figure 2181

present some information about the wind farm and a rough sketch of the182

wind farm’s layout, respectively.183

The dataset was produced over a span of four years ranging from 2007184

to 2010. It includes measurements which were recorded at each individual185

turbine as well as other atmospheric statistics that were tracked by a meteo-186

rological mast. We extract the data needed for the calculation of the metrics187

and match the data points for a turbine and the mast by aligning their re-188

spective timestamps. After such an alignment, any time point with missing189

data are eliminated.190

Temporal resolutions to be examined include weekly, monthly, quarterly,191

and yearly time resolutions with a primary focus on weekly and monthly as192

7



Table1:Informationabouttheoffshorewindfarm.Thedinthelasttworowsreferstoro-
tordiameter.NW-SEandNE-SWdenotenorthwest-southeastorientationandnortheast-
southwestorientation,respectively. Valuesaregiveninarangeorasanapproximation,
duetoaconfidentialityagreementinplaceforbiddingthedisclosureoftheexactcorre-
spondingvalues.

Location Europe
Numberofwindturbines 30–40
Cut-inwindspeed(m/s) 3.5
Cut-outwindspeed(m/s) 25
Ratedwindspeed(m/s) approximately15
Ratedpower(MW) approximately3
Turbinespacing:NW-SE 7–8d
Turbinespacing:NE-SW 11–12d
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Figure2: Aroughsketchofthelayoutoftheoffshorewindfarm. Thiswindfarmhas
30–40turbineswith20–26peripheralturbinesand10–15interiorturbines. Peripheral
turbinesarelocatedalongtheblacklinesandinteriorturbinesalongthegraylines. A
meteorologicalmastisindicatedbyasquareneartheleftedgeofthefarm.

theyprovidegreateramountsofdatapointsanddetail.Quarterlyandyearly193

resolutionsareusedformoregeneraltrendsandcomparisons.194

Foreachtemporalresolution,wecalculatethethreemetricsofavailability,195

PGR,andpowercoefficientasdescribedinSection2;hereafterdenotedas196

M1,M2,andM3,respectively. WhiletheaveragesofM1andthoseofM2197

calculatedforeachturbinearewithinasimilarrange(0.75–1),theaverages198

ofM3arenoticeablyloweratthe0.35–0.5range,abouthalfthevaluesof199

M1and M2. Thisisunderstandableaspowercoefficient(M3)islimited200
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by the Betz Limit to a theoretical maximum of 0.593, though a commercial201

turbine realistically operates at about 0.45 [18]. To make all the three metrics202

comparable in magnitude, we multiply M3 by two and use the rescaled metric203

(2×M3) for the subsequent analysis.204

We first plot the time-series of the three metrics for a peripheral turbine205

that locates the closest to the met mast (referred to as WT1 hereafter).206

Figure 3(a) presents the time-series of the metrics generated based on the207

monthly resolution over the four-year span. The figure demonstrates that208

the metrics follow similar overall trends, with peaks and troughs at similar209

periods of time. The level of variation associated with the three metrics looks210

similar. In fact, all the three metrics have similar coefficients of variation,211

though the one for M2 tends to be slightly higher—on average, 0.264 for M2212

compared to 0.254 and 0.252 for M1 and 2×M3, respectively. These patterns213

and characteristics are consistently observed in the other turbines on the214

wind farm. The similar insights can be drawn for the weekly resolution.215

In Table 2, we calculate correlation coefficients between the metrics for216

WT1. Similar to the first two rows of the table, the correlation coefficients are217

above 0.9 for all turbines, indicating strong correlations between the metrics.218

By considering the well-aligned time-series and the high correlation coeffi-219

cients, one may impetuously conclude that the three metrics are consistent220

with each other and they can substitute for each other when evaluating the221

efficiency of turbines. However, if we eliminate some periods of nearly zero222

power production (for example, a period for which any metric is below 0.2;223

(a)
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Figure 3: All three metrics plotted at monthly time resolution for WT1: (a) for the full
period; (b) after eliminating the periods in which the turbine does not operate for most
of the time (dashed line).
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Table 2: Correlation between metrics for WT1. Weekly and monthly temporal resolutions
are shown.

M1 & M2 M1 & 2×M3 M2 & 2×M3
Weekly resolution (full) 0.975 0.946 0.959
Monthly resolution (full) 0.986 0.966 0.978
Weekly resolution (reduced) 0.843 0.661 0.785
Monthly resolution (reduced) 0.956 0.876 0.929

see Figure 3(b)), which may be due to pitch system faults [19], gear box224

faults [20], or some scheduled maintenance, or a combination of these rea-225

sons, the metrics based on such a reduced period produce significantly lower226

correlation coefficients—for this particular turbine, as low as 0.661 between227

M1 and 2×M3 at weekly time resolution. This implies that the original high228

correlation derived from the full period data could be contributed substan-229

tially by the non-operating periods of the turbine, which further suggests230

possible disparity between the metrics under typical operating conditions.231

In the following sections, we use the metric values calculated for the232

reduced period only, in order to better differentiate the metrics in terms of233

their capability of quantifying the efficiency of turbines.234

3.1. Distributions235

Figure 4 demonstrates the distributions of the calculated metrics for a236

single turbine, but it is representative of the other turbines as they all show237

similar distribution spreads. While M2 and 2×M3 both have relatively broad238

spreads of data, M1 has a much narrower range. A significant portion of its239

density is concentrated near one at which the distribution is truncated, with a240

steep taper to lower values. In contrast, M2 and 2×M3 both take the shape241

similar to the bell-shaped curve with smoother tapers in both directions.242

M1’s concentration of values makes it difficult to differentiate between the243

efficiency of turbine at different time periods. As more values are within the244

same range, the variations in turbine performance are concealed. This can245

potentially mislead turbine operators into believing that the turbines operate246

at a similar efficiency level, even though the underlying turbines’ efficiency247

levels differ.248

Such a unique distributional characteristic of M1 can be inferred by its249

calculation procedure. As expressed in Eq. (2), the numerator of M1 counts250
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(a) (b) (c)

×

Figure 4: Probability densities of the metric values at weekly time resolution for WT1:
(a) M1; (b) M2; (c) 2×M3.

the number of members in a set that is a subset of the one associated with251

the denominator, so it has a maximum value of one at all points in time. This252

is a desired property for an efficiency metric, which is not observed from M2253

or 2×M3. M2 can exceed one because manufacturers’ power curves display254

expected power values as an averaged measure and particular instances of255

power production may exceed the expected productions [21]. The value of256

2×M3 is bounded from above by the Betz Limit at 1.186 (after rescaling),257

which itself is greater than one. It is interesting to observe that M2 appears258

to be bounded by a value similar to 1.186.259

The unique property of M1 when combined with its binary quantification260

of whether or not power was generated, however, adversely affects its quan-261

tification capability. As long as a turbine is generating power at a point in262

time, that point would be counted as a one. Even some time points with263

power production that is significantly lower than expected would still be264

counted as ones. Averaging over these counts produces the metric weighted265

heavily towards one. Periods with high efficiency (in terms of the amount of266

actual power production) look the same as low efficiency periods as long as267

the power produced exceeds a low threshold.268

The methods calculating M2 and M3, on the other hand, allow for a269

sliding scale measure of power production so that they account for how much270

power was produced. Values of M2 and 2×M3 thus have greater spread and271

do not concentrate as narrowly around any particular value as M1 does. This272

ability to better distinguish between time periods of differing performance273

as well as the distributional features render M2 and 2×M3 stronger metrics274

than M1. They allow for a more detailed portrayal of a turbine’s efficiency275

over time as opposed to M1’s more general overview of whether or not the276

turbine was in operation.277
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3.2. Pairwise differences278

Figure 5 illustrates the absolute difference between the calculated metrics279

on a weekly basis. Darker bars indicate the periods of significantly large280

differences while lighter bars are for the periods of smaller differences.281

(a)
−

(b)

−
×

(c)

−
×

Figure 5: Magnitudes of absolute difference between metric values at weekly resolution for
WT1: (a) M1 vs M2; (b) M1 vs 2×M3; (c) M2 vs 2×M3. The dashed line in each plot is
the average of the absolute differences in that plot. An absolute difference is considered
as a small difference, if its value is smaller than 0.05, as a large difference, if its value is
greater than 0.15, and as a medium difference, if its value is in between.
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Figure 5(c) shows that the large differences between M2 and 2×M3 are282

sparsely distributed through the four years. In contrast, as shown in Fig-283

ure 5(a) and Figure 5(b), there are significantly more instances of large value284

differences between M1 and either of the other metrics, especially between285

M1 and 2×M3. This implies that both M1 and 2×M3 are more similar to M2286

than to each other. M1 and M2 calculate a ratio of the actual performance287

over the expected performance, although M1 focuses on the amount of time288

and M2 examines the amount of power. This sets 2×M3 apart from M1 and289

M2. On the other hand, M2 and 2×M3 quantify the efficiency of turbine290

with respect to the amount of power production, whereas M1 concerns the291

amount of operational time, which makes M1 distinct from the other two.292

In Figure 5, the large or medium differences tend to be heavily concen-293

trated within some specific periods, notably in the second half of 2007 and294

the first half of 2010. In fact, these periods represent those in which turbines’295

true efficiencies are relatively low. There are two different aspects describing296

this phenomenon.297

First, recall from Figure 4 that M1 tends to be heavily weighted towards298

its maximum, overestimating turbine’s efficiency in the relative scale. If a299

turbine produced some power for most time instances within a given period,300

its availability should be close to one. The large differences between M1301

and the other two metrics then imply that the turbine was producing some302

power for most of the times but the amount of the power production was303

considerably low relative to its expectation (in Figure 3, see the later part of304

2007 where M1 is higher than the other two).305

Secondly, recall that M3 represents a maximum effect (on the Cp curve),306

whereas M2 is an integration effect. For a functional response, the two ef-307

fects can be understandably different. The large differences between M2 and308

2×M3 suggest that a turbine produced a sufficient amount of power only for309

a small portion of the given time period. In this case, the turbine’s max-310

imum efficiency measured by 2×M3 is relatively high, but M2 is relatively311

low because the turbine did not produce much power on average during the312

same period (see the middle of 2007 and the beginning of 2010 in Figure 3).313

M1 also measures an integration effect, but in terms of the operational time,314

so the same argument is applicable when explaining the difference between315

M1 and 2×M3. Most of the time, when there is a large difference between316

M2 and 2×M3, a large difference between M1 and 2×M3 is also observed317

(see Figure 5(b) and 5(c)).318

All of these observations can be found in the cases of other turbines as319
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well. Although the concentration periods of large and medium differences320

vary, all turbines display the clustering pattern, and such clusters are closely321

related to the different characteristics of the metrics.322

When comparing the mean of the absolute differences between the metrics323

(indicated by the dashed horizontal lines in Figure 5), the disparity between324

the metrics becomes less pronounced. While a metric pair with the smallest325

mean difference varies by turbines, the largest mean difference is consistently326

observed between M1 and 2×M3, sometimes by a significant amount than327

that between M1 and M2 or M2 and 2×M3. This suggests that M2 has328

comparably closer values to M1 and 2×M3. As such, M2 is more consistent329

in value with either of M1 and 2×M3 and its values are a better reflection of330

all the three metrics.331

3.3. Correlations and linear relationships332

As shown in Table 2, we calculate correlation coefficients between the333

metrics based on the reduced data set (periods of nearly zero power produc-334

tion removed). The post-removal correlation is the highest between M1 and335

M2 for most turbines. The correlations between M2 and 2×M3 (or equiva-336

lently, between M2 and M3) are also relatively high. For most turbines, the337

correlation coefficients between M1 and M2 remain within the 0.8 range at338

weekly resolution while those between M2 and M3 are generally in the 0.7339

range.340

The lowest correlations are found between M1 and M3 for all turbines and341

time resolutions, with the correlation coefficient values usually around 0.5–0.6342

but dipping sometimes into the 0.4 range. The values displayed in Table 2 are343

among the higher values of M1-M3 correlation of turbines. Another turbine344

has an M1-M3 correlation of just 0.417 for the reduced weekly data. This345

indicates that the relationship between these two metrics is much weaker,346

highlighting the strength of M2 for its much stronger relationship with either347

of the other metrics.348

Weekly time resolution is best for highlighting difference in correlation349

between metrics. Correlations rise as the time resolution becomes coarse;350

monthly, quarterly, and yearly resolutions in general return a correlation in351

the range of 0.9. We believe that the averaging effect when using a coarse352

time resolution irons out a certain degree of details, making the metrics based353

on the coarse time resolutions less differentiating.354

To analyze the consistency of the metrics, we also evaluate the linearity355

between any pair of the metrics around y = x line. Suppose that we generate356
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data points (x, y) paired by the values of two metrics. If the data points357

perfectly fit to the y = x line, an increase in one metric implies the same358

amount of increase in the other metric. As such, their ability to capture359

changes in efficiency is identical, or equivalently, they are consistent.360

However, as noted earlier, the scales of the metrics are not the same, e.g.,361

M1 and M2 are about twice of the unscaled M3. Assessing the extent of362

linearity around the y = x line thus requires to match the scales between the363

metrics.364

To align the scales, we perform linear regression upon the different metric365

pairs. For example, for the M1–M2 pair, we fit a linear model of M1 =366

β · M2 + ε to estimate β, where ε is a random noise term. Let β̂ denote367

the coefficient estimate. We then use the estimate β̂ to rescale the values368

of M2, generating scale-adjusted data points (M1, β̂·M2). With the scale369

adjustment, the data points should be centered about the y = x line. If they370

show strong linearity around the y = x line, we can conclude the metrics371

for the corresponding pair are consistent with each other. To determine the372

extent of linearity, the average magnitude of the data points’ vertical distance373

from the y = x line (in an absolute value) is computed.374

Figure 6 presents the scatter plots of the scale-adjusted metrics and the375

y = x line. For the illustration purpose, we show the result of the peripheral376

turbine used so far (WT1) as well as the result of an interior turbine (WT2).377

For the metrics calculated for the peripheral turbine, the linear regression378

yields the scale adjustment coefficients (β̂) of 0.97, 1.93, and 1.99 for M1–379

M2, M1–M3, and M2–M3 pairs, respectively. The coefficient of 0.97 for the380

M1–M2 pair, for instance, implies that M2 will have the same scale with M1381

after multiplying it by 0.97. For the interior turbine, the scale adjustment382

coefficients are 0.98, 2.01, and 2.06, respectively.383

In the figure, points are more concentrated near where x and y equal one.384

Whenever x refers to M1, there is a very apparent clustering of points at385

x = 1 due to the truncation of the distribution of M1 at one. On the other386

hand, the data points for the M2–M3 pair are well spread around the region,387

a characteristic reminiscent of the metrics’ distributions examined earlier.388

After the scale-adjustment, the data points tend to be placed above the389

y = x line for relatively low x values, e.g., less than 0.8, whenever y-axis rep-390

resents a rescaled M3 (triangles and diamonds). This confirms the difference391

between the maximum effect (for M3) and the integration effect (for M1 and392

M2) discussed earlier.393

As shown in Table 3, the average distances between the points and the394
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Figure6:Linearrelationshipsbetweenmetricsatweeklytimeresolution:(a)foraperiph-
eralturbine WT1;(b)foraninteriorturbine WT2.Plotsgeneratedfromscalingvalues
bythextoyratio.Thedashedlineillustratesy=xline.Thexandyaxesvaryforeach
relationshipasdefinedinlegend.

y=xlineisthegreatestfortheM1–M3pairforbothturbines,suggesting395

thattheM1–M3pairhastheweakestextentoflinearity.Thisreinforcesthe396

understandingfromtheanalysisofabsolutedifferencesthatM1andM3are397

theleastconsistentmetrics,while M2hasstrongerrelationshipwithboth398

othermetrics.399
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Table 3: Average absolute vertical distances from the y = x line.

M1 vs β̂·M2 M1 vs β̂·M3 M2 vs β̂·M3
A peripheral turbine 0.050 0.068 0.055
An interior turbine 0.046 0.068 0.052

3.4. Overall insight400

According to the above analyses, while all metrics display some level of401

consistency, M2 is the most consistent with the other metrics. The absolute402

differences in metric values demonstrate that M2 produces values that are403

more representative of the three metrics. Correlations between the metrics404

also suggest that changes in turbine performance mapped by M2 are illus-405

trative of such trends displayed by other metrics. Moreover, the evaluation406

of the linearity between the metrics shows that M1 or M3 has a stronger407

relation with M2 than with each other. It is not too far fetched to reach the408

conclusion that M2 better represents all three metrics.409

Various aspects of our analysis have shown M1’s deficiency in discrimi-410

nating changes in turbine performance. Practitioners are well aware of M1’s411

deficiency, which becomes the chief reason to recently adopt the production-412

based availability metric. The deficiency of M3 could sometimes be over-413

looked, and we hereby would like to re-iterate. M3 takes the maximum on414

a Cp curve. This maximum does not always effectively reflect turbine per-415

formance as it ignores the performance under some wind conditions that do416

not associate with the maximum point. A recent work indeed demonstrates417

this shortcoming of M3 by using a set of simulated data [9].418

4. Evaluation of Wake Effect419

Depending on the location of a turbine and where the wind comes from, a420

wind turbine may suffer from a significant amount of power loss due to wind421

velocity deficit and turbulence caused by the operation of nearby turbines;422

known as the wake effect [22]. Understanding the wake effect is important423

for maintaining the power production efficiency of a wind farm via effective424

operational controls [23, 24] and designing the layout of a wind farm in425

preparation [25, 26]. In this section, we analyze the wake effect and its426

influence on the power production efficiency by using the PGR (M2) to show427

the actual use of the metric in practice.428
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Figure 7: Range of angles for which the wake of Turbine 1 (upstream turbine) causes
velocity deficit and hence power deficit if a turbine is within the range.

Figure 7 presents a snapshot of a wake situation (for illustration purpose429

only). The incoming wind loses its energy after being extracted by an oper-430

ating turbine (Turbine 1), and this energy loss is revealed by velocity deficit431

at downstream locations. The level of the velocity deficit varies depending432

on the distance from the upstream turbine and the angle deviating from the433

wind direction (θ). The velocity deficit remains observable up to a certain434

angular deviation from the given wind direction. If another wind turbine435

(Turbine 2) is within this “in the wake” region (where the velocity deficit436

is expected; the shaded area), it experiences power deficit as a consequence437

of the velocity deficit. Given the fixed locations of the turbines, whether to438

expect a power deficit and how much deficit to expect strongly depends on439

where the wind comes from. When the wind direction reverses, the role of440

upstream and downstream will reverse, too.441

To assess the loss in power production efficiency caused by wake effect,442

we first need to identify which turbines are free of the wake and which are in443

the wake, so that we can compare the power production efficiency between444

the two sets of turbines. Since the members of the two sets keep changing445

as wind direction changes, we partition the support of the direction into446

multiple wind sectors in each of which the two sets can be determined with447

confidence (see Figure 8). Algorithm 1 describes how we generated the wind448

sectors.449

The basic idea of Algorithm 1 is that, to be a wake free turbine, the450

target turbine should not be in the wake region of a nearby turbine. Two451
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Algorithm1:Windsectorgeneration

1Settheindexofwindsector,s,to1;
2FixwinddirectionDtoafixednumber,forexample,D=0◦;
3Definethesetofallturbines,W;
4Definethesetofallperipheralturbines,P;
5repeat
6 InitializethesetofwakefreeturbinesF(s)←P;
7 foreachp∈Pdo
8 Calculateapairwisedistancebetweentheturbinepandany

otherturbinew∈W;denoteitasdist(w);
9 Calculateθ(w),anacuteanglebetweenwinddirectionandthe

directionofaturbinew∈Wrelativetotheturbinep(known
asbearing);

10 RemovepfromF(s)ifthereisanywsuchthatdist(w)≤20d
and|θ(w)|≤22.5◦;

11 end
12 IncreaseDuntilthereisnochangeofF(s);
13 Increasesby1;

14untilDreachesitsinitialvalue,i.e.,D=0◦,orequivalently,
D=360◦;
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Table 4: Descriptive statistics of the group PGR calculated at weekly time resolution.

Mean 25% quantile Median 75% quantile Standard Deviation
PGRitw 0.987 0.932 0.965 1.001 0.113
PGRwf 1.031 0.985 1.004 1.046 0.081

parameters are used to decide the wake region: the distance between two452

turbines and the wake angle. The distance threshold is chosen to be 20d,453

where d is the rotor diameter, and the wake angle threshold is chosen to be454

±22.5◦ (45◦ in total) [27, 28]. We consider only peripheral turbines as the455

candidates for a wake free turbine. Once the set of wake free turbines for a456

wind sector s, F(s), is determined, the set of turbines in the wake, I(s), is457

taken simply as the complementary set.458

The wind sector generation additionally requires the information of wind459

direction. As such, we now use the data pairs (Vt, Dt, ρt, Pti) for t = 1, . . . , T460

and i = 1, . . . , n where Dt denotes wind direction and i is an index for461

n turbines. Different from the previous analysis in Section 3, we use mast462

measurements for the wind speed V to account for the available wind resource463

that is common in the local area. The measurements are still 10-min based,464

and we use the weekly time resolution considering its effectiveness shown in465

Section 3.466

To compare the wake-free turbines with the in-the-wake turbines, we cal-467

culate the PGR for each group. Let Jwf (Dt) and Jitw(Dt), respectively,468

denote the set of wake-free turbines and the set of in-the-wake turbines vary-469

ing with wind direction at each time t. Then, we calculate the group PGR470

as follows471

PGRwf =

∑T
t=1

∑
i∈Jwf (Dt)

Pti∑T
t=1

∑
i∈Jwf (Dt)

P̂ (Vt)
, PGRitw =

∑T
t=1

∑
i∈Jitw(Dt)

Pti∑T
t=1

∑
i∈Jitw(Dt)

P̂ (Vt)
.

(5)
Figure 9 and Table 4, respectively, present boxplots and descriptive statis-472

tics of the group performance. As expected, the wake-free turbines show473

a higher power production level, and the difference between PGRwf and474

PGRitw is in the range of 4.0–5.3%. In terms of the mean and median, the475

difference is 4.4% and 4.0%, respectively.476

The magnitude of the efficiency loss (PGRwf−PGRitw) is relatively small477

compared to the 10% power loss estimate stated earlier [29], where the per-478
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Figure9:BoxplotsofthegroupPGRcalculatedatweeklytimeresolution.

centagewascalculatedforanoffshorewindfarmcomprising20turbines479

closelylocatedinarowinabowshape.Forthewindfarmstudiedin[29],480

theturbinespacing(between-turbinedistance)is2.4timestherotordiame-481

ter(d),whichisrathertightcomparedtotypicalturbinespacing.Theoff-482

shorewindfarmusedinthisstudyhastheturbinespacingofapproximately483

7–8dand11–12dforthenorthwest-southeastandnortheast-southwestorien-484

tations,respectively. Consideringthesignificantimpactofturbinespacing485

onwakeloss[28],itisnotsurprisingtoseetheconsiderablegapbetweenour486

resultandtheresultreportedin[29].487

5. ConcludingRemarks488

Inthispaper,weexaminedthecapabilitiesofdifferentmetricsforwind489

powerproductionandcomparedthreemetricsbroadlyusedinpractice—490

availability,powergenerationratio,andpowercoefficient.Powergeneration491

ratiowasusedasaproxyfortheproduction-basedavailability,duetoits492

easinessincomputation. Nonetheless,powergenerationratioitselfcanbe493

usedasaperformancemetricinpractice,asillustratedinSection4.494

Thisstudyisimportantasitprovidesananswertowhichmetricamong495

thethreedifferentkindsisthemostaccurateandreliablemeasureofturbine496

performancechangingovertime. Weevaluatedthethreemetricsinvarious497

aspectssuchas(i)probabilitydistributions,(ii)pairwisedifferences,and(iii)498

correlationsandlinearrelationshipstodeterminehowrepresentativetheyare499

ofthedataasawhole.500
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Through our assessment, we found that power generation ratio is the501

strongest and most consistent metric for evaluating the offshore wind farm502

used in this study. The probability distributions of power generation ratio503

and power coefficient have relatively balanced tails on both sides of the mode,504

whereas the distribution of availability is truncated at a certain point and505

exhibits a small spread. In this aspect, power generation ratio and power506

coefficient are better metrics as their distributions allow for greater sensitiv-507

ity to differences in the efficiency of turbine. When examining the pairwise508

absolute differences, the correlations, and the linear relationships between509

the metrics, we consistently found that the greatest dissimilarity existed be-510

tween availability and power coefficient; on the other hand, power generation511

ratio was relatively well-matched with either of the other metrics. As power512

generation ratio was more representative of all three metrics, it could serve513

as the most comprehensive and reliable metric.514

The analysis applied in this study was based on the data provided by a515

specific offshore wind farm. As such, we admit that the analysis results may516

not readily extend to other wind farms, although the procedure of analysis517

and examination is generalizable. Our experience indicates that the insights518

garnered here should also have good potential for generalization. Still, con-519

sidering substantially different characteristics between onshore and offshore520

wind farms [30], extending this study to other wind farms, especially to on-521

shore farms, would be interesting and useful while confirming whether the522

trends found in this study exist for farms in different environments.523
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