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a b s t r a c t

In tests of object recognition, individual differences typically correlate modestly but nontrivially across

familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect

either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms.

Here, we introduce two separate methods for effectively capturing category-general performance varia-

tion, one that uses novel objects and one that uses familiar objects. In each case, we show that category-

general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first

approach examines three newly developed novel object memory tests (NOMTs). We predicted that

NOMTs would exhibit more shared, category-general variance than familiar object memory tests

(FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences

(e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none

of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated non-

trivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger

than between the face and car tests themselves, suggesting that the category-general variance captured

by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recog-

nition. The second approach averaged performance across multiple FOMTs, which we predicted would

increase category-general variance by averaging out category-specific factors. This prediction held, and

as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these

results support the existence of object recognition mechanisms that, though category-general, are speci-

fic relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-

normed NOMTs to the tools available to study object recognition.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Increasingly, an individual differences approach is being used to

characterize the mechanisms that underlie cognition. Such an

approach can help to clarify the number, real-world relevance,

and developmental origins of mechanisms relied upon to complete

a given cognitive task (Wilmer, 2008). Here, we use an individual

differences approach to better understand the number of separable

mechanisms used to recognize objects.

In the study of object recognition, a distinction can be made

between domain-specific mechanisms, which are used for a smal-

ler number of object categories (in the extreme, just one), vs.

domain-general mechanisms, which are used for a larger number

of object categories (in the extreme, all). To date, much of the

research on individual differences in object recognition has focused

on domain-specificity, and moreover, on the domain-specificity of

a single, widely-researched object category: faces (e.g., Duchaine &

Nakayama, 2006; Hildebrandt, Wilhelm, Herzmann, & Sommer,

2013; Shakeshaft & Plomin, 2015; Wilhelm et al., 2010; Wilmer

et al., 2010, 2012). Here, we take the opposite approach, focusing

on domain-generality and aiming to elucidate principles that

may apply broadly across a wide variety of object categories.

There are many good reasons to examine domain-general

mechanisms, one of which is the potential real-world predictive

power of individual differences-based measures. A basic question

arises in this context: Can one capture mechanisms that are broad

enough to potentially predict behavior across a variety of life situ-

ations, yet specific enough to not simply reflect the sorts of highly

general mechanisms that are already well-captured by general
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intelligence (IQ) tests? Could one, for example, create a test that

predicts learning of fingerprints, faces, and X-rays in a group of

people who score similarly on IQ tests? Our interest in capturing

domain-general components of object recognition is thus driven

in part by a desire to identify consequential non-IQ abilities, some-

thing that has rarely been achieved in studies of cognitive variation

(Schmidt & Hunter, 2004; Wai, Lubinski, & Benbow, 2009).

Our second motivation for focusing on domain-generality is to

enhance our understanding of the number of dissociable mecha-

nisms used to recognize objects. Past work in neuropsychology

(Farah, 1990, 1992), neuroimaging (Kanwisher, 2000, 2010), indi-

vidual differences (Dennett et al., 2012; Duchaine & Nakayama,

2006; Wilhelm et al., 2010; Wilmer et al., 2012), and behavioral

genetics (Shakeshaft & Plomin, 2015; Wilmer et al., 2010) has fre-

quently focused on a simple dichotomy between faces and objects.

This work tends to assume, implicitly or explicitly, that non-face

object processing is accomplished via a common set of highly over-

lapping mechanisms that vary little from one non-face category to

another. Not infrequently, this assumption motivates the use of a

single non-face object category to test for a dissociation of face pro-

cessing from domain-general object processing. For example,

Shakeshaft and Plomin (2015) concluded, based on results from a

face test and a single object test (a car test), that the genes under-

lying face recognition dissociated from those underlying ‘‘general

object recognition.”

The assumption of common mechanisms for different object

categories can, however, be questioned on multiple grounds. First,

dissociations have been found between the neural areas support-

ing the processing of animals vs. tools (e.g., Chao, Weisberg, &

Martin, 2002), large vs. small objects (e.g., Konkle & Oliva, 2012)

and objects that are curvilinear vs. rectilinear (e.g., Nasr,

Echavarria, & Tootell, 2014; Yue, Pourladian, Tootell, &

Ungerleider, 2014). Second, behavioral dissociations are found

between object categories, and, interestingly, the degree of behav-

ioral dissociation predicts the degree of neural dissociation (Cohen,

Konkle, Rhee, Nakayama, & Alvarez, 2014; Cohen, Nakayama,

Konkle, Stantić, & Alvarez, 2015). Third, and most relevant to the

current focus on individual differences, are recent studies of corre-

lations in performance across object recognition tests (e.g. butter-

flies, cars, planes, shoes, dinosaurs; McGugin, Richler, Herzmann,

Speegle, & Gauthier, 2012; Van Gulick, McGugin, & Gauthier,

2015). The mean pairwise correlation found among these tests

(r = 0.33–0.34) was no larger than what is typically found between

face and non-face object recognition tests (e.g. r = 0.37 in Dennett

et al., 2012), a result difficult to reconcile with the notion that a

single test could capture domain-general object recognition. More-

over, individual pairwise correlations varied widely by category-

pair (from r = 0.00 for cars and leaves to r = 0.54 for leaves and but-

terflies), suggesting that the contributions of domain-general

mechanisms to everyday object recognition may differ sharply

from one category to another (McGugin, Richler, et al., 2012; Van

Gulick et al., 2015).

Indeed, one might ask whether domain-general mechanisms

necessarily contribute at all to individual differences in object

recognition. In theory, the modest associations found between

object recognition tests might have nothing to do with object

recognition per se, but might instead reflect more general differ-

ences in IQ, attentiveness, or motivation. A key aim of the present

work was to verify whether any individual differences in domain-

general object recognition exist. A second, related aim was to ask

whether individual differences in domain-general object recogni-

tion are underestimated by correlations among familiar object cat-

egories. In theory, dissociations in performance between object

categories could result not only from domain-specific object recog-

nition mechanisms, but also from domain-specific non-perceptual

knowledge (e.g. names of car makes and models) gained through

domain-specific experience with familiar objects (e.g. extensive

research on cars prior to buying one).

Our first two studies test a pair of predictions drawn from the

hypothesis that nontrivial individual differences in object recogni-

tion exist: (A) measures of object recognition performance that

minimize the impact of individual differences in domain-specific

experience will correlate relatively highly, via cleaner isolation of

domain-general object recognition mechanisms, and (B) associa-

tions between such measures will not be substantially explained

bymeasures that are known to load highly on IQ. We tested predic-

tion A in Studies 1 and 2 via different approaches. In Study 1, we

created object recognition tests for three novel object categories

(Novel Object Memory Tests; NOMTs). The use of novel categories,

with which everyone should be similarly unfamiliar, should mini-

mize the impact of individual differences in domain-specific expe-

rience. In Study 2, we attempted to minimize the impact of

category-specific experience by averaging performance across

tests of familiar categories. In both Studies 1 and 2, we then tested

prediction B by asking whether controlling statistically for perfor-

mance on IQ-loaded measures would substantially reduce or elim-

inate associations between object recognition tests. To preview our

results, both predictions held: our efforts to reduce the impact of

category-specific experience yielded higher correlations, and these

correlations were remarkably impervious to controls for multiple

IQ-related measures, thereby supporting the existence of individ-

ual differences in domain-general object recognition mechanisms.

Studies 1 and 3 tested two simple predictions of the further

hypothesis that the same domain-general mechanisms contribute

to recognition of both unfamiliar (novel) and familiar object cate-

gories. In Study 1, we examined correlations between novel object

recognition and face recognition. Plausibly, recognition in both of

these cases may be relatively free of domain-specific experience

variation. In the case of face recognition, performance might be rel-

atively free of experience variation if most persons reach a satura-

tion point in their experience whereby only genetic variation

remains (this would be consistent with the high heritability found

in existing twin studies: Shakeshaft & Plomin, 2015; Wilmer et al.,

2010). In the case of novel object recognition, everyone should be

similarly inexperienced. If domain-specific experience variation

were relatively absent, and if the same underlying mechanisms

were used in familiar and unfamiliar object recognition, then per-

formance should correlate highly between faces and novel objects.

The correlations we found, however, were weaker than those

among NOMTs, tentative evidence that recognition of familiar ver-

sus unfamiliar object categories may rely on at least partially dis-

tinct mechanisms. In Study 3, we asked whether the NOMTs’

relatively low correlation with face recognition is unique to faces,

or whether similar results can be obtained using cars, a category

that in past work has shown a degree of dissociation from other

object categories that is similar to that for faces (McGugin,

Richler, et al., 2012; Van Gulick et al., 2015). Cars provide an inter-

esting test case. On the one hand, car recognition is as heritable as

face recognition (Shakeshaft & Plomin, 2015), potentially motivat-

ing an experience-saturation hypothesis similar to the one men-

tioned above for face recognition. On the other hand, car

recognition is highly correlated with both self-reported car experi-

ence and objectively assessed, car-related semantic knowledge,

suggesting that statistical controls for one or both might isolate a

relatively pure object recognition capacity. Again, however, the

correlation of car recognition with NOMTs was weaker than those

among NOMTs, even after controlling for experience and semantic

knowledge, further evidence that recognition of familiar versus

unfamiliar object categories may rely on distinct mechanisms. To

summarize, face and car recognition both correlate relatively little

with novel object recognition compared with the inter-correlations

between NOMTs. This result suggests that domain-general
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mechanisms underlying familiar object recognition may differ, at

least in part, from those underlying unfamiliar object recognition.

The core data analyzed for Studies 1, 2, and 3 are posted as Sup-

plemental informationand contribute to amore extensive collection

of normative data for the visual recognition and IQ tests investigated

here, that is being published in parallel (Wilmer, Richler, Gauthier, &

Germine, submitted for publication). The data for these papers is

available at the following Open Science Framework links (present

paper: osf.io/6c4m7; normative data set paper: osf.io/qygs4).

2. Study 1

2.1. Methods

2.1.1. Participants

Participants were visitors to TestMyBrain.org. Participation in

tests advertised on the website is voluntary, no compensation is

provided, and participants can quit at any time. A test battery that

included our new Novel Object Memory Tests (NOMTs) was adver-

tised as Recognize That Thing, and 1002 participants (435male, 554

female, 13 not disclosed; mean age = 32.6 years, SD = 13.94,

range = 9–88, 4 not disclosed) completed the full battery. A separate

battery that included four IQ-related testswas advertised as Puzzles

andWords, and 10,000 participants (3927male, 6073 female;mean

age = 32.19, SD = 15.45, range = 10–100) completed that full battery

(full IQ data set is available at osf.io/qygs4 and described inWilmer

et al., submitted for publication). A subset of 105 participants (39

male, 64 female, 2 not disclosed; mean age = 32.9 years, SD = 13.7,

range = 13–75, 1 not disclosed) completed both batteries.1

2.1.2. Recognize that thing test battery

The Recognize That Thing I test battery included a Recognition

Questionnaire (see Appendix A) that probed self-reported face

recognition (12 questions, e.g., ‘‘I find it hard to keep track of char-

acters in TV shows and movies,” ‘‘Compared to my peers, I think

my face recognition skills are . . .”) and general object recognition

(8 questions, e.g., ‘‘I can recognize my own baggage at the airport,”

‘‘How easily do you learn to recognize objects visually?”) abilities,

followed by two Novel Object Memory Tests (NOMTs, details

below), the Cambridge Face Memory Test (CFMT; Duchaine &

Nakayama, 2006), a Life Experiences Questionnaire (open-ended

questions about occupation and interests), and an SAT Question-

naire (self-report of SAT math and verbal scores). Two of the three

NOMTs were randomly selected for each participant and the order

of the two NOMT tests was randomly assigned to each participant.

NOMTs were created for three categories of novel objects (Gree-

bles, Ziggerins, and Sheinbugs, see Fig. 1). NOMTs were closely

modeled after the CFMT (see Duchaine & Nakayama, 2006). Each

NOMT (see Fig. 1) started with a learning phase (trials 1–18),

where a target object was shown in three views (3 s per view) fol-

lowed by three test items where participants had to select which of

three objects was the object they had just studied. This was

repeated for each of six target objects. In the 54 test phase trials

that followed (block 2: trials 19–48; block 3: trials 48–72), partic-

ipants had to select which of three objects was any of the six stud-

ied targets. Targets and distractors were presented from the same

view within each test trial. A 20-s study period, with all six targets

viewed simultaneously, was provided after the learning phase

(block 1) and before the last 24 trials (block 3).

In addition to mirroring the CFMT in the abovementioned ways,

the NOMTs mirrored three aspects of the CFMT’s trial-by-trial

difficulty profile. First, difficulty in the learning phase (trials 1–

18) was low (mean performance of 98% for each of the three

NOMTs, similar to 97% for the CFMT). The easiness of the learning

phase aimed to facilitate active learning of target stimuli, build

participant morale, and reinforce understanding of the basic task.

Second, difficulty gradually increased over the course of the second

block (trials 19–48; correlation of trial number with percentage of

participants who answer each trial correctly was �0.41, �0.25, and

�0.42 for Greebles, Ziggerins, and Scheinbugs, respectively, similar

to �0.30 for CFMT). The relatively easy trials earlier in the second

block aimed to avoid a jarring, potentially frustrating effect. Third,

difficulty varied substantially over the test phase trials (blocks 2

and 3; SD across trials for percentage of participants who answer

the trial correctly was 12%, 12%, and 14% for Greebles, Ziggerins,

and Scheinbugs, respectively, similar to 14% for CFMT). Wide vari-

ation in difficulty across trials facilitates good discriminability

across a range of ability levels (Wilmer et al., 2012). Our approach

to achieving varied trial-by-trial difficulty on the NOMTs included

efforts to vary the similarity of the foils to other targets (similarity

was judged based on the authors’ intuitions and was loosely veri-

fied in iterations with early versions of the tests).

We made two design choices for the NOMTs that deviated from

the CFMT. First, only studied views were tested. In the CFMT, test

items show target faces in novel unstudied views after the learning

phase (block 1). Second, there were no ‘noise trials.’ In the CFMT,

visual noise is added to face images in the last 24 trials (block 3).

Each of these choices aimed to boost NOMT performance into a

range that was reasonably comparable to the CFMT, and indeed,

average NOMT performance (75%) was comparable to average

CFMT performance (76.5% correct). We expected recognition per-

formance for novel objects would naturally tend lower than for

faces due to participants’ relative lack of experience with the novel

objects.

2.1.3. Puzzles and words battery

The Puzzles and Words battery consisted of four IQ-related

measures: the TMB Vocabulary test (hereafter Vocabulary) and

the TMB Matrices test (hereafter Matrices) – two tests that were

developed via the TestMyBrain (TMB) project – plus self-reported

SAT verbal (also called ‘‘Critical Reading”) and SAT math scores.

Vocabulary consisted of 20 items that showed one word printed

in capital letters with five response options. On each trial, partici-

pants were instructed to select the word that came closest to the

meaning of the word printed in capital letters (see Fig. 2 for exam-

ples). Measures of vocabulary are among the best indices of verbal

or crystallized intelligence and also of general intelligence more

broadly (Carroll, 1997). Vocabulary was modeled after the well-

validated Wordsum test used in the General Social Survey

(Smith, Marsden, Hout, & Kim, 2013). Vocabulary is twice the

length of the 10-item Wordsum, and this produces the expected

boost in reliability (Cronbach’s alpha = 0.84 for Vocabulary in the

present sample versus 0.68 for Wordsum; Cor, Haertel, Krosnick,

& Malhotra, 2012). Here, Vocabulary correlates robustly with SAT

verbal (rho0.50, n = 1358, 95% CIs [0.46, 0.54]); this correlation is

comparable to prior reports of correlations between well-

validated vocabulary tests and SAT verbal (Mayer & Massa,

2003). As expected (Mayer & Massa, 2003; Rohde & Thompson,

2007), Vocabulary correlates to a lesser degree, but still robustly,

with SAT math (rho = 0.29, n = 1345, 95% CIs [0.24, 0.33]) and with

Matrices (rho = 0.32, n = 10,000, 95% CIs [0.31, 0.34]).2

1 At the request of a reviewer, we ran an additional battery that looked at NOMT

and Digit Span performance (Supplemental info). These data converged with the other

results of Study 1, showing only very modest correlations of NOMTs with Digit Span.

2 Correlations in this and the next two paragraphs are Spearman rho after age is

regressed out of Vocabulary and/or Matrices via third-order fit. The use of Spearman’s

rho minimizes the impact of any outliers. Controlling for age avoids suppression of

relationships due to different age curves for Vocabulary and Matrices and due to the

absence of an age curve for SAT because SAT is generally taken at a uniform age.
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Matrices consisted of 35 matrix reasoning problems. On each

trial, participants are asked to select the image that best completes

the pattern (see Fig. 2 for examples). Measures of matrix reasoning

are among the best indices of fluid intelligence and also of general

intelligence more broadly (Carroll, 1997). Matrices was modeled

after the well-validated Matrix Reasoning test used in the Wech-

sler Abbreviated Scale of Intelligence II (Wechsler & Hsiao-pin,

2011). Matrices has similar reliability to the original WASI II Matrix

Reasoning test (Spearman-Brown corrected split-half reliability,

computed as in the WASI II manual, which counts all trials after

its three-consecutive-incorrect stopping rule as incorrect, is 0.89;

Cronbach’s alpha is 0.76). Here, Matrices correlates robustly with

SAT math (rho = 0.40, n = 1345, 95% CIs [0.36, 0.45]); this correla-

tion is comparable to prior reports of correlations between well-

validated matrix reasoning tests and SAT math (Rohde &

Thompson, 2007). As expected (Rohde & Thompson, 2007), Matri-

ces correlates to a lesser degree, but still robustly, with SAT verbal

(rho = 0.24, n = 1358, 95% CIs [0.19, 0.29]) and Vocabulary

(rho = 0.32, n = 10,000, 95% CIs [0.31, 0.34]).

SAT verbal and SAT math scores were self-reported (with an

option to skip) and were filtered to include only participants who

reported plausible multiple-of-10 SAT verbal scores in the range

200–800. SAT data was thus obtained for about 13% of participants

(SAT verbal n = 1358, SAT math n = 1345). The SAT has shown high

correlations with multiple measures of general intelligence

(Condon & Revelle, 2014; Frey & Detterman, 2004). In keeping with

prior web-based research, SAT scores, among those who reported

them, showed higher means than, but similar standard deviations

to, the SAT normative samples (SAT verbal M = 623, SD = 132; SAT

math M = 620, SD = 131; Condon & Revelle, 2014). SAT math corre-

lated robustly with SAT verbal (rho = 0.51, n = 1309, 95% CIs ([0.47,

0.55]); this correlation is comparable to prior reports of correla-

tions between self-reported SAT math and SAT verbal (Mayer &

Massa, 2003).

2.2. Results

Data from one participant were discarded for below chance per-

formance on both NOMT tests. Given that we report Spearman

rank-order correlations below, which are robust to outliers, corre-

lations change little to none if this participant is added back in.

2.2.1. Relations among NOMTs and between NOMTs and the CFMT

Descriptive statistics and reliability for the NOMTs and CFMT

are presented in Table 1. Tests were comparable in summary

3 s 3 s 3 s

20 s

Learning Phase (repeated for each of 6 targets)

Until response (x3)

Test Phase

Until response (x54)

Targets for each NOMT category

Greebles Ziggerins Sheinbugs

Fig. 1. Top panel: Targets for each of the three NOMTs (Greebles, Ziggerins, and Sheinbugs). Bottom panel: Illustration of NOMT test format (learning and test phase) with

Ziggerins.
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statistics and performance range, and all tests showed good relia-

bility (Cronbach’s a � 0.8).

Correlations (Spearman’s rho) between all NOMTs and the

CFMT are reported in Table 2. Because each participant was ran-

domly assigned to complete the CFMT plus two of the three

NOMTs, N varies between correlations, but is large (>325) in all

cases. Consequently, all correlations greater than 0.1 are statisti-

cally significant (p < 0.001), and we have therefore opted not to

report p-values.

The NOMTs were more strongly correlated with each other

(Fisher-transformed average3 r = 0.48, r2 = 0.23) than with the CFMT

(average r = 0.33, r2 = 0.11), both on average and for each individual

pairwise correlation, although the smallest NOMT correlation

(between Sheinbugs and Ziggerins, r = 0.43) is not significantly dif-

ferent from the largest correlation with the CFMT (between CFMT

and Greebles, r = 0.37; Fisher’s Z = 1.06, p = 0.29).

An average NOMT z-score was computed for each participant.

The correlation between average NOMT and the CFMT was slightly

higher (n = 1001, r = 0.38, 95% CI = [0.33, 0.43], r2 = 0.14) than cor-

relations between the CFMT and any one NOMT, consistent with

known benefits of averaging (Rushton, Brainerd, & Pressley, 1983).

Age and gender were not correlated with CFMT performance

(age: n = 997, r = 0.06, 95% CI = [�0.002, 0.12], r2 = 0.004; gender:

n = 988, r = �0.03, 95% CI = [�0.09, 0.03], r2 = 0.001), but they

accounted for a small but significant amount of the variance in

average NOMT performance (age: n = 997, r = �0.12, 95% CI =

[�0.18, �0.06], r2 = 0.01; gender coded female = 1, male = 2:

n = 988, r = 0.11, 95% CI = [0.05, 0.17], r2 = 0.01).

2.2.2. Relations with intelligence measures

Among those who completed the Recognize That Thing test

Battery, self-reported SAT-verbal and SAT-math scores correlated

robustly (n = 137, r = 0.71, 95% CI = [0.62, 0.78], r2 = 0.51,

p < 0.001). Matrices and Vocabulary scores showed a statistically

significant but small correlation (n = 279, r = 0.25, 95% CI = [0.14,

0.36], r2 = 0.06, p < 0.001). Matrices correlated with SAT-math

(n = 37, r = 0.47, r2 = 0.22, 95% CI = [0.17, 0.69], p = 0.002) but not

SAT-verbal in this sample (n = 36, r = 0.01, r2 = 0.00, 95% CI =

[�0.32, 0.34], p = 0.95); Vocabulary correlated with both SAT-

math (n = 37, r = 0.34, r2 = 0.12, 95% CI = [0.02, 0.60], p = 0.02) and

SAT-Verbal (n = 36, r = 0.44, r2 = 0.19, 95% CI = [0.13, 0.67],

p = 0.004).

Correlations (Spearman’s rho) between IQ-related measures

and each NOMT are shown in Table 3. Matrices and SAT scores

were significantly correlated with average NOMT performance

(Matrices: n = 279, r = 0.30, 95% CI = [0.19, 0.40], r2 = 0.09,

p < 0.001; SAT: n = 137, r = 0.19, 95% CI = [0.02, 0.35], r2 = 0.04,

p = 0.03), while Vocabulary score was not (n = 279, r = 0.08, 95%

CI = [�0.04, 0.20], r2 = 0.01, p = 0.18). CFMT correlated to a small

but significant degree with only Vocabulary among the intelligence

measures (see Table 3).

The results suggest that intelligence makes a small but signifi-

cant contribution to NOMT performance. To determine whether

intelligence accounts for the variance that is common between

NOMTs, data were analyzed separately for subsets of participants

who completed the same two NOMTs and one or more IQ mea-

sures. Of critical interest is the correlation between NOMTs after

controlling for IQ-related measures. As shown in Tables 4 and 5,

partial correlations changed little relative to the first-order effects,

indicating that IQ does not drive correlations between NOMTs.

2.2.3. Relations with self-reported face and object recognition ability

Self-report for face recognition (Cronbach’s a = 0.88; n = 887)

was more reliable than self-report for object recognition (Cron-

bach’s a = 0.58; n = 904), possibly because five of the object ques-

tions targeted specific object categories (houses, cars, animals,

scenes, baggage) for which participants may rely on different

sources of information to make their responses, although in princi-

ple averaging across these questions should reduce the contribu-

Example Vocabulary Items

Example Matrices Items

PROVERB

action 
forethought 

adage 
support 

obstacle

FOLIAGE

catharsis 
vegetation 

bitter 
sand 

melancholy

Fig. 2. Example Vocabulary and Matrices items from the Puzzles and Words test battery. In Vocabulary (top panel) participants are instructed to choose the word that best

matches the definition of the word in capitals. In Matrices (bottom panel) participants are instructed to choose the item that best completes the pattern. Stimuli shown are

different from, but chosen to be representative of, those used in the actual tests.

3 For all subsequent analyses, average correlations were calculated using Fisher-

transform.
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tion of category-specific factors (cf. Gauthier et al., 2014).4 Self-

report scores for faces and objects were moderately correlated

(n = 838, r = 0.53, 95% CI = [0.48, 0.58], r2 = 0.28).

As shown in Table 6, self-report was a better predictor of perfor-

mance for faces than novel objects, with the largest correlation

between self-reported face recognition ability and performance

with faces (r = 0.39).

2.3. Discussion

In Study 1, we created the first psychometrically reliable tests of

recognition for three novel object categories (Novel Object Mem-

ory Tests; NOMTs) and found that correlations in performance

among these tests (average 23% shared variance) was, though far

from perfect, substantially larger than the correlations previously

found among familiar object memory tests (FOMTs; average

�10% shared variance; Dennett et al., 2012; McGugin, Richler,

et al., 2012; Van Gulick et al., 2015). We also found that Matrices

was correlated with NOMT performance (5–8% shared variance),

but not with face recognition performance.5 Importantly, however,
none of our IQ-related measures accounted for the correlations

between NOMTs. In other words, although intelligence contributed

somewhat to performance with novel objects, it did not account

for relations in performance between novel object categories.

Together, these results suggest that learning and recognizing novel

objects is a reliable ability that is separate from intelligence.

Table 1

Descriptive statistics and reliability for the NOMTs and CFMT. For all tests, chance is 33% (24 items correct) and perfect performance is 100% (72 items correct).

NOMTs CFMT

Greebles Ziggerins Sheinbugs

N 673 674 655 1001

Mean 70.3% 84.4% 70.4% 76.5%

SD 10.7% 11.2% 10.6% 14.1%

Minimum 36.1% 36.1% 40.3% 36.1%

Maximum 98.6% 100% 98.6% 100%

Cronbach’s a 0.80 0.89 0.80 0.91

Table 2

Correlations (Spearman’s rho) between NOMTs and the CFMT. All correlations are

significant (p < 0.001). 95% confidence intervals shown in parentheses.

Greebles Ziggerins Sheinbugs

CFMT 0.37 (0.30, 0.43)

n = 673

0.35 (0.28, 0.41)

n = 674

0.28 (0.21, 0.35)

n = 655

Greebles 0.50 (0.42, 0.58)

n = 346

0.50 (0.41, 0.58)

n = 327

Ziggerins 0.43 (0.34, 0.51)

n = 328

Table 3

Correlations (Spearman’s rho) between intelligence measures and the CFMT and

NOMTs. 95% confidence intervals are shown in parentheses.

Puzzles & words SAT score

Matrices Vocabulary

CFMT 0.08 (�0.04, 0.20)

n = 279

*0.13 (0.01, 0.24)

n = 279

0.03 (�0.14, 0.20)

n = 137

Greebles **0.34 (0.21, 0.46)

n = 186

0.11 (�0.03, 0.25)

n = 186

0.18 (�0.03, 0.37)

n = 91

Ziggerins **0.24 (0.10, 0.37)

n = 182

0.04 (�0.11, 0.18)

n = 182

0.11 (�0.10, 0.31)

n = 89

Sheinbugs **0.24 (0.10, 0.37)

n = 190

0.05 (�0.09, 0.19)

n = 190

0.17 (�0.03, 0.3)

n = 94

* p < 0.05.
** p < 0.002.

Table 4

Correlations among NOMTs and IQ-related measures for groups of participants who

completed the same two NOMTs and also completed the Puzzles & Words Battery.

Partial correlations (Spearman’s partial rho) are correlations between NOMTs

controlling for the IQ-related measure shown in the current row of the table.

Matrices and Vocabulary were combined by taking their mean percentile score.

Ziggerins with Greebles (N = 89)

rho b/w NOMTs = 0.63

Ziggerins Greebles Partial rho b/

w NOMTs

Matrices 0.29 0.31 0.59

Vocabulary 0.07 0.13 0.63

Matrices and vocabulary combined 0.23 0.28 0.60

Scheinbugs with Greebles (N = 97)

rho b/w NOMTs = 0.47

Sheinbugs Greebles Partial rho b/

w NOMTs

Matrices 0.29 0.38 0.41

Vocabulary 0.10 0.09 0.47

Matrices and vocabulary combined 0.27 0.22 0.44

Scheinbugs with Ziggerins (N = 93)

rho b/w NOMTs = 0.56

Sheinbugs Ziggerins Partial rho b/

w NOMTs

Matrices 0.21 0.20 0.54

Vocabulary 0.00 �0.03 0.56

Matrices and vocabulary combined 0.14 0.11 0.55

Table 5

Correlations (Spearman’s rho) among NOMTs and SAT for groups of participants who

completed the same two NOMTs and reported valid (multiple of 10 between 200 and

800) SAT math and SAT verbal scores. Partial correlations (Spearman’s partial rho) are

correlations between NOMTs controlling for the self-reported SAT score shown in the

current row of the table. SAT math and SAT verbal were combined by adding them

together.

Ziggerins with Greebles (N = 48)

rho b/w NOMTs = 0.49

Ziggerins Greebles Partial rho b/

w NOMTs

SAT math 0.10 0.13 0.48

SAT verbal 0.04 �0.04 0.49

SAT combined 0.09 0.05 0.49

Scheinbugs with Greebles (N = 43)

rho b/w NOMTs = 0.52

Sheinbugs Greebles Partial rho b/

w NOMTs

SAT math 0.45 0.38 0.43

SAT verbal 0.26 0.10 0.52

SAT combined 0.39 0.22 0.49

Scheinbugs with Ziggerins (N = 46)

rho b/w NOMTs = 0.36

Sheinbugs Ziggerins Partial rho b/

w NOMTs

SAT math �0.02 0.24 0.38

SAT verbal �0.06 0.03 0.37

SAT combined 0.00 0.16 0.37

*p < 0.05.
**p = 0.01.

4 In prior work where self-report consisted of the same unique question for all

categories, test-retest reliability was much lower for faces than non-face categories

(Gauthier et al., 2014).
5 Other studies have found a modest but significant correlations of fluid intelli-

gence with CFMT (r = 0.14, Van Gulick et al., 2015; r = 0.16, Shakeshaft & Plomin,

2015).
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The NOMTs were also correlated with the CFMT (11% shared

variance on average). Thus, the recognition of faces and novel

objects are as different as two familiar categories of non-face

objects. In Study 3, we will show that the same level of dissociation

is found between cars and novel objects, adding to a number of

intriguing parallels found between faces and cars. Together, the

relatively weak correlations of cars and faces with NOMTs, relative

to the correlations among NOMTs, suggests that the category-

general mechanisms captured by NOMTs are not necessarily highly

involved in either car recognition or face recognition.

3. Study 2: Reanalysis of Van Gulick et al. (2015) Study 2

In Study 1, we found that while intelligence correlated some-

what with performance with novel objects, it did not account for

the shared variance among different novel object categories. In

Study 2, we test the generality of this finding in a reanalysis of data

from Study 2 of Van Gulick et al. (2015) that included the Vander-

bilt Expertise Test for 8 familiar object categories, including cars, as

well as a three-task estimate of fluid intelligence.

3.1. Methods

Study 2 of Van Gulick et al. (2015) tested 213 participants (86

male; mean age = 22.49, SD = 6.31, age range: 8–55). We analyzed

the original data from the Vanderbilt Expertise Test (VET) for 8 cat-

egories (birds, cars, dinosaurs, leaves,mushrooms, planes, shoes and

transformers) and the mean score across three IQ-related tests

(Raven’s Advanced Progressive Matrices, Raven, Raven, & Court,

1998; Letter sets, Ekstrom, French, Harman, & Dermen, 1976; Num-

ber series, Thurstone, 1938). Details of the tasks, reliability (0.71–

0.92 for the VET tasks, 0.92 for IQ), and correlations with gender

and age can be found in the original paper. Although Pearson’s r

was reported in the original paper, we used Spearman’s rho here

to be consistent with Studies 1 and 2. The VET tasks were, in certain

key ways, modeled after the CFMT (Duchaine & Nakayama, 2006)

and Cambridge Car Memory Test (CCMT; Dennett et al., 2012): in

eachVET, six targets are studied, followedby483-AFC trials increas-

ing in difficulty. Key differences are: (1) the VETs exclude the block

of 18 learning trials at the beginning of CFMT and CCMT, and while

the CFMT and CCMT then allow a 30 s study period for all six faces,

theVETs begin by allowingparticipants to study all six target objects

for a duration of their choice, and (2) CFMT and CCMT images have

blank backgrounds, whereas VET images include backgrounds.

3.2. Results

Pairwise correlations between any two VET categories ranged

from 0.08 to 0.47 (average = 0.30; see Table 7). As in Study 1, we

found that averaging performance across categories is beneficial,

in this case likely because noise, experience, and/or interest are

somewhat independent between VET categories. Table 8 shows

two ways of calculating a grand average representing correlations

across different familiar categories. The first and most intuitive is

the average of all pairwise Z-transformed correlations (r = 0.32).

The second approach first correlates performance for each category

with the aggregate (average) z-scores of the other 7 categories,

before averaging these correlations across categories. This second

approach uses the well-known ‘‘principle of aggregation” which

states that ‘‘the sum of a set of measurements is a more stable

and representative estimator then any single measurement”

(Rushton et al., 1983) and it provides a higher estimate of

domain-general variance (r = 0.49), or an r2 (0.24) comparable to

the shared variance observed between NOMTs in Study 1. On aver-

age, VETs shared a small amount of significant variance with IQ

(r2 = 0.04). Most critically, controlling for IQ did not affect the cor-

relations between each category and the average of all 7 other cat-

egories (see Table 8; average r2 = 0.22).

3.3. Discussion

This re-analysis reveals a pattern of results for familiar objects

that is strikingly consistent with what we observed for NOMTs in

Study 1. First, we found evidence for 24% shared variance across

familiar categories (vs. 23% for novel objects). The similarity of

these two numbers is not important per se, as these analyses dif-

fered in multiple ways. An important parallel, however, is that in

both cases, substantially more variance is explained than by pair-

wise correlations between familiar object memory tests (10%). This

substantial shared variance raises the possibility that averaged

FOMTs effectively capture domain-general object recognition

mechanisms by averaging out effects of category-specific factors

such as experience, interest, and visual similarity. An alternative

explanation, however, is that the shared variance reflects more glo-

bal and non-specific mechanisms such as IQ. By showing that IQ

did not contribute an appreciable amount to the shared variance

between familiar categories, we provide clear evidence against that

alternative explanation. We conclude that averaging across cate-

gories reveals mechanisms that are both domain-general and

specific relative to IQ.

4. Study 3

In Study 3, we sought to weave a second familiar object cate-

gory, cars, into our investigation. We chose cars for several reasons.

First, cars are often used as a comparison to faces (e.g., McGugin,

Gatenby, Gore, & Gauthier, 2012; Shakeshaft & Plomin, 2015),

and sometimes assumed to be a representative non-face object cat-

egory (e.g., Dennett et al., 2012). Second, previous work found that

performance with cars tends to dissociate at least as much as face

recognition does from performance with other familiar object cat-

egories (McGugin, Richler, et al., 2012; Van Gulick et al., 2015),

although the correlation of car recognition with face recognition

is typical of other non-face categories (Dennett et al., 2012;

McGugin, Richler, et al., 2012; Van Gulick et al., 2015). Car recogni-

tion was also recently found to be as heritable as face recognition,

and each was only modestly correlated with g (Shakeshaft &

Plomin, 2015). Therefore, car recognition is similar to face recogni-

tion in its heritability and dissociation from other object categories.

Here, we test whether car recognition will also dissociate from

NOMTs, just as face recognition did in Study 1. We also expect to

replicate the finding that the correlation of car with face recogni-

tion is neither unusually high, nor unusually low, compared to

what is found for other categories (Dennett et al., 2012;

Table 6

Correlations (Spearman’s rho) between self-report face and object recognition ability

measures and CFMT and NOMT performance. All correlations are statistically

significant (p < 0.01) unless otherwise noted. 95% confidence intervals are shown in

parentheses.

Self-report: faces Self-report: objects

CFMT 0.39 (0.33, 0.44)

n = 887

0.22 (0.16, 0.28)

n = 904

NOMT average 0.13 (0.07, 0.19)

n = 887

0.14 (0.08, 0.20)

n = 904

Greebles 0.19 (0.11, 0.27)

n = 595

0.15 (0.07, 0.23)

n = 597

Ziggerins 0.11 (0.03, 0.19)

n = 608

0.12 (0.04, 0.20)

n = 619

Sheinbugs 0.05a (�0.03, 0.13)

n = 571

0.11 (0.03, 0.19)

n = 592

a Not significant.
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McGugin, Richler, et al., 2012; Van Gulick et al., 2015). To fore-

shadow our results, we find that car and face recognition dissociate

to about an equal degree from NOMTs, suggesting that the

category-general mechanisms that appear to contribute strongly

to NOMT performance make a similarly limited contribution to

both car and face recognition.

We also measured self-reported experience with cars to test the

hypothesis that variation in experience may be a suppressor vari-

able in the relation between car recognition performance and

NOMTs (for which there is no variation in experience). We also

measured semantic knowledge for cars (knowledge of car models),

another method used in prior work to estimate experience with

cars (Van Gulick et al., 2015). In that work, for most object cate-

gories tested, self-report and semantic knowledge accounted for

common portions of the variance in recognition performance. For

cars, however, the correlation between car recognition and car

semantic knowledge remained high even after partialing out self-

reported experience. Interestingly, this was the case even though

self-reported experience was a better predictor of car recognition

(r = 0.42) than for most other categories. In other words, for cars,

self-report and semantic knowledge were both related to car

recognition performance and appeared to index different aspects

of experience. We thus use them both here to test our conjecture

that experience could explain why car recognition would dissoci-

ate from novel object recognition.

4.1. Methods

4.1.1. Participants

Participants were visitors to TestMyBrain.org. One thousand

and eight participants (432 male, 568 female, 8 not disclosed;

mean age = 35.5 years, SD = 13.66, range = 7–100, 4 not disclosed)

completed a new Recognize That Thing battery. A subset of 160

participants (56 male, 103 female, 1 not disclosed; mean

age = 35.2 years, SD = 14.33, range = 7–69) also completed the Puz-

zles and Words test battery. One thousand and three different par-

ticipants (343 male, 643 female, 1 not disclosed; mean

age = 35.7 years, SD = 14.93, range 9–85) completed a Remember-

ing That Face battery (full data set from this battery is available

at osf.io/qygs4 and described in Wilmer et al., submitted for

publication).

4.1.2. Batteries

The Recognize That Thing II battery included a Recognition

Questionnaire (same as Study 1, see Appendix A), a Car Recognition

Questionnaire (7 items that probe self-reported car recognition

ability and experience; see Appendix B), one NOMT (randomly cho-

sen for each participant), the Cambridge Car Memory Test (CCMT;

Dennett et al., 2012), the SAT questionnaire, a Semantic Vanderbilt

Expertise Test for cars (adapted from Van Gulick et al., 2015), and a

Life Experience Questionnaire (same as Study 1).

Remembering That Face included the CFMT, the CCMT, and a

Life Experience Questionnaire (same as Study 1).

The Cambridge Car Memory test is identical in format to the

CFMT, but uses cars instead of faces (see Dennett et al., 2012, for

a complete description).

The Semantic Vanderbilt Expertise Tests (SVETs; Van Gulick

et al., 2015) measure non-visual semantic category-specific knowl-

edge as estimated through knowledge of domain-relevant nomen-

clature. Three object names (one real name and two foils) are

presented on each trial, and participants are instructed to select

the real name. The SVETs have good reliability and domain-

specific validity (Van Gulick et al., 2015). Here, we used a shorter

12-item version of the SVET-car, with items selected on the basis

of an item analysis of the Van Gulick et al. (2015) data.

4.2. Results

4.2.1. Relations between NOMTs and the CCMT

Descriptive statistics and reliability for the NOMTs and CCMT

are presented in Table 9. Tests were comparable in summary

statistics and performance range, and all tests showed good relia-

bility (Cronbach’s a � 0.78).

Correlations (Spearman’s rho) between each NOMT and the

CCMT are reported in Table 10. For ease of comparison, Table 10

also shows correlations between each NOMT and the CFMT from

Study 1. Overall, performance with different novel object cate-

gories is equally correlated with performance for faces (Study 1,

Table 7

Correlations (Spearman’s rho) between the different VET categories in Study 2 of Van Gulick et al. (2015).

Car Bird Dino Leaf Mush Plane Shoe

Bird 0.08

Dino 0.11 0.41

Leaf 0.23 0.39 0.34

Mush 0.06 0.31 0.23 0.43

Plane 0.24 0.37 0.45 0.46 0.35

Shoe 0.21 0.22 0.22 0.39 0.24 0.29

Trans 0.23 0.44 0.34 0.46 0.38 0.47 0.26

Table 8

For each VET category, Z-transformed average pairwise correlations with all other categories, correlation with the average of the other categories, correlation with IQ, and partial

correlation with the average of the other categories controlling for IQ.

Category r Partial r

Average pairwise with other 7 categories Average of other 7 categories IQ Average of other 7 categories

Car 0.17 0.25 0.00 0.28

Bird 0.32 0.50 0.31 0.44

Dino 0.30 0.45 0.26 0.43

Leaf 0.37 0.63 0.21 0.60

Mush 0.28 0.46 0.20 0.42

Plane 0.36 0.61 0.28 0.59

Shoe 0.25 0.40 0.07 0.41

Trans 0.35 0.59 0.27 0.54

Avg Z-transformed r 0.32 0.49 0.20 0.47
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average r = 0.33, r2 = 0.11) and cars (Study 2, average r = 0.32,

r2 = 0.10), and these correlations are smaller than those obtained

between different novel object categories (Study 1, average

r = 0.48, r2 = 0.23). Notably, the order in which NOMTs account

for CCMT performance is the same as that in which they accounted

for CFMT performance (Greebles > Ziggerins > Sheinbugs). Indeed,

despite considerable statistical power, correlations between each

NOMT and the CCMT are not statistically different from the corre-

lations between each NOMT and the CFMT (zs < 1, ps > 0.4; see

Table 10). This is inconsistent with the idea that visual similarity

primarily drives these effects.

Replicating Study 1, the average correlation between NOMT

performance and age was small but significant (average

r = �0.15, r2 = 0.02). On average, there was no correlation between

NOMT performance and gender (average r = 0.04, r2 = 0.002). The

correlation between age and CCMT performance was statistically

significant (n = 1004, r = 0.07, 95% CI = [0.01, 0.13], r2 = 0.004), but

accounts for less than 1% of the variance. Gender was significantly

correlated with CCMT performance (n = 1000, r = 0.34, 95% CI =

[0.28, 0.39], r2 = 0.12), replicating a car-advantage in men

(Dennett et al., 2012; McGugin, Richler, et al., 2012).

4.2.2. Relations between the CCMT and the CFMT

Descriptive statistics and reliability for the CCMT and the CFMT

for this study are presented in Table 11. Mean performance of both

tests in this battery was somewhat lower than in our other data

(see Tables 1 and 9), but both tests showed good reliability (Cron-

bach’s a � 0.88). The Spearman correlation of the CCMT with the

CFMT was 0.35 (n = 1003, 95% CI = [0.29, 0.40], r2 = 0.12).

4.2.3. Relations with IQ measures

As in Study 1, self-reported SAT-verbal and SAT-math scores

were correlated (n = 107, r = 0.57, 95% CI = [0.43, 0.69], r2 = 0.32,

p < 0.001). Matrices and Vocabulary scores were not correlated

(n = 158, r = �0.008, 95% CI = [�0.15, 0.16], r2 < 0.001, p > 0.9). Only

25 participants completed Puzzles & Words and provided SAT

scores, so the relationship between these measures is not

considered.

Correlations (Spearman’s rho) between intelligence measures

and each NOMT are shown in Table 12 and generally replicate

Study 1: on average Matrices performance accounted for 7% of

the variance in NOMT performance (average r = 0.26), but Vocabu-

lary and SAT scores were not significant predictors. Matrices was

also a significant predictor of CCMT performance (3% shared vari-

ance), but Vocabulary and SAT scores were not (see Table 12).

4.2.4. Relations with self-report measures & SVET-car

We used a subset of three items from the Recognition Question-

naire (see Appendix A) that probed general recognition ability

(rather than ability with specific categories) as an index of self-

reported general visual ability. All self-report measures showed

good reliability (Cronbach’s a; cars = 0.93, n = 937; faces = 0.88,

n = 999; general visual ability = 0.72, n = 981). Reliability for the

12-item SVET-car was moderate (Cronbach’s a = 0.65; n = 999).

Correlations between self-report measures and the SVET-car are

shown in Table 13, and correlations between these measures and

NOMT and CCMT performance are shown in Table 14. Self-report

measures were modestly correlated with each other (average

r = 0.28, r2 = 0.08). Although all self-report measures were signifi-

cantly correlated with SVET-car, self-report for cars accounts for

substantially more variance in performance (20% vs. �1%). Self-

reported car recognition and SVET-car were significant predictors

of CCMT performance (20% and 25% variance explained, respec-

tively), replicating similar work using the VET-car instead of the

CCMT (Van Gulick et al., 2015). Other correlations between NOMT

or CCMT performance and self-report or SVET-car are statistically

significant, but account for substantially less variance (1–3%; see

Table 14).

4.2.5. Testing a simple experience account

It may be that experience with familiar object categories

reduces their correlation with novel objects, with which partici-

Table 9

Descriptive statistics and reliability for the NOMTs and CCMT. For all tests, chance is 24 and perfect performance is 72.

NOMTs CCMT

Greebles Ziggerins Sheinbugs

N 336 363 309 1008

Mean 50.43 62.25 50.79 54.38

SD 7.31 8.06 7.45 9.69

Minimum 26 29 23 25

Maximum 68 72 70 72

Cronbach’s a 0.78 0.90 0.81 0.88

Table 10

Correlations (Spearman’s rho) between each NOMT and the CCMT (Study 2) and CFMT (Study 1). All correlations are significant (p < 0.001). Results of statistical tests comparing

correlations with CCMT and CFMT for each NOMT are also shown. 95% confidence intervals are shown in parentheses.

CCMT CFMT z p

Greebles 0.40 (0.31, 0.49)

n = 336

0.37 (0.30, 0.43)

n = 673

0.45 0.65

Ziggerins 0.34 (0.25, 0.43)

n = 363

0.35 (0.28, 0.41)

n = 674

0.24 0.81

Sheinbugs 0.22 (0.11, 0.32)

n = 309

0.28 (0.21, 0.35)

n = 655

0.83 0.41

Table 11

Descriptive statistics and reliability for the CCMT and CFMT. For both tests, chance is

24 and perfect performance is 72.

CCMT CFMT

N 1003 1003

Mean 49.79 51.28

SD 9.48 10.48

Minimum 22 25

Maximum 72 72

Cronbach’s a 0.88 0.90
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pants do not vary in experience. To test whether experience with

cars may be suppressing the magnitude of the correlation between

cars and NOMTs, we used the Car Recognition Questionnaire (see

Appendix B) and the SVET-car as measures of experience (see

Gauthier et al., 2014; Van Gulick et al., 2015). As shown in Table 15,

partialing out self-reported car recognition or SVET-car does not

change the correlations between each NOMT and the CCMT (differ-

ence between r and partial r, all z < 1.2, p > 0.2). Thus, these aspects

of experience with cars do not explain smaller correlations

between NOMTs and the CCMT compared to NOMTs with each

other. A similar analysis using the self-report measure for faces

in Experiment 1 yields the same result: Self-reported face recogni-

tion ability does not modulate the relationship between the CFMT

and NOMTs (correlation between CFMT and NOMT-average after

partialing out self-report for faces is r = 0.35, from 0.38 for the

zero-order correlation).

It is also possible that experience could explain the larger corre-

lations with fluid intelligence for novel objects than with cars. For

example, experience may reduce reliance on abstract reasoning or

intelligence (perhaps because the category space is well-defined in

those with sufficient experience). As shown in Table 16, correla-

tions of CCMT with Matrices and Vocabulary showed modest evi-

dence of suppression by experience, while correlations of CCMT

with SAT math and SAT verbal showed modest evidence of the

opposite.

Table 12

Correlations (Spearman’s rho) between intelligence measures and the CCMT and NOMTs. 95% confidence intervals are shown in parentheses.

Puzzles & words SAT SCORE

Matrices Vocabulary Math Verbal

CCMT 0.18* (0.03, 0.33)

n = 160

0.11 (�0.05, 0.26)

n = 158

0.16 (�0.03, 0.34)

n = 108

0.11 (�0.08, 0.29)

n = 112

Greebles 0.28* (0.01, 0.51)

n = 52

�0.01 (�0.28, 0.27)

n = 51

0.12 (�0.22, 0.43)

n = 36

0.29 (�0.03, 0.55)

n = 39

Ziggerins 0.27* (0.02, 0.49)

n = 60

�0.14 (�0.38, 0.12)

n = 59

0.25 (�0.07, 0.52)

n = 40

0.21 (�0.10, 0.49)

n = 41

Sheinbugs 0.23 (�0.06, 0.48)

n = 48

�0.22 (�0.27, 0.07)

n = 48

0.13 (�0.23, 0.46)

n = 32

0.19 (�0.17, 0.51)

n = 32

* p < 0.05.

Table 14

Correlations (Spearman’s rho) between self-report measures and SVET-car and CCMT and NOMT performance. 95% confidence intervals are shown in parentheses.

Self-report

Faces General Cars SVET-car

CCMT 0.18** (0.12, 0.24)

n = 985

0.18** (0.12, 0.24)

n = 981

0.51** (0.46, 0.56)

n = 937

0.45** (0.40, 0.50)

n = 999

Greebles 0.08 (�0.03, 0.19)

n = 328

0.08 (�0.03, 0.19)

n = 302

0.18* (0.07, 0.29)

n = 309

0.12* (0.01, 0.22)

n = 333

Ziggerins 0.12* (0.02, 0.22)

n = 355

0.08 (�0.02, 0.18)

n = 353

0.01 (�0.10, 0.12)

n = 340

0.10* (�0.003, 0.20)

n = 359

Sheinbugs 0.17* (0.06, 0.28)

n = 302

0.12* (0.008, 0.23)

n = 302

�0.13* (�0.24, �0.02)

n = 288

0.02 (�0.09, 0.13)

n = 307

* p < 0.05.
** p < 0.001.

Table 15

Correlations (Spearman’s rho) between the CCMT and each NOMT, and partial

correlations controlling for self-reported car ability or SVET-car. 95% confidence

intervals are shown in parentheses. All correlations are significant (p < 0.001).

r Partial r

Self-report SVET-car

Greebles 0.40 (0.31, 0.49)

n = 336

0.38 (0.28, 0.47)

n = 309

0.39 (0.30, 0.48)

n = 333

Ziggerins 0.34 (0.25, 0.43)

n = 363

0.38 (0.29, 0.47)

n = 340

0.33 (0.24, 0.42)

n = 359

Sheinbugs 0.22 (0.11, 0.32)

n = 309

0.31 (0.20, 0.41)

n = 288

0.24 (0.13, 0.34)

n = 307

Average

Z-transformed r

0.33 0.37 0.33

Table 16

Correlations (Spearman’s rho) between the CCMT and intelligence measures, and

partial correlations controlling for self-reported experience or SVET-Car. 95% confi-

dence intervals are shown in parentheses.

r Partial r

Self-report SVET-car

Matrices 18* (0.03, 0.33)

n = 160

0.14 (�0.02, 0.29)

n = 157

0.25** (0.10, 0.39)

n = 159

Vocabulary 0.11 (�0.05, 0.26)

n = 158

0.17* (0.01, 0.32)

n = 155

0.25** (0.10, 0.39)

n = 159

SAT math 0.16 (�0.03, 0.34)

n = 108

0.12 (�0.08, 0.31)

n = 103

�0.01 (�0.17, 0.15)

n = 157

SAT verbal 0.11 (�0.08, 0.29)

n = 112

0.09 (�0.10, 0.28)

n = 107

0.05 (�0.14, 0.23)

n = 111

* p < 0.05.
** p < 0.001.

Table 13

Correlations (Spearman’s rho) between self-report measures and SVET-car. All

correlations are significant at p < 0.001 unless noted. 95% confidence intervals are

shown in parentheses.

Self-report

general

Self-report cars SVET

Self-report faces 0.31 (0.25, 0.37)

n = 981

0.21 (0.15, 0.27)

n = 937

0.08a (0.02, 0.14)

n = 985

Self-report general 0.32 (0.26, 0.38)

n = 937

0.12 (0.06, 0.18)

n = 981

Self-report cars 0.45 (0.40, 0.50)

n = 985

a p = 0.01.
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4.3. Discussion

Study 3 revealed similar correlations between the CCMT and

NOMTs and between CCMT and CFMT as were found between

the CFMT and NOMTs in Study 1. All of these correlations were

smaller than those observed among novel object categories in

Study 1. Together, these results suggest that category-specific

experience either reduces reliance on category-general object pro-

cessing mechanisms and/or increases reliance on category-specific

mechanisms. The similarly small correlations found for both cars

and faces challenge a simple account whereby all non-face object

recognition strongly tap a singular domain-general object process-

ing ability. Moreover, correlations between each NOMT and the

CCMT and CFMT were highly similar, which is inconsistent with

a role for visual similarity in explaining these effects. We also ruled

out a simple experience explanation: regressing out experience

measures did not influence the correlations between the CCMT

or CFMT and NOMTs, suggesting that correlations between familiar

and novel object categories are not mediated by the kinds of expe-

rience captured by our measures.

5. General discussion

We developed three new reliable tests of novel object recogni-

tion (Novel Object Memory Tests; NOMTs). Correlations among

NOMTs were substantially stronger than correlations found in this

study and, on average, in past work, among tests of familiar object

recognition (Familiar Object Memory Tests; FOMTs; McGugin,

Richler, et al., 2012; Van Gulick et al., 2015). Critically, these differ-

ences are not confounded by differential test reliabilities. Moreover,

the shared variance among NOMTs remained essentially identical

when controlling for performance on multiple IQ-related tests, rul-

ing out a contribution of a host of global, non-specific mechanisms

captured by such tests. We conclude that the substantial variance

shared among NOMTs reflects mechanisms that are simultaneously

category-general, yet specific relative to IQ. We obtained remark-

ably similar results with FOMTs. Averaging across FOMTs substan-

tially increased the variance explained in other single FOMTs,

relative to pairwise correlations across FOMTs. Again, these differ-

ences were above and beyond what could be expected by enhanced

test reliabilities. And again, controlling for IQ-related tests caused

virtually no reduction in variance explained. These results with

FOMTs thus support a highly similar inference to the one obtained

from NOMTs: that of mechanisms that are both category-general

and yet specific relative to IQ.

The shared variance between NOMTs, as well as that between

familiar object categories, provides strong evidence for the exis-

tence of domain-general mechanisms that contribute to object

recognition. However, one question is whether the same domain-

general mechanisms are used across the full spectrum of

category-specific familiarity that runs from novel objects at the

low end to cars and faces at the high end. Our finding that correla-

tions between NOMTs and the CFMT, or between NOMTs and the

CCMT, were smaller than correlations among NOMTS, and no lar-

ger than the correlation of CFMT with CCMT, suggests that familiar

categories may engage mechanisms that are not used for novel

objects (e.g., long-term visual representations or non-visual knowl-

edge). Admittedly, none of our measures of experience were found

to mediate the relations between faces/cars and novel objects, even

though the experience measures themselves demonstrate some

validity by predicting performance. It may be that experience mat-

ters, but does not influence performance in as fine-grained a man-

ner as tested here. That is, we regressed out variability in car

experience, but certainly all of our participants have experience

with cars. Indeed, in past work with multiple object categories,

cars were rated, on average, second only to faces in the degree to

which they had been experienced. In contrast, participants were

seeing our novel objects for the first time. This difference in overall

level of experience may, in and of itself, differentiate familiar from

novel object recognition. Alternatively, besides semantic knowl-

edge and the self-report measures obtained, there may be other

aspects of experience that could account for dissociations with

novel objects. For instance, recent work found that gregariousness

(Li et al., 2010) and hometown size (Balas & Saville, 2015) are

related to face recognition ability. Clearly, such correlational

results are causally ambiguous. That is, it could be that over gener-

ations, a family whose genes support exceptional face recognition

develop a bit of extra gregariousness and a relative comfort with

the social complexities of moving to a larger town. Yet such results

also raise the possibility that individual differences in social expe-

rience, per se, cause individual differences in face recognition abil-

ity. If so, then prior assertions that face recognition is saturated in

experience throughout the normal population (e.g., Gauthier et al.,

2014) may have been overstated. Although we found no evidence

that experience is suppressing the correlations between CFMT/

CCMT and NOMTs, we acknowledge that the measurement of var-

ious aspects of experience is still in its infancy.

Alternatively, faces and cars may be unusual not only in their

high degree of familiarity, but also in other ways that cause them

to engage different mechanisms. Faces and cars have shown sev-

eral intriguing parallels in past work. First, we found that self-

report was a good predictor of performance with faces and cars,

an effect that has been found before for faces, cars, and, in one

study, shoes (Van Gulick et al., 2015), but not other familiar object

categories (McGugin, Richler, et al., 2012; see also Barton, Hanif, &

Ashraf, 2009; McGugin, Gatenby, et al., 2012). Second, performance

with faces and cars dissociates from performance with other famil-

iar object categories (McGugin, Richler, et al., 2012; Van Gulick

et al., 2015). Third, both face and car recognition abilities are sub-

stantially and similarly heritable (Shakeshaft & Plomin, 2015;

Wilmer et al., 2010). Our results do not indicate why people seem

exceptionally good (at least relative to other categories) at predict-

ing their performance for faces and cars, or whether this can help

explain their lower correlation with domain-general visual ability.

Ultimately, the more categories we can test that vary systemati-

cally both in their familiarity and in other ways, the more conclu-

sively we can determine the number of domain-general abilities

that contribute to object recognition.

Indeed, our results reveal benefits of testing multiple object cat-

egories for interpreting specific correlations. For example, the sim-

ilarity in the magnitude of the correlations between cars and faces

with each novel object category is striking, and could suggest sys-

tematic relationships between our specific novel object categories

and familiar object categories. Despite evidence for domain-

general variance, our results also suggest domain-specific effects

(e.g., Sheinbugs being consistently less correlated with familiar

categories then Greebles in Study 3; cars being the most distinct

from other object categories while leaves show the largest amount

of shared variance with other categories in Study 2). Importantly,

the use of multiple categories discourages category-specific or

pair-specific explanations of these effects; one could argue that lar-

ger correlations between faces and Greebles (versus Ziggerins and

Sheinbugs) reflect the fact that the Greebles are more ‘‘face-like” in

appearance than Sheinbugs (although here we used asymmetrical

Greebles that are less face-like), but it is more difficult to argue

that Greebles look like cars (see Table 10). In addition, such vari-

ability for novel objects suggests that variability in experience

and semantics, which account for some of the relations in perfor-

mance for visual processing with familiar categories (McGugin,

Richler, et al., 2012; Van Gulick et al., 2015), are not the only

sources of domain-specificity. It may be interesting to investigate
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at the level of individual differences the role of basic visual proper-

ties (like symmetry, curvature or rectangularity) that, on average,

account for differences in the recruitment of visual areas (Sasaki,

Vanduffel, Knutsen, Tyler, & Tootell, 2005; Nasr et al., 2014; Yue

et al., 2014).

We also tested whether general intelligence contributed to per-

formance with faces and cars. Shakeshaft and Plomin (2015) found

that performance with both faces and cars shared approximately

2–3% variance with fluid intelligence, and concluded that although

one interpretation for this result is that general object recognition

is genuinely dissociable from g to the same extent as faces, ‘‘there

is no reason in the literature to suspect that general object recog-

nition is special in this way” (p. 12891). Our results contradict this

assumption and add to a growing body of evidence that while per-

formance on any given visual test can be influenced by intelligence,

visual object recognition ability itself is distinct from intelligence.

Again, we found that although fluid intelligence made a small con-

tribution to NOMT performance (5–8% shared variance), it did not

account for shared variance between novel object categories. Our

re-analysis of Van Gulick et al.’s (2015) Study 2 also found a small

contribution of fluid intelligence (4% shared variance) to perfor-

mance with familiar object categories, but it did not account for

the shared variance between familiar object categories.

Our results are also consistent with previous work showing that

intelligence is often not correlated with performance with faces

(our Study 1; Davis et al., 2011) or cars (Van Gulick et al., 2015),

and when such correlations are observed they are smaller than

those observed for other categories (e.g., 2–3% shared variance

with faces in Shakeshaft & Plomin, 2015 and Van Gulick et al.,

2015; and with cars in our Study 2 and Shakeshaft & Plomin,

2015). While it remains unclear what factors drive correlations

between object recognition and intelligence and lead to smaller

or less reliable correlations for some categories (like cars and

faces), our results clearly suggest that strong dissociation from IQ

is a general feature of object recognition in general, rather than

one that is restricted to faces, or even to familiar categories.

The fact that performance dissociates between cars and NOMTs

to the same degree as it does between faces and NOMTs highlights

the importance of not assuming that performance for all non-face

categories reflects category-general object processing mechanisms

to a high, and similar, degree. Variability in experience with cars

did not account for this dissociation. This reminds us to be cautious

in interpreting any given pattern of correlations in terms of evi-

dence for unique abilities. For example, one theoretical position

expects face recognition to dissociate to an unusual degree from

other objects (e.g., Dennett et al., 2012; Shakeshaft & Plomin,

2015). Another predicts that recognition of different categories

should depend on the same domain-general ability in those with

high levels of experience and, ideally, little variance in such expe-

rience (e.g., Gauthier et al., 2014). Neither of these positions is sup-

ported by the present results.

Our work has several limitations. One is that while we used

three different novel categories, they were all computer generated

and may not represent the full range of possible novel objects that

general object recognition could possibly apply to. In that regard, it

is reassuring that Study 2 provided converging evidence for

domain-general effects that were independent from IQ. In addition,

while these are novel categories, similarity to familiar categories

for which subjects may have variable experience could have played

a role (although this would only reduce our estimates of domain-

general variance). A second limitation is that, like prior work

(e.g., Shakeshaft & Plomin, 2015; Van Gulick et al., 2015), we

probed IQ using a few tasks that are known to load highly on IQ,

but do not include a full battery of cognitive tasks to investigate

separable IQ-related cognitive abilities. One study found a small

but significant correlation between the CFMT and a test of memory

for word pairs (r = 0.17, Wilmer et al., 2010), and our present study

found a significant correlation between the CFMT and Vocabulary

(r = 0.13). It would be interesting to test whether verbal memory

is related to the common variance between NOMTs, especially

because of evidence suggesting a continuous hierarchy of functions

between ventral visual areas and the medial temporal lobe

(Cowell, Bussey, & Saksida, 2010; Shohamy & Turk-Browne,

2013). In contrast, it might be less surprising if performance on

subtests that involve individuating objects, such as facial memory

subtests present in several intelligence batteries, tapped into the

same ability as the NOMTs. Therefore, we do not claim that the

ability measured by NOMTs does not contribute to any subtest pre-

sent in existing batteries of cognitive skill, but that prior work has

been generally concerned with the variance that is common across

these tasks (g), while we are here concerned with another part of

the variance that is common across categories and distinct from

g. A third limitation of the present work is that an individual differ-

ences based approach does not, by its nature, test detailed accounts

of the process by which typical participants learn to recognize

novel objects. Such accounts are better tested via experimental

studies. For example, prior work with categories of novel objects

like the ones used here have suggested that learning is based on

image-based representations that come to support generalization

to new members of the category from novel viewpoints by varying

the threshold of pooled activation in clusters of viewpoint-specific

representations of visually similar objects (Edelman, 1995; Tarr &

Gauthier, 1998). Other work has found that as we learn to associate

non-visual attributes with novel objects, part of the process that

takes places during the learning of categories we eventually deem

‘‘familiar”, left hemisphere performance becomes less viewpoint-

dependent, consistent with the idea that the recognition of familiar

objects recruits more then perceptual processes (Collins & Olson,

2014; Curby, Hayward, & Gauthier, 2004).

A key result from the present work is the demonstration that it

is possible to robustly isolate category-general variance using both

NOMTs and FOMTs. Critically, in both cases, this category-general

variance dissociated from IQ measures to the point of essential

independence. Together, these results provide strong evidence for

the existence of mechanisms that contribute to object recognition

in a way that is not only domain-general, but, critically, also speci-

fic relative to IQ. Beyond these particular results and their implica-

tions, the NOMTs that we developed, validated, and normed here

are available for use in further research (basic norms are available

as supplemental information and via osf.io/6c4m7; more extensive

normative data sets, including question-by-question accuracy and

reaction time data for all tests described in this paper, are pub-

lished with Wilmer et al., submitted for publication, and available

via osf.io/qygs4). These NOMTs enable the efficient measurement

of at least some aspects of domain-object recognition ability,

minus familiarity confounds. As such, they provide a potentially

valuable contrast for faces and other familiar object categories

when testing possible architectures of abilities that support high-

level vision.
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Appendix A. Recognition questionnaire

Questions 1, 5, 7–9, 11, 12, 14, and 17–20 were used to measures

self-report for face recognition ability. Questions 2–4, 6, 10, 13, 15,

16 were used to measures self-report of ability for object recognition
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in Study 1. In Study 2, only questions 2–4 were used as a measure of

self-report for general visual ability.

1. On a scale of 1–10 (with 1 being very poor and 10 being very

good), where would you place yourself in terms of recogniz-

ing faces? (1 = very poor, 10 = very good)

2. How strong is your interest in classifying objects in their var-

ious subcategories (e.g., learning about different kinds of

insects, plants, shoes, tools, etc.)? (1 = not strong at all,

9 = very strong)

3. How easily do you learn to recognize object visually?

(1 = much less than average, 9 = much more than average)

4. Relative to the average person, howmuch of your typical day

involves recognizing things visually? (1 = much less than

average, 9 = much more than average)

5. Compared to my peers, I think my face recognition skills

are . . . (1 = far below average, 5 = far above average)

6. I can recognize my own baggage at the airport. (1 = never or

almost never, 5 = always or almost always)

7. I find it hard to keep track of characters in TV shows or

movies. (1 = never or almost never, 5 = always or almost

always)

8. When trying to find an acquaintance, I have trouble if they

are in a room full of people. (1 = never or almost never,

5 = always or almost always)

9. I find it hard to recognize someone I just met. (1 = never or

almost never, 5 = always or almost always)

10. I have trouble recognizing houses I have visited. (1 = never

or almost never, 5 = always or almost always)

11. I can recognize well known actors/actresses when watching

a movie. (1 = never or almost never, 5 = always or almost

always)

12. I notice similarities in the faces of people from the same

family. (1 = never or almost never, 5 = always or almost

always)

13. I find streets I have often travelled unfamiliar. (1 = never or

almost never, 5 = always or almost always)

14. I can recognize famous celebrities in photos or on TV.

(1 = never or almost never, 5 = always or almost always)

15. I can recognize particular cats and dogs. (1 = never or almost

never, 5 = always or almost always)

16. I’m more likely to identify a car from its license plate num-

ber than its overall appearance. (1 = never or almost never,

5 = always or almost always)

17. When I meet someone I pretend to recognize them until

their identity is revealed. (1 = never or almost never,

5 = always or almost always)

18. I can recognize casual acquaintances out of context.

(1 = never or almost never, 5 = always or almost always)

19. I have trouble recognizing people when they are in uniform.

(1 = never or almost never, 5 = always or almost always)

20. I remember the names of people I have met only once or

twice. (1 = never or almost never, 5 = always or almost

always)

Appendix B. Car recognition questionnaire

1. Please rate yourself on your expertise with cars, considering

your interest in, years of exposure to, knowledge of, and famil-

iarity with cars. (1 = very little, 9 = a lot)

2. How important is the domain of cars to you, relative to all other

things you are interested in? (1 = very little, 9 = a lot)

3. If you saw a specific car in a TV show, how sure are you that you

could recognize that car among similar cars if you were tested

the next day? (1 = very little, 9 = a lot)

4. If you were asked to write an essay about different kinds of cars,

how extensive and detailed do you think your essay would be?

(1 = very little, 9 = a lot).

5. How often do you look at IMAGES of cars in movies, television,

or other kinds of documents (books, magazines, online)?

(1 = rarely, 9 = often)

6. How often do you read TEXT (in books, magazines, online) that

contains information about cars? (1 = rarely, 9 = often)

7. If you are interested in cars, when did this interest begin?

(1 = no interest, 6 = 6 or more years ago).

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in

the online version, at http://dx.doi.org/10.1016/j.cognition.2017.

05.019.

References

Balas, B., & Saville, A. (2015). N170 face specificity and face memory depend on
hometown size. Neuropsychologia, 69, 211–217.

Barton, J. J. S., Hanif, H., & Ashraf, S. (2009). Relating visual to verbal semantic
knowledge: The evaluation of object recognition in prosopagnosia. Brain, 132,
3456–3466.

Carroll, J. B. (1997). Psychometrics, intelligence, and public perception. Intelligence,
24(1), 25–52.

Chao, L. L., Weisberg, J., & Martin, A. (2002). Experience-dependent modulation of
category-related cortical activity. Cerebral Cortex, 12(5), 545–551.

Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K., & Alvarez, G. A. (2014). Processing
multiple visual objects is limited by overlap in neural channels. Proceedings of

the National Academy of Sciences, 111(24), 8955–8960.
Cohen, M. A., Nakayama, K., Konkle, T., Stantić, M., & Alvarez, G. A. (2015). Visual
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