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Abstract 

There is substantial evidence for individual differences in personality and cognitive 
abilities, but we lack clear intuitions about individual differences in visual abilities. 
Previous work on this topic has typically compared performance with only two 
categories, each measured with only one task. This approach is insufficient for 
demonstration of domain-general effects. Most previous work has used familiar object 
categories, for which experience may vary between participants and categories, thereby 
reducing correlations that would stem from a common factor. In Study 1, we adopted a 
latent variable approach to test for the first time whether there is a domain-general Object 
Recognition Ability, o. We assessed whether shared variance between latent factors 
representing performance for each of five novel object categories could be accounted for 
by a single higher-order factor. On average, 89% of the variance of lower-order factors 
denoting performance on novel object categories could be accounted for by a higher-
order factor, providing strong evidence for o. Moreover, o also accounted for a moderate 
proportion of variance in tests of familiar object recognition. In Study 2, we assessed 
whether the strong association across categories in object recognition is due to third-
variable influences. We find that o has weak to moderate associations with a host of 
cognitive, perceptual and personality constructs and that a clear majority of the variance 
in and covariance between performance on different categories is independent of fluid 
intelligence. This work provides the first demonstration of a reliable, specific and 
domain-general Object Recognition Ability, and suggest a rich framework for future 
work in this area. 
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Individual Differences in Object Recognition 

 

There is substantial evidence for individual differences in personality and 
cognitive abilities. In the case of personality traits, although test-retest correlations across 
1–3 years are in the .2–.5 range during childhood, they are in the .6–.8 range among 
adults across even longer time spans (e.g., Hampson & Goldberg, 2006; Roberts & 
DelVecchio, 2000). Cross-situational consistency of behaviors is not as high as we might 
intuitively believe (e.g., Mischel, 1968; Mischel & Peake, 1982), and r = .30 is the 
proverbial “personality coefficient” (Mischel, 1968). Nonetheless, personality traits: 1) 
often account for substantial variance in behaviors, thoughts, and moods averaged across 
situations, contexts, or measures (e.g., Rushton, Brainerd, & Pressley, 1983); 2) are 
generally associated with validity coefficients comparable to modal effect sizes found in 
experimental studies (Meyer, Finn, Eyde, et al. 2001); and 3) predict important life 
outcomes (e.g., mortality, occupational attainment, vulnerability to psychopathology), 
with effect sizes comparable to those of SES or cognitive abilities (e.g., Goodwin & 
Friedman, 2006; Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007). Similarly, 
psychometric intelligence is extremely stable over time (e.g., test-retest correlations 
generally in the .6–.8 range in the time span between childhood and old age, e.g., Deary, 
Whalley, Lemon, Crawford, & Starr, 2000; Deary, Whiteman, Starr, et al., 2004), and it 
predicts achievement and other important life outcomes (e.g., health and morbidity) 
independent of socio-demographic variables (e.g., Deary et al., 2004). 

In contrast, we lack clear intuitions about individual differences in visual 
perception. We have little to no access to the quality of others’ perception and we are 
very poor at estimating our perceptual abilities, even in a specific domain, relative to 
other people (Barton et al., 2009; McGugin et al., 2012). Studies of perceptual expertise 
that reveal variability in ability with specific object categories, such as birds (e.g., 
Gauthier et al., 2000; Tanaka et al., 2005), fingerprints (Busey & Vanderwolk, 2005), and 
cars (e.g., Gauthier et al., 2000, 2003) do not address the stability or consistency of 
individual differences in object recognition performance—is ability in one domain stable 
over time and related to performance in another domain? Does someone’s ability to 
recognize birds predict how well they will be able to recognize fingerprints? Surprisingly, 
despite decades of research on object recognition, there has been almost no work seeking 
to find evidence of a common “object recognition” ability across domains. Here, we test 
whether object recognition ability (o) is a valid and reliable construct that can account for 
performance across categories. The o we are speculating about here would be at least 
general enough to predict the ability to learn how to discriminate items in any 
subordinate-level category, such as different dogs, birds or fingerprints1. 

The hypothesis of a general object recognition ability parallels a number of 
models in the areas of personality, psychometric intelligence, and cognitive abilities. In 
these areas, hierarchical structures for individual differences have predominated for a 
number of years (e.g., Guilford, 1967; Markon, Krueger, & Watson, 2005; Reeve & 

																																																								
1	We do not at this point address the possibility of an even more general factor that would also encompass 

basic-level or superordinate-level visual judgments, or other visual tasks in very narrow stimulus domains 

such as those used in perceptual learning studies. For instance, a general visual ability factor may account 

for individual differences in object recognition (o) as well as more low-level perceptual factors like global 

vs. local processing style (Milne & Szczerbinski, 2009). 	
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Bonaccio, 2011; Rushton & Irwing, 2011; Spearman, 1927). Such models posit 
superordinate dimensions or factors (e.g., the general intelligence factor g, negative 
affectivity in the domain of emotion and temperament) that account for substantial 
variability in both lower-order factors and observed measures (e.g., Markon et al., 2005; 
Reeve & Bonaccio, 2011; Zinbarg & Barlow, 1996).   
 However, a great deal of vision research seems to suggest that visual abilities are 
more fractionated than common, with the visual system dividing things by the way they 
look. For instance, neuroimaging studies have identified different brain regions 
associated with the processing of basic visual properties such as symmetry (e.g., Sasaki et 
al., 2005), curvature (e.g., Yue et al., 2014), and rectangularity (e.g., Nasr et al., 2014), 
and with different object categories such as animals, tools (e.g., Chao et al., 2002), 
houses (e.g., Epstein & Kanwisher, 1998), and faces (e.g., Kanwisher et al., 1997). 
Measures of connectivity to face selective-areas are found to correlate with face, but not 
scene, recognition performance (Gomez et al., 2015). Such results raise the possibility 
that different brain networks support independent recognition abilities for different object 
categories, such that car recognition ability would not predict ability to match fingerprints 
or recognize faces.  

 Starting with the development of the Cambridge Face Memory Test (CFMT; 
Duchaine & Nakayama, 2006), which captures a wide range of face processing ability 
with high reliability (e.g., test-retest with 6 months delay =.70, Duchaine & Nakayama, 
2006; Cronbach’s alpha = .91, Wilmer et al., 2012), the small body of work that speaks to 
this question has generally focused on the specificity of face recognition abilities; that is, 
is face recognitions an independent ability or a special case of a more global ability to 
learn and/or recognize objects? However, the conclusions that can be drawn from work in 
this area are limited because 1) the experimental designs typically only include one task 
(e.g., a single memory test) and two categories (e.g., faces and cars), and 2) only familiar 
object categories are used, so experience can vary between participants and categories. In 
what follows, we discuss each of these issues in turn and how they are addressed by the 
present study. 

Importance of Using Multiple Tasks and Categories 

Wilmer et al. found only 7% shared variance (r-squared) between the CFMT and 
performance on a similar task with unfamiliar abstract art (n = 3004, r = .26, Wilmer et 
al., 2010; n = 1469, r = .26, Wilmer et al., 2012), and studies comparing the CFMT with 
a similar task using cars have found 8% shared variance (n = 1042, r = .29; Shakeshaft & 
Plomin, 2015) and 14% (n = 142, r = .37; Dennett et al., 2012). These small but 
significant relationships are difficult to interpret because performance with different 
categories was measured using a single task for all categories. Performance with faces, 
abstract art, and cars could share a small amount of variance either due to the recruitment 
of a general object recognition system or due to task-specific processes such as working 
memory or sensitivity to proactive interference, and important to this task. Interpretation 
is further limited by the fact that only two categories of objects were compared (faces 
with either abstract art, cars, or houses; see Gauthier & Nelson, 2001).  

When studies find only a moderate correlation between a face and a non-face 
object recognition task, authors often take it as evidence for a face recognition ability that 
is distinct from an object recognition ability (e.g., Dennett et al., 2012; Shakeshaft & 
Plomin, 2015; Wilmer et al., 2010). An untested assumption, however, is that abilities to 
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recognize different non-face categories would be more strongly related to one another 
than each of them would be to face recognition ability. Only a few studies have used 
several object categories but all with the same task (e.g., Ćepulić et al., 2018). In some of 
these studies using the VET (McGugin et al., 2012; Van Gulick et al., 2015), the average 
pairwise correlation between any two non-face categories is no larger (r=.34) than what is 
typically found between face and non-face object recognition tests (e.g. r=0.37 in Dennett 
et al, 2012). In other words, when many categories are used, face recognition does not 
stand out as a particularly distinct ability. Testing with more than two categories shifts 
the question of whether face recognition ability is distinct to a more general question: 
given the domain-specificity of performance in high-level vision, is there evidence for a 
strong domain general object recognition ability, o?  

Beyond problems for interpretation, using only two categories each assessed with 
one task may underestimate true dependence on a common factor. Consider research in 
the area of personality, where the cross-situational consistency of behavioral measures 
(particularly when assessed on only one occasion) is typically rather low (e.g., Mischel, 
1968; Mischel & Peake, 1982). Importantly, correlations are much higher when 
behavioral measures are aggregated across a number of situations and correlated with 
other behavioral aggregates or personality measures (e.g., Jaccard, 1974; Rushton, 
Brainerd, & Pressley, 1983). Thus, the correlation between one task for cars and one task 
for faces likely does not provide sufficient aggregation to reveal the influence of a 
broader construct. Indeed, the few studies that used multiple tasks treated as indicators of 
a higher-order category-specific latent variable (i.e., factor) found moderate to substantial 
relationships between distinct face and house perception factors (44–69% shared 
variance, Hildebrandt et al., 2013; 24% shared variance, Wilhelm et al., 2010). These 
studies still suffer from the interpretative problems described above, as only two 
categories were compared. To circumvent these problems, participants in our study 
completed three tasks of visual object perception and recognition for each of five object 
categories.  

 
Importance of Controlling for Experience 

Although some studies have measured performance for several categories (e.g., 
Gauthier et al., 2014; McGugin et al., 2012; Van Gulick et al., 2015), most used familiar 
object categories. This makes it difficult to disentangle variability due to experience from 
variability in a domain-general ability. Furthermore, differences in experience between 
categories for the same individual might reduce correlations that would stem from a 
common factor (Gauthier et al., 2014; Ryan & Gauthier, 2016; Van Gulick et al., 2015). 
In recent work, object recognition ability was measured with three categories of novel 
objects (in three groups with ns  >325, each tested on two of the three categories, with a 
single task). The average pairwise correlation (r=.48) was higher than the typical pairwise 
correlation for familiar object categories, consistent with the idea that differences in 
experience with familiar objects complicates the measurement of a common visual ability 
(Richler et al., 2017). To circumvent the problems associated with variability in 
experience, here we used five categories of novel, unfamiliar objects. Because these 
novel object categories vary on several perceptual dimensions shown to be associated 
with unique neural substrates (e.g., animate/inanimate appearance, symmetry, and 
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curvature), their use in the present study will provide a rigorous test of the presence of a 
common ability.  

It is possible, however, that some amount of experience with a category is 
important for individual differences in ability to be fully reflected in performance. After 
all, one important component of object recognition is the ability to learn object 
categories. In other domains, differences among individuals in genetic or other 
predispositions commonly require the appropriate environmental inputs to be expressed 
behaviorally (for reviews see Dick, 2011; Manuck & McCaffery, 2014). Therefore, we 
tested four object categories following a training phase that provided participants with the 
same amount of controlled experience for each category. We tested performance with the 
fifth category without any prior training, to assess whether experience affects the 
expression of a domain-general ability. If so, this design leaves us with four categories to 
use in the main analyses. We used a training protocol that is relatively short and limits the 
contribution of non-visual abilities (e.g., it did not require naming). In addition, learning 
in this task transfers to new exemplars of the category and results in training effects 
typical of the early stages of perceptual expertise (Bukach et al., 2012). 

 
Latent Variable Modeling Approach   

Self-reports of visual abilities are generally poor predictors of performance for 
most categories (McGugin et al., 2012; Richler et al., 2017; see also Barton et al., 2009). 
Thus, individual differences in object recognition ability can only be inferred from 
behavioral measures of task performance. Whatever the nature of the measure, research 
in the areas of personality and temperament has shown that broad individual differences 
constructs are optimally assessed using multiple measures (to allow for conclusions that 
are appropriately generalizable across different measures) and often best modeled as 
latent variables. Narrowly defined, latent variables are constructs (e.g., ‘object 
recognition ability’) that are not directly observable. Latent variables are useful whenever 
unobserved constructs are invoked, for instance in behavioral and social sciences (e.g., 
Bollen, 2002). The present study adopts a latent variable analytic approach to test the 
hypothesis that the shared variance in performance across several object categories can be 
accounted for by a single domain-general visual ability that is modeled as a higher-order 
latent variable (i.e., factor). This structural representation will be tested using 
confirmatory factor analysis (CFA, for reviews see Brown, 2015; Tomarken & Waller, 
2005). CFA confers several distinct advantages in the present context relative to 
exploratory factor analysis (EFA) or principal components analysis (PCA). These include 
the ability to: specify and test the absolute and relative fit of competing models using a 
variety of indices; specify factor models that posit both lower-order factors that account 
for correlations among observed indicators and higher-order factors that account for the 
correlations among lower-order factors; estimate correlations among categories that are 
free from the attenuating effects of measurement error and category-irrelevant variance, 
and specify correlated error terms or task-specific method factors that can estimate the 
contribution of shared methods to correlations among measures (see, e.g., Brown, 2015; 
Hancock & Mueller, 2006; Tomarken & Waller, 2005).  

In our study, participants completed three tasks of visual object perception and 
recognition for each of five novel object categories (four categories for which they 
received a fixed amount of training in a simple video game, and one for which they 
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received no training). We then used CFA to estimate the correlations among the different 
categories in performance. Each category itself was represented as a first-order factor 
with task scores as observable indicators. Our primary interest was testing a related 
model that posited an overarching, second-order construct that we denote as ‘o’ 
representing individual difference in object recognition ability that influences 
performance on specific object categories. Our goal was to assess the fit of the second-
order factor model and estimate the proportion of variance in performance on the lower-
order, category-specific factors accounted for by the overarching factor. Finally, via 
CFA, we assessed the relation between individual differences on the object recognition 
latent factors and scores on measures of facial recognition and perceptual expertise with 
familiar objects.   

 
Study 1 

 

Methods 

Participants 
Two-hundred-and-eighty-five members of the Vanderbilt University Community 

were recruited for the experiment (123 male, 162 female; mean age = 21.5, age range =  
18–38; Caucasian = 170, Asian = 70, African American = 35, Hispanic = 8, Other = 2). 
There were four at-home sessions of approximately 1.75 hours each, and six lab sessions 
of one hour each. Participants were compensated $26.25 for each at-home session, and 
$15.00 for each lab session, for a total of $195.00 for the entire experiment (13 hours). 
Payment was based on the sessions participants completed, and was not contingent on 
finishing the experiment. Both the original sample size (285) and the sample size 
ultimately used for analyses (n=246, see Data Analysis section for elaboration) are very 
large for studies in the area of perception but on the small side relative to typical 
confirmatory factor analyses and structural equation models. The target N reflected a 
tradeoff between practical considerations (i.e., each participant attended 5 laboratory 
sessions with home sessions intermixed) and the desire to maximize sample size for a 
statistical procedure that typically requires large sample sizes. In this regard, two 
considerations are particularly relevant: (1) A priori power analyses indicated excellent 
power to detect misspecifications under a range of reasonable parameter values with n’s 
in the range of 250 or so; and, (2) Published simulation studies that mirror various 
features of the present experiment (e.g., the method of treating missing data, as discussed 
below) have demonstrated good performance (e.g., empirical Type 1 error rates that 
correspond to nominal levels) when n’s are in the same range (e.g., Savalei & Falk, 
2014).  
Stimuli 
 We used five novel object categories (vertical Ziggerins, asymmetrical Greebles, 
symmetrical Greebles, horizontal Ziggerins, and Sheinbugs; arbitrary numbers were 
assigned to categories to simplify data coding and presentation of results, see Figure 1) 
with 80 exemplars each, and two views per exemplar. Categories were defined by general 
configuration of parts and color. Thirty exemplars (approximately 1 x 1 degree of visual 
angle) were used in the training phase, and the remaining 50 exemplars (approximately 2 
x 2 degrees of visual angle) were used for testing. A sixth novel object category (YUFOs, 
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Figure 3. A) Example trials for familiar object recognition measures (CFMT and VET). 
B) Example trials for each of the three test tasks (Learning Exemplars, Matching Task, 
Composite Task, denoted by LE, MA and CO in Figure 1).  

 
Cambridge Face Memory Test (CFMT)- Long Form. In the CFMT (Duchaine & 

Nakayama, 2006), participants complete an 18-trial introductory learning phase, in which 
a target is presented in three views, followed by three forced-choice test displays 
containing the target face and two distractor faces. Then, participants study frontal views 
of all six target faces together for a total of 20 s, followed by 30 forced-choice test 
displays. Participants are told to select the face that matches one of the original six target 
faces. The matching faces vary from the studied versions in terms of lighting condition, 
pose, or both. Next, participants are given another opportunity to study the six target 
faces, followed by 24 test displays presented in Gaussian noise. Finally, the last block 
includes 30 “difficult” test displays where faces are shown as silhouettes, in extreme 
noise, or with varying expressions. The CFMT is scored as accuracy (percent correct) 
across all blocks, excluding the introductory learning trials, for a total of 84 trials. 
Previous work found that the CFMT produces measurements of high reliability in a 
normal adult population (e.g., test-retest with 6 months delay = .70, Duchaine & 
Nakayama, 2006; Cronbach’s alpha = .91, Wilmer et al., 2012).  
 Vanderbilt Expertise Test (VET). The Vanderbilt Expertise Test (VET; McGugin 
et al., 2012) is similar in format to the CFMT. Participants study six target exemplars 
from a category, and are then presented with triplets and asked to indicate by key-press 
which object is the same identity (but different image) as any of the targets. Five 
categories were tested in the following order: houses, cars, birds, planes, and butterflies. 
There were 51 trials for each category. Three trials were catch trials that were not 
analyzed. Participants were also asked to rate their experience with each of the five 
categories (“interest in, years exposure to, knowledge of, and familiarity with” from 1 to 
9). Accuracy (percent correct) was computed separately for each VET category. Previous 
work has produced good reliability in measurements with a normal adult population on 
the various VET subscales (e.g., Cronbach’s alpha = .64–.85 in McGugin et al., 2012; 
Cronbach’s alpha = .71–.93 in Van Gulick et al., 2015). 
Test Sessions 

Example test task trials are shown in Figure 3. Test task order was the same for all 
categories and participants. One trial order was generated for each test task for each 
category and was the same for all participants. 
 Learning Exemplars Task. Thirty-six test objects (6 targets, 30 foils) from each 
category were used. The Learning Exemplars task was similar in format to the CFMT and 
VET. Participants studied an array of six target objects (three in view A, three in view B). 
On the subsequent test trials, three objects were shown in any combination of views A 
and B, and participants had to indicate by key-press which object matched the identity of 
any of the targets, regardless of changes in viewpoint. Chance was .33. There were two 
blocks of 24 trials. In the first block, targets were shown in the same view as during 
study. In the second block, targets were shown in the unstudied view. In the last six trials 
of block 1 and the last 12 trials of block 2 objects were presented in visual noise. All 
targets were shown with an equal frequency for each trial type (e.g., same/different 
identity x same/different viewpoint), and the same target was never presented on 
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consecutive trials. Performance was scored as accuracy (percent correct) across all 48 
trials. Cronbach alphas were .73–.89 (see Table 1). For cross-reference, this task is an 
earlier version of the Novel Object Memory Test developed later for 3 of the categories 
(Richler et al., 2017). 
 Matching Task. All 50 test objects from each category were used. On each trial, a 
study object was presented (300 ms in block 1, 150 ms in block 2), followed by a 
category-specific random pattern mask (500 ms), then a second object was presented 
(until response or a maximum of 3 s; time-out trials accounted for less than 1% of the 
data and were excluded from the analyses). Participants had to indicate by key-press 
whether the two objects were the same or different identity, regardless of changes in 
viewpoint or size (on different-size trials the test object was approximately 1.3 x 1.3 
degrees of visual angle). There were 45 trials for each combination of correct response, 
viewpoint (same or different), and size conditions (same or different) for a total of 360 
trials. Due to a minor programming error, the number of same and different trials were 
not evenly divided between blocks (range = 84–96 trials per block). Sensitivity (d') was 
calculated separately for each block. Sensitivity was computed using Zhit rate – Zfalse 

alarm rate, adjusting for hit rates of 1 or false alarm rates of 0 using 1 - 1/(2N) and 
1/(2N), respectively where N is the number of same (or different) trials. These scores 
were correlated (rs = .57–.78, all ps < .001) and were averaged to create a single 
matching task score for each category with Cronbach alpha .88–.96 (see Table 1). 

Composite Task. Because prior work suggested that using a small number of 
stimuli improves the reliability of the composite task (Ross et al., 2015), the tops of five 
objects and the bottoms of a different five objects were used to make composites for each 
category. These ten objects were not used in the Learning Exemplars task. Trial timing 
was based on Wong et al. (2009). On each trial, a study composite (top of one object 
combined with the bottom of another object) was presented (500 ms), followed by a 
category-specific mask (2900 ms). A cue indicating whether the top or bottom was the 
target was presented during the last 500 ms of the mask presentation. Then, a test 
composite was presented with the cue (until response, maximum 3 s; time-out trials 
accounted for 1% of the data and were excluded from the analyses) and participants had 
to indicate by key-press whether the cued part was the same or different as the study 
composite, while ignoring the uncued half. On congruent trials, the cued and uncued parts 
were associated with the same response (i.e., both parts were the same or both parts were 
different); on incongruent trials, the cued and uncued parts were associated with different 
responses (i.e., one part was the same, the other part was different). There were 36 trials 
for each combination of correct response (same/different), cued part (top/bottom), and 
congruency (congruent/incongruent) for a total of 288 trials. Sensitivity (d') was 
calculated separately for top-congruent, bottom-congruent, top-incongruent, and bottom-
incongruent conditions. These scores were correlated (average rs = .41–.60, all ps < .001) 
and were averaged to create a single composite task score for each category with 
Cronbach’s alpha .91–.97 (see Table 1). This average composite score indexes overall 
performance on the task, which is the construct that is most similar to that measured by 
the other two tasks. It does not reflect congruency (the difference in performance between 
congruent and incongruent trials), which is an index of holistic processing (Richler & 
Gauthier, 2014). We did however compute congruency effects for use in an analysis 
comparing the 4 categories that received pre-training to the 5th, untrained, category. 
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Data Analysis 

The data and software code for the primary analyses are available in the figshare 
repository (see supplemental online material). Due to experimenter or computer error, 
VET data for one or more subscales were missing for five participants and CFMT data 
were missing from one participant. Thirty-six participants withdrew from the study after 
the pre-test session (leaving 249 participants from the original 285). CFMT accuracy did 
not differ between participants who withdrew after the introductory session (M  % correct 
= 61.77, SD = 10.85) and those who completed test sessions for at least one category (M 

% correct = 63.22, SD = 14.23; t282 = 0.59, p = .56, Cohen’s d = .11); however, VET 
accuracy (aggregated across all categories) was significantly lower for participants who 
withdrew (M  % correct = 63.00, SD = 9.87) vs. those who completed any number of test 
sessions (M % correct = 66.96, SD = 9.60; t278 = 2.30, p = .022, Cohen’s d = .41). Data 
from three participants were excluded for not completing the exposure game for any 
category. Thus, data from 246 participants (86% of sample; 105 male, 140 female, 1 not 
disclosed; mean age = 21.4 years; Caucasian = 144, Asian = 64, African American = 30, 
Hispanic = 6, Other = 2) are included in the analyses.  

Among the 246 participants included in analyses, data for some task-category 
combinations were not collected due to experimenter or computer error (2.68%) or 
because participants withdrew from the study after completing at least one test session (n 
= 30; 8.21% of expected data). Both the intraclass correlation analyses and the 
confirmatory factor analyses that we report below can accommodate such participants 
with incomplete data. Of the collected data, 96.95% was included in the analyses. The 
remaining 3.05% of observations were excluded because of: 1) Failure to finish the 
exposure game for a given category or excessive delay between home-exposure and lab-
test sessions for that category (1.38%); and, 2) Median RTs less than 200 ms for 
individual Composite and Matching Task categories and median RTs less than 1000 ms 
for individual Learning Exemplars categories (1.67%).  

Intraclass Correlations.  We computed intraclass correlation coefficients (ICCs) 
on a within-task basis to assess the consistency of individual differences in task 
performance across categories. ICCs indicate the proportion of the total variability in the 
data due to consistent differences among people. They are simultaneously a measure of 
between-subjects variability and within-subjects similarity (for reviews, see, e.g., Shrout 
& Fleiss, 1979; Strube & Newman, 2007). Here, ICCs assessed the proportion of the total 
variability in the data due to differences among subjects that are stable across categories. 

 We computed two different types of ICCs because we think that a case could be 
made for each. Because we did not equate categories on task difficulty, we calculated the  
consistency of individual differences (Shrout and Fleiss, 1979). Like a Pearson 
correlation, it rewards consistency in the relative ranks of a given participant across 
categories and does not penalize for overall shifts in category means due to variations in 
task difficulty or other factors that can produce absolute shifts in a participant’s scores 
across categories. Because categories were made of novel objects, one could argue that 
the specific categories we used are a random sample from a hypothetical universe of 
categories. This perspective would favor a second ICC model (categories as random 
effects) and so we computed a measure of agreement (Shrout and Fleiss, 1979). Within 
each ICC type, we computed two measures. The first (denoted ICC1 below) indicates the 
proportion of variance in performance on one category that is due to individual 
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differences and is analogous to a test-retest correlation coefficient. The second (denoted 
ICC5 below) applied the Spearman-Brown formula to the ICC1 values and assesses the 
proportion of variance in composite scores averaged across the 5 categories that is due to 
individual differences.   

To estimate ICCs including participants with incomplete data and compute 
confidence intervals, we adopted a Bayesian analytic approach previously implemented 
by Tomarken, Han, and Corbett (2015) (cf. Spielhalter, 2001; Turner, Omar, & 
Thompson, 2001) using SAS PROC MCMC, Version 9.4 of the SAS System for 
WindowsTM (Copyright © 2002-2014 SAS Institute Inc). We computed medians of the 
posterior distribution as our ICC estimates and formed 95% Bayesian Highest Posterior 
Density (HPD) intervals that represent the narrowest intervals with 95% probability (e.g., 
Christensen, Johnson, Brascum, & Hanson, 2011).   
 Confirmatory Factor Analyses. Confirmatory factor analyses were conducted 
using EQS Version 6.3 (Bentler, 2008). The top panel of Figure 4 depicts the base model 
that was elaborated in subsequent steps. This model specifies that each of the 15 tasks 
(Matching (MA), Composite (CO), and Learning Exemplars (LE), for each of the five 
categories) loads on the factor denoting individual differences in performance on the 
target category. Rectangles denote observed measures (e.g., MA1) and ovals denote 
latent variables or, equivalently, factors (e.g., Cat1). The directed arrows from factors to 
observed measures specifies that a proportion of the variance of each observed task 
measure is influenced by the latent construct indicating individual differences in ability 
on a given category. Each directed arrow is associated with a factor-loading coefficient 
denoting the regression of the observed measure on the latent factor. The double-headed 
arrows among the category factors specify covariances among the factors. The small 
circles shown at the bottom of the model (e.g., em0) are residual (i.e., error) terms that 
denote a combination of reliable influences on observed scores that is specific to that 
indicator and random measurement error.  
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We developed a systematic sequence of models to test both substantive and 
methodological questions of interest. First, we tested Model 1, depicted in the top panel 
of Figure 4, that specifies five correlated lower-order category factors. Model 2 assessed 
whether task-specific influences on the correlations among the observed indicators should 
be added to the specifications of Model 1. Such influences, often termed “method 
effects”, could partially account for the inter-correlations among measures of a given task 
(e.g., MA) assessed across different categories. If so, such effects should be specified and 
estimated to obtain a better fitting model and less biased estimates of the covariances and 
correlations among category factors. Although, in theory, the optimal approach would be 
to specify three method factors, CFA models with a full array of method factors 
commonly run into failures to converge and inadmissible estimates due to empirical 
under-identification and other factors (see, e.g., Kenny & Kashy, 1992; Lance, Noble, & 
Scullen, 2002). We experienced such difficulties when trying to fit models specifying 
three method factors, one each for the LME, CO, and MA tasks. Instead we estimated 
task-specific components of variance by specifying covariances among the residual terms 
(e.g., em0-em4) for a given task. We specified correlated errors among each of the five 
LME, CO, and MA performance measures, respectively. This correlated uniqueness (CU) 
(e.g., Lance et al., 2002) approach to modeling method effects is commonly used in 
confirmatory factor analyses and structural equation modeling (SEM) (Brown, 2015).3 In 
terms of our sequence of models, we adopted the decision rule that, if, as we expected, 
the correlated uniqueness model (Model 2) fit better than Model 1 this feature would be 
included in all subsequent models that we tested. For clarity, Figure 4 omits correlated 
error terms. 
 Model 3 built on the best-fitting model from the previous stage and constrained 
the factor loadings of the three tasks to be equal (i.e., invariant) across the five categories. 
These constraints were imposed on a within-task cross-category basis (e.g., each of the 
five MA factor loadings were constrained to be equal). This specification did not reflect a 
strong prediction of invariance because categories were not equated on task difficulty and 
other psychometric features. However, this model was of interest because it provided a 
rather rigorous test of the consistency of individual differences across categories. It 
additionally allowed us to assess whether the category for which participants received no 
training (category 0) had a different psychometric structure than the trained categories (1-
4). 
 Model 4 directly tested our prediction that performance across all categories is 
driven by a higher-order construct that reflects a general visual ability with objects. As 
shown in the bottom panel of Figure 4, this is a second-order factor model specifying that 

																																																								
3	There are alternatives to the CU approach, the most viable of which at the present time 
is the correlated traits, correlated methods minus 1, or CT-C(M-1)) approach (Eid, 2000; 
Eid, Lischetzke, Nussback, & Trierweiler, 2003) characterized by specification of one 
less method factor than the full array possible (e.g., 2 task factors in the present context). 
Although these two approaches have relative advantages and disadvantages (see, e.g., Eid 
et al., 2003), our results and conclusions were unchanged when we applied the most 
conceptually meaningful version of a CT-C(M-1) model instead of the CU model. A 
summary of these analyses is available upon request. This issue is also discussed in the 
Supplemental Section. 	
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an over-arching Object Recognition Ability (o) dimension of individual differences 
influences performance on the lower-order factors. The residual terms (e.g., R_C0) that 
also influence the lower-order factors represent category-specific influences on individual 
differences in performance. Model 4 specifies that the higher-order factor is the only 
determinant of the correlations among the lower-order category factors. It can be shown 
that this model is a restricted version of the correlated factors model shown in the top 
panel of Figure 1, such that the relative fit of the two models can be directly compared 
(see details below). A popular alternative to the second-order factor model is a bifactor 
model (e.g., Chen, West, & Sousa, 2006; Reise, 2012). The online supplemental 
discusses bifactor modeling in the present context and why we have chosen to focus on 
the second-order factor model.    
 After modeling the internal structure of the performance on the five categories, 
we addressed the issue of relations to external variables. In model 5, using the best-fitting 
model from the previous sequence of models 1-4, we examined the correlation between 
individual differences in performance on the manipulated categories and individual 
differences in the ability to recognize familiar object categories as assessed by the VET 
and CFMT. We computed two sets of correlations. The first set is between the observed 
measures and the latent factor or factors of interest. Using estimated reliabilities, the 
second set corrected the individual difference measures for measurement error using a 
latent variable approach in which: 1) Each measure constituted a factor with a single 
indicator; and, 2) The variances of error terms were fixed at values that yielded the 
appropriate true score variance estimate for the factor. Random measurement error can 
attenuate correlations and such reliability corrections are consistent with our emphasis on 
latent variables.   

To estimate all models, we used the robust two-stage estimator (TS) developed by 
Savalei, Bentler, and colleagues (Savalei & Bentler, 2009; Savalei & Falk, 2014; see also 
Yuan & Lu, 2008) because of two features of our data: 1) The presence of some missing 
data; and 2) Non-normality. For the 246 participants included in analyses (i.e., those who 
completed at least one task for at least one category), 14.94% of the maximal possible 
number of data points across tasks and categories were missing. In addition, although the 
most commonly used SEM estimators assume multivariate normality, the set of 15 tasks 

demonstrated deviations from multivariate normality according to the Doornik-Hansen 

(2008) test, χ2(30) = 412.42, p < .001 and to Yuan, Lambert, and Fouladi’s (2004) 
extension to incomplete data structures of Mardia’s (1970) test of multivariate kurtosis, z 
= 21.78, p < .001. On univariate assessments, the Shapiro-Francia tests of non-normality 
(Shapiro & Francia, 1972; Royston, 1983) and assessments of skew and kurtosis 
(D’Agostino, Belanger, & D’Agostino, 1990) indicated significant deviations from 
normality for all five of the Matching tasks, three of the five Learning Exemplar tasks, 

and one Composite task (see Table 1). Violations of normality were not extreme but of 

sufficient magnitude to warrant a robust estimator. 
In the first stage of the robust TS algorithm, maximum likelihood (ML) estimates 

of the vector of means and the covariance matrix of the observed data (including 
observations with incomplete data) are obtained from a saturated (i.e., unrestricted) 
model. In the second stage, the specified model is estimated with the covariance matrix 
generated in the first stage used in place of the observed sample covariance matrix 
typically used for maximum likelihood (ML) estimation of CFA models. These steps 
allow for the inclusion of observations with incomplete data. The robust TS estimator 
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uses two additional mechanisms to correct for non-normality: (1) A sandwich-type 
covariance matrix (Yuan & Lu, 2008) that yields standard errors for parameter estimates 
that are adjusted for non-normality and for the fact that a two-stage estimation procedure 
is used; and, (2) The Satorra-Bentler (SB; Satorra & Bentler, 1994) scaled chi-square 
correction to adjust the overall chi-square test of model fit and fit indices. This correction 
is used by a variety of SEM estimation methods when data are non-normal and is 
specifically designed to adjust for non-normal kurtosis. In accord with the statistical 
theory underlying structural equation modeling (e.g., Cudeck, 1989), all analyses were 
performed on the covariance matrix estimated in the first-stage and not the correlation 
matrix. To aid interpretation, however, at several points below we report standardized 
results (e.g., correlations among factors) calculated either directly (when models allowed 
fixing factor variances at 1) or from re-scaling of the non-standardized estimates yielded 
by the TS estimator.4   
 We assessed both the absolute and relative fit of models using several measures. 
In conventional null hypothesis testing, the hypothesis tested is typically not the 
researcher’s substantive hypothesis (which is typically aligned with the alternative 
hypothesis). In contrast, in CFA and structural equation modeling (SEM) in general, the 
model being directly tested often reflects the researcher’s substantive hypothesis. Thus, 
non-significant results often favor the researcher’s hypothesis. In terms of absolute fit, 
although we report the chi-square test of exact fit, it has well-known limitations: 1) There 
is a strong influence of sample size such that models with only rather trivial 
misspecifications can be rejected (e.g., Tomarken & Waller, 2003). Although our sample 
size was on the small side for a SEM analysis, such influence might still have been 
operative to some extent; 2) It is a measure of model “mis-fit” that favors binary 
reject/no-reject decisions rather than an evaluation of degree of fit on a more continuous 
metric; and, 3) It imposes a criterion – that a model fits perfectly – that may be too 
stringent considering that SEM models have numerous facets and that all models are, at 
best, approximations (e.g., MacCallum, Browne, & Sugawara, 1996).  For this reason, 
SEM analysts almost always rely on other indices to evaluate model fit. We used the root 
mean-squared error of approximation (RMSEA; Steiger & Lind, 1980), standardized root 
mean squared residual (SRMR; Bentler, 1995), and Comparative Fit Index (CFI; Bentler, 
1990) to assess model fit. The SRMR is a measure of absolute fit that can be interpreted 
as the average discrepancy between the correlations among the observed variables and 
the correlations predicted by the model. Lower values indicate better fit. The RMSEA is 
an estimate of a parsimony-corrected fit index because it assesses the degree of 
discrepancy between the observed and model-implied covariances while also penalizing 
for model complexity (e.g., for equivalent discrepancy it rewards the more parsimonious 
model that estimates fewer parameters and has more degrees of freedom). Smaller values 
indicate better fit. The RMSEA is typically treated as the degree to which a model fits 
approximately in the population, with values < .06 typically taken to indicate close fit 
(e.g., Hu & Bentler, 1998, 1999). Confidence intervals can also be formed around the 
estimated RMSEA value in a given sample. We computed the RMSEA estimate and 

																																																								
4 See the online supplemental material for further discussion of the TS robust approach 
and our rationale for using it instead of a robust full-information maximum likelihood 
(FIML) approach or other robust alternatives for incomplete, non-normal data.  
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confidence bounds for non-normal data that was developed by Li and Bentler (2006; see 
Brosseau-Liard, Savalei, & Li, 2012) and that is an option in EQS. The CFI is an index of 
the incremental or comparative fit of the target model relative to a baseline model of 
independence in which all the covariances among the observed indicators are fixed at 0. 
CFI values vary from 0 to 1, with values closer to 1 indicating better fit. Given that the 
comparison is to the independence model, the CFI often tends to indicate better fit than 
the other indices. Based on simulations, Hu and Bentler (1998, 1999) recommend the 
following criteria for adequate fit on these measures: SMSR ≤ .08, RMSEA ≤ .06, and 
CFI ≥ .95. The RMSEA and CFI were computed using the Satorra-Bentler scaled chi-
square values. 

A primary focus was the comparison of alternative models, most of which were 
nested versions of one another. Model A is nested in model B if it is a restricted version 
of model B; that is, if it is identical to model B except that certain parameters that are 
freely estimated in B are restricted in A by being fixed at specific values (often 0) or 
constrained to be equal to other parameters or combinations of parameters. Nested 

models were compared using the scaled difference test (Satorra & Bentler, 2001) that 

is appropriate when the Satorra-Bentler (S-B) correction for non-normality is used. We 
used the version of the scaled difference test developed by Satorra and Bentler (2001) 
that computes a scaling factor for the test as  
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c are the scaling factors for the two models (equal to the ratio 

of the uncorrected value for the test of exact fit to the S-B corrected value for each 

model) (e.g., Bryant & Satorra, 2012).  In turn, the scaled difference test is computed as 
the difference between the uncorrected tests of exact fit divided by cdif, with degrees of 
freedom equal to the difference in degrees of freedom between the two models. We used 
an Excel macro written by Bryant and Satorra (2013) to conduct the S-B difference tests.5 
If restrictions imposed by Model A do not impair overall model fit relative to Model B, 
the result would be a non-significant χ2 test.  Thus, in the context of nested tests, non-
significant results often serve to corroborate the researcher’s hypotheses. 
 In addition, we report values of the Akaike Information Criterion (AIC; Akaike, 
1973) and the Bayesian Information Criterion (BIC; Raftery, 1995; Schwarz, 1978) to 
convey the relative fit of both nested and non-nested models.  Both indices penalize for 
model complexity, operationalized as the number of free parameters estimated by a given 
model. To compute these indices. we used what is probably the most common approach 
in SEM analyses, adding to the chi-square test of overall fit a penalty factor that is a 

																																																								
5 Satorra and Bentler (2010) proposed an updated scaled difference chi-square test 
primarily because the original test can sometimes produce a negative correction factor. 
The original test never yielded negative correction factors for our data and we used the 
original test primarily because it is more widely used and easier to perform than the 
updated version.  

2χ
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function of the number of free parameters estimated by a model (denoted below as k).  
We computed these indices using the following formulae:  
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We also present a small-sample corrected version of the BIC (e.g., Enders & Tofigi, 
2008), computed as,  

 2 2
SBIC = ln

24
SB

N
kχ

+⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
  

Lower values of all three indices indicate better fit. The information indices were  
computed using the Satorra-Bentler scaled chi-square values. 
 A major focus of our analyses was not simply evaluation of model fit but 
examining and interpreting parameter estimates of interest (e.g., correlations among 
factors). Much of the discussion of results below emphasizes model fit not only because 
it is important in its own right but also because good fit can be considered a necessary 
condition for examination and evaluation of parameter estimates.  
 

Results 

Univariate Descriptive Statistics 

Reliability (Cronbach’s alpha), mean performance measures (mean accuracy or 
d’) and tests of normality (skewness, kurtosis, Shapiro-Francia normality test) for the test 
tasks and familiar object recognition measures (CFMT and VET) are shown in Tables 1 
and 2, respectively. All tasks demonstrated good internal consistency reliability and 10 of 
the 15 tasks demonstrated statistically significant violations of normality. It is also of 
interest that average performance on the Learning Exemplar task ranged from .48 to .68 
depending on the category. Coupled with the fact that per-subject proportions were 
calculated across 48 trials, these values indicate that ceiling and floor effects were not 
significant factors and that transformations of proportions (e.g., computing odds or log 
odds) were not necessary.   
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Table 1. Reliability (Cronbach’s α), mean performance measures, and tests of normality 

for each test task and category (see Figure 2 for number-category mappings). 

 

Category 

 

N 

 

Cronbach’s α 

Mean (SD) accuracy 

(% correct or d’) 

 

Skewness  

 

Kurtosis  

Shapiro-Francia 

Normality Test (V’) 

Learning Exemplars  

0 225 .84 65.16 (15.04) -0.44 3.37 2.59* 

1 199 .78 49.82 (14.02)  0.17 2.81 1.46 

2 208 .89 68.35 (17.69) -0.58* 3.16 4.45*** 

3 201 .74 48.05 (12.68)  0.62*** 3.58 3.62** 

4 212 .73 50.47 (12.36)  0.14 2.68 0.81 

Matching Task  

0 225 .95 1.62 (.62) -1.07*** 6.49*** 10.82*** 

1 203 .92 1.04 (.50) -0.79*** 5.77*** 6.22*** 

2 212 .96 1.83 (.71) -1.26*** 6.71*** 12.10*** 

3 210 .91 1.03 (.42) -0.50 4.72 4.86***  

4 218 .88 .82 (.40) -0.55** 3.83** 3.57**  

Composite Task  

0 225 .91 1.72 (.92) -0.29 3.38 1.83 

1 208 .95 1.25 (.71) -0.10 3.34* 0.87 

2 213 .97 1.69 (.97)  0.17 3.23 1.11 

3 208 .95 1.23 (.73) -0.29 3.03 1.99 

4 215 .95 1.12 (.69) -0.42** 3.56** 2.30*  

Note. Accuracy measures are percent correct for Learning Exemplars and d’ for Matching and Composite 

tasks. Under normality, the expected values of measures of skewness and kurtosis are 0 and 3, respectively. 

Under normality, when scores are sampled from a normal distribution, the median value of the Shapiro-

Francia V’ measure equals 1 (Royston, 1991).   
* p < .05, ** p < .01, ***

p < .001.   

	
 

 

 
 

Table 2. Reliability (Cronbach’s α), mean performance measures, and tests of normality 

for the CFMT and VET sub-scales.  

  

N 
 

Cronbach’s α 
Mean (SD) Accuracy 

(% correct) 
 

Skewness  
 

Kurtosis  
Shapiro-Francia 

Normality Test 

CFMT (faces) 245 .90 63.27 (14.23) -0.22 2.07*** 3.26* 

VET Subscales  

Birds 243 .83 68.98 (13.44) -0.52*** 3.44 3.61* 

Butterflies 241 .80 60.17 (13.71) -0.39* 2.82 2.50* 

Cars 243 .80 59.60 (14.60)  0.17 3.09 1.11 

Houses 243 .83 75.90 (13.10) -0.33* 2.63 2.05 

Planes 242 .77 70.38 (12.02) -0.40 3.35 3.39** 

Note. Under normality, the expected values of measures of skewness and kurtosis are 0 and 3, respectively. 

Under normality, when scores are sampled from a normal distribution, the median value of the Shapiro-

Francia V’ measure equals 1 (Royston, 1991).     
* p < .05, ** p < .01, ***

p < .001.   
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Effect of Training 

 Because we did not equate categories for difficulty, we cannot directly compare 
mean performance to test for a training effect (in fact, Table 1 suggests that the non-
exposed category was generally one of the easier categories). However, the composite 
task has been used in previous studies to assess training effects, and controls for difficulty 
differences across categories as it includes its own baseline, allowing a within-category 
measure of whether training had an influence on performance. Specifically, a difference 
in performance between congruent and incongruent trials (in either accuracy or RT) is a 
common marker of face-like expertise (see Richler & Gauthier, 2014), and has been 
observed following individuation training for novel objects like the ones used here (e.g., 
Chua et al., 2015; Wong et al., 2009). Indeed, we based the composite task parameters on 
Wong et al. (2009), who found slower response times on incongruent compared to 
congruent trials only in participants trained to individuate objects from the tested 
category.  

To test whether a similar effect of training was observed here on the same 
dependent measures as in Wong et al. (2009), we conducted 2 × 2 repeated measures 
ANOVAs on sensitivity (d’) and correct RT in the composite task with category 
(untrained vs. average of trained categories) and congruency (congruent vs. incongruent) 
as factors. The qualitative effects were the same for both RT and d’ (see Figure 5). There 
were significant main effects of training (RT: F1,219 = 9.18 , MSE = 15999.67, p = .003, 
ηp

2 = .04; d’: F1,219 = 81.59 , MSE = .40, p < .001, ηp
2 = .27) and congruency (RT: F1,219 = 

17.26, MSE = 1561.11, p < .001, ηp
2 = .07; d’: F1,219 = 7.06, MSE = .18, p = .008, ηp

2 = 
.03). More importantly, the interaction between training and congruency was significant 
(RT: F1,219 = 46.34, MSE = 1659.16, p < .001, ηp

2 = .18; d’: F1,219 = 8.13, MSE = .16, p = 
.005, ηp

2 = .04), such that there was a significant congruency effect for the trained 
categories (RT: F1,219 = 99.60, MSE = 978.16, p < .001, ηp

2 = .31; d’: F1,219 = 37.20, MSE 
= .07, p < .001, ηp

2 = .15), but not the untrained category (RT: F1,219 = 2.85, MSE = 
2242.11, p = .09, ηp

2 = .01; d’: F1,219 < .00, MSE = .27, p = .99, ηp
2 < .00)6.  

 
 

																																																								
6 Separate paired-sample t-tests for each exposed category revealed a significant 
congruency effect in RT for Categories 1–3 (ts = 4.97–8.76, ps < .001, Cohen’s d = .48–
.86), but not Category 4 (t = .50, p = .61, Cohen’s d = .05). In sensitivity, congruency 
effects were significant for categories 1 and 2 (ts > 4, ps < .001, Cohen’s d > .4) and 
marginally significant for categories 3 (t = 1.84, p = .068, Cohen’s d = .18) and 4 (t = 
1.97, p = .05, Cohen’s d = .2). 
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Table 3. Correlations (Pearson’s r) between all categories for each task. Correlations 

with the untrained category are highlighted in gray. N per cell ranges from 182 to 207. 

All correlations are significant at p < .001. (See Figure 2 for number-category 

mappings). 

Category 0 1 2 3 Mean  
untrained 

Mean  
trained 

Learning Exemplars .50 .49 

1 .43      
2 .53 .54     
3 .52 .52 .56    
4 .50 .32 .53 .42   

Matching Task .54 .52 

1 .52      
2 .53 .45     
3 .60 .46 .56    
4 .52 .55 .50 .59   

Composite Task .61 .62 

1 .64      
2 .64 .64     
3 .60 .66 .59    
4 .60 .61 .61 .59   
Note. Correlations were Fisher-transformed before averaging. 

 
Intraclass Correlations  

 Intraclass correlations and 95% HPD intervals are shown in Table 4. Several 
patterns are evident. First, the ICC1 values indicate that a significant proportion of the 
variance in task performance on any single category was attributable to individual 
differences among participants. Across the three tasks, when consistency of performance 
was assessed (i.e., category is modeled as a fixed effect), approximately 50-60% of the 
total variability in the data was due to individual differences. When category was 
modeled as a random effect and agreement assessed, the proportions of variance were 
lower, especially for the LE and MA tasks, but by no means trivial. Measurably lower 
correlations for the agreement measure would be expected in this case because no attempt 
was made to equate categories on difficulty level. Finally, the ICC5 values indicating the 
reliability of task performance averaged across categories were quite high and either 
approached or exceeded the expected range (≥.70) for measures of individual differences 
in the areas of personality and temperament. This conclusion holds for both measures of 
consistency and agreement. These results exemplify the beneficial effects of aggregation 
on reliability and consistency (e.g., Rushton et al., 1983).   
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Table	4.	Intraclass	correlations	for	each	measure.	

 ICC1 ICC5 
Measure Consistency Agreement Consistency Agreement 

Learning Exemplars 
.50 

(.44,.55) 
.34 

(.17,.46) 
.83 

(.80, .87) 
.72 

(.52,.82) 

Matching Task 
.49 

(.43,.56) 
.31 

(.15,.43) 
.83 

(.79, .86) 
.69 

(.49,.81) 

Composite Task 
.62 

(.56,.68) 
.55 

(.40,.65) 
.89 

(.87, .91) 
.86 

(.78,.90) 
					

Note:		ICC1	estimates	both	the	average	correlation	in	performance	among	pairs	of	categories	and	the	

proportion	of	variance	in	a	given	category	due	to	between-person	differences.	ICC5	is	the	estimated	

correlation	between	the	aggregate	of	scores	across	the	five	categories	and	a	hypothetical	equivalent	

set	of	aggregate	scores.	It	estimates	the	proportion	of	variance	in	the	average	score	across	categories	

due	to	between-person	differences.	95%	Bayesian	highest	posterior	density	(HPD)	intervals	are	

shown	for	each	measure.	The	category	factor	is	modeled	as	a	fixed	effect	when	consistency	is	

assessed	and	as	a	random	effect	when	agreement	is	assessed.			

 
 
Confirmatory Factor Analysis 

Fit statistics for the sequence of CFA models are provided in Table 5. As 
summarized above, we relied more on other indices than the chi-square test of exact fit. 
Model 1 specified five correlated category factors, with the relevant LE, MA, and CO 
task performance measures serving as the observed indicators for each factor. As 
anticipated, the overall fit of this model was unsatisfactory because it omitted parameters 
reflecting the correlations within a task (e.g., MA) across categories (see Table 5). For 
example, the RMSEA was clearly above the range typically recommended for evaluation 
of fit as adequate. Model 1 also was associated with several inadmissible estimates (e.g., 
covariances among factors that implied correlations greater than 1) that may also indicate 
model mis-specification, although other factors (e.g., the generally high correlations 
among variables) may also have contributed. 	
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Table	5.	Fit	statistics	for	confirmatory	factor	analyses.	

 

Note: Robust χ
2 
=Satorra-Bentler robust chi-square test of overall fit generated by the Savalei-Bentler robust two-

stage estimator. RMSEA = root mean squared error of approximation. CFI = Comparative Fit Index. SRMR = 

standardized root mean squared residual. AIC = Akaike Information Criterion. BIC = Bayesian Information 

Criterion. SABIC = Small-sample corrected Bayesian Information Criterion. Lower scores on the RMSEA, 

SRMR, AIC, BIC, and SABIC and higher scores on the CFI indicate better fit. Hu and Bentler (1998, 1999) 
recommended the following criteria for adequate fit on the first three measures: CFI ≥ .95, RMSEA ≤ 
.06, and SRMR ≤ .08. Because Model 5 includes measures not included in Models 1-4, its values for the 
AIC, BIC, and SABIC are not directly comparable to those of Models 1-4.   

	
 
 As expected, when correlated errors among the observable task indicators were 

added in Model 2, the fit was notably improved (nested 2(30) = 108.61, p < .0001). The 

values of the RMSEA, CFI, and SMMR all indicate that this model met conventional 
criteria for adequate fit. Although the AIC and SABIC values for Model 2 were notably 
lower than the corresponding values for Model 1, somewhat surprisingly the model 2 BIC 
was higher. This discrepancy is likely due to the fact that the BIC more strongly favors 
parsimony than the other indices. Nevertheless, the clear weight of the evidence and the 
plausibility of task-specific shared variance favors Model 2 relative to Model 1. 
 Using Model 2, we also assessed whether the correlations involving the factor for 
the untrained category (denoted category 0) were different from the correlations 
involving only the other four categories. We imposed the linear constraint that the 
average of the four correlations involving category 0 was equal to the average of the six 
correlations not involving category 0. That this constraint did not produce a significant 

impairment in fit relative to Model 2 (S-B nested 2(1) 1.51, .22pχ = = ) indicates that 

correlations involving the untrained category were not unique. Similarly there were no 
differences when the same linear constraint was imposed on factor covariances rather 

than correlations (S-B nested 2(1) 0.80, .37pχ = = ).  

 
Mode

l 

 
Description 

 
df 

Robust  
RMSEA 

(90% CI) CFI SRMR 

 

AIC BIC SABIC 

1 
Correlated Categories 

(No Task Effects) 
80 

218.17, 

 p < 001 

.116 

(.098, .134) 
.977 .078 298.17 438.38 311.59 

2 
Model 1 +Errors 

Across Tasks 
50 

73.95, 

p=.02 

.050 

(.022, .073) 
.996 .030 213.95 459.32 237.43 

3 

Model 2 +Within-task 

Invariant Loadings on 
Category Factors 

58 
89.56, 

p=.005 

.054 

(.030, .074) .995 .069 213.56 430.89 234.35 

4 Model 3+Second-order 

Category Factor 
63 

92.01, 
p=.01 

.049 
(.025, .070) 

.995 .048 206.01 405.82 225.22 

5 Model 4 + CFMT and 
VET measures 

147 
216.34 

P <.001 

.050 

(.035, .064) 
.967 .064 384.34 678.79 412.51 

2χ
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 We also assessed whether correlations within the two relatively visually similar 
Ziggerin (categories 0 and 3) and the two Greeble (categories 1 and 2) stimulus types 
were higher than the between-type correlations. We conducted four sets of analyses, each 
of which compared within-type to across-type correlations. Specifically we tested 
whether: (1) r03=r01=r02; (2) r03=r13=r23; (3) r12=r01=r13; and, (4) r12=r02=r23. In all four 
cases, Satorra-Bentler nested chi-square tests indicated that these equality constraints 
induced no significant impairment in model fit, or even trends, relative to Model 2  

( 2 (2)χ =3.03, p=.22; 2 (2)χ =1.69, p=.44; 2 (2)χ =2.58, p=.28; 2 (2)χ =1.75, p=.42, 

respectively).	Thus, correlations within a stimulus type were not different from 
correlations across stimulus types.   
 Model 3 built upon Model 2 but imposed the restriction of equal factor loadings 
across categories (e.g., the loadings of MA1-MA5 on their respective category factors 

were constrained equal). This model also fit adequately (see Table 5).	Although	the	
value	of the SRMR clearly increased in Model 3 relative to Model 2, it still falls within 
the conventional range of good fit on this measure. The other 5 indices all adjust for 
complexity to some degree (i.e., rewarding more parsimonious models) and indicate 
much smaller differences between the two models (RMSEA, CFI) or favor  Model 3 
(AIC, BIC, SABIC). A nested chi-square test indicated that the restrictions imposed by 
Model 3 did not significantly impair fit relative to Model 2, although caution is necessary 
because the significance level was very close to the rejection threshold (nested χ2(8) = 
15.36, p = .052). On balance, we think that these results indicate that the restrictions 
imposed by Model 3 fit well enough to use it as the starting point for the next steps in the 
modeling sequence. However, we report below the fit of separate higher-order factor 
models that include and do not include the restrictions on the loadings. Overall the Model 
3 results indicate that the factor structure of the three tasks could be considered 
reasonably invariant across categories. Such invariance is another indication that that the 
untrained category (0) did not have a unique structure relative to the other categories.  
 A notable feature of Model 3 (also characteristic of Model 2) is the magnitude of 
the association among the category factors. Table 6 shows the correlations among the 
factors generated by the standardized solution and 95% bias-corrected bootstrap 
confidence intervals (Williams & MacKinnon, 2008) around these values. As indicated, 
the correlations among the category factors were quite high, ranging from .82 to .96 
(mean r = .895), with even the lower bounds of confidence intervals at very high values 
(all were greater than .73). 

Using Model 3 as a starting point, Model 4 specified the higher-order factor (o) to 
account for the covariances and correlations among the category factors. This model did 
not significantly impair fit compared to Model 3 (nested χ2(5) = 2.11, p = .83) and fit well 
in an absolute sense (see Table 5). Indeed, as indicated by Table 5, the Model 4 values of 
the fit indices that most explicitly penalize for model complexity were the lowest 
(RMSEA, AIC, BIC, and SABIC) or essentially tied for the lowest (CFI) among the four 
models tested. This provides support for our hypothesis that performance across novel 
object categories can be accounted for by a single overarching Object Recognition 
Ability factor.  
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Table 6 Correlations among the Category Factors (Model 3) 
 

Category 0 1 2 3 4 

0 --------     

1 .82 
(.74,.89) --------    

2 .87 
(.78,.96) 

.90 
(.81,.98) -------   

3 .91 
(.81,.98) 

.96 
(.88,1.00) 

.93 
(.85,1.00) ---------  

4 .92 
(.84,.99) 

.84 
(.74,.92) 

.92 
(.85,1.00) 

.91 
(.80,.99) --------- 

 Note: All ps < .001. 95% bias-corrected bootstrap confidence intervals 
 are shown in parentheses. When an upper bound slightly exceeded 1.00, it was fixed at 
1.00. 

 
Model 4 is shown in Figure 6 with standardized parameter estimates. The lower-

order loadings of the observed measures on factors are generally high, with values for 
MA, CO and LE ranging, respectively from .68 to .80, .73 to .80, and .47 to .56.7  The 
most notable feature of Model 4 is that the standardized loadings from the higher-order 
factor (o) to lower-order category factors are quite high (.910–.995; all ps highly 
significant based on bootstrap assessments), suggesting that the higher-order o factor 
accounts for on average 89% of the variance in lower-order category factors (% variance 
= .83, .85,.91,.99, and .89 for categories 0-4). Because of the borderline acceptability of 
the model imposing invariant factor loadings, we also specified a higher-order factor 
model in which the lower-order loadings (i.e., of observed indicators on category factors) 
were not constrained to be equal and compared its fit to model 2 rather than model 3. 
This model also fit well in an absolute sense (e.g., Satorra-Bentler χ2(55) = 81.10, 

RMSEA=.050), with no impairment in fit relative to model 2 (nested χ2(5) = 7.16, p 

=.21) and almost identical factor loadings proportions of variance accounted for by the 
higher-order factor as Model 4.  

																																																								
7	Model	4	specifies	invariance of the unstandardized lower-order factor loadings per 
measure. This restriction does not imply complete invariance of standardized loadings.	
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Table 7. Correlations between o and each familiar object category.  

Predictor Reliabilty 
Corrected 

  
Un-corrected 

 
r r

2 
r r

2
 

Faces .28 .08 .26 .07 

Birds .43 .18 .39 .15 

Butterflies .60 .36 .54 .29 

Cars .27 .07 .24 .06 

Houses .47 .22 .42 .17 

Planes .53 .28 .46 .21 

Note: All ps <.001 

	

 
Study 2 

In Study 1 we found evidence for o, a higher order factor supporting object 
recognition performance across different tasks and categories. In Study 2, as an initial 
effort to establish the divergent validity of o, we explore the extent to which it is related 
to a battery of cognitive and perceptual constructs, as well as measures of personality. 
The primary goal is to quantify how much of the individual differences captured in our 
tasks remain after controlling for such factors. To this end, we measured performance on 
all three tasks with two of the object categories from Study 1. Although we use a smaller 
sample in Study 2, we expected to replicate results from Study 1 with moderate to strong 
relations between categories and object recognition tasks but, at the same time, evidence 
for discriminant validity. 

Prior work with LE tasks with both familiar and novel objects found that 
performance for each object recognition task was correlated with IQ (r ~ .1-.3) but that 
virtually none of the shared variance among different categories was explained by IQ 
(Richler et al., 2017). Here, we also assess IQ, using tests associated with fluid 
intelligence (gF) and targeting the ability to solve new problems (Engle, Tuholski, 
Laughlin & Conway, 1999). We expect that despite moderate correlations with some 
individual object recognition tasks, most of the shared variance between object 
recognition tasks will not be accounted for by IQ. 

Aside from IQ, we selected a variety of tasks from prior individual differences 
research that could be plausibly expected to account for some of the variance in o (note 
that our goal was not to decompose o into its constituent parts). We included tasks that 
tap into different aspects of executive function (Miyake & Friedman, 2012): two Stroop 
tasks and a shifting task that requires switching between mental sets. We also included a 
measure of visual short-term memory capacity and a measure of local/global perceptual 
style. Finally, because our approach requires completion of a large number of tasks (over 
many sessions in Study 1), we were concerned that more conscientious subjects may have 
performed better, accounting for some of the shared variance across tasks and categories 
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in Study 1. In Study 2 we gave subjects a personality inventory that includes a measure of 
conscientiousness. Aside from this self-report measure, the contribution of any aspect of 
motivation or personality to our object recognition tasks would also be evidenced by 
strong correlations between object recognition tasks and any of the other performance 
measures mentioned above. 

Methods 

Participants 
We analyze data for fifty-four participants (13 male, 41 female, 0 not disclosed; 

mean age = 20.4 years; 50 right-handed). Sixty-six Vanderbilt University Community 
members were originally recruited (15 male, 51 female, 0 not disclosed; mean age = 20.5 
years; 61 right-handed). Four participants only completed the first session and were thus 
excluded. Additionally, data from 5 participants were excluded because of median RTs 
less than 200 ms for Composite or Matching Tasks and/or median RTs less than 1000 ms 
for individual Learning Exemplars categories. Lastly, all data from 3 additional 
participants were excluded because of too many (>57 out of 144 trials) timed-out trials on 
the Composite task (on which trials timed out after 3 seconds). Thus, data from 12 total 
participants were excluded. Power calculations for Pearson correlations indicated that 
with n=54 we would have 80% power to detect a correlation of .37 or higher and 70% 
power to detect a correlation of .33 or higher. Note that our primary concern was not so 
much whether there was any correlation between our object recognition measures and 
individual difference measures but whether there was a sufficiently large correlation to 
warrant significant concern that the strong correlations between categories were largely 
due to associations with individual difference measures. 

Of these remaining 54 participants, Fluid IQ data for 3 participants, Stroop data 
for 1 participant and VSTM data for 1 participant were missing due to computer error, 
but the rest of their data were analyzed. Finally, due to experimenter error, Stroop data 
from 4 additional participants were missing after the first session. Thus, these participants 
completed the Stroop task again at the beginning of the second session.  
Test Sessions and Tasks 

Participants completed all tasks in two 1.5-hour sessions occurring a maximum of 
seven days apart and were compensated a total of $45. Because the results of Study 1 
suggested that measurement of o was not strongly influenced by whether participants 
received experience in the Space Invaders Game or not, we did not include a training 
phase in Study 2. In the first session, participants completed the Stroop tasks, the IPIP, 
Learning Exemplars-0, Composite-0, Matching Task-0, L-EFT and Number/Letter 
Shifting Task. In the second session, participants completed the Fluid IQ tasks, the 
Learning Exemplars-2, Composite-2, Matching-2 and VSTM tasks. Participants 
completed all tasks in the same order and were allowed to take a break between each 
task. 

Learning Exemplars Task. This task was identical to that used in Study 1. Here, 
participants completed the task for categories 0 and 2.  

Composite Task. Participants completed this task as in Study 1, for categories 0 
and 2, with the following modifications. Because of the high reliability of this task in 
Study 1, we shortened the task by using a random selection of only half of the trials (144 
instead of 288), with the constraints of keeping the number of trials of each condition 
type equal (same/different, top/bottom, congruent/incongruent).  
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Matching Task. Participants completed this task as in Study 1, for categories 0 
and 2, with two modifications. Because reliability of the previous matching tasks was 
high, to shorten the task we randomly selected half of the original 360 trials to include in 
this task. Study objects were all presented for 300 ms (instead of both 150 ms and 300 ms 
in Study 1).  

Stroop. In the first of two blocks, participants reported the color of a word and the 
word was presented in either a congruent or incongruent color. In a second block, 
participants reported the quantity of a group of numbers while the numbers themselves 
were either congruent or incongruent with the quantity (e.g., “4444” is congruent and 
“33” is incongruent). In each block, trials began with a 500 ms fixation cross followed by 
a 250 ms inter-stimuli interval and then the stimuli (either words or numbers) presented 
until a response was made. The Stroop task taps into individual’s selective attention and 
cognitive flexibility. We calculated a Stroop interference index using the average 
response time on all correct congruent trials minus that on all correct incongruent trials. 

Number/Letter Shifting. We modified the shifting task from Friedman et al. 
(2008). Here, we only used the number-letter shifting version of the task (adapted from 
Rogers and Monsell, 1995). Participants first saw a square appearing above or below a 
horizontal midline dividing the screen in half for 150 ms. Then a number-letter (5G) or 
letter-number (A4) pair appeared within the square. When the pair was in the square 
above the line, participants indicated whether the number was odd or even (2, 4, 6, and 8 
for even; 3, 5, 7, and 9 for odd) and when the pair was in the square below the line, 
participants indicated whether the letter was a consonant or a vowel (G, K, M, and R for 
consonant; A, E, I, and U for vowel). Participants were instructed to be “as accurate and 
fast as possible; accuracy is more important.” Two 24-trial practice blocks and 6 warm-
up trials at the beginning of each block were not analyzed. Trial order was randomized 
but constrained such that no more than four switch trials could occur in a row 
(randomization occurred once and then every subject completed trials in this same 
randomized order). To prevent item-specific negative priming, trial order was also 
constrained so that the stimulus on a switch trial was never the same as that on the 
previous trial. To index shifting ability, we calculated the “switch-cost” (Friedman et al., 
2008), which is the difference between the mean reaction times on correct trials in which 
no switch occurred and mean reaction times on correct trials in which a switch occurred. 
Individual trials (3.4%) were excluded because reaction times were less than 200 ms or 
more than 5000 ms. 

Leuven Embedded Figures Test (L-EFT). In the L-EFT, participants have to find a 
target shape embedded within a larger figure. Participants were shown the target shape 
and three figures simultaneously and chose which of the three figures contained the target 
shape. Participants could make a response via button press at any point, but after three 
seconds, the target shape and three options disappeared. There were two practice trials 
followed by 64 experimental trials. The L-EFT stimuli were developed specifically to 
vary in perceptual grouping features like closure, symmetry and complexity so that trial 
difficulties varied (de-Wit et al., 2017). The test is considered an index of perceptual style 
(local information processing). We indexed performance using response times for correct 
answers. 

Fluid Intelligence (FIQ). Following several previous studies (e.g., Redick et al., 
2013; Hambrick et al., 2007; Hambrick et al., 2008. Van Gulick et al., 2016), we included 
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three different tasks known to load highly on fluid intelligence (gF) and targeting the 
ability to solve new problems (Engle, Tuholski, Laughlin & Conway, 1999). There were 
specific time limits for each block, but no time limits for a response on each trial and 
within each block, trials were ordered from easiest to most difficult with practice trials 
preceding every block. In the first task, participants completed as many of 18 trials from 
the Raven’s Advanced Progressive Matrices (RAPM; Raven, Raven, & Court, 1998) as 
possible in ten minutes. In the RAPM, a 3 x 3 array of images is presented in which the 
bottom-right image has been removed. Participants must choose with of eight options is 
the removed piece based off of patterns within the matrix. This task was followed by a 
block of Letter Sets (Ekstrom, French, Harman, & Dermen, 1976) in which participants 
saw five sets of letter strings with all but one of the letter strings following a specific rule. 
Participants had seven minutes to complete as many of the 30 trials as possible. The final 
task was number series (Thurstone, 1938), in which each trial presented an array of 5-12 
numbers forming some type of pattern. Participants had to choose which of 5 number 
options would follow the presented array (e.g. if the array was 1 2 3 4 5, the correct 
response was 6). Participants had five minutes to complete as many of the 15 trials as 
possible. Fluid intelligence was indexed by the total number of correct responses made 
for all three tasks given time constraints.  

Visual Short-Term Memory Task. To index visual short-term memory capacity, 
we used a change detection task in which participants reported if a change occurred 
between two arrays of colored squares (Xu et al., 2017). Each trial began with a 1,000 ms 
fixation, followed by an array of colored squared presented for 150 ms. After a 1,000 ms 
delay period, a probe square appeared at one of the square locations and participants 
responded if this square was the same or a different color from the original square 
presented at that location in the array. Here, we only presented arrays of six squares and, 
based on the results reported in Xu et al., (2017), we used three blocks of 50 trials each 
with 30 seconds rest in between each block. Trials were randomized across participants. 
Performance was scored as the total number of correct responses over the 150 trials. 

International Personality Item Pool (IPIP). The IPIP (Goldberg, 1999) requires 
participants to rate 50 items on a 5-point Likert scale from “Very accurate” to “Very 
inaccurate.” Subjects completed a paper-version of the questionnaire and were not given 
any time limit. An average score is computed for each Big-Five personality factors 
(Extraversion, Agreeableness, Conscientiousness, Emotional Stability, Intellect). 

Results 

Means and reliability indices for each measure are found in Table 8. The shorter 
versions of the MA and CO tasks provided measurements that were as reliable as in 
Study 1. Reliability was above .8 in all cases except the Stroop cost (.50, difference 
scores often have limited reliability and in the present case it is due to the high correlation 
between congruent and incongruent RTs, r =.92), and the short versions of each FIQ task 
(.72-.79), although their combined reliability is .87.  
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Table	8.	Mean	and	standard	deviations,	and	reliability	(Cronbach’s	α	for	Cat	0	and	

Cat	2	tasks,	Fluid	Intelligence	and	IPIP,	average	of	10	split-half	estimates	for	other	

measures).	

		 		 		 		

		 N	 Mean	(SD)		 Reliability	

Category	0	 		 		 		

			Learning	Exemplars	(%	correct)	 54	 66.40	(16.26)	 0.87	

			Matching	Task	(d')	 54	 1.67	(.52)	 0.88	

		Composite	Task	(d')	 54	 1.61	(.73)	 0.91	

Category	2	

	 	 				Learning	Exemplars	(%	correct)	 54	 66.44	(17.17)	 0.91	

			Matching	Task	(d')	 54	 1.57	(.67)	 0.96	

		Composite	Task	(d')	 54	 1.59	(.86)	 0.95	

Stroop	Cost	(delta	RT)	 53	 80.35	(46.79)	 0.50	

Shift	Cost	(delta	RT)	 54	 371.29	(286.79)	 0.91	

L-EFT	(RT)		 54	 1935.10	(267.45)	 0.87	

Fluid	Intelligence	

	 	 				Ravens	(no.	correct)	 51	 11.78	(2.98)	 0.72	

			Letter	Sets	(no.	correct)	 51	 17.67	(3.72)	 0.79	

			Number	Scores	(no.	correct)	 51	 10.27	(2.56)	 0.72	

Visual	STM	(%	correct)	 53	 68.62	(10.43)	 0.88	

IPIP	

	 	 				Conscientiousness	 54	 35.02	(8.28)	 0.89	

			Extraversion	 54	 30.43	(8.41)	 0.90	

			Emotional	Stability	 54	 29.70	(8.16)	 0.90	

			Agreeableness	 54	 41.13	(5.67)	 0.87	

			Intellect	 54	 36.98	(6.29)	 0.83	

 
 

  Correlations among Observed Measures 

The first two columns of Table 9 present the zero-order Pearson correlations 
between the cognitive and personality measures and performance on each of the two 
categories. To form an overall category score for each participant we first standardized 
each of the three category tasks (CO, MA, and LE) across participants and computed the 
mean of the three standardized scores for each participant. As expected, the correlation 
between the Cat0 and Cat2 aggregate scores was very high (r = .71, 95% CI = .54 to .82).  
 

Similar to Study 1, normality assessments indicated that most of the measures had 
at least some degree of non-normality. Deviations from univariate or bivariate normality 
can yield confidence intervals for Pearson correlations with inaccurate coverage if 
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conventional Z or t tests are used (e.g., Beasley, DeShea, Toothaker, Mendoza, Bard, & 
Rogers, 2007; Bishara & Hittner, 2017). For this reason, we computed confidence 
intervals for correlations using bootstrapping. For each correlation of interest, we used 
the observed-imposed (OI) univariate sampling bootstrap (e.g., Beasley et al., 2007; Lee 
& Rodgers, 1988) to generate 1000 samples, after which we computed bias-corrected and 
accelerated (BCA) confidence intervals (e.g., Efron, 1987; Efron & Tibshirani, 1993, pp. 
184-188 and 326-328). Note that 95% confidence intervals that do not include 0 indicate 
rejection of the two-tailed null hypothesis that the population correlation equals 0. Such 
cases are indicated in bold in Table 9. 

The highest and most consistently statistically significant correlations involved 
the three FIQ measures (Ravens, Letter Sets, and Number Scores). All three were 
positively correlated with category performance, with 5 of the 6 confidence intervals 
having lower bounds greater than zero. The proportions of variance (i.e., r2) in the 
category measures accounted for by the FIQ measures vary between 5.76% and 21%. The 
other significant correlations were those between Category 0 and Category 2 scores and 
the shift cost measure and between Category 2 scores and Visual STM performance. 
Lower shift costs and better short-term memory performance predicted better category 
performance, with proportions of variance in the 11-14% range.  

Table 9 also presents four additional indices that address a different question: To 
what degree is the correlation between Cat 0 and Cat 2 accounted for by their 
associations with the other individual difference measures? First, we computed partial 
correlations between Category 0 and Category 2 that adjusted for their common 
association with each of the individual difference measures. These correlations assessed 
the strength of the association between those components of variance in category 
performance that were independent of the cognitive measures (i.e., they are identical to 
zero-order correlations between the Cat0 and Cat2 residuals formed from the regression 
of each on a given external measure). As the values and BCA confidence intervals  
shown in Table 9 indicate, partial correlations were quite high (all are > .62), with the 
great majority very close to the zero-order correlation (r = .71) between the two 
categories. 

We also decomposed the overall correlation between Cat 0 and Cat 2 into two 
constituent components: The component that can be accounted for by the associations of 
the two categories with a given individual difference measure and the component that is 
independent of (i.e., orthogonal to) that measure. The top panel of Figure 7 graphically 
portrays the logic of the procedure, with Ravens used as the exemplar external measure. 
The directed arrows from Ravens to the two categories denote the effect of this 
component of fluid intelligence on individual differences in category performance. The 
‘a’ coefficient denotes the effects of Ravens on Cat 0 and the ‘b’ coefficient denotes its 
effects on Cat 2. It can be easily shown that for a path model of this sort a and b are 
simply the β coefficients that would be yielded by two simple linear regression analyses 
regressing Cat 0 on Ravens and Cat 2 on Ravens. D0 and D2 depict the residuals from 
these two regressions and the double-headed arrow connecting them indicates the  
covariance between these residuals (analogous to the partial correlations discussed 
above). Using the tracing rule (Kenny, 1979), it can be shown that the overall covariance 
between Cat0 and Cat2 can be decomposed into the path through Ravens and the path 
through the residual terms. For the model depicted,  
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2

0, 2 0 2( )( )
Cat Cat Ravens d d

a bσ σ σ= +   (1) 

The first term to the right of the equal sign in formula 1 is the component of the 
covariance between Cat0 and Cat 2 that is contributed by the Ravens path and the second 
term is the component of the covariance that is independent of the Ravens path and due to 
other sources. If all three variables are standardized, then it can be shown that the 
correlation between Cat 0 and Cat 2 can be analogously decomposed as:  

 ( )( ) 2 2

0, 2 , 0 , 2 0, 2. , 0 , 2
1 1

Cat Cat Ravens Cat Ravens Cat Cat Cat ravens Ravens Cat Ravens Cat
r r r r r r= + − − ,  (2) 

where 
0, 2.Cat Cat ravens

r  denotes the partial correlation between Cat0 and Cat2 adjusting for 

Ravens. The first term to the right of the equal sign in formula 2 denotes the correlation 
component through Ravens and the second denotes the component through the residuals. 
Because correlations are more readily interpretable than covariances, in Table 9 we 
present the decomposition of the overall correlation between Cat0 and Cat2 (r =.71) into 
its two constituent components across each of the external individual difference 
measures. In addition, we present the proportion of the correlation between these two 
measures that is due to the residual component. These proportions can be greater than 1 if 
the pathway through a given individual difference measure produces a predicted negative 
correlation. Also included are percentile bootstrap confidence intervals for these 
indices.8,9 
 As shown by Table 9, for each variable the component of the correlation through 
the residual path (column 6) was notably greater than the component of the correlation 
through the individual difference measure path (column 5). Only three measures of the 
individual difference component had confidence intervals that did not encompass 0, while 
the lower bound for all residual-path measures was notably greater than 0. The lowest 
proportions of the total correlation through the residual path (column 7) were .72 (number 
scores) and .82 (shift cost), with the rest of the proportions greater than or equal to .86. 
As a whole, the results summarized in Table 9 strongly indicate that, considered in 

																																																								
8	We used percentile confidence intervals because in a couple of cases where correlations 
between the Category measures and an individual measure were very low (e.g., 
Extraversion and Emotional Stability) the BCA intervals appeared unduly narrow relative 
to confidence intervals generated by simulated data specifying low population 
correlations. With the exception of these few cases, confidence intervals were very 
similar whatever the bootstrapping approach used.  
9	 Consistent with formula 2, it should be emphasized that the amount or proportion of the 
overall correlation between the two categories that is attributable to the residual pathway 
is not the same as the partial correlation between the two categories. The former 
quantities are also dependent on the variances of the residual terms. For example, even if 
the correlation between two residual terms is very high (i.e., the partial r is high), the 
amount or proportion of the total correlation due to the residual pathway could be much 
lower if  residual variances are only very small proportions of the total variance of the 
category factors.  
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isolation, the individual difference measures account for only a small proportion of the 
association between the categories.   
 We also conducted a multiple regression analysis that predicted Cat0 and Cat2 
from the three FIQ measures, Visual STM, and Shift Cost. We selected these variables 
because they were significantly correlated with at least one of the two categories (see 
Table 9).  Using MPLUS software (Muthén, L.K. and Muthén, 1998-2017), we estimated 
a multiple-predictor version of the observed-variable model shown in Table 9 and, in 
addition, estimated the covariance between the Cat0 and Cat2 residual terms.  The 
proportions of the variance of the category variables accounted for by the set of four 
predictors were 35% and 31 % respectively.  If we apply standard adjusted R square 
formulae from ordinary least squares regression, these values drop to 28% and 23%, 
respectively. In addition, the partial correlation between Cat0 and Cat2 was .60 (p < .001) 
and the set of predictors accounted for 43% of the total correlation between Cat0 and 
Cat2 with the remaining 57% running through the residual paths. Although these analyses 
are informative, we should caution that: (1) With six predictors and a sample size = 51 
(due to 3 participants with missing observations), there is some potential for bias and 
overfitting (i.e., reproducibility of the results is an issue); and, (2) These variables were 
selected post-hoc based on the results of prior analyses of individual external variables. 
Similar to the issues that arise with stepwise regression, this latter factor might well 
produce inflated estimates of the effects of the predictors and under-estimate the strength 
of the alternative, residual path.   
 
Latent Variable Analyses 

 The correlational results among the observed measures indicate relations between 
the individual difference measures category performance that, at best (e.g., IQ measures), 
would be described as medium in strength, with generally small associations evident on 
the other measures. As noted above, however, measurement error attenuates correlations. 
Components of variance that are reliable but construct-irrelevant can also attenuate 
correlations. These points suggest the advantages of including SEM analyses in Study 2. 
Unfortunately, CFA and SEM are based on large-sample theory and the available 
evidence indicates that N=54 is too small, particularly when data are not multivariate 
normal (e.g., Bentler & Chou, 1987; Boomsma, 1982; Boomsma & Hoogland, 2001). 
The most common problems are convergence failures (the iterative algorithm does not 
reach an optimal, final set of parameter estimates) and improper solutions (models with 
parameter estimates that are outside a permissible range, e.g., negative values of 
variances, Gagné & Hancock, 2006). Somewhat surprisingly, however, we found that 
when we ran SEM models that corresponded to the analyses presented in Table 9 but 
included latent variables for each construct, there were no convergence failures and 
solutions were proper. Likely, these results are due to the generally high construct 
reliability (i.e,. quality of measurement) in the models that we specified (e.g., Gagné & 
Hancock, 2006; Hancock & Mueller, 2001).



 

Table 9:  Zero-order, Partial, and Decomposed Correlations for Observed Data  

Note. Zero-order correlation between Cat0 and Cat2 = .71. Partial correlations between Cat0 and Cat2 adjust for individual difference 

measures. Component indices decompose the zero-order correlation between Cat0 and Cat2 into components through the individual 

difference measure and the residual paths. Bias-corrected and adjusted (BCA) bootstrap confidence intervals are shown in parentheses 

for zero-order and partial correlations and percentile bootstrap confidence intervals are shown for other indices. Univariate 

bootstrapping was used to generate samples for zero-order correlations while bivariate bootstrapping was used for other indices. 

Estimates are bolded when confidence intervals do not include 0. Upper bounds for proportions can exceed 1 due to negative values for 

the component of the correlation through the individual difference path.  

Individual 

Difference 

Measure 

Cat 0 

Pearson r 

Cat 2  

Pearson r 

Cat0/Cat2 

Partial r 

Component of 

Cat0/Cat2 r  

Through Ind. 

Dif. Path 

 

Component of 

Cat0/Cat2 r 

Through Residual 

Path 

       Proportion:

Residual Component

Cat0/Cat2 r (= .71)

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Ravens 

.41 

(.14,.62) 

.24 

(-.03,.48) 

.68
 

 (.47,.81) 

.10 

 (-.02,30) 

.60 

 (.38,.76) 

.86 

 (.59,1.02) 

Letter Sets 

.32
 

(.04,55) 

.31
 

(.02,.51) 

.67
 

 (.44,.82)
 

.10 

 (.01,.26) 

.60 

 (.38,.76) 

.86 

 (.62,.99) 

Number Scores 

.46
 

(.21,.64) 

.42
 

(.17,.62) 

.63
 

 (.41,.78) 

.19 

 (.04,.39) 

.51 

 (.30,.67) 

.72 

 (.46,.94) 

Stroop Cost 

-.16
 

(-.42,.11) 

-.19 

(-.45,.10) 

.69
 

 (.50,.83) 

.03 

 (-.00,.12) 

.67 

 (.46,.81) 

.96 

 (.82,1.00) 

Shift Cost 

-.37
 

(-.61,-.13) 

-.33
 

(-.56,-.06) 

.67
 

 (.44,.81) 

.12 

 (.01,.29) 

.58 

 (.37,.75) 

.82 

 (.61,.98) 

L-EFT 

.05 

(-.23,.31) 

-.00 

(-.28,.26) 

.71
 

 (.52,.84) 

-.00 

 (-.01,.05) 

.71 

 (.51,.83) 

1.00 

 (.93,1.01) 

Visual STM 

.23 

(-.04,.49) 

. 37
 

(.12,.57) 

.69 

 (.49.83) 

.09 

 (-.00,.24) 

.63 

 (.43,.76) 

.88 

 (.68,1.00) 

Conscientiousness 

-.26 

(-.47,.02) 

-.17 

(-.40,.10) 

.70
 

 (.51,.83) 

.04 

 (-.01,.21) 

.67 

 (.46,.80) 

.94 

 (.71,1.01) 

Extraversion 

-.00 

(-.27,.26) 

-.04 

(-.30.21) 

.71
 

 (.52,.84) 

.00 

 (-.01,.06) 

.71 

 (.52,.83) 

1.00 

 (.92,1.01) 

Emotional  Stability 

-.03 

(-.31,.25) 

.05 

(-.24,.30) 

.71
 

 (.52,.84) 

-.00 

 (-.02,.06) 

.71 

 (.51,.83) 

1.00 

 (.91,1.02) 

Agreeableness 

-.12 

(-.34,.16) 

-.09 

(-.34,.19) 

.71
 

 (.51,.84) 

.01 

 (-.00,12) 

.70 

 (.50,.82) 

.98 

 (.84,1.01) 

Intellect 

-.02 

(-.28,.26) 

.13 

(-.13,.39) 

.72
 

 (.52,.84) 

-.00 

 (-.03,.08) 

.71 

 (.52,.83) 

1.00 

 (.89,1.05) 



Although the results of latent variable SEM analyses should be viewed with 

caution in the present study, for several reasons we think that it is informative to present 

two models that focus on the relation between Fluid IQ and category performance: (1) 

We included three distinct measures of Fluid IQ (Ravens, Letter Sets, and Number 

Scores) and thus the analyses presented in Table 9 leave particularly unclear the strength 

of the association between a Fluid IQ latent variable and latent variables that mark the 

two categories; (2) The Fluid IQ measures had the highest correlations with the category 

measures when analyses were conducted on observed variables and yet their reliabilities 

were in the .72 to .79 range. Given that analyses of observed measures alone can 

attenuate correlations due to measurement error, we used the SEM approach to explore 

the magnitude of the association between constructs assessed as latent variables; (3) As 

reported below, the models that we ran assessing relations between FIQ and category 

performance had good fit; and, (4) Our primary focus was on parameter estimates and 

small ns tend to have smaller effects on estimation bias than on measures of fit or the 

magnitude of standard errors (e.g., for a review, see e.g. ,Boomsma & Hoogland, 2001).  

 Two SEM models were run to generate indices that paralleled those shown in 

Table 9 for observed variables. The first was a CFA model that simply specified three 

latent variables (FIQ, Cat0, Cat2, each with three indicators) that were freely correlated 

with one another. We used the MLR estimator in MPLUS (Muthén, L.K. and Muthén, 

1998-2017)
10,11

 and formed bias-corrected bootstrap intervals around parameter estimates 

(Williams & MacKinnon, 2008). This model fit very well ( 2

24dfχ
=

 test of exact fit = 25.56, 

p=.25,  RMSEA = .03, CFI=.994, SRMR =.059). Consistent with the results of Study 1, 

the correlation between the Cat0 and Cat2 factors was .89 (95% bias-corrected bootstrap 

CI = .70 to 1.00). Both Category factors were significantly correlated with the FIQ factor, 

(Cat0 r = .57, 95%  CI = .23 to .77; Cat2 r =.46, 95%  CI = .10 to .67), which accounted 

for 32% and 21% of the variance of Cat0 and Cat2, respectively.  

 The second model is shown in the bottom panel of Figure 7. It is analogous to the 

model shown in the top panel and was designed to decompose the covariance between 

Cat0 and Cat 2 into paths through FIQ and through the residual terms. It can be shown 

that this model is an equivalent model (e.g., Tomarken & Waller, 2003) to the factor-

analytic FIQ model: Although the specified parameters differ, the overall fit of the two 

models is identical because they impose the same restrictions on the data. Similar to the 

computations used for the observed data, we used this model to compute partial 

correlations between Cat0 and Cat2 and to decompose the correlation between Cat0 and 

																																																								
10

 We felt comfortable using this alternative to the EQS TS estimator because of the very 

small percentage of missing data for this analysis (1.8% of all possible observations) and 

the ease with which bootstrap confidence intervals for derived estimates (those that are 

linear or nonlinear combinations of other estimates) can be computed in MPLUS. 

Identical conclusions were reached when the EQS TS estimator employed in Study 1 was 

used to analyze these data.  
11

 Somewhat surprisingly we found that the inclusion of correlated errors across the two 

category factors for CO, MA, and LE failed to improve model fit, S-B difference 2

3dfχ
=

 = 

5.19, p > .16. For this reason and because we wanted to limit the number of parameters 

estimated due to the sample size, we omitted such correlated errors in the SEM analyses 

for Study 2.  
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Cat2 into the components due to and independent of FIQ.
12

 Despite the non-trivial zero-

order correlations between FIQ and the two Category latent factors, the partial correlation 

between Cat0 and Cat2 was a robust .86 (95% CI = .62 to 1.00). The component of the 

correlation between Cat0 and Cat2 (r=.89) through the FIQ path was .26 (95% CI =.05 to 

.54), while the component through the residual was .63 (95% CI = .38 to .85). Thus the 

overall proportion of the total correlation between Cat0 and Cat2 that was independent of 

linkages to FIQ was 71% (95% CI = .42 to .94). All told, these results indicate a very 

strong relation between those components of Cat0 and Cat2 that are independent of FIQ. 

  

 

 

 

 

																																																								
12

 Similar to the procedure used for the observed data, we generated 1,000 bootstrap 

samples and computed bias-corrected confidence bootstrap confidence intervals 

(Williams & MacKinnon, 2008) for the partial correlations and percentile confidence 

intervals for the other measures. Given the sample size, we regard the CIs reported for the 

FIQ models as approximate (e.g., Nevitt & Hancock, 2001).  
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We also conducted two-stage least squares estimation (TSLS, Bollen, 1996) 

because it has been suggested that this limited information estimator might perform better 

with small sample sizes (although the evidence in support of this point is rather 

equivocal, e.g., Bollen, Kirby, Curran, Paxton, & Chen, 2007). The results were very 

similar. For example, while the residual path accounted for 71% of the total correlation 

between Cat0 and Cat2 when robust ML was used, this path accounted for 72.6% of the 

correlation when TSLS was used.   

 The online supplemental material contain additional results for latent variable 

assessments of the relation between the external individual difference measures and 

performance on the two categories.  

 

General Discussion 

Study 1 offered strong support for the hypothesis that individual differences in 

object recognition ability can be identified that are consistent across different categories 

of objects. The intraclass correlation coefficients conducted on a task-per-task basis 

indicated that performance across categories was rather stable. When consistency was 

assessed, the ICC1 values indicated that the correlations in performance between any pair 

of categories ranged from about .50 to .60 depending on the task. When category was 

treated as a random effect and agreement was assessed, ICC1’s were lower but still 

indicated a notable effect of individual differences. Given the well-known importance of 

aggregation for accurate assessment of individual differences, the ICC5 values are more 

critical because they estimate the correlation between the average performance of a given 

participant across the five categories and a hypothetically equivalent average. Across the 

two specifications for category (fixed vs. random effects), the ICC5 values ranged from 

.69 to .89. Thus, between approximately 70% and 90% of the variance in performance 

averaged across categories reflects individual differences that are stable across categories. 

Conversely, only a relatively small proportion of the variance of aggregate scores would 

be deemed due to random error. Using familiar terms derived from the analysis of 

variance, our findings indicate a strong main effect for persons and a relatively weak 

person X category interaction.   

The confirmatory factor analyses (CFAs) extended the ICC results in several 

important respects. First, by combining performance across tasks, CFAs allowed for more 

general conclusions than analyses conducted on a task-by-task basis. In addition, they 

allowed us to estimate effects due to individual differences in object recognition (i.e., 

category performance) with the effects of random measurement error and construct-

irrelevant variance removed and task-specific components of variance accounted for. 

Finally, the CFA approach allowed us to assess the overall proportion of variance in 

lower-order category factors due to the hypothesized object recognition ability o.  

The sequence of CFA models offered strong support for our hypotheses. First, as 

long as task-specific method factors were accounted for, a model (Model 2) that specified 

correlated category factors fit well according to conventional criteria. A subsequent 

model (Model 3) that constrained factor loadings to be equal across categories for each 

task fit adequately – although the value of the nested  test indicated some, though non-

significant, detriment in fit. This result indicates reasonable consistency of the factor 

structure of individual differences across categories. This model also indicated very high 

correlations among category factors, with rs ranging from .82 to .96.  

2χ
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Perhaps most importantly, we found that a model (Model 4) specifying a higher-

order object recognition ability (o) fit (see Table 5), with o accounting for a substantial 

proportion of the variance (on average 89%) of the lower-order factors. Subsequent 

correlational analyses indicated that o is significantly correlated with individual measures 

of expertise in the domains of face processing and non-face objects. This result indicates 

convergent validity.  

We found that o correlated more strongly with birds, butterflies, planes and 

houses than with faces and cars. The first four categories are likely representative of most 

categories of familiar objects, as previous work with several categories has consistently 

found faces and cars to be outlier categories (McGugin et al., 2012; Van Gulick et al., 

2015, Richler et al., 2017, Ćepulić et al., 2018). Several factors may dampen the 

correlation between o and performance with familiar objects in this work. First, while we 

reliability-corrected the expertise measures, we used only a single task for each category. 

A point that we have emphasized throughout is the importance of aggregation across 

multiple measures to provide measures that are optimal from a psychometric perspective 

and thus have a higher ceiling for observable correlations. Second, both variability in 

experience (Gauthier et al., 2014) and amount of experience (Sunday et al., in press) 

likely contribute to variability in performance for familiar objects. 

At the other end of the spectrum of experience, we assessed whether a small 

amount of exposure influenced the correlation with o. We used novel objects so that we 

could eliminate confounds from variability in experience, and we provided all subjects 

with the same amount (about 90 min) of exposure to objects from each of four of the 

novel categories, testing them with the fifth category without any prior exposure. 

Importantly, we found evidence that while short, this exposure was sufficient to increase 

holistic processing -- a behavioral marker of face perception (see Richler & Gauthier, 

2014 for a review) -- for the pre-exposed categories (see also Chua et al., 2015; Wong et 

al., 2009). However, despite the evidence that on average, experience led performance 

with novel objects to become more “face-like”, our findings do not indicate that 

performance with trained objects recruit a different ability. On observed measures, 

performance on all tasks was equally correlated between the trained and untrained 

categories. A variant of Model 2 that specified equality constraints indicated that the 

average correlation involving the untrained category failed to differ from the average 

correlations among the trained categories. These results converge with a number of 

studies that suggest holistic processing and part-based processing may be quantitatively, 

but not qualitatively, different (Sekuler, Gaspar, Gold & Bennett, 2004; Richler, Mack, 

Palmeri & Gauthier, 2010; Chua et al., 2015) – such that object recognition may rely on o 

regardless of the processing strategy. In addition, it is worth pointing out that the increase 

in holistic processing is based on a different dependent variable (the congruency effect) 

then the average score in the Composite task used in individual differences models. As 

such they may reflect entirely different mechanisms. Congruency effects in the standard 

composite task are typically not sufficiently reliable for individual differences analyses 

(Ross et al., 2015) and while one test of holistic processing for faces was developed for 

this purpose (Richler et al., 2014), similar tasks do not yet exist for objects. 

Taking what we learned from manipulating experience with novel objects and 

predicting the recognition of familiar categories, our results certainly suggest that 

experience influences object recognition, but also that o appears relevant to the prediction 
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of performance across a range of objects, novel and familiar, and may help in predicting 

who can achieve high levels of performance in object recognition when provided with 

experience. 

In Study 2, we found evidence for the specificity of o relative to a variety of 

constructs. Overall, FIQ measures displayed the strongest correlations with category 

performance. In the SEM analyses the FIQ latent variable accounted for between 21% 

and 32% of the variance in the category factors and in the observed-variable analyses, the 

proportions of variance for individual FIQ measures ranged from .06 to .21. Although 

these associations are by no means trivial, it is also the case that the clear majority (70 to 

80%) of the variance in category performance was independent of FI. Similarly, in the 

latent-variable analyses, while approximately 30% of the covariance between the two 

Category factors was due to their common association with FIQ, 70% was independent of 

FIQ. Further, the Cat0 and Cat2 residual components that were independent of FIQ were 

very highly correlated. This overall pattern suggests that while individual differences 

in o are, perhaps not surprisingly, associated with FIQ, the magnitude of the relation is 

not sufficient to support the argument that FIQ acts as a potent third variable that 

accounts for the covariation in performance on different categorization tasks. The results 

of Study 2 also indicate that other individual difference measures assessing a variety of 

cognitive, perceptual, and personality-motivational constructs tend to have only weak 

associations with o, with the possible exception of shifting and visual short-term memory, 

the associations for which are probably best described as moderate. Further, a regression 

analysis combining all predictors that yielded at least one significant effect in the 

univariate analyses revealed that approximately 60-70% of the variance of and 

covariance between the category factors was independent of these predictors. Therefore, 

while we acknowledge that individual differences in o share some components of 

variance with these other measures, it is clear there must be other processes and factors 

implicated in object recognition ability. Put another way, we believe that the results of 

Study 2 indicate the discriminant validity of the o construct. 

We believe that the present  work has several strengths. One was the selection of 

five novel object categories that varied on dimensions (e.g., animate/inanimate 

appearance, symmetry, and curvature) shown in previous work to engage different neural 

substrates. We also deliberately had pairs of categories (the two Greeble categories and 

the two Ziggerin categories) that could have been expected to cluster if visual similarity 

contributed to individual difference effects. Yet models imposing equality constraints 

indicated that the within-Greeble and within-Ziggerin correlations were no greater than 

the across-type correlations. While it is still possible that o is not equally relevant to all 

kinds of object geometries, we made reasonable efforts to allow evidence for differences 

due to geometry to emerge and found none. The finding that o also correlates with 

performance with familiar objects also speaks to its generality over object category.  

Cautions and Limitations  

Although our findings offered strong support for hypotheses, several cautions and 

limitations should be noted. First, 36 of the original 285 participants withdrew from 

Study 1 after the pre-test session. It is conceivable that those who dropped out differed 

meaningfully from those who stayed in the study, a factor that would somewhat constrain 

the generalizability of our conclusions. We did find that individuals who withdrew after 

the introductory session had lower VET accuracy. Although this factor suggests that the 



	

	 	 45	

sample may have been skewed slightly toward those with better object recognition 

ability, we were still able to detect strong individual differences in o. People with higher 

motivation to perform in the first visit may also be more likely to continue or complete 

the long protocol for reasons unrelated to o (e.g., conscientiousness).  

Relatedly, 15% of the possible data points among those continuing in the study 

beyond the pre-test were missing. Given the time demands on participants, this figure is 

probably not surprising. We used data-analytic approaches that can incorporate 

participants with incomplete data and that provide valid inference as long as missing data 

meet the assumptions of missing completely at random (MCAR) or missing at random 

(MAR). In future studies – particularly those with similar time demands – it is important 

to assess as well as possible the reasons for incomplete data and to assess auxiliary 

variables that predict missingness and can be included in statistical models (e.g.,Yuan & 

Lu, 2008). That being said, it is important to note that across both the ICC and CFA 

analyses we found strong effects of individual differences. On that basis, we believe that 

we would find highly similar effects had there been no missing data.  

While our sample size (N = 246) in Study 1 was substantially larger than the 

typical N’s used in studies in the area of perception, it is on the small side for a typical 

CFA or SEM study. Although prior simulation studies with conditions that map onto 

those operative in the present study indicate the likely validity of our results (e.g., Savalei 

and Falk, 2014), there is still a need for additional research to clarify the precise 

boundary conditions linked to factors like non-normality, missing data, and sample size 

and to comparatively evaluate the full range of robust SEM estimators that could 

potentially be used in such circumstances.  

In addition, while our effects were strong (e.g., proportion of variance in lower-

order factors accounted for by o) and our final models fit well, there is still clearly room 

for improvement (e.g., ideally one might like to see RMSEA’s in the .01-.03 range and 

stronger evidence of factorial invariance than we found). One potential way to optimize 

fit may be to match psychometrically categories on task difficulty and related factors. 

This is clearly a goal for future studies. 

It is also important to note that the assessment of model fit is a complex task in 

the context of confirmatory factor analyses or other types of structural equation models 

(e.g., Tomarken & Waller, 2003). Indeed, it is paradoxically the case that models with 

better measurement quality (i.e. high proportions of variance of lower-order indicators 

accounted for by factors) can demonstrate worse fit on some indices than models with 

poor measurement quality (Hancock & Mueller, 2011; Heene, Hilbert, Draxler et al., 

2011). As noted above (see Study 1 Results), the measurement quality in the present 

study was generally high. Given this consideration, the fact our final models consistently 

met conventional cutoffs indicates that they strongly fit the observed data. 	

In addition, the results of any CFA analyses are dependent on the specific array of 

measures used to assess constructs of interest. The LE, CO, and MA tasks have good 

reliability, have been used successfully by our laboratory in prior studies, and their 

correlations with each other suggest that they are valid measures of object recognition. 

That being said, is important to assess whether our conclusions are generalizable across 

other potential measures of o. We note that the observed measures of Learning Exemplars 

had a smaller proportion of variance accounted for by the Category factors (and 

ultimately o) than the Composite and Matching tasks. This difference may be at least 
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partially due to the fact that the Composite and Matching performance measures were d' 

while the Learning Exemplars task used percent correct. Perhaps most important is that 

the Composite and Matching tasks are more similar to each other by requiring perceptual 

matching across short delays within a trial, whereas Learning Exemplars requires 

memory for multiple learned objects across trials. The category factors might have 

accounted for more variance in Learning Exemplars if we had included another task that 

was more similar to it. These considerations support the importance of: 1) Accounting for 

task-specific effects by correlated error terms (as we did) or by other means; and, 2) 

Creating a wider range of psychometrically adequate tasks to explore object recognition 

abilities in future studies. Increasing the number of observed measures beyond three per 

category would have the added benefit of providing a more precise measure of the latent 

constructs of interest (e.g., Hancock & Mueller, 2001) and more rigorous tests of model 

fit (Tomarken & Waller, 2003). 

 Given the markedly high correlations among the category factors, it is reasonable 

to ask whether they are at least somewhat inflated by shared method variance (i.e., the 

fact that each of the same three tasks was used across all factors). We addressed this issue 

by specifying correlated errors among all the indicators of a given task. These terms 

allowed for an additional pathway by which within-task correlations could be manifest. 

While this correlated uniqueness approach is the one most commonly used to model 

method variance in CFA studies, one limitation is that it is not able to model correlated 

method effects that might occur when two tasks share several features. As noted above, 

CO and MA share several features that discriminate them from the LE task. As discussed 

in footnote 3, there is, however, an alternative approach for modeling method effects 

known as CT-C(M-1) (Eid, 2000; Eid et al., 2003) that involves specification of one less 

method factor than the total number of possible methods. When we specified a CT-C(M-

1) model that included method factors for CO and MA that were allowed to be freely 

correlated, the loadings of the CO and MA indicators tended to be  evenly split between 

the category and task factors.  Even so, the correlations among the category factors were 

essentially the same as those yielded by the CU approach (mean r for CT-C(M-1) = .882, 

mean r for CU =.895). Similarly the loadings on o were very comparable across the two 

approaches. This finding indicates that the high correlations among the category factors 

that we observed were not inflated by task-specific components of variance.
13

  

Our efforts in establishing the discriminant validity of o were limited to cognitive 

skills, some aspects of visual perception and personality. Future work could explore 

whether o is related to individual differences in lower level visual abilities that feed all 

the higher-level functions that are relied upon for object recognition. Although there is 

agreement that the range of individual differences in such low level visual abilities is 

larger than was once assumed, there are only a few studies testing large number of 

participants with a range of basic visual tasks. Some conclude there may be a single 

visual ability (Halpern et al., 1999) whereas other work suggests at least two factors 

corresponding to processing of low vs. high spatial frequencies (a magno/parvo 

																																																								

13	On the whole we prefer the CU approach for interpretive reasons. Because only two 

method factors could be specified in the present study using the CT-C(M-1) approach, the 

category factors become, in effect, imbalanced in favor of the task that  does not have a 

method factor.  
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distinction, see Ward et al., 2017). In addition, it is important for future studies to use 

larger sample sizes.\ 

Summary 

In summary, we applied approaches rooted in the rich history of measuring 

individual differences in areas like personality and intelligence to the study of individual 

differences in visual abilities. Using confirmatory factor analysis, we showed that a 

substantial amount of shared variance in performance across five novel object categories 

could be accounted for by a single higher-order factor. This higher-order factor also 

predicted performance with several familiar object categories. This is the first 

demonstration that visual object recognition performance can be accounted for by a 

domain-general Object Recognition Ability, o. Future research should investigate its 

relation to various cognitive skills and lower-level abilities, as well as its real-world 

relevance.  
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