
On the Secure Degrees-of-Freedom of Partially
Connected Networks with no CSIT

Mohamed Adel Attia Ravi Tandon

Department of Electrical and Computer Engineering

University of Arizona, Tucson, AZ, 85721

Email: {madel, tandonr}@email.arizona.edu

Abstract—In this work, we focus on the partially connected
interference network with confidential messages, and study the
secure degrees of freedom with no channel state information at the
transmitters (CSIT). Prior works on fully connected interference
networks with full CSIT have shown that the secure degrees
of freedom scales linearly with the number of users. With no
CSIT, however, the secure degrees of freedom of fully connected
networks collapses to zero. In this work, we show that partial
connectivity, a widely prevalent property of wireless networks,
can be leveraged to provide secrecy even with no CSIT. We
present a systematic approach to first understand the feasibility
of secure communication in a partially connected network and
develop achievable schemes for a class of regular partially
connected networks. Finally, we also provide novel information
theoretic outer bounds on the secure degrees of freedom for this
class of regular partially connected networks, and approximately
characterize the secure degrees of freedom.

I. INTRODUCTION

Over the past several decades, information theoretic ap-
proaches for physical layer security have received significant
interest, with the goal of achieving confidential data transmis-
sion over wireless networks. Starting from the seminal works
of Wyner [1] in the 1970s on single-user wiretap channels,
significant progress has been made on multiple fronts: several
ingenious techniques such as artificial noise injection, secrecy
precoding, lattice-based approaches, cooperative jamming have
been developed, which in turn have contributed to our under-
standing of fundamental limits of secure communication in
multi-user networks (we refer the reader to [2] for a recent
comprehensive survey). Despite this progress, one of the major
hurdles in realizing physical layer security is the assumption
of timely and accurate availability of channel knowledge, or
channel state information at the transmitters (CSIT), which
may not be available in practice. To overcome this, several
works have started to consider these problems under relaxed
CSIT assumptions, including delayed CSIT [3], blind co-
operative jamming [4], and recent works on no Channel State
Information (CSI) from adversarial nodes [5].

In this paper, we focus on K-user interference networks
with confidential messages and no CSIT. A special case
of this problem is the fully connected interference network,
i.e., every receiver is connected to every transmitter. For
this network, it was recently shown in [6] that the secure
sum degrees of freedom (SDoF) with full CSIT is given by
(K2 −K)/(2K − 1), which grows linearly with K. For this
fully connected network, with no CSIT, it can be formally
argued that the SDoF collapses to zero. This is due to the fact
that all the users receive statistically equivalent signals making
it impossible to achieve any secure degrees of freedom.

This work was supported by NSF Grant CCF 1559758.

While the above results may appear pessimistic, they make
the assumption of full connectivity. In practice, however, differ-
ences in wireless channels for different users due to the random
placement of the nodes, the path loss, and the existence of
obstacles in the wireless medium lead to a partially connected
network topology, in which a receiver is effectively con-
nected to only a subset of the transmitters. For such partially
connected networks, the problem of reliable communication
has been addressed through various Topological Interference
Management (TIM) schemes [7]–[9]. These schemes do not
assume any CSIT but only work under the assumption about
the knowledge of network topology.

This paper asks the following fundamental questions: Is se-
cure communication feasible in partially connected networks?
If yes, is there a principled approach to achieve positive SDoF,
and what is the optimal value? To this end, we initiate the study
of partially connected interference networks with no CSIT,
which can be viewed as the Secure Topological Interference
Management problem. To the best of our knowledge, no
prior work has considered secrecy for the TIM problem. The
contributions of this paper are summarized as follows:

• First, we present a systematic approach to understand
when secure communication is possible for any user in a
partially connected network with no CSIT. We subsequently
generalize this approach for multiple secure transmissions.

• We next apply these ideas to the (K, d) partially con-
nected regular networks with no CSIT, and present a general
scheme for any number of users, K and any node degree d.
Our scheme achieves a sum SDoF of �K/(d + 1)�, which
grows linearly with the number of users K, for a fixed d.

• We also derive an information theoretic upper bound
on the sum SDoF for the (K, d) partially connected regular
networks as K/(d + 1), which shows that our scheme is
information theoretically optimal within a gap of at most
d/(d+ 1) < 1. Furthermore, we give some directions on how
to close this gap by exploiting side information at the users.

II. SYSTEM MODEL

We consider the K × K partially connected Gaussian
interference channel, with K transmitters and K receivers,
each with one antenna. Transmitter Txk has a message Wk

intended for receiver Rxk. In order to describe the topology
of the underlying network, we define Rk as the connectivity
set of the transmitter Txk, which contains all the receivers
that it is connected to, and Tk as the connectivity set of
the receiver Rxk, which contains all the transmitters that it
is connected to. For example, if Tk = {3, 7}, then receiver
Rxk is connected to the transmitters Tx3 and Tx7. We also

IEEE ICC 2017 Communication Theory Symposium

978-1-4673-8999-0/17/$31.00 ©2017 IEEE



define the node degree as the number of nodes connected to
it, which is given by the cardinality of its connection set, i.e.,
the node degrees of Rxk, and Txk are given by |Tk|, and |Rk|,
respectively. Now, we notice that the topology of the network
is completely characterized by the connectivity sets of all the
transmitters and the receivers, and we refer to the topology G
as, G ∼ (T1, . . . , TK ,R1, . . . ,RK).

In a partially connected network, the received signal at
time t for any receiver Rxk is composed only of signal
components coming from Txi for i ∈ Tk, and is given by,
Yk(t) =

∑
i∈Tk

Hki(t)Xi(t)+Zk(t), where Xi(t) is the signal
transmitted by transmitter Txi at time t, for i = {1, . . . ,K},
Hki(t) indicates the random complex channel coefficient be-
tween transmitter Txi and receiver Rxk, and Zk(t) ∼ N(0, 1)
is the complex Gaussian noise. In order for each receiver Rxk
to get the required message Wk, it should be connected to the
corresponding transmitter Txk, i.e., k ∈ Rk (then k ∈ Tk).

We assume the channel coefficients Hkj(t) are generated
from a continuous distribution and are assumed to be in-
dependent and identically distributed (i.i.d.) across time and

users. We define H
(n)
ki as the n × n diagonal matrix, where

its diagonal entries represent the channel coefficients from
time t = 1 to t = n between Txi and Rxk. We also define

Ω =
{
H

(n)
ki : i ∈ Tk

}K

k=1
, as the set containing all non-zero

channel coefficients between any transmitter/receiver pair. We
assume that Ω is not available at any of the transmitters, while
Ω is available causally at the receivers. The block received
signal at Rxk after a block of length n is given by,

Y n
k =

∑
i∈Tk

H
(n)
ki Xn

i + Zn
k , (1)

where Xn
i , Y n

k , and Zn
k are the n × 1 column vectors of

block length n. We assume the transmitted signal Xn
i obeys

an average power constraint, 1
nE[||Xn

i ||2] < P .

We say a rate tuple (Rs
1(P,G), Rs

2(P,G), . . . , Rs
K(P,G)) is

confidentially achievable, if there exist a sequence of decoding
and encoding functions such that for some εn → 0 as n → ∞,
the following two conditions are satisfied:

Decodability Constraint: Each receiver should decode the
corresponding message reliably from the received signal, i.e.,

max
k

Pr(Wk �= Ŵk) ≤ εn. (2)

Confidentiality Constraint: Transmitters are sending con-
fidential messages to the intended receivers such that all
messages are kept information-theoretically secure against all
unintended receivers, i.e., for WK

−k = {W1, . . . ,WK} \Wk,

I(WK
−k;Y

n
k ) ≤ nεn, ∀k. (3)

We say a secrecy degree of freedom tuple (ds1, . . . , d
s
K)

is achievable if for any achievable rate Rs
i (P,G), we have

dsi = limP→∞
Rs

i (P,G)
log(P ) . Therefore, the sum Secure Degree of

Freedom (SDoF) for a partially connected interference channel
given by a topology G is given as,

SDoFG =
K∑
i=1

dsi = lim
P→∞

∑K
i=1 R

s
i (P,G)

log(P )
. (4)

Notation: For any two sets A and B, A \ B is defined
as all the elements in the set A that is not in the set B, i.e.,
A \ B = {i : i ∈ A, i �∈ B}. We also denote Li(A,B) and
L′
i(A,B) as two different linear combinations of the Random

variables A, and B received at Rxi.

III. MAIN RESULTS AND DISCUSSIONS

We first state two important lemmas, which help in un-
derstanding when we can achieve positive secure degrees of
freedom using the approach of artificial noise injection and
interference avoidance for any arbitrary network topology.

Lemma 1. (Secure communication for a user)
For any receiver Rxi, a positive secure degree of freedom can
be achieved, i.e., dsi > 0, if ∀j ∈ Ri \ {i}, the following
condition is satisfied,

Tj \ Ti �= {φ}. (5)

Proof: For secure communication to Rxi, one possible
approach is to employ artificial noise injection and interference
avoidance. To this end, when Txi transmits to Rxi, then other
transmitters can send artificial noise in order to immerse the
signal seen at every unintended receiver connected to Txi, i.e.,
for j ∈ Ri \ {i}, we should have Tj �= {φ}. This condition
implies that for every unintended receiver, there must be at
least one other transmitter connected to it. However, it may
be the case that the protecting transmitters (or the transmitters
sending artificial noise) are connected to the legitimate receiver
Rxi, then the jamming signals are received at Rxi as well.
Therefore, the chosen protecting transmitters should not be
connected to Rxi, i.e., not in Ti, otherwise they will immerse
the intended reception. Therefore, the secrecy condition for a
single user to transmit becomes Tj \ Ti �= {φ}, ∀j ∈ Ri \ {i}.
Whenever the above condition is satisfied, a positive secure
degree of freedom is achievable for receiver Rxi through
artificial noise injection and interference avoidance.

Lemma 2. (Multiple simultaneous secrecy transmission)
For a set of k receivers labeled as {Rxi1 , . . . ,Rxik}, positive
k-tuples secure degrees of freedom can be achieved simulta-
neously, i.e., dsi1 , . . . , d

s
ik

> 0, if ∀j ∈ (Ri1 \ {i1}) ∪ (Ri2 \
{i2}) . . . ∪ (Rik \ {ik}), the following condition is satisfied,

Tj \ (Ti1 ∪ Ti2 . . . ∪ Tik) �= {φ}. (6)

Proof: This lemma takes the single-user approach further
and gives sufficient conditions for simultaneous secure trans-
mission of different messages. If k transmitters send message
symbols simultaneously, we therefore require two conditions:
a) each reception must be protected at unintended receivers by
artificial noise injection from some other transmitters, and b)
the reception of legitimate signals must not cause interference
to each other (i.e., interference must be avoided). Therefore, in
order to protect all the k transmitted messages, then for every
unintended receiver Rxj connected to any of the k transmitters,
i.e., j ∈ (Ri1 \ {i1}) ∪ (Ri2 \ {i2}) . . . ∪ (Rik \ {ik}), we
have Tj �= {φ}. However, we need not to affect any of the k
intended receptions, i.e., the protecting transmitters are not in
(Ti1 ∪ Ti2 . . . ∪ Tik), which leads to the condition in (6).

Next, we give some examples to understand how Lemma 1
and Lemma 2 can be applied for any arbitrary topology.
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R1 = {1, 3}

R2 = {2, 4}

R3 = {1, 3}

R4 = {2, 3, 4, 5}

R5 = {3, 4, 5}

T1 = {1, 3}

T2 = {2, 4}

T3 = {1, 3, 4, 5}

T4 = {2, 4, 5}

T5 = {4, 5}

t = 1t = 2 t = 1 t = 2

S1

N2

−

−

N5

S2

−

−

S5

N3

S1

S2 N2

N3

N5 S5

L3(S1, N5))5,11(33

2N2NNNNNNNN2S2S2S2NNNNNNNN

33111

L4(S2, N5) L′
4(S5, N2)

L′
3(S5, N3)

Fig. 1. Irregular partially connected interference network with K = 5
transmitter/receiver pairs. Applying Lemma 1, Only Rx1, Rx2, and Rx5 can
securely send their messages S1, S2, and S5, respectively. Applying Lemma 2,
we can even send S1, and S2 securely in the same time.

Example 1 (Fully Connected Topology). In this example,
we consider a fully connected network with K = 4 trans-
mitter/receiver pairs. In this case, the connectivity sets are
given as Ti = Ri = {1, 2, 3, 4}, ∀i ∈ {1, 2, 3, 4}. Applying
Lemma 1 for every transmitter Txi, i ∈ {1, 2, 3, 4}, we have
Tj \ Ti = {φ}, ∀j �= i. Therefore, if any transmitter Txk,
k �= i, sends artificial noise Nk to immerse Si at Rxj , it will
also hide Si at the intended receiver Rxi. As a result, security
can not be achieved for a fully connected network with no
CSIT. That is also due to the fact that for a fully connected
network with no CSIT, all the received signals are statistically
equivalent. Therefore, with the secrecy requirement we get
I(Wk;Y

n
k ) = I(Wk;Y

n
j ) ≤ nεn, ∀j �= k, which means

that the decodability constraint contradicts with the secrecy
requirement, i.e., dsk = 0, ∀k, and SDoF = 0.

Example 2 (Irregular Topology). Consider the partially con-
nected channel shown in Figure 1.

• We first apply Lemma 1 to notice the following:

– In order for Tx1 to reliably transmit a secure message,
say S1, to Rx1, it must be protected from Rx3 which will also
receive S1, i.e., 3 ∈ R1. However, we notice that T3 \ T1 =
{4, 5} �= {φ} which means according to Lemma 1 that either
Tx4, or Tx5 can protect S1 by sending artificial noise N4, or
N5, respectively, which is not seen by Rx1.

– In order for Tx3 to transmit a secure message, say S3,
to Rx3, it must be protected from Rx1 which will also receive
S3, i.e., 1 ∈ R3. However, we notice that T1 \T3 = {φ} which
means according to Lemma 1 that there is no transmitter that
can protect S3 at Rx1 without affecting Rx3.

– Doing the same analysis for the remaining users, we
conclude that only transmitters Tx1, Tx2, and Tx5 can transmit
securely to the corresponding receivers, i.e., dsi > 0 for i =
1, 2, 5, while Tx3, and Tx4 can not transmit without revealing
their messages to other unintended receivers, i.e., ds3 = ds4 = 0.

• We next apply Lemma 2 to this example to understand
when more than one user can transmit simultaneously.

– Taking the pair of transmitters (Tx1,Tx2), in order to
transmit two messages securely, say (S1,S2), they must be
protected at receivers Rx3, and Rx4 (3 ∈ R1, 4 ∈ R5).
Using Lemma 2, we notice that T3 \ (T1 ∪ T2) = {5}, and

t = 1t = 2 t = 1 t = 2t = 3 t = 3

S1

S4

N2

N5

S2

S5

N6

N3S3

S6

N1

N4

S1

S4

S2

S5

S3

S6

N2

N5

N6

N3

N1

N4

−

−

−

−

−

−

L2(S1, N2)

L1(S6, N1)

L3(S2, N3)

L4(S3, N4)

L5(S4, N5)

L6(S5, N6)

111))2,11(22222

3S)3,,2((3233SS

)4,,33((44444

44455))5,4(555

666)6,,5((656666666

Fig. 2. A (6, 2) Regualr network with K = 5 transmitter/receiver pairs, and
d = 2 node degrees. Every transmission affects the next two receivers, and
therefore, we only send 6

3
= 2 symbols per time slot.

T4 \ (T1∪T2) = {5}. Therefore, by sending artificial noise N5

from Tx5 it will hide both S1, and S2 at Rx3, and Rx4 without
affecting the intended receptions at Rx1, and Rx2.

– Taking the pair of transmitters (Tx1,Tx5), in order to
transmit two messages securely, say (S1,S5), they must be
protected at receivers Rx3, and Rx4 (3 ∈ R1, {3, 4} ∈ R5).
Using Lemma 2, we notice that T3 \ (T1 ∪ T5) = {φ}, and
T4 \ (T1 ∪ T5) = {2}. Therefore, even if we can protect
the messages at Rx4 by sending artificial noise from Tx2,
it is impossible to protect them at Rx3 without affecting the
intended reception at Rx1, or Rx5.

– Similarly, it is not feasible to send secure messages
simultaneously for the remaining pair (Tx2,Tx5).

• As a summary, as shown in Figure 1 we can send in the
first time slot two secure messages S1 and S2 to Rx1 and Rx2,
respectively, and one secure message S5 to Rx5 in the second
slot. Therefore, we achieve SDoF = 3

2 .

Now, we define a special class of network topologies
named as the regular topology.

Definition 1. (Regular Topological Interference Channel)
A (K, d) regular network refers to a symmetric structured

network of K users with each node has a degree d. In other
words, if we consider the adjacency matrix for the network,
all the rows and columns are shifted versions of each other,
and the sum of each row and column is equal to d.

Example 3 (Regular topology). We assume a (6, 2) regular
network of K = 6 users, and d = 2 node degrees, where
every transmitter is connected to the corresponding receiver as
well as the next d− 1 = 1 receivers as shown in Figure 2.

• If we consider Tx1 is sending a symbol S1 to Rx1, it will
prevent the next d−1 = 1 users (here Rx2 only) from receiving
their own symbols because of receiving S1. In order to protect
S1, one way is to send artificial noise N2 from Tx2 to immerse
S1 at Rx2 without affecting the reception at Rx1. However, N2

is also received at Rx3 preventing it from receiving S3 while
Rx1 is receiving, and we keep Tx3 silent.

• While Tx1 is sending S1, let Tx4 send a symbol S4 to
Rx4. This transmission will prevent the next transmitter Tx5
from sending a symbol to Rx5. Instead, Tx5 will send artificial
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noise N5 to immerse S4 at Rx5, which will prevent Rx6 from
receiving S6 while Rx4 is receiving, and we keep Tx6 silent.

• In the same way, Tx2, and Tx5 (also Tx3, and Tx6)
can send two secure symbols simultaneously, while Tx3, and
Tx6 (Tx1, and Tx4) are sending artificial noise to protect the
reception at unintended receivers Rx3, and Rx6 (Rx1, and Rx4).

• To summarize, we are able to send 6 symbols in 3 time
slots, and hence we achieve SDoF = 6

2 = 3.

Remark 1. Without loss of generality, when we consider a
(K, d) regular network throughout this paper, we assume a
topology such that for any transmitter Txk, the connectivity
set including direct links to receivers is given by,

Rk = {k, k + 1, . . . , k + d− 1}(mod K). (7)

Equivalently, for any receiver Rxk, the connectivity set is,

Tk = {k, k − 1, . . . , k − d+ 1}(mod K). (8)

This structure can be restored for any general (K, d) regular
network given by Definition 1, by permuting the set of users
(permuting the columns and the rows of the adjacency matrix)
to get the same the connectivity sets given by (7) and (8).

General Scheme for Regular Networks

Now, we generalize a scheme for any (K, d) regular
network. Each transmission between Txi and Rxi, say Si, is
also received at the next d−1 users, {Rxi+1, . . .Rxi+d−1}. For
secure transmission, Txi+1 can send artificial noise Ni+1 that
will immerse Si at all the d−1 unintended receivers. However,
this noise will also be received at Rxi+d. To summarize: “Each
secure transmission at Rxi will affect the next d receivers,
{Rxi+1, . . .Rxi+d}, preventing them from receiving their own
symbols”. Therefore, for K transmitter/receiver pairs, we can
send � K

d+1� messages in one channel use. Starting from Txi,
the following transmitters can transmit in the same time
{Txi,Txi+d+1, . . . ,Txi+μ(d+1)}1, where μ = � K

d+1�. In order
to symmetrize the scheme, we repeat this session K times
for i ∈ {1, . . . ,K}. As a result we can send K� K

d+1� total

symbols in K channel uses, achieving SDoF = � K
d+1�.

Therefore, we have our first theorem which gives a lower
bound on SDoF for any (K, d) regular network.

Theorem 1. (Achievability for Regular Topologies) For any
(K, d) regular network, we can achieve an SDoF with no CSIT
given as follows,

SDoFregular(K, d) ≥
{ ⌊

K
d+1

⌋
, ∀d �= 1

K, d = 1
(9)

We also state the following theorem which gives an Infor-
mation theoretic upper bound on SDoF for any (K, d) regular
network.

Theorem 2. (Upper Bound for Regular Topologies) For any
(K, d) regular network, the SDoF with no CSIT is upper
bounded as follows,

SDoFregular(K, d) ≤

⎧⎨⎩
K

d+1 , ∀d �= {1,K}
K, d = 1

0, d = K

(10)

1All the indexes in this paper are modulo K

d = 1 d = 2 d = 3 d = 4

SDoF = 0SDoF = 4 SDoF = 11 ≤ SDoF ≤ 4

3

Fig. 3. Regular interference network with K = 4 transmitter/receiver pairs,
and different node degrees. Applying Theorems 1 and 2, we can get the bounds
on SDoF for different node degrees, which is found optimal for d ∈ {1, 3, 4},
while for d = 2 we have a gap of 1

3
.

The proof of Theorem 2 can be found in Appendix A. We
notice that this bound is tight for K

d+1 is integer and that the

gap is at most d
d+1 < 1 for any value of K. The case d = 1

is trivial which is the interference free K parallel channels,
where we can optimally achieve SDoF = K. When d = K,
SDoF = 0 optimally as discussed in Example 1. In order to
study the gap between the bounds found in Theorems 1 and
2, we consider the case of K = 4 transmitter/receiver pairs,
with any value of node degree d = {1, 2, 3, 4}. As shown in
Figure 3, we have tight bounds for node degrees d = {1, 3, 4}.
In the next example, we study the case when d = 2 in order
to close the gap 1 ≤ SDoFregular(4, 2) ≤ 4

3 .

Example 4 (Closing the Gap). Consider a modification of our
general scheme as in Figure 4. In the first slot, Tx1 sends a
secure message S1 to Rx1. In order to immerse S1 at Rx2,
Tx2 sends artificial noise N2. Let Tx3 send an artificial noise
N3 while the secure transmission of Tx1 is taking place. This
transmission will not affect the decodability at Rx1, and will
provide N3 as a side information to Rx4 without revealing N3

to Rx3 (receives L3(N2+N3)). Therefore, N3 still can be used
to protect a message coming from Tx2 at receiver Rx3.

In the second slot, we send N1 while the secure trans-
mission of S3 to Rx3 is taking place. In a similar way, N1 is
received at Rx2 as a useful side information. Using the side in-
formation N1, and N3 available at Rx2, and Rx4, respectively,
we can securely send in the third slot two symbols, S2, and S4,
simultaneously for Rx2, and Rx4, respectively. For decoding,
Rx2 uses L′

2(S1+N1) and the side information N1 to get S1,
while Rx4 uses L′

4(S4 +N3) and the side information N3 to
get S4. As a result, we are able to securely send 4 symbols
in 3 slots achieving SDoFregular(4, 2) = 4

3 , which satisfies the
upper bound in (10) and closes the gap in Figure 3.

IV. CONCLUSIONS

In this paper, we considered the partially connected net-
work with confidential messages and no CSIT, where we dis-
cussed an approach towards achieving secrecy for any arbitrary
topology. As an application, we considered the (K, d) regular
topology, where we introduced a general secrecy scheme
achieving SDoF = � K

d+1�. We also derived an information

theoretic upper bound, SDoF ≤ K
d+1 , with a gap at most d

d+1 .

We showed through an example of (4, 2) regular network that
closing the gap is possible by leveraging side information at
the receivers. There are several interesting future directions
for this problem, such as closing the gap for any (K, d)
regular network, and also generalizing our scheme and outer
bound using the approaches presented in this paper towards
any arbitrary topology.
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t = 1t = 2 t = 1 t = 2t = 3 t = 3

S1

S4

N2S2

N3S3

N4

S1N1

−

− N3

S3

N1

N3

N1 L1(N1, N4) L′
1(S4, N1)

L2(S1, N2)

L3(N2, N3)

L4(S3, N4)

L′
2(S2, N1)

L′
3(S2, N3)

L′
4(S4, N3)

))1,22(21)2,,1((2222

))3,22(33)3,,2((33333333

))3,4(4)444,333(444344444

Fig. 4. Regular interference network with K = 4 transmitter/receiver pairs,
and node degree d = 2. We modify our scheme such that Rx2, and Rx4 can
get side information N1, and N3, respectively, which can be used to send two
symbols at t = 3, achieving SDoF = 4

3
.
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APPENDIX A
PROOF OF THEOREM 2

Using Remark 1, the n-length block received signal at
Rxk in a (K, d) regular network can be written as Y n

k =∑k
i=k−d+1 H

(n)
ki Xn

i + Zn
k . We first bound the secure rate Rs

d
for Rxd as follows,

nRs
d = H(Wd) = H(Wd|Ω) = I(Y n

d ;Wd|Ω) +H(Wd|Y n
d ,Ω)

(a)

≤ I(Y n
d ;Wd|Ω) + nεn = h(Y n

d |Ω)− h(Y n
d |Wd,Ω) + nεn,

(11)

where (a) is due to Fano’s inequality using (2), and Ω denotes
the global CSI as defined in Section II. Since Ω appears in all
terms in the conditioning, we will omit it for simplicity in all
subsequent derivations.

A. Decodability Constraint

We next obtain a lower bound on the term h(Y n
d |Wd):

h(Y n
d |Wd) ≥ h(Y n

d |Wd, X
n
d )

(a)
= h(Y n

d |Xn
d )

= h

(
d∑

i=1

H
(n)
di Xn

i + Zn
d

∣∣∣∣∣Xn
d

)
= h

(
d−1∑
i=1

H
(n)
di Xn

i + Zn
d

)
,

(12)

where (a) follows from the Markov chain Wd → Xn
d → Y n

d .

In order to bound h
(∑d−1

i=1 H
(n)
di Xn

i + Zn
d

)
, we next define

L� =
∑�

i=1 H
(n)
di Xn

i +Zn
d , for � ∈ {1, . . . , d−1} and develop

a recursive relationship for h(L�) as follows:

h(L�) = h(L�|W�) +H(W�)−H(W�|L�)
(a)

≥ h(L�|Xn
� ) +H(W�)−H(W�|L�)

(b)

≥ h(L�−1) + nRs
� − nεn, (13)

where (a) follows from the Markov chain Wd → Xn
d → Y n

d ,
and (b) by noting that h(L�|Xn

� ) = h(L�−1) by removing the
contribution of Xn

� from L� to get L�−1, and the fact that
H(W�|L�) ≤ nεn due to the following remark.

Remark 2. From the decodability constraint (2), W� must be
decoded from Y n

� . Now, if we assume a genie providing clean
symbols Xi, i ∈ {K+(�−d+1), . . . ,K} to Rx�

2, then it can
remove the interference caused by those symbols from Y n

� and
get a more clean version Ỹ n

� =
∑�

i=1 H
(n)
�i Xn

i +Zn
� . If Y n

� is
sufficient to decode W�, then Ỹ n

� is also sufficient to decode
W�. Since Ỹ n

� is statistically equivalent to L� because no CSI
is available at the transmitters, then L� is also sufficient to
decode W�, i.e., H(W�|L�) ≤ nεn.

Therefore, starting from h(Ld−1) in (13), we now obtain
a lower bound on h(Y n

d |Wd) from (12) as,

h(Y n
d |Wd) ≥ h(Ld−1) ≥ h(Ld−2) + nRs

d−1 − nεn
...

≥ h(L1) + n

d−1∑
i=2

Rs
i − n(d− 2)εn

(a)

≥ n
d−1∑
i=1

Rs
i + h(X̃n

1 + Z̃n|W1)− n(d− 1)εn, (14)

where (a) follows by lower bounding h(L1) through the
following arguments.

Remark 3. We first define X̃n
1 = H̃

(n)
Xn

1 , for any H̃
(n) ∈ Ω,

then we note that X̃n
1 + Z̃n is statistically equivalent to L1 =

H(n)
d1 Xn

1 + Zn
d due to the no CSIT assumption, where Z̃n is

independent of and identically distributed as Zn
d . Therefore,

we can write

h(L1) = h(L1|W1) +H(W1)−H(W1|L1)
(b)

≥ h(X̃n
1 + Z̃n|W1) + nRs

1 − nεn, (15)

2Note that for � ∈ {1, . . . , d − 1}, we have � − d + 1(mod K) = K +
(�− d+ 1) < K.
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where (b) follows from the arguments similar to Remark 2.
Now plugging (14) in (11), we obtain

n
d∑

i=1

Rs
i ≤ h(Y n

d )− h(X̃n
1 + Z̃n|W1) + ndεn. (16)

If we start in (11) with any user k ∈ {1, 2, . . . ,K}, we get
K different bounds. Then, summing up all these K bounds,

nd
K∑
i=1

Rs
i ≤

K∑
i=1

h(Y n
d )−

K∑
i=1

h(X̃n
i + Z̃n|Wi) + nKdεn

(a)
= nK log(P )−

K∑
i=1

h(X̃n
i + Z̃n

1 + · · ·+ Z̃n
d |Wi) + nKdεn

≤ nK log(P )−
K∑
i=1

h(X̃n
i + Z̃n

i |Wi) + nKdεn, (17)

where (a) follows by writing the noise Z̃n as a sum of i.i.d.

noises, Z̃n = Z̃n
1 + · · · + Z̃n

d , where the individual variances

of each noise term are 1/d times the variance of Z̃n.

B. Confidentiality Constraint

In order to use the confidentiality constraint in (3), we start
differently from the bound in (11) as follows,

nRs
d ≤ h(Y n

d )− h(Y n
d |Wd) + nεn − I(Y n

d ;W1, . . . ,Wd−1)

+ I(Y n
d ;W1, . . . ,Wd−1)

(a)

≤ h(Y n
d |W1, . . . ,Wd−1)− h(Y n

d |Wd) + 2nεn

(b)

≤ h(Y n
d |W1, . . . ,Wd−1)− n

d−1∑
i=1

Rs
i − h(X̃n

1 + Z̃n|W1)

+ n(d+ 1)εn ≤ h(Y n
d |W1, . . . ,Wd−1)− n

d−1∑
i=1

Rs
i

− h(X̃n
1 + Z̃n

1 |W1) + n(d+ 1)εn

(c)

≤
d∑

i=2

h(X̃n
i + Z̃n

i |Wi) + nRs
d − n

d−1∑
i=1

Rs
i

+ n(d+ 1)εn − no(log(P )) (18)

where (a) follows from the confidentiality requirement in (3),
(b) by bounding h(Y n

d |Wd) using (14), and (c) by bounding
h(Y n

d |W1, . . . ,Wd−1) as follows,

h(Y n
d |W1, . . . ,Wd−1)

(a)
= h

(
d∑

i=1

X̃n
i + Z̃n|W1, . . . ,Wd−1

)

= h

(
d∑

i=1

(X̃n
i + Z̃n

i )|W1, . . . ,Wd−1

)
(b)

≤
d∑

i=1

h
(
X̃n

i + Z̃n
i |W1, . . . ,Wd−1

)
− no(log(P ))

=
d−1∑
i=1

h
(
X̃n

i + Z̃n
i |Wi

)
+ h(X̃n

d + Z̃n
d )− no(log(P ))

= H(Wd) +
d∑

i=1

h
(
X̃n

i + Z̃n
i |Wi

)
− no(log(P ))

= nRs
d +

d∑
i=1

h
(
X̃n

i + Z̃n
i |Wi

)
− no(log(P )), (19)

where (a) following the same arguments in Remark 2, and (b)
follows by bounding h(

∑d
i=1 U

n
i ) for Un

i = X̃n
i + Z̃n

i as

h

(
d∑

i=1

Un
i

)
= h

(
d∑

i=1

Un
i , U

n
2 , . . . , U

n
d

)

− h

(
Un
2 , . . . , U

n
d

∣∣∣∣∣
d∑

i=1

Un
i

)
(a)

≤ h (Un
1 , U

n
2 , . . . , U

n
d )

− h

(
Un
2 , . . . , U

n
d

∣∣∣∣∣
d∑

i=1

Un
i , X̃

n
1 , . . . , X̃

n
d

)
(b)
=

d∑
i=1

h (Un
i )− h

(
Z̃n
2 , . . . , Z̃

n
d

∣∣∣Z̃n
)

(c)
=

d∑
i=1

h (Un
i )−

d∑
i=1

h(Z̃n
i ) + h

(
Z̃n

)
=

d∑
i=1

h (Un
i )− no(log(P ), (20)

where (a) because conditioning reduces entropy, and (b)
and (c) because Z̃n

i ’s are i.i.d. and independent from X̃n
i ’s.

Therefore, from (18), we get,

d∑
i=2

h(X̃n
i + Z̃n

i |Wi) ≥ n
d−1∑
i=1

Rs
i − n(d+ 1)εn + no(log(P )).

(21)

Now, starting in (18) from any user k ∈ {1, 2, . . . ,K}, we get
different K relations, Then, summing up all the K relations
and then dividing by d− 1 we finally get,

K∑
i=1

h(X̃n
i + Z̃n

i |Wi)

≥ n
K∑
i=1

Rs
i −

nK(d+ 1)εn − nKo(log(P ))

d− 1
. (22)

Eventually, using the bound (22) in (17) we can get the
upper bound on the secrecy sum rate as follows,

K∑
i=1

Rs
i ≤ K

d+ 1
log(P ) +

Kd(d+ 1)εn −Ko(log(P ))

d2 − 1
.

(23)

Therefore, using (23) and the definition in (4), taking the
limits n → ∞ and P → ∞, we arrive at the following upper
bound on the SDoF for any (K, d) regular topology,

SDoFregular(K, d) ≤ K

d+ 1
. (24)

This completes the proof of Theorem 2.
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