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Abstract—We consider the multiple-input multiple-output
(MIMO) wiretap channel with intersymbol interference (ISI) in
which a transmitter (Alice) wishes to securely communicate with
a receiver (Bob) in presence of an eavesdropper (Eve). We focus
on the practically relevant setting in which there is no channel
state information (CSI) at Alice about either of the channels to
Bob or Eve, except statistical information about the ISI channels
(i.e., Alice only knows the effective number of ISI taps). The key
contribution of this work is to show that even with no CSI at
Alice, positive secure degrees of freedom (SDoF) are achievable
by carefully exploiting a) the heterogeneity of the ISI links to Bob
and Eve, and b) the relative number of antennas at all the three
terminals. To this end, we propose a novel achievable scheme
that carefully mixes information and artificial noise symbols in
order to exploit ISI heterogeneity to achieve positive SDoF. To
the best of our knowledge, this is the first work to explore the
idea of exploiting ISI channel length heterogeneity to achieve
positive SDoF for the MIMO wiretap channel with no CSI at
the legitimate transmitter.

I. INTRODUCTION

The key idea behind physical (PHY) layer security is to

exploit the inherent randomness in the wireless channel such

as fading or noise. While these characteristics have always

been seen as impairments, the paradigm of physical-layer

security takes advantage of these characteristics in order to

improve security. The majority of research developments on

PHY layer security have been made under the assumptions

of availability of the knowledge of wireless channel–be it

instantaneous [1]–[3], delayed [4], [5], or alternating [6].

Another approach to chieve security uses cooperative jammers

to purposefully send artificial noise in a manner that aligns

the interference in the signal space at the adversary’s node

while keeping this interference discardable at the legitimate

receiver’s node [7], [8]. The problem of secrecy capacity of

MIMO wiretap channels with ISI under full CSI availability

was recently solved by [9]. We refer the reader to [10], [11]

for an excellent recent surveys on this topic.

Assumptions on the availability of channel knowledge from

adversaries are by far the most critical and unrealistic as it

is not practically feasible to fetch CSI from eavesdropping

nodes. Thus the need for schemes that achieve security in

the absence of CSIT. For channels without ISI, recent work

[12] has explored SDoF for the MIMO wiretap channel with

a helper and showed that, in the absence of CSI, positive

SDoF can be achieved whenever the number of antennas at
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Fig. 1: The (K,M,N) MIMO Wiretap channel with ISI. LB and
LE denote the effective channel taps for the channels between Alice
and Bob and Alice and Eve, respectively.

the eavesdropper is less than the number of antennas at the

legitimate receiver. In this paper, we will show that, for chan-

nels with ISI, positive SDoF can be achieved in the absence

of CSI at the transmitters, even when the legitimate receiver

has a smaller number of antennas than the eavesdropper.

One of the positive aspects of the wireless medium is that it

not only possesses randomness, but it can also offer abundant

statistical heterogeneity. That is, channels to the legitimate

users and adversaries can be statistically dissimilar, based on

their relative multi-path propagation environment and fading

[13], [14]. In this work, we focus on the MIMO wiretap chan-

nel with inter symbol interference (ISI), where the channels to

Bob and Eve are MIMO ISI Channels. The main novel aspect

of this paper is to show that in the presence of statistical

heterogeneity in ISI, channel statistical knowledge alone is in

fact sufficient enough to achieve positive secure degrees of

freedom (SDoF). This exploitation of ISI heterogeneity (the

difference in channel impulse response (CIR) lengths towards

Bob and Eve) is particularly practical for Ultra-wideband

(UWB) systems that tend to have several hundreds of channel

taps [13].

More specifically, we consider the MIMO wiretap channel

with ISI. Taking into account the ISI link lengths towards both

the legitimate receiver and the eavesdropper, the transmitter

instead uses varying portions of its number of antennas

over the course of the transmission duration to methodically

transmit both information and artificial noise symbols in a

manner that allows the decodability of information symbol

at the legitimate receiver while keeping these information



symbols fully immersed in artificial noise symbols at the

eavesdropper. A general scheme is obtained as a function of

the number of antennas at the terminals and the characteristics

of the ISI channels, thereby leading to a lower bound on the

SDoF.

II. SYSTEM MODEL

In this paper, we focus on the MIMO wiretap channel

with ISI as shown in Fig. 1, where Alice (A) (with K
antennas), wants to securely communicate with Bob (B)

(with M antennas), in the presence of an eavesdropper,

Eve (E) (equipped with N antennas). The channels from

Alice to Bob and Eve are assumed to be ISI channels,

where
{
h
(ij)
B [q]

}LB

q=1
denotes the channel impulse response

(CIR) between the jth antenna of Alice and the ith antenna

at Bob, where i = 1, . . .M and j = 1, . . . ,K. Similarly,{
h
(�j)
E [q]

}LE

q=1
denotes the CIR between the jth antenna

at Alice and the �th antenna at Eve, where j = 1, . . .K
and � = 1, . . . , N . All CIR coefficients are assumed to

be independent and identically distributed (i.i.d.) from a

continuous distribution. LB and LE are channel tap length

parameters, i.e., the maximum number of effective channel

taps between Alice and Bob and between Alice and Eve,

respectively. The CSI availability assumptions are:

• Alice does not have any instantaneous CSI and she only

knows the ISI link lengths LB and LE .

• Bob only knows his local channel coefficients{
h
(ij)
B [q]

}LB

q=1
, i = 1, . . .M and j = 1, . . . ,K, which

are necessary for coherent decoding at his end.

• Eve has access to all coefficients (i.e. can access all CIRs).
Let XA[k] be a K × 1 symbol vector transmitted by Alice

at time k, then the respective signal vectors seen at Bob and

Eve at are

YB[k] =

LB∑
n=1

HB[n]XA[k − n+ 1] + ZB[k] (1)

YE[k] =

LE∑
n=1

HE[n]XA[k − n+ 1] + ZE[k] (2)

where (HB[n])(i,j) = h
(ij)
B [n] and (HE[n])(i,j) = h

(�j)
E [n].

ZB[k] and ZE[k] are channel noise vectors respectively

received at Bob and Eve at time k and whose elements

are complex circularly independent zero-mean unit-variance.

Each symbol vector XA[k] is transmitted with power P
satisfying the constraint

E
[
XA

2[k]
] ≤ P. (3)

A secure rate of communication Rs = log(|W |)
n is achiev-

able, if there exists an n-length code that, for any ε → 0 and

n → ∞, satisfies both the reliability and secrecy constraints:

Pr[W �= Ŵ ] ≤ ε (4)

1

n
H(W |YE

(n)) ≥ Rs − ε, (5)

where (4) represents the decoding error probability, and (5)

represents the uncertainty about the transmitted message W

given YE
(n) = {YE[k]}nk=1, the signal observed at Eve.

Ŵ = g(YB
(n)), where YB

(n) = {YB[k]}nk=1 is the signal

observed at Bob and g( . ) represents a decoding operation.

The secrecy capacity Cs is defined as the supremum of

all securely achievable rates Rs. We next define the secure

degrees of freedom (SDoF) as the pre-log of secrecy capacity.

SDoF Δ
= lim

P→∞
CS

log(P )
. (6)

The main contribution of this paper is stated in the follow-

ing theorem which shows that positive SDoF is achievable

under the CSI assumptions stated above.

III. MAIN RESULT

Theorem 1. For the (K,M,N) MIMO wiretap channel
without any CSIT and with effective ISI channels of CIR
lengths LB and LE for Bob and Eve, the following SDoF
is achievable

SDoF ≥
(
(K −N)

(⌈
M(LB−1)

K−M

⌉
− N(LE−1)

K−N

))+

⌈
M(LB−1)

K−M

⌉
+ (max(LB , LE)− 1)

, (7)

where (x)+
Δ
= max(x, 0) and �x� = min {n ∈ Z|n ≥ x}.

The following illustrative example shows the key idea of

exploiting ISI heterogeneity to transmit a mix of information

and artificial noise symbols in order to achieve positive SDoF.

Example 1: Consider the (K,M,N) = (3, 1, 2) MIMO

wiretap channel with ISI and (LB , LE) = (3, 1), i.e., any

symbol sent by Alice will be seen over LB = 3 time slots at

each of Bob’s M = 1 antenna and over LE = 1 time slot at

each of Eve’s N = 2 antennas. Our goal is to show that we

can achieve SDoF = 1
3 . Our scheme works over 3 time slots

as shown in Fig. 2.

Transmission by Alice: In the first time slot, Alice sends

an information symbol S and two artificial noise symbols

(N1, N2) (all distributed as i.i.d. Gaussian with power P )

on its K = 3 antennas, i.e., a vector XA[1] = [S N1 N2]
�

,

where X� denotes the transpose of X. For the remaining

two time-slots, Alice remains silent, which can be viewed as

zero-padding (i.e., XA[2] = XA[3] = [0 0 0]
�

).

Decodability at Bob: Since the channel coefficients are

distributed i.i.d., Bob (with M = 1 antenna) observes

three independent linear equations over three time

slots because LB = 3; in other words, Bob observes

L1B(S,N1, N2), L2B(S,N1, N2), L3B(S,N1, N2), from

which he is able to solve for information symbol S and

discard the artificial noises.

Secrecy at Eve: Since Eve’s ISI channel has effective tap

length of LE = 1, she will only observe two equations on

her N = 2 antennas in the first time slot; in other words,

Eve observes L1E(S,N1, N2), L2E(S,N1, N2), which means

her observations are fully immersed in the artificial noises

(N1, N2). For this scheme, the achievable secure rate can be

obtained as Rs = I(S;YB)−I(S;YE)
3 = log(P )

3 + o(log(P )),
which can be shown to achieve SDoF = 1

3 , matching the

expression stated in Theorem 1.
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Fig. 2: Illustrative example for the MIMO Wiretap channel with ISI heterogeneity where (K,M,N) = (3, 1, 2) and (LB , LE) = (3, 1).
For this example, we can achieve a secure degrees of freedom (SDoF) of 1/3 by sending one symbol securely to Bob in 3 time slots.

IV. PROOF OF THEOREM 1

The proof is divided into three parts. In the first part,

we describe the transmission scheme strategy. In the second

part, we describe the transmitted signal, the ISI channel

matrices, and the received signal vectors. In the third part,

we characterize the secrecy rate, and calculate the SDoF of

the proposed scheme.

A. Transmission Scheme
We now consider the general setting of arbitrary (K,M,N)

antenna configurations and arbitrary (LB , LE), the ISI tap

length parameters. The general scheme works over a trans-

mission block of duration T . Alice transmits a combination

of information symbols along with artificial noises during

the first r time slots, and remains silent during the last

(max(LB , LE) − 1) time slots. Thus, the total transmission

block duration is

T = r + (max(LB , LE)− 1). (8)

• Transmission by Alice: In each of the first r time slots,

Alice sends αi information symbols, for i = 1, 2, . . . , r, and

(K − αi) = βi artificial noise symbols on her K anten-

nas. Hence, Alice transmits a total of
∑r

i=1 αi information

symbols (IS) and a total of rK − ∑r
i=1 αi =

∑r
i=1 βi

artificial noise (AN) symbols over r time slots. Due to ISI

heterogeneity, transmissions sent during each such time slot

will be observed over LB time slots at Bob and over LE time

slots at Eve.

• Decodability at Bob: We enforce Bob to decode both infor-

mation symbols as well as artificial noise symbols, and this is

feasible as long as the total number of (ISs + ANs), i.e., rK
is no larger than the number of linearly independent equations

seen at Bob. That is

rK ≤ M(r + LB − 1). (9)

Hence, r must satisfy

r ≤
⌈
M(LB − 1)

K −M

⌉
, (10)

where the right hand side of the inequality (10) is ceiled

because the number of symbol transmission time slots is

a positive integer. From (8) and (10), we thus obtain the

following inequality for the transmission block duration

T ≤
⌈
M(LB − 1)

K −M

⌉
+ (max(LB , LE)− 1). (11)

• Secrecy at Eve: In order to achieve secrecy, we ensure

that the signal space at Eve is completely immersed in

artificial noise. In particular, the total number of ANs, i.e.,

rK − ∑r
i=1 αi =

∑r
i=1 βi must be at least as large as the

number of independent equations seen at Eve. This leads to

the constraint

rK −
∑r

i=1
αi ≥ N(r + LE − 1), (12)

where the right hand side of the inequality (12) represents

the number of equations seen at Eve. This equation (12) is

later used in the equivocation analysis and the secrecy rate

calculation.

B. Matrix Representation of Input and Output Signals
Let XA be a composite signal vector of size rK × 1,

consisting of both the information and artificial noise symbols

transmitted from Alice, whose components are the K × 1
vectors XA[i] transmitted during the ith time slot, for i =
1, 2, . . . , r, satisfy the power constraint in (3). Over the

duration of a whole transmission block of length T , the

received signal vectors at Bob and Eve can be written by

means of two equivalent matrix representation forms as shown

next. These representations will be useful in the analysis of

the secrecy rate and the SDoF calculations in subsection 4.3.

The outputs at Bob and Eve over the transmission

block can be written as follows. Starting from equa-

tions (1) and (2), we can write the composite signals

YB = [YB[1], YB[2], . . ., YB[r + LB − 1]] and YE =
[YE[1], YE[2], . . ., YE[r + LE − 1]] as follows:

YB = HBXA + ZB (13)

YE = HEXA + ZE. (14)

where XA = [XA[1],XA[2], . . .,XA[r]]
�

=
[Sα1 ,Nβ1 ,Sα2 ,Nβ2 , . . .,Sαr ,Nβr ]

�
, Sαi

is an αi × 1
vector consisting of all the information symbols transmitted



by Alice over αi antennas in the ith time slot, for

i = 1, 2, . . . , r, and Nβi
is a (K − αi)× 1 vector consisting

of all the artificial noise symbols transmitted by Alice over

βi = K − αi antennas in the ith time slot. YB is the

M(r + LB − 1) × 1 composite signal vector seen at Bob.

Here (HB[n])(i,j) = h
(ij)
B [n] and HB[n] is an M × K

matrix. HB is the composite M(r + LB − 1)× rK channel

matrix seen at Bob, XA is the rk × 1 composite symbols

vector transmitted by Alice over the whole transmission

block, whereas ZB is the M(r + LB − 1) × 1 composite

channel noise vector seen at Bob.

Similarly, YE is the N(r + LE − 1)× 1 composite signal

vector seen at Eve. HE is the composite N(r+LE−1)×rK

channel matrix seen at Eve. Here (HE[n])(i,j) = h
(�j)
E [n]

and HE[n] is an N × K matrix. Whereas ZE is the

N(r + LE − 1) × 1 composite channel noise vector seen at

Eve. Due to space limitations, the explicit channel matrix

structures are provided in the full version of the paper [15].

Using properties of the system model equations (1)-(2) and

their matrix form representation in (13)-(14), we can further

rewrite YB and YE by splitting the channel matrices into the

information symbol and artificial noise carrying matrices as

YB = HS
BS+HN

BN+ ZB (15)

YE = HS
ES+HN

EN+ ZE, (16)

where [HS
B HN

B ] = HB. Here HS
B is the information

symbol carrying submatrix of size M(r+LB−1)×∑r
i=1 αi

whereas HN
B is the artificial noise carrying submatrix of size

M(r + LB − 1) × ∑r
i=1 βi. Similarly, [HS

E HN
E ] = HE.

And HS
E is the information symbol carrying submatrix of

size N(r + LE − 1)×∑r
i=1 αi whereas HN

E is the artificial

noise carrying submatrix of size N(r + LE − 1)×∑r
i=1 βi.

S = [Sα1 Sα2
. . . Sαr

]
�

is the information symbols subvec-

tor of XA whereas N = [Nβ1 Nβ2 . . . Nβr ]
�

is the artificial

noise symbols subvector of XA. The explicit channel matrix

structures are provided in the full version of the paper [15].

C. Secrecy Rate and SDoF Calculation
The secrecy rate Rs over a transmission block of duration

T is given by

RS =
I(S;YB)− I(S;YE)

T
, (17)

where I(S;YB) is the mutual information between transmit-

ted composite information symbols vector S and YB, the

received composite signal vector at Bob. I(S;YE) is the mu-

tual information between S and YE, the received composite

signal vector at Eve. In terms of differential entropy, we can

write,

I(S;YB) = h(YB)− h(YB|S) (18)

I(S;YE) = h(YE)− h(YE|S). (19)

We can now use equation (13) to write h(YB) as

h(YB) = h(HBXA + ZB) (20)

= log(πe)M(r+LB−1) det(IB + PHBHB
H), (21)

where (21) follows from [16] and IB + PHBHB
H is the

covariance matrix of YB. IB is an M(r+LB − 1)×M(r+

LB − 1) covariance matrix of the channel noise vector ZB.

P is the symbol transmission power. Lemma 1 (stated below)

shows that the matrix HB is of rank M(r+LB − 1), almost

surely. Using equation (15), we can write h(YB|S) as follows

h(YB|S) = h(HS
BS+HN

BN+ ZB|S) (22)

= h(HN
BN+ ZB) (23)

= log(πe)M(r+LB−1) det(IB + PHN
BHN

B

H
), (24)

where (23) follows from the independence of S from

(N,ZB). IB is the channel noise covariance matrix identical

to the one in (21).

From substitution of (21) and (24) into (18), we obtain

I(S;YB) = log
det(IB + PHBHB

H)

det(IB + PHN
BHN

B
H
)

(25)

= log
det(IB + PΨBΛBΛB

HΨB
H)

det(IB + PΨN
BΛN

BΛN
B

H
ΨN

B
H
)

(26)

= log
det(IB + P Λ̂B)

det(IBN
+ P Λ̂N

B)
(27)

=
rK∑
i=1

log (1 + P |λBi
|2)−

∑r
i=1 βi∑
i=1

log (1 + P |λN
Bi
|2), (28)

where the numerator of (26) stems from the singular value

decomposition (SVD) of HB into ΨBΛBVB
H whereas

the denominator follows from the SVD of HN
B into

ΨN
BΛBN

VN
B

H
. The numerator of (27) follows from the

well-known Sylvester’s determinant identity det(I+AB) =
det(I +BA), matrix scalar multiplication, associativity, and

commutativity properties, and the fact that ΨB and VB
H

are unitary matrices whose product is an identity matrix.

Similarly, the denominator of (27) follows from the identity

det(I + AB) = det(I + BA), matrix scalar multiplication

associativity and commutativity properties, and the fact that

ΨN
B and VN

B
H

are unitary matrices whose product is an

identity matrix. It should now be noted that HB is of rank

rK ≤ M(r+LB−1) , almost surely. See Lemma 1. The first

term of (28) stems from the fact that Λ̂B is a square diagonal

matrix whose nonzero elements are the rK ≤ M(r+LB−1)
ordered squares of random singular values of the matrix HB

[13]. The second term follows from the fact that Λ̂N
B is

a square diagonal matrix whose nonzero elements are the

N(r+LE−1) ≤ (rK−∑r
i=1 αi) =

∑r
i=1 βi ordered squares

of random singular values of the full column rank matrix HN
B

(also see Lemma 1 and Lemma 2).

Lemma 1. Let HBi
be a channel matrix of size

(r + LB − 1) × rK whose nonzero elements in the
first K columns C1B,C2B, . . . ,CKB are the i.i.d. con-
tinuous random channel coefficients from the jth an-
tenna at Alice, for j = 1, 2, . . . ,K, to the ith an-
tenna at Bob, for i = 1, 2, . . . ,M , such that CiB =[
hij
B [1] hij

B [2] . . . hij
B [LB ] 0 . . . 0

]�
. And let the re-

maining rK − K columns of HBi
be r − 1 simultaneous

vertically circular permutations of the first K columns, re-
spectively. Then, the matrix HB = [HB1 HB2 . . . HBM

]�



is of rank rK ≤ M(r + LB − 1).

Proof. The proof of Lemma 1 is presented in [15].

Using equation (14), we expand the first term of (19) as

h(YE) = h(HEXA + ZE) (29)

= log(πe)N(r+LE−1) det(IE + PHEHE
H), (30)

where IE + PHEHE
H is the covariance matrix of YE. IE

is an N(r+LE − 1)×N(r+LE − 1) covariance matrix of

the channel noise vector ZE.

Similarly, using equation (16), we can write the second

term of (19) as follows

h(YE|S) = h(HS
ES+HN

EN+ ZE|S) (31)

= h(HN
EN+ ZE) (32)

= log(πe)N(r+LE−1) det(IE + PHN
EHEN

H
), (33)

where (32) follows from the independence of S from (N,ZE).
IE is the channel noise covariance matrix similar to (30).

From substitution of (30) and (33) into (19), we obtain

I(S;YE) = log
det(IE + PHEHE

H)

det(IE + PHN
EHN

E
H
)

(34)

=

N(r+LE−1)∑
i=1

log (1 + P |λEi
|2)−

∑r
i=1 βi∑
i=1

log (1 + P |λN
Ei
|2),

(35)

where (34)-(35) follow similar arguments as (25)-(28).

Lemma 2 shows that the matrix HE is of rank N(r + LE −
1) ≤ (rK −∑r

i=1 αi) =
∑r

i=1 βi, almost surely.

Lemma 2. Let HE�
be a channel matrix of size

(r + LE − 1) × rK whose nonzero elements in the
first K columns C1E,C2E, . . . ,CKE are the i.i.d. con-
tinuous random channel coefficients from the jth an-
tenna at Alice, for j = 1, 2, . . . ,K, to the lth an-
tenna at Eve, for � = 1, 2, . . . , N , such that CiE =[
h�j
E [1] h�j

E [2] . . . h�j
E [LE ] 0 . . . 0

]�
. And let the

remaining rK − K columns of HE�
be r − 1 simultaneous

vertically circular permutations of the first K columns, re-
spectively. Then, the matrix HE = [HE1 HE2 . . . HEN

]� is
of rank N(r + LE − 1) ≤ (rK −∑r

i=1 αi).

Proof. The proof of Lemma 2 is presented in [15].

From the definition of SDoF in (6), the definition of secrecy

rate in (17), and the expansion of the individual terms of

equations (18) and (19) into (28) and (35), respectively, we

obtain the expression of Theorem 1. See [15] for details. �

V. CONCLUSIONS

We have presented a novel approach to exploit ISI het-

erogeneity to achieve positive SDoF for the MIMO wiretap

channel even without any CSIT. In particular, we showed

that the transmitter can use the ISI link lengths towards

the legitimate receiver and the eavesdropper to carry out a

transmission that mixes both the information and artificial

noise symbols and, in the end, be able to achieve secure

communication. We showed this to be true even when the

number of antennas at the eavesdropper is larger than the

number of antennas at the legitimate receiver. There are

several interesting directions for future work: a) this idea can

be applied to various other multi-user networks to achieve

robust secrecy without any instantaneous CSIT; b) another

open problem is to obtain information-theoretic upper bounds

on the SDoF in presence of ISI heterogeneity.
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