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Abstract—We investigate secure degrees of freedom (SDoF) of
a single-input single-output (SISO) wiretap channel with a single
helper without channel state information at the transmitters
(CSIT). Wireless communication systems inherently suffer from
intersymbol interference (ISI) due to channel dispersion. In this
paper, we propose a novel blind cooperative jamming scheme
that exploits the ISI heterogeneity to achieve positive SDoF,
even without any CSIT. In order to achieve positive SDoF, the
proposed approach only requires statistical properties of the ISI
channel. In particular, we show that if Lp is the effective ISI
channel multipath link length towards the legitimate receiver
(Bob) and L is the link length towards the eavesdropper (Eve),
a positive SDoF of % is achievable. To the best of our
knowledge, this is the first work that exploits ISI link length
heterogeneity to achieve positive secure degrees of freedom.

I. INTRODUCTION

Achieving high secure communication rates in the pres-
ence of eavesdroppers remains a challenging problem in
wireless communication systems due to their broadcast nature.
Extensive studies have been conducted exploiting channel
differences between transmitters, legitimate receivers, and
eavesdroppers in order to achieve physical layer security.
Achievable information theoretic secrecy regions have been
characterized for a variety of eavesdropped communication
channels (e.g. [1], [2], and [3]). Because of difficulty in
characterizing the exact secrecy capacity regions, research
on secure degrees of freedom (SDoF) for different types of
channels in the presence of channel state information (CSI)
has been of growing interest (e.g. [4] and [5]). Using number
theory based approximations, [6] and [7] characterized achiev-
able SDoF for the Gaussian wiretap channel with multiple
helpers. SDoF of a MIMO wiretap channel in the presence of
a helper with multiple antennas is investigated in [8].

In this paper, we focus on a single-input single-output
(SISO) wiretap channel with a single helper without channel
state information at the transmitters (CSIT) and with inter-
symbol interference (ISI) links between terminals. This work
differs from blind interference alignment in [9] because it does
not impose any requirements on channel coherence patterns.
It only requires statistical knowledge of ISI link lengths
towards the receivers. Previous research has largely assumed
availability of CSIT to achieve positive SDoF. On the contrary,
removing CSIT assumptions is advantageous, since in reality
it may be hard to fully obtain perfect channel characterization
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Fig. 1: Wiretap channel with a Helper and Intersymbol Interference.

and it may not be possible to acquire CSI from eavesdropping
nodes. It, therefore, remains of great importance to explore the
following problem: Can we achieve any positive SDoF while
completely removing the need for channel state information
at the same time?

The main contribution of this paper is to show that for
heterogeneous ISI channels (i.e. channels with different ISI
link lengths in terms of the number of channel taps towards
different receivers), positive SDoF can be achieved even
without any CSI at the transmitters.

In particular, this heterogeneity in ISI link lengths can be
exploited to mix transmission of information and artificial
noise symbols in a manner that allows the legitimate receiver
to decode the transmitted information symbols and keeps the
information symbols completely submersed in artificial noise
symbols at the eavesdropper’s node. We devise a scheme
that takes advantage of the difference in ISI link lengths
towards the legitimate receiver and the eavesdropper in order
to achieve positive SDoF without CSIT (i.e. no knowledge
of the channel coefficients at the transmitters). This work
is inspired by recent work [10], which explored how ISI
heterogeneity can be exploited to achieve significant gains in
spectral efficiency for multi-user interference channels, even
without CSIT.

II. SYSTEM MODEL DESCRIPTION

We consider a wiretap model with intersymbol interference
(IST) where Alice (A) wants to securely communicate with
Bob (B) in the presence of an eavesdropper Eve (E). Secure
communication here is facilitated by the presence of an
interfering “Helper” that we denote as Charlie (C). See Fig.
1. Each node is equipped with a single antenna. The channels
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from Alice and Charlie to Bob and Eve are assumed to be ISI
channels, where {hsa[n]}-2,. {(hpc[n]}E2,. {(hpaln]}E5,.
and {h Ec[n}}ﬁi ; denote the channel impulse responses
(CIRs) from Alice and Charlie to Bob and from Alice and
Charlie to Eve, respectively. All CIR coefficients are assumed
to be independently and identically distributed continuous ran-
dom variables. L and L are channel tap length parameters
and they are described as follows. We consider Lg to be the
maximum number of effective channel taps between Alice and
Bob (as well as the maximum number of effective channel
taps between Charlie and Bob). Ly is the maximum number
of effective channel taps between Charlie and Eve (as well
as the maximum number of effective channel taps between
Alice and Eve). The CSI availability assumptions are:
e Alice and Charlie do not have any CSI (i.e. no knowledge
of the channel coefficients (CIRs)). They only know the ISI
link lengths Lp and L.
e Bob only knows local channel coefficients {hpa[n ]}fL’B 1
and {hpc[n ] . This is necessary for decoding at Bob.
e Eve has access to all coefficients (i.e. can access all CIRs).
Let X 4[k] and X [k] be the respective symbols transmitted
by Alice and Charlie at time k, then the respective signals seen
at receivers Bob and Eve are given by

YB[k‘} = iXA[k’ — n]hBA[n]

+ ZB: Xclk —nlhpen] + Zp[k] (1)

YE[kj] = ZXA[k — n]hEA[n]

Lg
+ 3" Xclk = nlhgco(n] + Zelk], (2)
n=1

where Zp[k] and Zg[k| are complex circularly independent
zero mean unit variance channel noises respectively received
at Bob and Eve at time k. All symbols X 4 [k] and X¢[k| are
transmitted with a power P, each satisfying the constraints:

E[X3[k]] <P 3)
E[X2[k] < P. )
For a randomly transmitted message 1V and its received esti-
mate W, a secure rate of communication Rg is achievable, if

there exists an n-length code that, for any e — 0 and n — oo,
satisfies both the decodability and security constraints:

PrW £ W] <e 5)
Ly > R - ©6)

where YE(n) is the signal observed at the eavesdropper Eve.
The secrecy capacity C'g is defined as the maximum of Rg.
We define the secure degrees of freedom (SDoF) as
SDoF = lim &
P—oo log(P)’
which is the prelog of secrecy capacity.

@)

IIT. MAIN RESULT: ACHIEVABLE SDOF SCHEME

Theorem 1. For a heterogeneous ISI wiretap channel in

the presence of a single helper without any CSIT and with

effective channel interference links of lengths Lp and Lg,
the following SDoF is achievable

(L — Le)*

SDoF > ~—F———~/_

= I —1)

where (x)* e max(x,0) and Lg > 1.

®)

Before presenting the proof of Theorem 1, we first present
some representative examples that highlight the key ideas
behind the general scheme and show the feasibility of positive
secure degrees of freedom with no CSI at Alice or the Helper.

Example 1: Consider Ly = 2 and Lp = 1. This means
that, for the given values of Lp and Ly, any symbol sent by
Alice or Charlie will be seen over two time slots (channel
instants) at Bob and over one time slot at Eve. Our goal
is to show that the achievable SDoF is L(B LE) = % In
the first time slot, Alice transmits an information symbol S
and Charlie transmits an artificial noise symbol N;. Then,
Alice and Charlie remain silent over the next time slot,
which can also be viewed as zero-padding (see Fig. 2). Since
the channel coefficients are independently and identically
distributed continuous random variables, Bob observes two
independent linear equations Lq5(S1, N1) and Lop(Sy, N1),
from which he can solve for S; and N; and, therefore, be
able to extract the information symbol S;. Eve, on the other
hand, will only observe one linear equation L;g(S1, N1),
from which she can neither solve for Sy nor Ny. Here L;5( .)
and L;p(.) respectively denote the linear combinations re-
ceived at Bob and Eve in the ith time slot. Therefore, we
can securely transmit Ly — Ly = 1 information symbol
using 2(Lp — 1) = 2 time slots, i.e., this scheme achieves
SDoF = gt = 3.

The following example demonstrates the scenario where
Alice (in addition to Charlie) also transmits artificial noise
symbols in addition to information symbols to achieve the
secure degrees of freedom stated in Theorem 1.

Example 2: Consider Ly = 3 and Ly = 2. This means that
any symbol sent by Alice or Charlie will be seen over three
time slots at Bob and over two time slots at Eve. This scheme
is composed of a total of 2(L s —1) = 4 time slots and is able
to securely deliver Lg — L = 1 information symbol to Bob.
In the first time slot, Alice transmits L g —Lg = 1 information
symbol denoted by S7. In the second time slot, Alice transmits
Lg—1 =1 artificial noise symbol denoted by U;. In the third
and fourth time slots (i.e. over the last L g—1 time slots), Alice
remains silent (which can also be viewed as zero-padding).
Charlie consecutively transmits artificial noise symbols N;
and N, over the first and the second time slots (i.e. Charlie
sends Lp — 1 artificial noise symbols). Charlie remains silent
in the third and fourth time slots (see Fig. 3). Since the
channel coefficients are independently and identically dis-
tributed continuous random variables, Bob observes four inde-
pendent linear equations L15(S1, N1), Lap(S1, N1, U1, Na),
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Fig. 3: Wiretap channel with ISI example with L = 3 and L = 2 where Alice and Charlie send artificial noise (U1) and (N1, N2).

L3p(S1,N1,Uy, N2), and Lyp(Uy, N3), from which he can
solve for S;, N1, U;, and No. Bob is, hence, able to
extract the information symbol S; and discard the artifi-
cial noise symbols. Eve, on the other hand, will observe
three linear combinations L1E<517 N1>, L2E(517 Ny, Uy, NQ),
L3p (Ui, No), where all the L — L information symbols are
fully immersed in the artificial noise symbols (N, Uy, Na).
Therefore, we can securely transmit Lz — L = 1 information
symbol to Bob using 2(Lg — 1) = 4 time slots. Thus, this

: — Lp-Lp _ 1
scheme achieves SDoF = Nip—1 — 1

IV. PROOF OF THEOREM 1

We consider a transmission channel block with length
2(Lp —1) in order to securely transmit Lz — L information
symbols to Bob. The order of information and artificial noise
symbols transmission is described next:

Transmission by Alice

e In the first Lz — L time slots, Alice transmits information
symbols (i.e. a vector S = [51 S1 SLB,LE]).

e In the next Lr —1 time slots, Alice transmits artificial noise
symbols (i.e. a noise vector U = [Ul Uy ULE_l]).
e In the last L — 1 time slots, Alice remains silent.
Transmission by Charlie (helper)

e In the first Lp — 1 time slots, Charlie transmits in-
dependently and identically distributed Gaussian artificial
noise symbols, each with zero mean and variance P
(i.e. a noise vector N = [N N, Nig-1]).

e In the last Lg — 1 time slots, Charlie remains silent.

The received signals at Bob and Eve in a particular block,
respectively, can be expressed as follows:

Yp = HaXa +HpcXc + Zp 9
Yg = HgaX4 + HgcXc + Zg, (10

where Yp is of size 2(Lp—1)x1 and Yg is of size (Lp+Lg—
2)x1. Hpa is the 2(Lp—1)x(Lpg—1) channel matrix portion
carrying the signal vector X 4 of size (Lg —1) x 1 from Alice
to Bob. Hp is the 2(Lg —1) x (L —1) portion carrying the
signal vector X¢ of size (Lp — 1) x 1 from Charlie to Bob.
Hga is the (Lp+ Lg —2) X (Lp — 1) portion carrying X 4
from Alice to Eve and Hgc is the (Lp+ Lp—2) x (Lp—1)
portion carrying X< from Charlie to Eve. Note that X4 =

[SU]JT and X = [ N]T. Thus, Hga X 4 has structure
i hBA[l} 0 0 Tr S;
hBA[2} hBA[l} 52
hBA[Q} 0
HpaXa = SL-Le
BAAA = |hpu[Lg] hpall] U,
0 hBA[LB] ’ hBA[Z} U2
L 0 0 hpalLp]] L Upy—1 |
and Hgc X is given by
i hgc[l] 0 0 ]
th[Q] hBC[l]
. Ny
h 2 - 0
Bc(2] N,
HecXe = | hpe[Lp) hpcll]
0 hpells] “- hpel2] | INL,—1
L 0 e 0 hpcl[Lgl]




Similarly, Hga X 4 is given by

i hEA[l] 0 0 Tr Sl 7
hpal2l hpall] . G Sz
hEA[Q] 0 g
Lp—Lg
HeaXa = | hpa[Lg] hpall] U,
0 hE‘A[LE] - hEA[Q] U2
L 0 0 hgalLg]] L Urp-1 |
and Hgc X¢ is given by
[ hec(l] 0 0
hecl2]  hec[l]
. Ny
hecl2] . 0
ec(2] N,
HecXc = hec|LE) hec(l]
0  hgclLe] - hecl2] | [Np,—1
L 0 0 hpc|Lgll

Zp and Zg are channel noise vectors received at Bob and
Eve, respectively. The signals Yz and Y can be rewritten as

Yp = HgsS + HguU + HgnN + Zp (11)
YE = HESS + HEUU + I'IENAN + ZE» (12)

where Hpg is the 2(Lp—1) X (L — Lg) channel matrix por-
tion of Hga over which the information symbol vector S is
received from Alice to Bob, Hgy is the 2(Lg—1)x (Lg—1)
channel matrix portion of Hga over which the artificial noise
symbol vector U is received from Alice to Bob, whereas Hgn
is the 2(Lp—1) x (L g —1) channel matrix equivalent to Hgc
over which the artificial noise symbol vector NV is received
from Charlie to Bob. Hgg is the (Lp+ Lr—2) X (Lp—LEg)
portion of Hga over which S is received from Alice to Eve,
Hgy is the (Lp+ Lg —2) x (Lg — 1) portion of Hga over
which U is received from Alice to Eve, whereas Hgn is the
(Lp+ Lg —2) x (Lp — 1) matrix equivalent to Hgc over
which N is received from Charlie to Eve.

To facilitate the proof of Theorem 1 using matrix properties,
a simplified view of the proposed system of equations (11)
and (12) is to think of a combined input signal vector X of
size 2(Lp — 1) x 1 created from the concatenation of the
vectors S and U from Alice and N from Charlie such that
X = [S U N]T. Each entry in the vector X, be it an in-
formation symbol or an artificial noise symbol, is assumed to
be transmitted with a power P satisfying the power constrains
in equations (3) and (4). Moreover, a horizontal concatenation
can be done to matrices Hgs, Hgy, and Hgn to form a
composite matrix Hpg, whereas a horizontal concatenation of
matrices Hgg, Hpy, and Hgn leads to a composite matrix

Hg. Equations (11) and (12) can, hence, be simplified into
YB = HBX + ZB (13)
Yr =HgX + Zg, (14)
where Hp is the complete 2(Lp — 1) x 2(Lg — 1) channel
matrix seen at Bob and Hg, is the complete (Lp + Lg —2) x
2(Lp — 1) channel matrix seen at Eve.
Information theoretically, for a transmission block of length
2(Lp — 1), the achievable secrecy rate Rg is defined as
I(5;Yp) — I(S;YE)
RS - )
2(Lp —1)
where I(S;Yp) is the mutual information between the infor-
mation symbol vector S transmitted by Alice and Yj, the
signal received at Bob. I(S;Yg) is the mutual information
between S and the vector Yg received at Eve. These terms
can be written as

5)

I(S;YE) = h(Yr) — h(YBIS) (16)
I(S;YE) = MYE) — h(YE|S). (17)

Next, the terms of equation (16) are expanded as follows:
h(Ys) = h(HsS + HeuU + HenN + ZB) (18)
= log(me)?F5 =1 det (Kpgyy ) (19)

= log(me)?2 ) det(Ipgyy + PHpgun HBopn ) (20)
where (19) follows from [11], Kiyn = IBsun +
PHgpg, HE,,, is the covariance matrix of Yp, MM
denotes the complex conjugate of M, and Iy, is the
2(Lp—1)x2(Lp—1) covariance of Zp. Hpg, is identical
to the channel matrix Hg, and P is the symbol transmission
power.

h(Yp|S) = h(HgsS + HguU + HgnN + Zp[S) (21)

= h(HBUU +HpgnN + ZB) (22)

= h(Hp,n [UN]" + Zp) (23)

= log(me)?*2 =V det(Ip,y + PHponHE, ), (24)
where (22) follows from the independence of S from (U, N,
Zp). Igyy 18 equivalent to Iggy, from (20) and Hp,,, is
the concatenation of Hgy and Hgn. I + PHB HEUN
is the covariance matrix of Hg,[UN]T + Zp.

Substituting (20) and (24) into (16), we have
dEt(IBSUN + PHBSUNHI]:})ISUN)

det(IBUN + PHBUNHIIESIUN)

det(IBSUN + P‘IIBSUNABSUNAESUN‘I’I]:%ISUN)

I1(S;Yp) = log (25)

= log
det(IBUN + P\IIBUNABUNAEUN‘IIEIUN)
(26)
= log det(IBSUN + P‘[§BSUN) (27)
det(IBUN + PABUN)
2Lp—1)
= Z log (1 + P|)\BSUNi|2)
=1
Lp+Lg—2
— ) log (14 PlAgy,, %), (28)

i=1



where the numerator of (26) follows from the singu-
lar value decomposition (SVD) of Hpg,y Hg into
YB.unABsun VESUN and the denominator follows from the
SVD of Hp,,, into ¥p,AByy VE,,,- The numerator of
(27) follows from the determinant identity det(I + AB) =
det(I+BA) also known as Sylvester’s Identity, matrix scalar
multiplication associativity and commutativity properties, and
the fact that ¥, and VEISUN are unitary matrices whose
product is an identity matrix. The denominator of (27) follows
from the identity det(I + AB) = det(I + BA), matrix scalar
multiplication associativity and commutativity properties, and
the fact that ¥y, and VEIUN are unitary matrices whose
product is an identity matrix. As shown by Lemma 1, Hg =
Hpgg, is full rank, almost surely (see Appendix). Therefore,
the first term of (28) follows from the fact that ABSUN is a
square diagonal matrix whose elements are 2(L g —1) ordered
squares of random singular values of the matrix Hpg, [12].
The second term of (28) follows from the fact that ABUN is
a square diagonal matrix whose elements are (Lp + L — 2)
ordered squares of random singular values of the full column
rank matrix Hg [12]. Hp is full rank since it is a full
column submatrix of the full rank matrix Hg. See Lemma 1.
The first term of equation (17) can be expanded as

h(YE) = h(HEsS + HguyU + HEn N + ZE) 29)
= log(me) L2 TLE=2) det(Kggyy ), (30)
where Kggun = IEsun ¥ PHEsun HESUN is the covariance
of Yi. Iggyy 1S the covariance of Z and Hgg,,,, is identical
to Hg. In Lemma 2 (see Appendix), it is shown that Hg is

of rank Lp + Lg — 2, almost surely.
Similarly, we expand the second term of equation (17) as

h(Yg|S) = h(HgsS + HguU + Hegn N + Zg|S)  (31)
= h(HguU + Hgn N + Zg) (32)
= h(Hg,n [UN]T + Zg) (33)
= log(me) 2 HEE=2) det(Igyy + PHpy Hp,, ), (34)

where (32) is from the independence of S from (U, N, Zg).

Hg,, is the concatenation of Hgy and Hgn. Igy, +

PHg, HY,_ is the covariance of Hg [UN]" 4 Zg.
Equation (17) can, therefore, be rewritten as

det(IESUN + PHESUNHESUN)

1 S; Ye) =1lo (35)
( E) & det(IEUN + PHEUNHEUN)
(LB+LE72)
= > log (14 Pggyy )
1=1
Lp+Lg—2
- Z 10g (1 + PlAEUNi ‘2)7 (36)

i=1
where (35)-(36) follow the same arguments as (25)-(28)

From the definition of SDoF in (7), the definition of secrecy
rate in (15), and the expansion of the individual terms of
equations (16) and (17) into (28) and (36), respectively, we
obtain the following SDoF.

SDoF > lim Rs _ 4 1(S;Yp) = 1(S;YE)

Pooolog(P) P—oo 2(Lp —1)log(P) 37)

Z?illlBil) log (1 + P|)\BSUN«L
2(Lp —1)log(P)

L Lg—
B Ei:31+ ” 210g (1+P|)\BUN,3|2))

?)

= lim
P—oo

3Ly — 1) log(P) (38)
li 25:131+LE_2 log (1 + P‘)\ESUNi |2)
T o 2(Lp — 1) log(P)
LB+LE—21 P 2
it og (1+ P|Agyy, | )) 39
2(Lp — 1) log(P)
_(Q(LB -1)—(Lp+Lgp— 2))
B 2(Lg — 1)
(LB+LE—2)—(LB+LE—2)
- ( 2(Lg —1) ) “0)
_Lp—Lg
=1 (41)

Hence, this completes the proof of Theorem 1.

V. CONCLUSION AND FURTHER RESEARCH

We investigated the SISO wiretap channel with ISI in the
presence of a helper and characterized its achievable SDoF
without any CSIT. We showed how strategic transmission
of information and artificial noise symbols achieves positive
SDoF by taking the advantage of the heterogeneity in the ISI
link lengths towards the legitimate receiver and the eavesdrop-
per. There are several interesting directions for future work
stemming from the exploitation of ISI heterogeneity. We are
currently investigating the generalization of this scheme to the
case of arbitrary ISI link lengths, obtaining an upper bound
on SDoF in the ISI heterogeneity, and the use of multiple
antennas to further exploit ISI heterogeneity to achieve higher
SDoF than the SISO setting.

APPENDIX

We now provide proofs of ranks of the channel matrices
Hp and Hyg that were essential in the proof of Theorem 1.

Lemma 1. Letr Hg be a square channel matrix with
size 2(Lg — 1) x 2(Lg — 1) whose nonzero elements
in the first column Cip and in second column Csyp are
the independently and identically distributed continuous
random channel coefficients from Alice to Bob and

from Charlie to Bob, respectively, such thc%t Cip =
[hBA[l] hBA[Q] hBA[LB] 0 ... O] ar}d
Cop = [hpell] hpcel2] hpelLp] 0 ... 0].

And let the rest of columns of Hg be Lp — 2 simultaneous
vertically circular permutations of the first and the second
columns, respectively. Then, the matrix Hg is full rank.
Proof: Consider the received square channel matrix Hg at
Bob. To prove that it is full rank, it suffices to show that

Hga” =0 (42)

has only the trivial solution & = 0, for some vector
[al Qa9 ozTBZQ(LB,l)]. Since permutations of
columns of a matrix do not alter its rank, we can write
Hp with columns permuted into a specific positions and,

a =



TR BB 0 0 Lo 00 0]
W W W
hia M hga Mo o 00

0 | pay [0
A A N
0 0 ALElplal pBlopE 1]

0 0 oy 0
Lo 0 0 o0 '.h[ ]h[LB]

(43)

therefore, be able to explicitly write the system in (42) as
shown in (43).

From the first row of the system of equations (43),
we have alh[] + a2h[] = 0. This is not possible,
since hpall] and hpc[l] are independently and identi-
cally distributed continuous random channel coefficients re-
spectively selected from two independent channel vectors
[hpall] hpal2] hBA[LB]]T and Hpo =
[hBC[l] hpcl2] th[LB]]T, unless oy = ap = 0.
Now, let @y = a9 = 0. From the second row, we get
a hggmhggmgh[ L aahl] = aghlll 4agnlll — o,
which is also not p0551ble unless a3 = a4 = 0. Continuing
recursively through all the equations in (43) in a similar order
as above, using the same argument of contradiction, leads to
the conclusion that the system in (42) has only the trivial
solution & = 0. This proves that Hg is of full rank 2(Lz—1).

Hpa =

Lemma 2. Let Hg be a rectangular channel matrix of size
(Lp+Lgp—2)x2(Lg—1), where (Lg+Lg—2) < 2(Lg—1),
whose nonzero elements in the first column C1 g and in second
column Cop are the independently and identically distributed
continuous random channel coefficients from Alice to Eve
and from Charlie to Eve, respectively, such that Cip =
[hEA[l] hEA[Q} hEA[LE] 0 ... O}T and
Cow = [hpell] hpel2) ... hpelle) 0 ... o]
And let the rest of columns of Hg be Lp — 2 simultaneous
vertically circular permutations of the first and the second
columns, respectively. Then, Hg is of rank (Lg + Lg — 2).
Proof: Consider the received rectangular channel matrix
Hg (of similar construct to Hg in (43) albeit rectangular) at
Eve. To prove that its rank is (L g+ L g—2), it suffices to show
that its submatrix Hg, of size (Lp+Lg—2)x(Lg+Lg—2)
that carries all the artificial noise symbols (from both Charlie
and Alice) is full rank. Therefore, it suffices to show that

Hp, 0" = (44)
has only the trivial solution E = (0 for some vector

3= (b1 B2 Bry=Lp+Lp—2]. Since permutations of
columns of a matrix do not alter its rank, we can write Hg,

e 0 ... 0 0 ... 0 0]
p2oplllo o 0 o
pBLREL 0 0t 0 0
18] Rl B 0
e - A |0
h[beE] .0 o0 : B
L g 1 : : 1
R e S S 1 N | : :
. 2 L 1
0 . nlZ plkel pl 1 1B, 0
.. 3
ChEL o
. : .h%j] :
0 0 .h[LE] 0 0 hiEEl
) (45)

with columns permuted into specific positions as in (45)
From the first equation of system (45), we have [, AL BC =
0. This is only possible if 51 = 0 because hg[1] is a nonzero
channel coefficient selected from the channel vector Hgc =
[hEC[l] hrc(2] hEC[LE]] . Now, let 8; = 0. From
the second row, we have 61h + th[l] = ﬂzh[l] = 0.
This condition is not possible unless B2 = 0. Continuing re-
cursively through system (45) with the same logical argument
of contradiction shows that the system (44) has only the trivial

solution 5 = 0. This proves that Hg is full rank.
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