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Abstract—We investigate secure degrees of freedom (SDoF) of
a single-input single-output (SISO) wiretap channel with a single
helper without channel state information at the transmitters
(CSIT). Wireless communication systems inherently suffer from
intersymbol interference (ISI) due to channel dispersion. In this
paper, we propose a novel blind cooperative jamming scheme
that exploits the ISI heterogeneity to achieve positive SDoF,
even without any CSIT. In order to achieve positive SDoF, the
proposed approach only requires statistical properties of the ISI
channel. In particular, we show that if 𝐿𝐵 is the effective ISI
channel multipath link length towards the legitimate receiver
(Bob) and 𝐿𝐸 is the link length towards the eavesdropper (Eve),
a positive SDoF of 𝐿𝐵−𝐿𝐸

2(𝐿𝐵−1)
is achievable. To the best of our

knowledge, this is the first work that exploits ISI link length
heterogeneity to achieve positive secure degrees of freedom.

I. INTRODUCTION

Achieving high secure communication rates in the pres-
ence of eavesdroppers remains a challenging problem in
wireless communication systems due to their broadcast nature.
Extensive studies have been conducted exploiting channel
differences between transmitters, legitimate receivers, and
eavesdroppers in order to achieve physical layer security.
Achievable information theoretic secrecy regions have been
characterized for a variety of eavesdropped communication
channels (e.g. [1], [2], and [3]). Because of difficulty in
characterizing the exact secrecy capacity regions, research
on secure degrees of freedom (SDoF) for different types of
channels in the presence of channel state information (CSI)
has been of growing interest (e.g. [4] and [5]). Using number
theory based approximations, [6] and [7] characterized achiev-
able SDoF for the Gaussian wiretap channel with multiple
helpers. SDoF of a MIMO wiretap channel in the presence of
a helper with multiple antennas is investigated in [8].

In this paper, we focus on a single-input single-output
(SISO) wiretap channel with a single helper without channel
state information at the transmitters (CSIT) and with inter-
symbol interference (ISI) links between terminals. This work
differs from blind interference alignment in [9] because it does
not impose any requirements on channel coherence patterns.
It only requires statistical knowledge of ISI link lengths
towards the receivers. Previous research has largely assumed
availability of CSIT to achieve positive SDoF. On the contrary,
removing CSIT assumptions is advantageous, since in reality
it may be hard to fully obtain perfect channel characterization
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Fig. 1: Wiretap channel with a Helper and Intersymbol Interference.

and it may not be possible to acquire CSI from eavesdropping
nodes. It, therefore, remains of great importance to explore the
following problem: Can we achieve any positive SDoF while
completely removing the need for channel state information
at the same time?

The main contribution of this paper is to show that for
heterogeneous ISI channels (i.e. channels with different ISI
link lengths in terms of the number of channel taps towards
different receivers), positive SDoF can be achieved even
without any CSI at the transmitters.

In particular, this heterogeneity in ISI link lengths can be
exploited to mix transmission of information and artificial
noise symbols in a manner that allows the legitimate receiver
to decode the transmitted information symbols and keeps the
information symbols completely submersed in artificial noise
symbols at the eavesdropper’s node. We devise a scheme
that takes advantage of the difference in ISI link lengths
towards the legitimate receiver and the eavesdropper in order
to achieve positive SDoF without CSIT (i.e. no knowledge
of the channel coefficients at the transmitters). This work
is inspired by recent work [10], which explored how ISI
heterogeneity can be exploited to achieve significant gains in
spectral efficiency for multi-user interference channels, even
without CSIT.

II. SYSTEM MODEL DESCRIPTION

We consider a wiretap model with intersymbol interference
(ISI) where Alice (A) wants to securely communicate with
Bob (B) in the presence of an eavesdropper Eve (E). Secure
communication here is facilitated by the presence of an
interfering “Helper” that we denote as Charlie (C). See Fig.
1. Each node is equipped with a single antenna. The channels
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from Alice and Charlie to Bob and Eve are assumed to be ISI
channels, where {ℎ𝐵𝐴[𝑛]}𝐿𝐵

𝑛=1, {ℎ𝐵𝐶 [𝑛]}𝐿𝐵

𝑛=1, {ℎ𝐸𝐴[𝑛]}𝐿𝐸

𝑛=1,
and {ℎ𝐸𝐶 [𝑛]}𝐿𝐸

𝑛=1 denote the channel impulse responses
(CIRs) from Alice and Charlie to Bob and from Alice and
Charlie to Eve, respectively. All CIR coefficients are assumed
to be independently and identically distributed continuous ran-
dom variables. 𝐿𝐵 and 𝐿𝐸 are channel tap length parameters
and they are described as follows. We consider 𝐿𝐵 to be the
maximum number of effective channel taps between Alice and
Bob (as well as the maximum number of effective channel
taps between Charlie and Bob). 𝐿𝐸 is the maximum number
of effective channel taps between Charlie and Eve (as well
as the maximum number of effective channel taps between
Alice and Eve). The CSI availability assumptions are:
∙ Alice and Charlie do not have any CSI (i.e. no knowledge
of the channel coefficients (CIRs)). They only know the ISI
link lengths 𝐿𝐵 and 𝐿𝐸 .
∙ Bob only knows local channel coefficients {ℎ𝐵𝐴[𝑛]}𝐿𝐵

𝑛=1

and {ℎ𝐵𝐶 [𝑛]}𝐿𝐵

𝑛=1. This is necessary for decoding at Bob.
∙ Eve has access to all coefficients (i.e. can access all CIRs).

Let 𝑋𝐴[𝑘] and 𝑋𝐶 [𝑘] be the respective symbols transmitted
by Alice and Charlie at time 𝑘, then the respective signals seen
at receivers Bob and Eve are given by

𝑌𝐵 [𝑘] =

𝐿𝐵∑
𝑛=1

𝑋𝐴[𝑘 − 𝑛]ℎ𝐵𝐴[𝑛]

+

𝐿𝐵∑
𝑛=1

𝑋𝐶 [𝑘 − 𝑛]ℎ𝐵𝐶 [𝑛] + 𝑍𝐵 [𝑘] (1)

𝑌𝐸 [𝑘] =

𝐿𝐸∑
𝑛=1

𝑋𝐴[𝑘 − 𝑛]ℎ𝐸𝐴[𝑛]

+

𝐿𝐸∑
𝑛=1

𝑋𝐶 [𝑘 − 𝑛]ℎ𝐸𝐶 [𝑛] + 𝑍𝐸 [𝑘], (2)

where 𝑍𝐵 [𝑘] and 𝑍𝐸 [𝑘] are complex circularly independent
zero mean unit variance channel noises respectively received
at Bob and Eve at time 𝑘. All symbols 𝑋𝐴[𝑘] and 𝑋𝐶 [𝑘] are
transmitted with a power 𝑃 , each satisfying the constraints:

E[𝑋2
𝐴[𝑘]] ≤ 𝑃 (3)

E[𝑋2
𝐶 [𝑘]] ≤ 𝑃. (4)

For a randomly transmitted message 𝑊 and its received esti-
mate 𝑊̂ , a secure rate of communication 𝑅𝑆 is achievable, if
there exists an 𝑛-length code that, for any 𝜖 → 0 and 𝑛 → ∞,
satisfies both the decodability and security constraints:

𝑃𝑟[𝑊 ∕= 𝑊̂ ] ≤ 𝜖 (5)
1

𝑛
𝐻(𝑊 ∣𝑌 (𝑛)

𝐸 ) ≥ 𝑅𝑠 − 𝜖, (6)

where 𝑌
(𝑛)
𝐸 is the signal observed at the eavesdropper Eve.

The secrecy capacity 𝐶𝑆 is defined as the maximum of 𝑅𝑆 .
We define the secure degrees of freedom (SDoF) as

𝑆𝐷𝑜𝐹 = lim
𝑃→∞

𝐶𝑆

log(𝑃 )
, (7)

which is the prelog of secrecy capacity.

III. MAIN RESULT: ACHIEVABLE SDOF SCHEME

Theorem 1. For a heterogeneous ISI wiretap channel in
the presence of a single helper without any CSIT and with
effective channel interference links of lengths 𝐿𝐵 and 𝐿𝐸 ,
the following SDoF is achievable

𝑆𝐷𝑜𝐹 ≥ (𝐿𝐵 − 𝐿𝐸)
+

2(𝐿𝐵 − 1)
, (8)

where (𝑥)+
Δ
= max(𝑥, 0) 𝑎𝑛𝑑 𝐿𝐵 > 1.

Before presenting the proof of Theorem 1, we first present
some representative examples that highlight the key ideas
behind the general scheme and show the feasibility of positive
secure degrees of freedom with no CSI at Alice or the Helper.

Example 1: Consider 𝐿𝐵 = 2 and 𝐿𝐸 = 1. This means
that, for the given values of 𝐿𝐵 and 𝐿𝐸 , any symbol sent by
Alice or Charlie will be seen over two time slots (channel
instants) at Bob and over one time slot at Eve. Our goal
is to show that the achievable SDoF is 𝐿𝐵−𝐿𝐸

2(𝐿𝐵−1) = 1
2 . In

the first time slot, Alice transmits an information symbol 𝑆1

and Charlie transmits an artificial noise symbol 𝑁1. Then,
Alice and Charlie remain silent over the next time slot,
which can also be viewed as zero-padding (see Fig. 2). Since
the channel coefficients are independently and identically
distributed continuous random variables, Bob observes two
independent linear equations 𝐿1𝐵(𝑆1, 𝑁1) and 𝐿2𝐵(𝑆1, 𝑁1),
from which he can solve for 𝑆1 and 𝑁1 and, therefore, be
able to extract the information symbol 𝑆1. Eve, on the other
hand, will only observe one linear equation 𝐿1𝐸(𝑆1, 𝑁1),
from which she can neither solve for 𝑆1 nor 𝑁1. Here 𝐿𝑖𝐵( . )
and 𝐿𝑖𝐸( . ) respectively denote the linear combinations re-
ceived at Bob and Eve in the 𝑖th time slot. Therefore, we
can securely transmit 𝐿𝐵 − 𝐿𝐸 = 1 information symbol
using 2(𝐿𝐵 − 1) = 2 time slots, i.e., this scheme achieves
𝑆𝐷𝑜𝐹 = 𝐿𝐵−𝐿𝐸

2(𝐿𝐵−1) =
1
2 .

The following example demonstrates the scenario where
Alice (in addition to Charlie) also transmits artificial noise
symbols in addition to information symbols to achieve the
secure degrees of freedom stated in Theorem 1.

Example 2: Consider 𝐿𝐵 = 3 and 𝐿𝐸 = 2. This means that
any symbol sent by Alice or Charlie will be seen over three
time slots at Bob and over two time slots at Eve. This scheme
is composed of a total of 2(𝐿𝐵−1) = 4 time slots and is able
to securely deliver 𝐿𝐵 −𝐿𝐸 = 1 information symbol to Bob.
In the first time slot, Alice transmits 𝐿𝐵−𝐿𝐸 = 1 information
symbol denoted by 𝑆1. In the second time slot, Alice transmits
𝐿𝐸−1 = 1 artificial noise symbol denoted by 𝑈1. In the third
and fourth time slots (i.e. over the last 𝐿𝐵−1 time slots), Alice
remains silent (which can also be viewed as zero-padding).
Charlie consecutively transmits artificial noise symbols 𝑁1

and 𝑁2 over the first and the second time slots (i.e. Charlie
sends 𝐿𝐵 −1 artificial noise symbols). Charlie remains silent
in the third and fourth time slots (see Fig. 3). Since the
channel coefficients are independently and identically dis-
tributed continuous random variables, Bob observes four inde-
pendent linear equations 𝐿1𝐵(𝑆1, 𝑁1), 𝐿2𝐵(𝑆1, 𝑁1, 𝑈1, 𝑁2),
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Fig. 2: Wiretap channel with ISI example with 𝐿𝐵 = 2 and 𝐿𝐸 = 1 where Charlie sends artificial noise (𝑁1).
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Fig. 3: Wiretap channel with ISI example with 𝐿𝐵 = 3 and 𝐿𝐸 = 2 where Alice and Charlie send artificial noise (𝑈1) and (𝑁1, 𝑁2).

𝐿3𝐵(𝑆1, 𝑁1, 𝑈1, 𝑁2), and 𝐿4𝐵(𝑈1, 𝑁2), from which he can
solve for 𝑆1, 𝑁1, 𝑈1, and 𝑁2. Bob is, hence, able to
extract the information symbol 𝑆1 and discard the artifi-
cial noise symbols. Eve, on the other hand, will observe
three linear combinations 𝐿1𝐸(𝑆1, 𝑁1), 𝐿2𝐸(𝑆1, 𝑁1, 𝑈1, 𝑁2),
𝐿3𝐸(𝑈1, 𝑁2), where all the 𝐿𝐵−𝐿𝐸 information symbols are
fully immersed in the artificial noise symbols (𝑁1, 𝑈1, 𝑁2).
Therefore, we can securely transmit 𝐿𝐵−𝐿𝐸 = 1 information
symbol to Bob using 2(𝐿𝐵 − 1) = 4 time slots. Thus, this
scheme achieves 𝑆𝐷𝑜𝐹 = 𝐿𝐵−𝐿𝐸

2(𝐿𝐵−1) =
1
4 .

IV. PROOF OF THEOREM 1

We consider a transmission channel block with length
2(𝐿𝐵−1) in order to securely transmit 𝐿𝐵−𝐿𝐸 information
symbols to Bob. The order of information and artificial noise
symbols transmission is described next:
Transmission by Alice
∙ In the first 𝐿𝐵−𝐿𝐸 time slots, Alice transmits information
symbols

(
i.e. a vector 𝑆 =

[
𝑆1 𝑆1 . . . 𝑆𝐿𝐵−𝐿𝐸

])
.

∙ In the next 𝐿𝐸−1 time slots, Alice transmits artificial noise
symbols

(
i.e. a noise vector 𝑈 =

[
𝑈1 𝑈2 . . . 𝑈𝐿𝐸−1

])
.

∙ In the last 𝐿𝐵 − 1 time slots, Alice remains silent.
Transmission by Charlie (helper)
∙ In the first 𝐿𝐵 − 1 time slots, Charlie transmits in-
dependently and identically distributed Gaussian artificial
noise symbols, each with zero mean and variance 𝑃(
i.e. a noise vector 𝑁 =

[
𝑁1 𝑁2 . . . 𝑁𝐿𝐵−1

])
.

∙ In the last 𝐿𝐵 − 1 time slots, Charlie remains silent.
The received signals at Bob and Eve in a particular block,

respectively, can be expressed as follows:

𝑌𝐵 = HBA𝑋𝐴 +HBC𝑋𝐶 + 𝑍𝐵 (9)

𝑌𝐸 = HEA𝑋𝐴 +HEC𝑋𝐶 + 𝑍𝐸 , (10)

where 𝑌𝐵 is of size 2(𝐿𝐵−1)×1 and 𝑌𝐸 is of size (𝐿𝐵+𝐿𝐸−
2)×1. HBA is the 2(𝐿𝐵−1)×(𝐿𝐵−1) channel matrix portion
carrying the signal vector 𝑋𝐴 of size (𝐿𝐵−1)×1 from Alice
to Bob. HBC is the 2(𝐿𝐵−1)×(𝐿𝐵−1) portion carrying the
signal vector 𝑋𝐶 of size (𝐿𝐵 − 1)× 1 from Charlie to Bob.
HEA is the (𝐿𝐵 +𝐿𝐸 − 2)× (𝐿𝐵 − 1) portion carrying 𝑋𝐴

from Alice to Eve and HEC is the (𝐿𝐵+𝐿𝐸−2)×(𝐿𝐵−1)
portion carrying 𝑋𝐶 from Charlie to Eve. Note that 𝑋𝐴 =
[𝑆 𝑈 ]𝑇 and 𝑋𝐶 = [𝑁 ]𝑇 . Thus, HBA𝑋𝐴 has structure

HBA𝑋𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐵𝐴[1] 0 ⋅ ⋅ ⋅ 0

ℎ𝐵𝐴[2] ℎ𝐵𝐴[1]
. . .

...
... ℎ𝐵𝐴[2]

. . . 0

ℎ𝐵𝐴[𝐿𝐵 ]
...

. . . ℎ𝐵𝐴[1]

0 ℎ𝐵𝐴[𝐿𝐵 ]
. . . ℎ𝐵𝐴[2]

...
. . .

. . .
...

0 ⋅ ⋅ ⋅ 0 ℎ𝐵𝐴[𝐿𝐵 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1

𝑆2

...

𝑆𝐿𝐵−𝐿𝐸

𝑈1

𝑈2

...

𝑈𝐿𝐸−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and HBC𝑋𝐶 is given by

HBC𝑋𝐶 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐵𝐶 [1] 0 ⋅ ⋅ ⋅ 0

ℎ𝐵𝐶 [2] ℎ𝐵𝐶 [1]
. . .

...
... ℎ𝐵𝐶 [2]

. . . 0

ℎ𝐵𝐶 [𝐿𝐵 ]
...

. . . ℎ𝐵𝐶 [1]

0 ℎ𝐵𝐶 [𝐿𝐵 ]
. . . ℎ𝐵𝐶 [2]

...
. . .

. . .
...

0 ⋅ ⋅ ⋅ 0 ℎ𝐵𝐶 [𝐿𝐵 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝑁1

𝑁2

...

𝑁𝐿𝐵−1

⎤
⎥⎥⎥⎥⎦
.



Similarly, HEA𝑋𝐴 is given by

HEA𝑋𝐴 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐸𝐴[1] 0 ⋅ ⋅ ⋅ 0

ℎ𝐸𝐴[2] ℎ𝐸𝐴[1]
. . .

...
... ℎ𝐸𝐴[2]

. . . 0

ℎ𝐸𝐴[𝐿𝐸 ]
...

. . . ℎ𝐸𝐴[1]

0 ℎ𝐸𝐴[𝐿𝐸 ]
. . . ℎ𝐸𝐴[2]

...
. . .

. . .
...

0 ⋅ ⋅ ⋅ 0 ℎ𝐸𝐴[𝐿𝐸 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1

𝑆2

...

𝑆𝐿𝐵−𝐿𝐸

𝑈1

𝑈2

...

𝑈𝐿𝐸−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and HEC𝑋𝐶 is given by

HEC𝑋𝐶 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ𝐸𝐶 [1] 0 ⋅ ⋅ ⋅ 0

ℎ𝐸𝐶 [2] ℎ𝐸𝐶 [1]
. . .

...
... ℎ𝐸𝐶 [2]

. . . 0

ℎ𝐸𝐶 [𝐿𝐸 ]
...

. . . ℎ𝐸𝐶 [1]

0 ℎ𝐸𝐶 [𝐿𝐸 ]
. . . ℎ𝐸𝐶 [2]

...
. . .

. . .
...

0 ⋅ ⋅ ⋅ 0 ℎ𝐸𝐶 [𝐿𝐸 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝑁1

𝑁2

...

𝑁𝐿𝐵−1

⎤
⎥⎥⎥⎥⎦
.

𝑍𝐵 and 𝑍𝐸 are channel noise vectors received at Bob and
Eve, respectively. The signals 𝑌𝐵 and 𝑌𝐸 can be rewritten as

𝑌𝐵 = HBS𝑆 +HBU𝑈 +HBN𝑁 + 𝑍𝐵 (11)

𝑌𝐸 = HES𝑆 +HEU𝑈 +HEN𝑁 + 𝑍𝐸 , (12)

where HBS is the 2(𝐿𝐵−1)×(𝐿𝐵−𝐿𝐸) channel matrix por-
tion of HBA over which the information symbol vector 𝑆 is
received from Alice to Bob, HBU is the 2(𝐿𝐵−1)×(𝐿𝐸−1)
channel matrix portion of HBA over which the artificial noise
symbol vector 𝑈 is received from Alice to Bob, whereas HBN

is the 2(𝐿𝐵−1)×(𝐿𝐵−1) channel matrix equivalent to HBC

over which the artificial noise symbol vector 𝑁 is received
from Charlie to Bob. HES is the (𝐿𝐵+𝐿𝐸−2)×(𝐿𝐵−𝐿𝐸)
portion of HEA over which 𝑆 is received from Alice to Eve,
HEU is the (𝐿𝐵 +𝐿𝐸 − 2)× (𝐿𝐸 − 1) portion of HEA over
which 𝑈 is received from Alice to Eve, whereas HEN is the
(𝐿𝐵 + 𝐿𝐸 − 2) × (𝐿𝐵 − 1) matrix equivalent to HEC over
which 𝑁 is received from Charlie to Eve.

To facilitate the proof of Theorem 1 using matrix properties,
a simplified view of the proposed system of equations (11)
and (12) is to think of a combined input signal vector 𝑋 of
size 2(𝐿𝐵 − 1) × 1 created from the concatenation of the
vectors 𝑆 and 𝑈 from Alice and 𝑁 from Charlie such that
𝑋 =

[
𝑆 𝑈 𝑁

]𝑇
. Each entry in the vector 𝑋 , be it an in-

formation symbol or an artificial noise symbol, is assumed to
be transmitted with a power 𝑃 satisfying the power constrains
in equations (3) and (4). Moreover, a horizontal concatenation
can be done to matrices HBS, HBU, and HBN to form a
composite matrix HB, whereas a horizontal concatenation of
matrices HES, HEU, and HEN leads to a composite matrix

HE. Equations (11) and (12) can, hence, be simplified into

𝑌𝐵 = HB𝑋 + 𝑍𝐵 (13)

𝑌𝐸 = HE𝑋 + 𝑍𝐸 , (14)

where HB is the complete 2(𝐿𝐵 − 1) × 2(𝐿𝐵 − 1) channel
matrix seen at Bob and HE is the complete (𝐿𝐵+𝐿𝐸 −2)×
2(𝐿𝐵 − 1) channel matrix seen at Eve.

Information theoretically, for a transmission block of length
2(𝐿𝐵 − 1), the achievable secrecy rate 𝑅𝑆 is defined as

𝑅𝑆 =
𝐼(𝑆;𝑌𝐵)− 𝐼(𝑆;𝑌𝐸)

2(𝐿𝐵 − 1)
, (15)

where 𝐼(𝑆;𝑌𝐵) is the mutual information between the infor-
mation symbol vector 𝑆 transmitted by Alice and 𝑌𝐵 , the
signal received at Bob. 𝐼(𝑆;𝑌𝐸) is the mutual information
between 𝑆 and the vector 𝑌𝐸 received at Eve. These terms
can be written as

𝐼(𝑆;𝑌𝐵) = ℎ(𝑌𝐵)− ℎ(𝑌𝐵 ∣𝑆) (16)

𝐼(𝑆;𝑌𝐸) = ℎ(𝑌𝐸)− ℎ(𝑌𝐸 ∣𝑆). (17)

Next, the terms of equation (16) are expanded as follows:

ℎ(𝑌𝐵) = ℎ(HBS𝑆 +HBU𝑈 +HBN𝑁 + 𝑍𝐵) (18)

= log(𝜋𝑒)2(𝐿𝐵−1) det(KBSUN
) (19)

= log(𝜋𝑒)2(𝐿𝐵−1) det(IBSUN
+ 𝑃HBSUN

HH
BSUN

), (20)

where (19) follows from [11], KBSUN
= IBSUN

+
𝑃HBSUN

HH
BSUN

is the covariance matrix of 𝑌𝐵 , MH

denotes the complex conjugate of M, and IBSUN
is the

2(𝐿𝐵−1)×2(𝐿𝐵−1) covariance of 𝑍𝐵 . HBSUN
is identical

to the channel matrix HB, and 𝑃 is the symbol transmission
power.

ℎ(𝑌𝐵 ∣𝑆) = ℎ(HBS𝑆 +HBU𝑈 +HBN𝑁 + 𝑍𝐵 ∣𝑆) (21)

= ℎ(HBU𝑈 +HBN𝑁 + 𝑍𝐵) (22)

= ℎ(HBUN
[𝑈𝑁 ]𝑇 + 𝑍𝐵) (23)

= log(𝜋𝑒)2(𝐿𝐵−1) det(IBUN
+ 𝑃HBUN

HH
BUN

), (24)

where (22) follows from the independence of 𝑆 from (𝑈 , 𝑁 ,
𝑍𝐵). IBUN

is equivalent to IBSUN
from (20) and HBUN

is
the concatenation of HBU and HBN. IBUN

+𝑃HBUN
HH

BUN

is the covariance matrix of HBUN
[𝑈𝑁 ]𝑇 + 𝑍𝐵 .

Substituting (20) and (24) into (16), we have

𝐼(𝑆;𝑌𝐵) = log
det(IBSUN

+ 𝑃HBSUN
HH

BSUN
)

det(IBUN
+ 𝑃HBUN

HH
BUN

)
(25)

= log
det(IBSUN

+ 𝑃ΨBSUN
ΛBSUN

ΛH
BSUN

ΨH
BSUN

)

det(IBUN
+ 𝑃ΨBUN

ΛBUN
ΛH

BUN
ΨH

BUN
)

(26)

= log
det(IBSUN

+ 𝑃 Λ̂BSUN
)

det(IBUN
+ 𝑃 Λ̂BUN

)
(27)

=

2(𝐿𝐵−1)∑
𝑖=1

log (1 + 𝑃 ∣𝜆𝐵𝑆𝑈𝑁𝑖
∣2)

−
𝐿𝐵+𝐿𝐸−2∑

𝑖=1

log (1 + 𝑃 ∣𝜆𝐵𝑈𝑁𝑖
∣2), (28)



where the numerator of (26) follows from the singu-
lar value decomposition (SVD) of HBSUN

= HB into
ΨBSUN

ΛBSUN
VH

BSUN
and the denominator follows from the

SVD of HBUN
into ΨBUN

ΛBUN
VH

BUN
. The numerator of

(27) follows from the determinant identity det(I + AB) =
det(I+BA) also known as Sylvester’s Identity, matrix scalar
multiplication associativity and commutativity properties, and
the fact that ΨBSUN

and VH
BSUN

are unitary matrices whose
product is an identity matrix. The denominator of (27) follows
from the identity det(I+AB) = det(I+BA), matrix scalar
multiplication associativity and commutativity properties, and
the fact that ΨBUN

and VH
BUN

are unitary matrices whose
product is an identity matrix. As shown by Lemma 1, HB =
HBSUN

is full rank, almost surely (see Appendix). Therefore,
the first term of (28) follows from the fact that Λ̂BSUN

is a
square diagonal matrix whose elements are 2(𝐿𝐵−1) ordered
squares of random singular values of the matrix HBSUN

[12].
The second term of (28) follows from the fact that Λ̂BUN

is
a square diagonal matrix whose elements are (𝐿𝐵 +𝐿𝐸 − 2)
ordered squares of random singular values of the full column
rank matrix HBUN

[12]. HBUN
is full rank since it is a full

column submatrix of the full rank matrix HB. See Lemma 1.
The first term of equation (17) can be expanded as

ℎ(𝑌𝐸) = ℎ(HES𝑆 +HEU𝑈 +HEN𝑁 + 𝑍𝐸) (29)

= log(𝜋𝑒)(𝐿𝐵+𝐿𝐸−2) det(KESUN
), (30)

where KESUN
= IESUN

+𝑃HESUN
HH

ESUN
is the covariance

of 𝑌𝐸 . IESUN
is the covariance of 𝑍𝐸 and HESUN

is identical
to HE. In Lemma 2 (see Appendix), it is shown that HE is
of rank 𝐿𝐵 + 𝐿𝐸 − 2, almost surely.
Similarly, we expand the second term of equation (17) as

ℎ(𝑌𝐸 ∣𝑆) = ℎ(HES𝑆 +HEU𝑈 +HEN𝑁 + 𝑍𝐸 ∣𝑆) (31)

= ℎ(HEU𝑈 +HEN𝑁 + 𝑍𝐸) (32)

= ℎ(HEUN
[𝑈𝑁 ]𝑇 + 𝑍𝐸) (33)

= log(𝜋𝑒)(𝐿𝐵+𝐿𝐸−2) det(IEUN
+ 𝑃HEUN

HH
EUN

), (34)

where (32) is from the independence of 𝑆 from (𝑈,𝑁,𝑍𝐸).
HEUN

is the concatenation of HEU and HEN. IEUN
+

𝑃HEUN
HH

EUN
is the covariance of HEUN

[𝑈𝑁 ]𝑇 + 𝑍𝐸 .
Equation (17) can, therefore, be rewritten as

𝐼(𝑆;𝑌𝐸) = log
det(IESUN

+ 𝑃HESUN
HH

ESUN
)

det(IEUN
+ 𝑃HEUN

HH
EUN

)
(35)

=

(𝐿𝐵+𝐿𝐸−2)∑
𝑖=1

log (1 + 𝑃 ∣𝜆𝐸𝑆𝑈𝑁𝑖
∣2)

−
𝐿𝐵+𝐿𝐸−2∑

𝑖=1

log (1 + 𝑃 ∣𝜆𝐸𝑈𝑁𝑖
∣2), (36)

where (35)-(36) follow the same arguments as (25)-(28)
From the definition of SDoF in (7), the definition of secrecy

rate in (15), and the expansion of the individual terms of
equations (16) and (17) into (28) and (36), respectively, we
obtain the following SDoF.

𝑆𝐷𝑜𝐹 ≥ lim
𝑃→∞

𝑅𝑆

log(𝑃 )
= lim

𝑃→∞
𝐼(𝑆;𝑌𝐵)− 𝐼(𝑆;𝑌𝐸)

2(𝐿𝐵 − 1) log(𝑃 )
(37)

= lim
𝑃→∞

(∑2(𝐿𝐵−1)
𝑖=1 log (1 + 𝑃 ∣𝜆𝐵𝑆𝑈𝑁𝑖

∣2)
2(𝐿𝐵 − 1) log(𝑃 )

−
∑𝐿𝐵+𝐿𝐸−2

𝑖=1 log (1 + 𝑃 ∣𝜆𝐵𝑈𝑁𝑖
∣2)

2(𝐿𝐵 − 1) log(𝑃 )

)
(38)

− lim
𝑃→∞

(∑𝐿𝐵+𝐿𝐸−2
𝑖=1 log (1 + 𝑃 ∣𝜆𝐸𝑆𝑈𝑁𝑖

∣2)
2(𝐿𝐵 − 1) log(𝑃 )

−
∑𝐿𝐵+𝐿𝐸−2

𝑖=1 log (1 + 𝑃 ∣𝜆𝐸𝑈𝑁𝑖
∣2)

2(𝐿𝐵 − 1) log(𝑃 )

)
(39)

=
(2(𝐿𝐵 − 1)− (𝐿𝐵 + 𝐿𝐸 − 2)

2(𝐿𝐵 − 1)

)

−
( (𝐿𝐵 + 𝐿𝐸 − 2)− (𝐿𝐵 + 𝐿𝐸 − 2)

2(𝐿𝐵 − 1)

)
(40)

=
𝐿𝐵 − 𝐿𝐸

2(𝐿𝐵 − 1)
. (41)

Hence, this completes the proof of Theorem 1.

V. CONCLUSION AND FURTHER RESEARCH

We investigated the SISO wiretap channel with ISI in the
presence of a helper and characterized its achievable SDoF
without any CSIT. We showed how strategic transmission
of information and artificial noise symbols achieves positive
SDoF by taking the advantage of the heterogeneity in the ISI
link lengths towards the legitimate receiver and the eavesdrop-
per. There are several interesting directions for future work
stemming from the exploitation of ISI heterogeneity. We are
currently investigating the generalization of this scheme to the
case of arbitrary ISI link lengths, obtaining an upper bound
on SDoF in the ISI heterogeneity, and the use of multiple
antennas to further exploit ISI heterogeneity to achieve higher
SDoF than the SISO setting.

APPENDIX

We now provide proofs of ranks of the channel matrices
HB and HE that were essential in the proof of Theorem 1.

Lemma 1. Let HB be a square channel matrix with
size 2(𝐿𝐵 − 1) × 2(𝐿𝐵 − 1) whose nonzero elements
in the first column 𝐶1𝐵 and in second column 𝐶2𝐵 are
the independently and identically distributed continuous
random channel coefficients from Alice to Bob and
from Charlie to Bob, respectively, such that 𝐶1𝐵 =[
ℎ𝐵𝐴[1] ℎ𝐵𝐴[2] . . . ℎ𝐵𝐴[𝐿𝐵 ] 0 . . . 0

]𝑇
and

𝐶2𝐵 =
[
ℎ𝐵𝐶 [1] ℎ𝐵𝐶 [2] . . . ℎ𝐵𝐶 [𝐿𝐵 ] 0 . . . 0

]𝑇
.

And let the rest of columns of HB be 𝐿𝐵 − 2 simultaneous
vertically circular permutations of the first and the second
columns, respectively. Then, the matrix HB is full rank.

Proof : Consider the received square channel matrix HB at
Bob. To prove that it is full rank, it suffices to show that

HB𝛼⃗
𝑇 = 0⃗ (42)

has only the trivial solution 𝛼⃗ = 0⃗, for some vector
𝛼⃗ =

[
𝛼1 𝛼2 . . . 𝛼𝑟𝐵=2(𝐿𝐵−1)

]
. Since permutations of

columns of a matrix do not alter its rank, we can write
HB with columns permuted into a specific positions and,



⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ
[1]
𝐵𝐴 ℎ

[1]
𝐵𝐶 0 0 . . . 0 0

ℎ
[2]
𝐵𝐴 ℎ

[2]
𝐵𝐶 ℎ

[1]
𝐵𝐴 ℎ

[1]
𝐵𝐶

. . .
...

...

ℎ
[3]
𝐵𝐴 ℎ

[3]
𝐵𝐶 ℎ

[2]
𝐵𝐴 ℎ

[2]
𝐵𝐶

. . . 0 0
...

... ℎ
[3]
𝐵𝐴 ℎ

[3]
𝐵𝐶

. . . ℎ[1]𝐵𝐴 ℎ
[1]
𝐵𝐶

ℎ
[𝐿𝐵 ]
𝐵𝐴 ℎ

[𝐿𝐵 ]
𝐵𝐶

...
...

... ℎ
[2]
𝐵𝐴 ℎ

[2]
𝐵𝐶

0 0 ℎ
[𝐿𝐵 ]
𝐵𝐴 ℎ

[𝐿𝐵 ]
𝐵𝐶

. . . ℎ[3]𝐵𝐴 ℎ
[3]
𝐵𝐶

...
... 0 0

. . .
...

...
...

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...

0 0 0 0 . . . ℎ
[𝐿𝐵 ]
𝐵𝐴 ℎ

[𝐿𝐵 ]
𝐵𝐶

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

𝛼1
𝛼2

...

...
𝛼𝑟𝐵

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
...
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(43)

therefore, be able to explicitly write the system in (42) as
shown in (43).

From the first row of the system of equations (43),
we have 𝛼1ℎ

[1]
𝐵𝐴 + 𝛼2ℎ

[1]
𝐵𝐶 = 0. This is not possible,

since ℎ𝐵𝐴[1] and ℎ𝐵𝐶 [1] are independently and identi-
cally distributed continuous random channel coefficients re-
spectively selected from two independent channel vectors
𝐻𝐵𝐴 =

[
ℎ𝐵𝐴[1] ℎ𝐵𝐴[2] . . . ℎ𝐵𝐴[𝐿𝐵 ]

]𝑇
and 𝐻𝐵𝐶 =[

ℎ𝐵𝐶 [1] ℎ𝐵𝐶 [2] . . . ℎ𝐵𝐶 [𝐿𝐵 ]
]𝑇

, unless 𝛼1 = 𝛼2 = 0.
Now, let 𝛼1 = 𝛼2 = 0. From the second row, we get
𝛼1ℎ

[2]
𝐵𝐴+𝛼2ℎ

[2]
𝐵𝐶+𝛼3ℎ

[1]
𝐵𝐴+𝛼4ℎ

[1]
𝐵𝐶 = 𝛼3ℎ

[1]
𝐵𝐴+𝛼4ℎ

[1]
𝐵𝐶 = 0,

which is also not possible unless 𝛼3 = 𝛼4 = 0. Continuing
recursively through all the equations in (43) in a similar order
as above, using the same argument of contradiction, leads to
the conclusion that the system in (42) has only the trivial
solution 𝛼⃗ = 0⃗. This proves that HB is of full rank 2(𝐿𝐵−1).

Lemma 2. Let HE be a rectangular channel matrix of size
(𝐿𝐵+𝐿𝐸−2)×2(𝐿𝐵−1), where (𝐿𝐵+𝐿𝐸−2) < 2(𝐿𝐵−1),
whose nonzero elements in the first column 𝐶1𝐸 and in second
column 𝐶2𝐸 are the independently and identically distributed
continuous random channel coefficients from Alice to Eve
and from Charlie to Eve, respectively, such that 𝐶1𝐸 =[
ℎ𝐸𝐴[1] ℎ𝐸𝐴[2] . . . ℎ𝐸𝐴[𝐿𝐸 ] 0 . . . 0

]𝑇
and

𝐶2𝐸 =
[
ℎ𝐸𝐶 [1] ℎ𝐸𝐶 [2] . . . ℎ𝐸𝐶 [𝐿𝐸 ] 0 . . . 0

]𝑇
.

And let the rest of columns of HE be 𝐿𝐵 − 2 simultaneous
vertically circular permutations of the first and the second
columns, respectively. Then, HE is of rank (𝐿𝐵 + 𝐿𝐸 − 2).

Proof : Consider the received rectangular channel matrix
HE (of similar construct to HB in (43) albeit rectangular) at
Eve. To prove that its rank is (𝐿𝐵+𝐿𝐸−2), it suffices to show
that its submatrix HEUN

of size (𝐿𝐵+𝐿𝐸−2)×(𝐿𝐵+𝐿𝐸−2)
that carries all the artificial noise symbols (from both Charlie
and Alice) is full rank. Therefore, it suffices to show that

HEUN
𝛽 𝑇 = 0⃗ (44)

has only the trivial solution 𝛽 = 0⃗ for some vector
𝛽 =

[
𝛽1 𝛽2 . . . 𝛽𝑟𝐸=𝐿𝐵+𝐿𝐸−2

]
. Since permutations of

columns of a matrix do not alter its rank, we can write HEUN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ
[1]
𝐸𝐶 0 . . . 0 0 . . . 0 0

ℎ
[2]
𝐸𝐶 ℎ

[1]
𝐸𝐶 . . .

...
...

. . . 0 0

ℎ
[3]
𝐸𝐶 ℎ

[2]
𝐸𝐶 . . . 0 0

... 0 0
... ℎ

[3]
𝐸𝐶

. . .
... ℎ

[1]
𝐸𝐴

. . .
...

...

ℎ
[𝐿𝐸 ]
𝐸𝐶

...
. . . 0

...
... 0

...

0 ℎ
[𝐿𝐸 ]
𝐸𝐶

. . . ℎ[1]𝐸𝐶

...
... ℎ

[1]
𝐸𝐴 0

... 0
. . . ℎ[2]𝐸𝐶 ℎ

[𝐿𝐸 ]
𝐸𝐴

...
... ℎ

[1]
𝐸𝐴

...
...

. . . ℎ[3]𝐸𝐶 0
. . .

...
...

...
...

. . .
...

...
. . . ℎ[𝐿𝐸 ]

𝐸𝐴

...

0 0 . . . ℎ
[𝐿𝐸 ]
𝐸𝐶 0 . . . 0 ℎ

[𝐿𝐸 ]
𝐸𝐴

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

𝛽1
𝛽2
...
...

𝛽𝑟𝐸

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
...
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(45)

with columns permuted into specific positions as in (45).
From the first equation of system (45), we have 𝛽1ℎ

[1]
𝐸𝐶 =

0. This is only possible if 𝛽1 = 0 because ℎ𝐸𝐶 [1] is a nonzero
channel coefficient selected from the channel vector 𝐻𝐸𝐶 =[
ℎ𝐸𝐶 [1] ℎ𝐸𝐶 [2] . . . ℎ𝐸𝐶 [𝐿𝐸 ]

]𝑇
. Now, let 𝛽1 = 0. From

the second row, we have 𝛽1ℎ
[2]
𝐸𝐶 + 𝛽2ℎ

[1]
𝐸𝐶 = 𝛽2ℎ

[1]
𝐸𝐶 = 0.

This condition is not possible unless 𝛽2 = 0. Continuing re-
cursively through system (45) with the same logical argument
of contradiction shows that the system (44) has only the trivial
solution 𝛽 = 0⃗. This proves that HEUN

is full rank.
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