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Wnt/Yes-Associated Protein Interactions
During Neural Tissue Patterning
of Human Induced Pluripotent Stem Cells

Julie Bejoy, MS,1 Liqing Song, MS,1 Yi Zhou, PhD,2 and Yan Li, PhD1

Human induced pluripotent stem cells (hiPSCs) have special ability to self-assemble into neural spheroids or mini-
brain-like structures.During the self-assemblyprocess,Wnt signalingplays an important role in regional patterning and
establishing positional identity of hiPSC-derived neural progenitors. Recently, the role of Wnt signaling in regulating
Yes-associated protein (YAP) expression (nuclear or cytoplasmic), the pivotal regulator during organ growth and tissue
generation, has attracted increasing interests. However, the interactions between Wnt and YAP expression for neural
lineage commitment of hiPSCs remain poorly explored. The objective of this study is to investigate the effects ofWnt
signaling and YAP expression on the cellular population in three-dimensional (3D) neural spheroids derived from
hiPSCs. In this study, Wnt signaling was activated using CHIR99021 for 3D neural spheroids derived from human
iPSK3 cells through embryoid body formation. Our results indicate thatWnt activation induces nuclear localization of
YAP and upregulates the expression of HOXB4, the marker for hindbrain/spinal cord. By contrast, the cells exhibit
more rostral forebrain neural identity (expression of TBR1) without Wnt activation. Cytochalasin D was then used to
induce cytoplasmic YAP and the results showed the decreased HOXB4 expression. In addition, the incorporation of
microparticles in the neural spheroids was investigated for the perturbation of neural patterning. This study may
indicate the bidirectional interactions ofWnt signaling andYAPexpression during neural tissue patterning,which have
the significance in neurological disease modeling, drug screening, and neural tissue regeneration.
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Introduction

Human pluripotent stem cells (hPSCs) are able to
self-assemble into three-dimensional (3D) organoids

that have the organized structure that in part recapitulate
human tissue morphogenesis.1–5 In particular, mini-brains
derived from hPSCs display distinct regions that are identi-
fiable for forebrain, midbrain, and hindbrain layers.1 Simi-
larly, the forebrain cortical spheroids or organoids derived
from human induced pluripotent stem cells (hiPSCs) show the
layer-specific structure that is similar to human cortex.3,6

These studies are significant to enable the access to human
brain-like tissue and recapitulate the genetic neurological
diseases such as microcephaly,1 Alzheimer’s disease,7 and
amyotrophic lateral sclerosis8 for pathological and virus in-
fection study.6 In addition, these 3D neural constructs provide

a novel platform for drug screening that provides the physi-
ologically relevant human brain tissue models.2,9

During the hiPSC self-assembly process, the influence of
biochemical signaling on the brain tissue structure develop-
ment has been poorly understood. Most current strategies are
to let hiPSC self-organize in the presence of a differentiation
medium.10 This approach provides little guidance and pre-
diction on the structure and the specific region of the brain
tissues or organoids derived from hiPSCs. In addition, the
procedure is very long, lasting from 50 days up to 140 days.3

All these facts motivate advanced understanding of the ex-
trinsic factors and intrinsic signaling pathways to influence
neural tissue patterning from hiPSCs.

Wnt signaling is one of the major pathways that influence
coordinated proliferation and differentiation during organ
growth and serves as extrinsic signaling to regulate stem cell
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fate decisions during tissue development and regeneration.11

The most known Wnt pathway is the canonical Wnt/b-catenin
signaling. Under Wnt activation, Wnt protein attaches to its
receptor(s) at cell membrane and cause b-catenin transloca-
tion into the nucleus, which regulates the transcription of Wnt
target genes by binding to T-cell factor/lymphoid enhancer
factor.12,13 The novel role of Wnt signaling in neural differ-
entiation of hPSCs has drawn attentions recently.14,15 For
example, Wnt signaling was found to regulate neural differ-
entiation along rostral (Wnt low) and caudal (Wnt high)
identity when Wnt was increased from a low to high level,
resulting in different cellular composition of hPSC-derived
neural progenitor cells (NPCs).15 Wnt activation supplemen-
ted with retinoic acid (RA) and ventralization factor Sonic
Hedgehog also promoted motor neuron differentiation from
hPSCs, showing caudalization effect.14,16 However, the in-
fluence of Wnt signaling on spatial patterning of neural
populations from hPSCs in 3D culture has not been well
understood.

Moreover, Wnt pathway impacts Hippo/Yes-associated
protein (YAP) signaling in organ growth and size control.17,18

YAP/transcriptional coactivator with PDZ-binding motif
(TAZ) and b-catenin can form destruction complex and
modulate cellular response to Wnt signaling.19 YAP/TAZ
may also affect Wnt signaling through an alternative pathway
(noncanonical).20 While the biological relevance of Wnt and
YAP interactions has been demonstrated for PSC self-
renewal and crypt growth in the mouse small intestine,19 the
biological relevance on neural patterning of hPSCs has not
been studied. In addition, stiffening stem cell aggregates with
microparticles, which are extensively used for growth factor
and drug delivery,21 may affect biophysical microenviron-
ment of the cells.22,23 Incorporation of microparticles also has
the potential to overcome the diffusion limitation in large
spheroids/organoids.21 But the influence of microparticle in-
corporation on Wnt-YAP interactions has not been investi-
gated. Revealing the convergence of Wnt and YAP during
neural tissue patterning from hiPSCs may allow predicting
and modulating brain tissue structure and function through
the regulation of extracellular microenvironment.

The objective of this study is to investigate the effects of
Wnt signaling and YAP expression on the cellular popu-
lation (i.e., cortical forebrain vs. hindbrain/spinal cord
identity) in 3D neural spheroids derived from hiPSCs using
Wnt activator CHIR99021 and YAP modulator Cytocha-
lasin D (CytoD). To perturb neural patterning, the corporation
of hiPSC-derived neural spheroids with polycaprolactone-
poly(dimethylsiloxane)-polycaprolactone (PCL-PDMS-PCL)
microparticles was also evaluated. This study should advance
our understanding on the patterning of neural tissue with
defined structure from hPSCs for future neurological disease
modeling, drug screening, and neural tissue regeneration.

Materials and Methods

Undifferentiated human iPSC culture

Human iPSK3 cells were derived from human foreskin
fibroblasts transfected with plasmid DNA encoding repro-
gramming factors OCT4, NANOG, SOX2, and LIN28
(kindly provided by Dr. Stephen Duncan, Medical College
of Wisconsin, and Dr. David Gilbert, Department of Bio-
logical Sciences of Florida State University).24,25 Human

iPSK3 cells were maintained in mTeSR serum-free medium
(StemCell Technologies, Inc., Vancouver, Canada) on six-
well plates coated with growth factor reduced Geltrex (Life
Technologies). The cells were passaged by Accutase dis-
sociation every 5–6 days and seeded at 1 · 106 cells per well
of six-well plate in the presence of 10 mM Y27632 (Sigma)
for the first 24 h.26,27

Preparation of PCL-PDMS-PCL microparticles

Macromers of PCLn-block-PDMSm-block-PCLn were
synthesized by ring-opening polymerization of e-caprolactone
in the presence of NH2�PDMSm�NH2 and tin catalyst.28–30

The repeat units for PCL (Gelest, Inc., Morrisville, PA) seg-
ment length were at n = 40. The PDMS (Sigma) segment
lengths were at m = 58. The chain propagation between olig-
omers was achieved by adding hexamethylene diisocyanate
(Sigma) as a coupling agent. The synthesized copolymer has
elastic modulus of 59 MPa. PCL-PDMS-PCL microparticles
were fabricated using a reversed phase precipitation method.31

Briefly, the copolymer solution in 1,2-dichloromethane was
slowly poured into a 1000-mL big beaker containing 500 mL
methanol. Microparticles were formed and precipitated when
stirring the solution at 100 rpm. The precipitate was filtered to
remove the mixture of 1,2-dichloromethane and methanol. After
extensive washing, the final products were dried under vacuum
for more than 24 h before the use in cell culture. The formed
microparticles have an average size of 50–60 mm in diameter.

Neural differentiation of human iPSCs

Human iPSK3 cells were seeded into Ultra-Low Attach-
ment (ULA) 24-well plates (Corning Incorporated, Corning,
NY) at 3 · 105 cells per well in differentiation medium
composed of Dulbecco’s modified Eagle’s medium/Nutrient
Mixture F-12 (DMEM/F-12) plus 2% B27 serum-free sup-
plement (Life Technologies).27,32 For some experiments,
iPSK3 cells were seeded in ULA 96-well plates at various
numbers (0.65, 1.25, 2.5, and 5 · 104 cells) per well to eval-
uate the effect of seeding cell number on the aggregate size.
Y27632 (10mM) was added during the seeding and removed
after 24 h. At day 1, the cells formed embryoid bodies (EBs)
and were treated with dual SMAD signaling inhibitors: 10 mM
SB431542 (Sigma) and 100 nM LDN193189 (Sigma) re-
ferred to as LDN/SB. After 7 days, the cells were treated with
fibroblast growth factor (FGF)-2 (10 ng/mL) and RA (5 mM;
Sigma).27,32 After another 8 days in suspension, the 3D NPC
spheroids (day 16) were replated onto Geltrex-coated surface.
For no growth factor protocol, no factor was added during
day 0–16. Next day after replating, the cells were treated with
Wnt activator CHIR99021 (StemCell Technologies, Inc.) at
10mM (CHIR+). The cells without the treatment were used
as the control (CHIR-). After 5 days of CHIR treatment, the
cells were characterized. For CytoD treatment, 2 days after
replating, the cells were treated with 1 mM CytoD (Sigma) for
48–72 h before characterization. The cells without the treat-
ment were used as the control.

For neural differentiation based on EB formation with
PCL-PDMS-PCL microparticles, PCL-PDMS-PCL micro-
particles were sterilized with 70% ethanol and then washed
three times with phosphate-buffered saline (PBS). The mi-
croparticles (0.2 mg/mL) were mixed with the hiPSK3 cells
and seeded in low attachment 24-well plates at 3 · 105 cells
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per well in differentiation medium and Y27632. The dif-
ferentiation protocol and all the treatments followed the
same procedure to the differentiation without the particles.

Aggregate size distribution

The images of NPC spheroids were captured over the
culture time (7 days) by a phase contrast microscopy. The
captured images were converted to binary images using
ImageJ software (http://rsb.info.nih.gov/ij) and analyzed
with the ‘‘particle analysis tool.’’ Through particle analysis
in ImageJ software, the Feret’s diameter of each aggregate
in the images can be calculated, which provided the size
distribution of the spheroids.33

Bromodeoxyuridine assay

Briefly, the cells were incubated in growth medium con-
taining 10mM Bromodeoxyuridine (BrdU) (Sigma) for
90 min. The cells were then fixed with 70% cold ethanol,
followed by a denaturation step using 2 N HCl/0.5% Triton
X-100 for 30 min in the dark. The samples were reduced with
1 mg/mL sodium borohydride for 5 min and incubated with
mouse anti-BrdU (1:100; Life Technologies) in blocking
buffer (0.5% Tween 20/1% bovine serum albumin in PBS),
followed by the incubation with Alexa Fluor� 488 goat anti-
Mouse IgG1 (1:100; Life Technologies). The cells were
counterstained with Hoechst 33342 and visualized using a
fluorescent microscope (Olympus IX70, Melville, NY).

Immunocytochemistry

Briefly, the samples were fixed with 4% paraformalde-
hyde (PFA) and permeabilized with 0.2–0.5% Triton X-100
for intracellular markers. The samples were then blocked
and incubated with various mouse or rabbit primary anti-
bodies (Supplementary Table S1; Supplementary Data are
available online at www.liebertpub.com/tea). After washing,
the cells were incubated with the corresponding secondary
antibody: Alexa Fluor 488 goat anti-Mouse IgG or Alexa Fluor
594 goat anti-Rabbit IgG (Life Technologies). The samples
with second antibody only were used as negative control. For
F-actin staining, the cells were incubated with Alexa Fluor 594
Phalloidin (Life Technologies). The samples were counter-
stained with Hoechst 33342 and visualized using a fluorescent
microscope (Olympus IX70, Melville, NY) or a confocal mi-
croscope (Zeiss LSM 880). The images (for HOXB4 and
TBR1) from five independent fields were analyzed using Im-
ageJ software. The proportion of positive cells was calculated
based on the area of marker of interest normalized to the nuclei,
indicating the relative expression among different conditions.
Nuclear and cytoplasmic YAP was determined based on the
expression pattern of image analysis using ImageJ software.

The Hoechst expression of each image was superimposed on
YAP image. Then, the nuclear YAP was counted and compared
with the total Hoechst to obtain the relative expression (Sup-
plementary Fig. S1A).

Flow cytometry

To quantify the levels of various neural marker expres-
sions, the cells were harvested by trypsinization and analyzed
by flow cytometry.34 Briefly, 1 · 106 cells per sample were
fixed with 4% PFA and washed with staining buffer (2% fetal
bovine serum in PBS). The cells were permeabilized with
100% cold methanol for intracellular markers, blocked, and
then incubated with primary antibodies against Nestin, PAX6,
b-tubulin III, or MAP-2 followed by the corresponding sec-
ondary antibody (Supplementary Table S1). The cells were
acquired with BD FACSCanto� II flow cytometer (Becton
Dickinson) and analyzed against isotype controls (negative
controls) using FlowJo software.

Reverse transcription polymerase chain
reaction analysis

Total RNA was isolated from neural cell samples using
the RNeasy Mini Kit (Qiagen, Valencia, CA) according to
the manufacturer’s protocol followed by the treatment of the
DNA-Free RNA Kit (Zymo, Irvine, CA). Reverse tran-
scription was carried out using 2 mg of total RNA, anchored
oligo-dT primers (Operon, Huntsville, AL), and Superscript
III (Invitrogen, Carlsbad, CA) (according to the protocol
of the manufacturer). Primers specific for target genes
(Table 1) were designed using the software Oligo Explorer
1.2 (Gene Link, Hawthorne, NY; Table 1). The gene b-actin
was used as an endogenous control for normalization of ex-
pression levels. Real-time reverse transcription–polymerase
chain reaction (RT-PCR) were performed on an ABI7500
instrument (Applied Biosystems, Foster City, CA), using
SYBR1 Green PCR Master Mix (Applied Biosystems).
The amplification reactions were performed as follows:
2 min at 50�C, 10 min at 95�C, and 40 cycles of 95�C for
15 s and 55�C for 30 s, and 68�C for 30 s. Fold variation in
gene expression was quantified by means of the compar-
ative Ct method: 2� (Ct treatment �Ct control), which is based on the
comparison of expression of the target gene (normalized to
the endogenous control b-actin) between the test samples
and the cells from standard differentiation (no particle, no
treatment).

Statistical analysis

Each experiment was carried out at least three times. The
representative experiments were presented and the results
were expressed as (mean – standard deviation). To assess the

Table 1. Primer Sequence for Target Genes

Gene Forward primer 5¢–3¢ Reverse primer 5¢–3¢

TBR1 CCCCCTCGTCTTTCTCTTACC TAATGTGGAGGCCGAGACTTG
HOXB4 AATTCCTTCTCCAGCTCCAAGA CCTGGATGCGCAAAGTTCA
MNX1 (HB9) GCACCAGTTCAAGCTCAACA TTTGCTGCGTTTCCATTTC
vGluT1 CCCCAATTCCTCGCACTTTAT GGGAAGGATCCCAGATTTTGA
Beta-actin GTACTCCGTGTGGATCGGCG AAGCATTTGCGGTGGACGATGG
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statistical significance, one-way analysis of variance (ANOVA)
followed by Fisher’s LSD post hoc tests were performed. A
p-value <0.05 was considered statistically significant.

Results

Neural tissue patterning from hiPSCs

Neural tissue patterning in this study was performed using
two different protocols: (1) no growth factor protocol for
spontaneous neural differentiation (with cell fate of forebrain/
midbrain/hindbrain), (2) LDN/SB protocol (dual SMAD in-
hibition) followed by FGF-2/RA treatment which favors
forebrain differentiation (Fig. 1A). In general, undifferenti-
ated hiPSK3 cells formed EBs in low attachment plate for
a total of 15–16 days. When replating the formed NPC spher-
oids, neural cells grew out of the spheres and displayed
b-tubulin III expression and Nestin expression (Fig. 1B).
Examination of the replated cells showed the cells with

F-actin stress fibers and cells with non-fibrous F-actin ex-
pression (Fig. 1C). YAP expression also showed a mixture
of cells with nuclear YAP and cells with cytoplasmic YAP
(Supplementary Fig. S1B).

The comparison of the no growth factor protocol (-LDN/
SB) and the +LDN/SB protocol was performed in low-
attachment 96-well plates at a defined seeded cell number
(6.5, 12.5, 25, 50K) (Fig. 2). The aggregate size increased
with the seeded cell number for both protocols (Fig. 2A, B).
In the absence of LDN/SB, the aggregate size was larger
than the protocol of +LDN/SB, indicating a selective pro-
cess for LDN/SB induction. For -LDN/SB condition, TBR1
(a cortical forebrain neural marker) expression was less than
+LDN/SB condition, whereas HOXB4 (a hindbrain/spinal
cord marker) expression was higher than +LDN/SB protocol
(Fig. 2C). TBR1 and HOXB4 were expressed on the side
region of the aggregates, showing the polarity of the NPC
spheroids (Fig. 2D). These results indicate that LDN/SB

FIG. 1. Procedures of neural lineage commitment from hiPSCs. (A) Illustration of the neural induction protocols from
hiPSCs. (B) Representative morphology of human iSK3 cells along neural differentiation and the representative neural
marker expression. Scale bar (white): 200mm. Scale bar (green): 100 mm. (C) Representative expression of YAP and F-actin
for the differentiated cells. Scale bar: 50mm. The cells displayed both F-actin stress fibers and the nonfiber F-actin. Some
cells have nuclear YAP expression and some cells have cytoplasmic YAP expression. hiPSC, human induced pluripotent
stem cell; YAP, Yes-associated protein. Color images available online at www.liebertpub.com/tea
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induction influence neural tissue patterning from hiPSCs and
favors cortical forebrain cells.

Effect of CHIR on neural tissue patterning from hiPSCs

To further elucidate the influence of Wnt activation on
neural tissue patterning of hiPSCs, the CHIR-treated cells
were evaluated for neural differentiation and TBR1 and
HOXB4 expression. To create biophysical perturbation and
demonstrate the feasibility of using microparticles in hiPSC
spheroid culture, PCL-PDMS-PCL microparticles were in-
corporated during EB formation (with particle) in compar-
ison to the condition without microparticles (no particle).
First, the neural differentiation was induced in the absence
of LDN/SB and other growth factors (Fig. 3). The mor-
phology of the NPC spheres and the replated cells was
shown in Figure 3A. The day 15 + 5 cells expressed Nestin
but few b-tubulin III (data not shown). The presence of
CHIR reduced Nestin expression (from 80.3% to 60.5%),
probably due to the proliferation of non-neuronal cells
(Fig. 3B). The ‘‘with particle’’ groups followed a similar trend
(Nestin expression was 97.6% vs. 28.8% for no treatment vs.
CHIR treatment). For neural patterning markers, HOXB4
expression increased (0.32 – 0.09 vs. 0.56 – 0.09), whereas
TBR1 expression decreased (0.75 – 0.12 vs. 0.42 – 0.05)
with CHIR treatment compared with no CHIR treatment
(Fig. 3C, D). Again, the with particle groups showed
a similar trend, but the difference was not statistically
significant.

Similar experiments were performed for LDN/SB-induced
neural differentiation (Fig. 4). The presence of CHIR reduced
Nestin expression (from 61.6% to 34.4%) and slightly in-
creased b-tubulin III (from 58.9% to 67.6%) (Fig. 4A).
MAP-2 expression was increased by CHIR treatment for no
particle groups, but not for with particle groups (Supplementary
Fig. S2). For neural patterning markers, while HOXB4 ex-
pression increased with CHIR treatment, the increase was not
statistically significant (Fig. 4B, C). TBR1 expression sig-
nificantly decreased with CHIR treatment (from 0.35 – 0.02
to 0.17 – 0.02 for no particle groups, from 0.45 – 0.03 to
0.30 – 0.05 for with particle groups). To further identify the
effect of CHIR treatment, RT-PCR analysis was performed for
the gene expression of HOXB4, TBR1, and HB9 (Fig. 5A).
HOXB4 gene expression increased with CHIR treatment (from
0.96– 0.02 to 1.34– 0.12) and TBR1 expression decreased
(from 0.99 – 0.02 to 0.47 – 0.22) with CHIR treatment for no
particle groups. With particles, similar trend was observed. No
significant changes were observed for HB9 expression after
CHIR treatment, may be due to the immature stage of caudal
cell population. To further confirm the influence of CHIR
treatment on neural patterning, additional markers for forebrain
identity (PAX6 and BRN2) and hindbrain/motor neuron iden-
tity (Islet-1; ISL1) were evaluated (Fig. 5B and Supplementary
Fig. S3). ISL1 expression was higher, whereas PAX6 and
BRN2 expression was lower after CHIR treatment. For all four
groups, the neural cells (at day 28) displayed synaptic activity
by expressing presynaptic marker Synapsin I and postsynaptic
marker PSD95 (Supplementary Fig. S4). These results indicate

FIG. 2. Comparison of neural progenitor spheroid formation from hiPSCs with no factors versus LDN/SB induction. The
comparison was performed in a low attachment 96-well plate. Each well was seeded with different numbers (0.65e4, 1.25e4,
2.5 e4, and 5e4) of hiPSK3 cells in DMEM/F-12 plus B27 medium. (A) Day 7 morphology of NPC aggregates with no
factors versus LDN/SB induction. Scale bar: 200mm. (B) The average aggregate size at day 2, 4, and 7 for the two types of
induction methods. (C) The expression of TBR1, HOXB4, and b-tubulin III of the replated cells at day 14 for the two types
of neural ectoderm induction. Scale bar: 100mm. (D) Confocal images of NPC spheroids (day 16) using LDN/SB induction
to reveal the localization of TBR1 and HOXB4. Scale bar: 200 mm. NPC, neural progenitor cell. Color images available
online at www.liebertpub.com/tea
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that Wnt activation by CHIR promotes caudal hindbrain/spinal
cord identity and reduces rostral forebrain identity.

Effect of CHIR on YAP expression

The influence of Wnt activator CHIR99021 (CHIR) on YAP
expression was then evaluated (Fig. 6A). The day 16 NPC
spheroids (LDN/SB induction) were replated and treated with
CHIR for 5 days. More nuclear YAP expression (47.8% – 9.9%
vs. 26.0% – 1.3%) was observed after CHIR treatment
( p = 0.036) (Fig. 6B, C). The cells with CHIR treatment (more
nuclear YAP expression) showed higher proliferation rate and
more BrdU+ cells (45.3% – 2.8% vs. 34.2% – 1.2%, Supple-

mentary Fig. S5). Similar trend was observed for the conditions
incorporated with microparticles, although some variations
existed (nuclear YAP was 52.6% – 3.3% vs. 26.5% – 7.3% for
CHIR treatment vs. no treatment, p = 0.005). The replated cells
expressed b-tubulin III, indicating the differentiation into neu-
ronal cells. These results indicate that Wnt activation results in
nuclear YAP localization.

Effect of CytoD on neural tissue patterning
from hiPSCs

To investigate if YAP expression plays a role in Wnt-
regulated neural patterning,19 the modulator for YAP expression

FIG. 3. Effect of CHIR99021 on neural tissue patterning-no growth factor induction. (A) Phase contrast images of day 16 NPC
spheroids and the replated cells (4 days later). No particle group: (i) floating NPC spheroids; (ii) replated cell outgrowth; with
particle group: (iii) floating NPC spheroids; and (iv) replated cell outgrowth. Scale bar: 200mm. (B) Flow cytometry analysis of
Nestin expression with –CHIR 99021 treatment (day 23). The negative control is shown in red. (C) Fluorescent images of
HOXB4 expression and TBR1 expression (day 22) with –CHIR 99021 treatment. Scale bar: 100mm. (D) Quantification of
HOXB4 and TBR1 expression with –CHIR 99021 treatment. (i) HOXB4, (ii) TBR1. ‘‘No’’ indicates no particle conditions;
‘‘With’’ indicates with particle conditions. *p-value <0.05. Color images available online at www.liebertpub.com/tea

FIG. 5. Additional characterizations of neural tissue patterning with LDN/SB induction. (A) RT-PCR analysis of HOXB4,
HB9 (i), and TBR1 (ii) gene expression (day 21) with –CHIR 99021 treatment. ‘‘No’’ indicates no particle conditions; ‘‘P’’
indicates with particle conditions. (B) Additional neural patterning markers. (i) Islet-1 (ISL1) (red)/b-tubulin III (green)/
Hoechst (blue) expression. (ii) PAX6 (green)/Hoechst (blue) expression, and BRN2 (red)/Hoechst (blue) expression. Scale
bar: 100mm. *p-value <0.05. Color images available online at www.liebertpub.com/tea

‰
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FIG. 4. Effect of CHIR99021 on neural tissue patterning-LDN/SB induction. (A) Flow cytometry analysis of Nestin and
b-tubulin III expression with –CHIR 99021 treatment (day 24). For Nestin, the negative control is shown in red; for b-
tubulin III, the negative control is shown in black. (B) Fluorescent images of HOXB4 expression and TBR1 expression (day
24) with –CHIR 99021 treatment. Scale bar: 100 mm. (C) Quantification of HOXB4 and TBR1 expression with –CHIR
99021 treatment. (i) HOXB4, (ii) TBR1. ‘‘No’’ indicates no particle conditions; ‘‘With’’ indicates with particle conditions.
*p-value <0.05. Color images available online at www.liebertpub.com/tea
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was evaluated. CytoD is the actomyosin cytoskeletal mol-
ecule that disrupts F-actin and then inhibits YAP nuclear
localization.35 In this study, the addition of CytoD was found
to induce more neurite outgrowth and cytoplasmic YAP ex-
pression (Fig. 7A, B and Supplementary Fig. S6A). Corre-
spondingly, b-catenin expression was more cytoplasmic and
higher b-tubulin III expression was observed after addition of
CytoD (Fig. 7C and Supplementary Figs. S6B, S7, and S8A).
For comparison, treatment with CHIR showed more nuclear
expression of b-catenin (Fig. 7C and Supplementary Fig. S7).
With the inclusion of microparticles, the trend of CytoD
treatment was similar. The influence of CytoD on neural
patterning markers TBR1 and HOXB4 was then evaluated
(Fig. 8A). The CytoD treatment reduced the expression of
HOXB4 protein (from 0.79 – 0.12 to 0.29 – 0.15) significantly

for no particle groups. The increase in the expression of
TBR1 protein was not statistically significant. Similar trends
were observed for with particle groups, but the differences
were not statistically significant (Fig. 8B). RT-PCR analysis
showed the significant decrease of HOXB4 and HB9 ex-
pression after CytoD treatment as well as the increase in
gene expression of vGlut1, another marker for forebrain
cortical cells (Fig. 8C). The increase in TBR1 was statis-
tically insignificant. Analysis of additional markers showed
that the glutamate expression was increased and the
GABA expression was decreased after CytoD treatment
(Supplementary Fig. S8B). These data indicate that YAP
modulator CytoD affects neural tissue patterning (decrease
caudal identity) and the influence of Wnt and YAP is bidi-
rectional.

FIG. 6. Effect of CHIR99021 on YAP expression and neural differentiation. (A) Phase contrast images of day 16 NPC
spheroids (with LDN/SB induction) and the replated cells (4 days later). No particle group: (i) floating NPC spheroids; (ii)
replated cell outgrowth; with particle group: (iii) floating NPC spheroids; and (iv) replated cell outgrowth. Scale bar:
200 mm. (B) Fluorescent images of YAP expression and b-tubulin III expression (day 22) with –CHIR 99021 treatment.
Scale bar: 100mm. (C) Quantification of cytoplasmic YAP and nuclear YAP expression with –CHIR 99021 treatment. (i)
No particle; (ii) with particle. *p-value <0.05. Color images available online at www.liebertpub.com/tea

Wnt/YAP INTERACTIONS DURING NEURAL PATTERNING OF hiPSCs 553

D
ow

nl
oa

de
d 

by
 E

m
or

y 
U

ni
ve

rs
ity

 e
-p

ac
ka

ge
 fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
8/

16
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

https://www.liebertpub.com/action/showImage?doi=10.1089/ten.tea.2017.0153&iName=master.img-005.jpg&w=490&h=420


Discussion

Wnt signaling plays an important role in patterning neural
tissues from hPSCs and has been found to enrich motor
neurons or hind brain/spinal cord NPCs.15,36,37 In the mean-
while, the interaction of Wnt pathway with YAP expression is
a critical signaling event during tissue morphogenesis.19,20

However, the biological relevance of Wnt-YAP interactions
in neural patterning of hPSCs has not been well studied, as
stated in our previous perspective article.38 In addition, the
influence of biophysical perturbation with microparticles in
hPSC-derived neural spheroids has not been well explored.
Following our perspective article,38 the experimental evi-
dence of Wnt signaling and YAP activity in hPSC-derived
neural spheroids was revealed in this study.

The role of Wnt signaling in neural tissue patterning

Wnt signaling can be modulated to generate neural cells
or tissues of forebrain (Wnt low), midbrain (Wnt medium),
or hindbrain (Wnt high) regional specificity together with
other signaling pathways such as RA, FGF-2, and Sonic
Hedgehog (SHH).16,37,39 While the Wnt-regulated cell prolif-
eration is recognized to be a pivotal regulator in organ growth
and tissue regeneration, the detailed mechanism and the

crosstalk with other signaling pathways such as Hippo/YAP
have not been well understood in neural patterning of hPSCs.

Our results showed the influence of Wnt regulation
(canonical) on YAP expression in the context of neural
patterning of hiPSCs into brain-like tissues. CHIR treat-
ment induces nuclear YAP expression and promotes the
expression of HOXB4 (a hindbrain/spinal cord marker).40

On the contrast, the absence of CHIR treatment and more
cytoplasmic YAP expression promotes the expression of
TBR1 (a cortical forebrain marker).39 In particular, our
results demonstrate the effect of Wnt-mediated neural tis-
sue patterning of hPSCs in a 3D culture. It was recently
found that Wnt activation (canonical) results in nuclear
YAP localization in HEK293 cells and mouse embryonic
stem cells.19 In the absence of Wnt signaling, YAP/TAZ is
relocalized in the cytoplasm by forming the destruction
complex. Wnt activation by Wnt 3a shows the possible
mechanism of YAP relocalization: the progressive disso-
ciation of YAP/TAZ from Axin and the increased associ-
ation of Axin to LRP6, release YAP/TAZ from the
destruction complex to allow its nuclear localization and
the following transcription.19 An ‘‘alternative Wnt-YAP/
TAZ signaling axis’’ mechanism (noncanonical) was also
proposed recently, which is independent of b-catenin ac-
tivity.20 Along with these findings in crosstalk of Wnt and

FIG. 7. Effect of CytoD treatment on YAP expression and neural differentiation. (A) Phase contrast images of replated
NPC spheroids treated with CytoD. Scale bar: 200mm. (B) YAP expression in the outgrowth of the replated NPC spheroids
treated with CytoD. Scale bar: 50 mm. (C) b-catenin and b-tubulin III expression in the outgrowth of the replated NPC
spheroids treated with CytoD. The treatment with CHIR was included for comparison. Scale bar: 100mm for b-tubulin III,
and 25 mm for b-catenin. CytoD, cytochalasin D. Color images available online at www.liebertpub.com/tea

554 BEJOY ET AL.

D
ow

nl
oa

de
d 

by
 E

m
or

y 
U

ni
ve

rs
ity

 e
-p

ac
ka

ge
 fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
8/

16
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

https://www.liebertpub.com/action/showImage?doi=10.1089/ten.tea.2017.0153&iName=master.img-006.jpg&w=420&h=316


YAP, our study showed the possible Wnt (canonical)/YAP
interaction in neural patterning of hiPSCs.

YAP perturbation in neural tissue patterning

YAP expression has been investigated recently as the
mediator of mechanotransduction during stem cell differen-
tiation.41 The intracellular mechanical rheostat that controls
mechanical memory behavior of stem cells,42 and the regu-
lator of organ size control.35,43,44 In terms of neural differ-
entiation from hiPSCs, nuclear YAP localization may need to
be inhibited. For example, inhibition of Hippo/YAP signaling
on soft surface, which results in cytoplasmic YAP expression,
promoted motor neuron differentiation from hiPSCs in the
presence of soluble neurogenic factors.45 In the absence of
neurogenic factors, GABAergic neurons were enriched dur-
ing neuronal differentiation of hPSCs on soft substrate that
inhibited nuclear localization of YAP.46 However, the inter-

actions of YAP expression and canonical Wnt activity in
neural patterning of hiPSCs remains unexplored.

As we stated previously,38 Hippo/YAP pathway may reg-
ulate YAP/TAZ localization and activate or inhibit Wnt sig-
naling in two ways.47 (a) In cell nuclei, inhibition of Hippo
pathway activates YAP as well as b-catenin-regulated genes
(i.e., nuclear YAP promotes Wnt). YAP and b-catenin can
form YAP-b-catenin complex to stabilize nuclear expres-
sion. (b) In cell cytoplasm, cytoplasmic YAP (i.e., activation of
Hippo) can sequester b-catenin in cytoplasm (i.e., cytoplasmic
YAP inhibits Wnt). Therefore, the retention of cytoplasmic b-
catenin is promoted and Wnt signaling is inhibited. While Wnt
activation results in nuclear localization of YAP, YAP locali-
zation may also influence Wnt pathway, indicating bidirec-
tional interactions.

Given the possible interactions between Wnt pathway
and YAP expression,17 we hypothesize that the perturba-
tion of YAP protein localization affects Wnt pathway and

FIG. 8. Effect of CytoD treatment on neural tissue patterning of hiPSCs. (A) No particle groups. (i) Fluorescent images of
HOXB4 expression and TBR1 expression (day 20) with –CytoD treatment. Scale bar: 100 mm. (ii) Quantification of HOXB4
expression and TBR1 expression. (B) With particle groups. (i) Fluorescent images of HOXB4 expression and TBR1 expression
(day 20) with –CytoD treatment. Scale bar: 100mm. (ii) Quantification of HOXB4 expression and TBR1 expression. (C) (i)
RT-PCR analysis of HOXB4 and HB9 expression with –CytoD treatment (day 20); (ii) RT-PCR analysis of TBR1 and vGlut1
expression with –CytoD treatment (day 20). *p-value <0.05. Color images available online at www.liebertpub.com/tea
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neural tissue patterning from hiPSCs.38 To prove this ex-
perimentally, in this study, we used CytoD, an actomyosin
cytoskeletal molecule that disrupts F-actin stress fibers, to
inhibit YAP nuclear localization.35 Stress fibers can reduce
YAP phosphorylation and promote nuclear YAP,48 and the
mechanotransduction role of YAP is also related to the Rho
GTPase signaling through cytoskeleton polymerization.49

Our results indicated that CytoD treatment induces cyto-
plasmic expression of b-catenin and influences the patterning
of neural tissues from hiPSCs (i.e., decreasing HOXB4 ex-
pression), acting as a modulator such as Wnt inhibitors.

The Wnt/YAP interactions have been revealed recently to
be b-catenin dependent (canonical) or b-catenin indepen-
dent (noncanonical).19,20 It is thought that the biological
context of studying Wnt/YAP interactions and the influence
of additional pathways may be critical. Our results here are
more supportive of b-catenin-dependent (canonical Wnt
pathway) mechanism in the context of neural patterning of
hiPSCs. Nonetheless, the complex signaling networks in the
stem cells are far from a complete understanding to date and
need further systematic explorations.

The influence of microparticles

Biophysical perturbation of neural spheroids derived from
hiPSCs by incorporating PCL-PDMS-PCL microparticles
may influence neural tissue patterning of hiPSCs. Micro-
particles have been commonly used for drug/growth factor
delivery as well as substrates for tissue engineering.21,23,50

The biochemical motifs of microparticles showed signifi-
cant effects on the localized and on-site stem cell differen-
tiation.21,51,52 The presence of microparticles may alter
extracellular matrix remodeling by influencing the matrix
metalloproteinase activity.53 Therefore, this study inves-
tigates the influence of biophysical perturbation caused by
microparticles in the context of 3D neural patterning of
hiPSCs.

Our results indicated that the presence of PCL-PDMS-
PCL microparticles maintained similar trends to the groups in
the absence of microparticles for cell response to the CHIR or
CytoD treatment, while some variations were observed. The
influence of microparticles is affected by various parameters
such as materials chemistry, particle size, particle stiffness,
and the amount of particles that are incorporated into the
spheroids, which may contribute to the variations.21,51,52 In
addition, the interactions of microparticles with the cells in
the stem cell aggregates, where cell–cell interactions may
dominate cell–matrix interactions, are different from the cell–
particle interactions for the cells adhered on two-dimensional
substrates. However, our results reveal the extent to which the
microparticles affect neural patterning of hiPSCs along with
the Wnt/YAP interactions. The potential use of microparticles
for biomolecule delivery inside neural spheroids as seen in the
applications of brain organoid derivation from hPSCs6 may
require the rational design of microparticle properties such as
appropriate size and stiffness (e.g., similar to elastic modulus
of stem cell aggregates).

Self-organization of hiPSCs into neural tissues or mini-
organ like structures is affected by a signaling network that
involves biochemical and biophysical extracellular signals as
well as the crosstalk of a series of intracellular signaling path-
ways.2,10,54,55 By understanding the influence of Wnt and YAP

on neural tissue patterning from hiPSCs, the gained knowledge
should advance our long-term objective to allow predicting and
modulating brain-like tissue structure and function through the
regulation of extracellular microenvironment.

Conclusions

This study indicates that Wnt activation induces nuclear
YAP localization and the caudalization of neural cells, and
affects neural tissue patterning from hiPSCs by modulating
rostral and caudal brain tissue identity. On the other hand,
modulating YAP expression by CytoD affects b-catenin ex-
pression and thus neural tissue patterning from hiPSCs.
Biophysical perturbation of NPC spheroid formation by PCL-
PDMS-PCL microparticles maintains similar trends of the
cell responses to the CHIR or CytoD treatment. This study
provides new insights of Wnt/YAP interactions in the context
of neural tissue patterning from hiPSCs and has significance
in 3D neural tissue modeling and brain organoid generation.
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