
Streaming Tensor Factorization for Infinite Data Sources

Shaden Smith* †

shaden.smith@intel.com

Kejun Huang* ‡

huang663@umn.edu

Nicholas D. Sidiropoulos§

nikos@virginia.edu

George Karypis‡

karypis@cs.umn.edu

Abstract
Sparse tensor factorization is a popular tool in multi-way data
analysis and is used in applications such as cybersecurity,
recommender systems, and social network analysis. In many
of these applications, the tensor is not known a priori and
instead arrives in a streaming fashion for a potentially un-
bounded amount of time. Existing approaches for streaming
sparse tensors are not practical for unbounded streaming be-
cause they rely on maintaining the full factorization of the
data, which grows linearly with time. In this work, we present
CP-stream, an algorithm for streaming factorization in the
model of the canonical polyadic decomposition which does
not grow linearly in time or space, and is thus practical for
long-term streaming. Additionally, CP-stream incorporates
user-specified constraints such as non-negativity which aid
in the stability and interpretability of the factorization. An
evaluation of CP-stream demonstrates that it converges faster
than state-of-the-art streaming algorithms while achieving
lower reconstruction error by an order of magnitude. We also
evaluate it on real-world sparse datasets and demonstrate its
usability in both network traffic analysis and discussion track-
ing. Our evaluation uses exclusively public datasets and our
source code is released to the public as part of SPLATT, an
open source high-performance tensor factorization toolkit.

1 Introduction
Tensors are the natural extension of matrices to multi-way
data. Tensor factorization is a technique for analyzing multi-
way data and recently has had major success in applications
spanning signal processing and machine learning [19]. Within
these fields, the data of interest frequently has a temporal com-
ponent that can be exploited to gain additional insights. For
example, discussion tracking [1], cybersecurity [6, 8] and
social network analysis [14] have all benefited from incorpo-
rating the temporal dimension into the tensor factorization.
The ability to effectively and efficiently process and analyze
these temporal datasets is thus of great interest to practitioners
and researchers alike.
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These temporal applications bring an additional chal-
lenge to tensor factorization: the complete tensor is not avail-
able a priori, and instead batches of data arrive in a streaming
fashion. Consider for example the cybersecurity setting in
which network activity is modeled as a tensor with modes
such as time, IP addresses, and network ports. In order to
be useful as a security tool, tensor factorization should op-
erate in an online manner and process incoming data in real
time. Critically, each batch of data should not be treated as
an independent tensor to analyze, but instead a snapshot of
an unbounded stream of related data which may change over
time. Thus, the streaming factorization should ensure that the
underlying model is tracked from batch to batch, while still
remaining flexible enough to allow new trends to emerge.

In order to be practical for real-world applications, a
streaming factorization algorithm must at least satisfy the
following requirements. First, a streaming algorithm must
be less costly than simply recomputing a new factorization
each time a new batch of data arrives. Therefore, the cost
of incorporating a new batch of data should not depend on
the number of previous batches. Second, the algorithm must
be resilient to sparse and noisy incoming data. State-of-the-
art solutions often satisfy either the efficiency or the quality
constraints, but are not able to satisfy both.

To address these challenges, we present CP-stream, an
algorithm that can effectively model a streaming tensor while
having low-cost updates in terms of both space and time. This
is accomplished by maintaining historical tensor data in a
factored form that does not increase in size as time progresses.
Moreso, it utilizes the recently-proposed combination of
alternating updates with the alternating direction method of
multipliers (AO-ADMM) [10] to incorporate constraints that
improve stability and interpretability while maintaining a low
computational cost. Our contributions include:

1. CP-stream, a streaming algorithm that updates a factor-
ization with space and time complexities that are con-
stant in terms of the number of previous timesteps, and
is thus suitable for long-term execution.

2. Extensions to CP-stream including non-negativity and
sparsity constraints, and optimizations for sparse data.

3. An experimental evaluation that demonstrates success on
both dense and sparse data and a demonstration of event
discoveries on sparse, real-world, and public datasets.
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4. An open source implementation of CP-stream that
builds upon existing high-performance tensor and matrix
kernels, resulting in an implementation that is parallel
and suitable for large-scale data analysis.

The rest of the paper is organized as follows. Section 2
provides an overview of tensors and tensor factorization. Sec-
tion 3 reviews related work on streaming tensor factorizations.
Section 4 formulates CP-stream and provides an analysis of
its complexity. Section 5 addresses extensions to CP-stream
including non-negativity constraints and considerations for
sparse data. Section 6 evaluates our method on a variety of
synthetic and real-world datasets. Lastly, Section 7 offers
concluding remarks.

2 Background and Notation
In this section, we define the notation used throughout the
paper and also provide a brief overview of tensor factorization.
For additional information on tensors and their factorizations,
we direct the reader to the surveys by Kolda and Bader [13]
and Sidiropoulos et al. [19].

2.1 Notation We denote vectors with bold lowercase letters
(s), matrices with bold capital letters (A), and tensors with
bold calligraphic letters (X ). We say that a tensor has N
modes of lengths I1, . . . , IN . We denote the Frobenius
norm of a vector, matrix, or tensor as ‖·‖. A tensor can
be unfolded, or matricized, along any of its modes into
a matrix. The tensor unfolding along the nth mode is
denotedX(n) ∈ RIn×I1,...,In−1,In+1,...,IN . More simply, the
nth mode of the tensor forms the rows of the matrix and the
remaining modes form the columns.

There are two essential matrix products when discussing
tensor factorization. The first is the Hadamard product,
denoted A~B, which is simply the elementwise product.
The second operation is the Khatri-Rao product, denoted
A�B, which is the columnwise Kronecker product:

A�B = [a1 ⊗ b1, . . . ,aJ ⊗ bJ ] ,

whereA ∈ RP×J ,B ∈ RQ×J , and (A�B) ∈ RPQ×J .

2.2 Canonical Polyadic Decomposition (CPD) The CPD
is perhaps the most popular tensor decomposition, and the
one that is the focus of this work. Shown in Figure 1, the
CPD models a tensor as the summation of outer products.
The number of outer products is the rank of the factorization,
and is denoted K. Applications in signal processing and
machine learning are almost always interested in low-rank
factorizations in which K is chosen to be a small integer
usually on the order of 10 or 100. The low-rank CPD can be
seen as one higher-order interpretation of the truncated SVD.

The vectors that form the outer products in
the CPD are collected into N factor matrices:

≈ + · · ·+

Figure 1: The canonical polyadic decomposition (CPD)
models a tensor as the summation of outer products.

A(1)∈ RI1×K , . . . ,A(N)∈ RIN×K . The outer product
formulation is thus written

∑K
k=1 a

(1)
k ◦ · · · ◦ a

(N)
k , or

abbreviated [[A(1), . . . ,A(N)]]. Lastly, the CPD can be written
in terms of an unfolding:

minimize
{A(n)}

1

2

∥∥∥∥∥X(n)−A(n)

(
�
ν 6=n

A(ν)

)>∥∥∥∥∥
2

.

A remarkable trait of the CPD, and a major reason for its
success, is that the CPD usually unique up to a permutation
of the outer products and a scaling ambiguity in the vectors
of each outer product [19]. When one mode of the tensor is
much larger than the others, which suits well to the streaming
tensor case we consider here, recent results have shown that
the CPD is essentially unique almost surely even when K is
as large as (I1 − 1)(I2 − 1) for 3-way tensors [7].

3 Related Work
Streaming tensor factorization can be viewed as an exten-
sion to streaming matrix factorization, with applications in
subspace tracking [27, 2] and online dictionary learning [15].
Computing the CPD in a streaming fashion was first studied
in signal processing [17], to the best of our knowledge. Due
to the size of the problems considered there, the algorithms
were not designed for memory efficiency. A memory-efficient
online algorithm called Online-SGD was proposed by Mar-
dani et al. [16], where a stochastic gradient descent (SGD)
update is performed for all the factors except the one corre-
sponding to the ever-growing dimension. The drawback for
Online-SGD is the need to tune the learning rate for the SGD
step, which turn out to be a non-trivial task in practice. Sev-
eral approaches have been developed which avoid the need to
tune a learning rate [11, 28].

The Tucker model is another popular model for tensor
factorization that has been studied in the streaming setting [24,
3]. However, for reasons including model simplicity and the
uniqueness properties of the CPD, we are more in favor of
the streaming CPD model.

Another conceptually related line of work is on stochastic
algorithms for tensor decompositions [18, 26, 4], which deals
with large-scale data as well, but the problem dimension is pre-
determined. The focus of this work is in the case when one
dimension of the tensor is growing in a potentially unbounded
manner. The two ideas of stochastic sampling and streaming
CPD were recently integrated in SamBaTen [9].
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Table 1: Summary of algorithms for streaming CPD.

Memory Higher-order? Constraints? Tuning-free?
PARAFAC-SDT [17] O(TI1I2) X

PARAFAC-RLST [17] O(KI1I2) X
Online-SGD [16] O(K(I1 + I2))

OLSTEC [11] O(K(I1 + I2))
Online-CP [28] O(K

∑
In) X X

CP-stream (proposed) O(K
∑
In) X X X

Memory is the required memory for computing a batch update, excluding the latest tensor itself. Memory overheads which are not fea-
sible for unbounded streams or sparse datasets are colored red. Higher-order indicates that the algorithm has been extended to tensors
with more than three modes. Constraints indicates that the algorithm supports constraints on the factorization, including non-negativity.
Tuning-free indicates that the algorithm either does not require tuning of hyper-parameters, or is not overly sensitive to their values.

We compare the state-of-the-art streaming CPD algo-
rithms to the proposed algorithm in Table 1.

4 Streaming Tensor Factorization
We now detail our streaming CPD algorithm, CP-stream.
We begin with a formalization of our streaming setting in
Section 4.1 and then detail our algorithm in Section 4.2.

4.1 Problem Setting We consider the problem of finding
the rank-K CPD of an N+1-way tensor Y ∈ RI1×···×IN×T ,
in which N -way subtensors arrive over T batches (T is po-
tentially unbounded). We arrive at the following optimization
problem
(4.1)

minimize
{A(n)∈RIn×K},S∈RT×K

1

2

∥∥∥Y − [[A(1), ...,A(N),S]]
∥∥∥2 ,

where {A(n)} are the factor matrices modeling the common
N modes and S incorporates temporal information.

We can equivalently model Y as a sequence of N -way
tensors X 1, . . . ,X T ∈ RI1×···×IN . Tensor X t is modeled
with [[A(1), . . . ,A(N); st]], whereA(n)∈ RIn×K and st ∈ RK .
Together, the sequence forms the following optimization
problem

minimize
{A(n)∈RIn×K},{st∈RK}

T∑
t=1

1

2

∥∥∥X t − [[{A(n)}; st]]
∥∥∥2 .

Our goal is to design an algorithm to find a good approximate
solution of (4.1) by considering only one tensor sample X t

at a time.
When we are specifically interested in emphasizing

recent data over long-ago historical data in the model (e.g.,
subspace tracking), an exponential decay can be applied to
the various X tensors. This is also useful for modeling real-
world data in which the joint rank-K CPD model may change
over time, and we wish to “forget” some of the CPD in order
to better model the new data.

There is a scaling ambiguity inherent in the CPD prob-
lem (4.1): if each factor A(n) is multiplied by a diago-

nal matrix Dn on the right, and factor S by diagonal ma-
trix DS , as long as these diagonal matrices satisfies that
D1...DNDS = I , this change of variable does not affect
the quality of the factorization. Therefore, without loss of
generality, we propose to slightly modify problem (4.1) as
follows

(4.2) minimize
{A(n)∈C},S

1

2

∥∥∥Y − [[A(1), ...,A(N),S]]
∥∥∥2 + λ

2
‖S‖2,

whereA(n)∈ C denotes the constraint that the norm of each
column of A(n) should be less than or equal to one. With
the help of the regularization term in (4.2), the norms of
all columns ofA(n) will be equal to one—otherwise we can
scale up the unattained columns inA(n) without violating the
constraints, while scaling down the (λ/2)‖S‖2 term; thus
obtaining a smaller loss value for (4.2). As long as we choose
a relatively small λ, the solution of (4.2) will be very close
to the original problem (4.1). As we will demonstrate in
Section 6, this modified formulation helps significantly in
the convergence of the algorithm, although mathematically it
makes a minor difference.

4.2 Proposed Algorithm The high-level idea of CP-
stream is as follows: at time t, we receive tensor X t and
have the previous estimates {A(n)

t−1} and a sufficient statistic
for s1, ..., st−1. First, we compute st as the solution of the
following optimization problem

minimize
st

1

2

∥∥∥X t − [[{A(n)
t−1}; st]]

∥∥∥2 + λ

2
‖st‖2.

As we can see, st only depends on the current data sample
X t and the previous estimates {A(n)

t−1}, and in this case we
have a closed-form update
(4.3)

st ←
(

N
~
n=1

A
(n)>
t−1A

(n)
t−1 + λI

)−1(
N
�
n=1

A
(n)
t−1

)>
vec(X t).

Note that the final matrix-vector multiplication can be effi-
ciently carried out using existing high-performance software
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for computing the matricized tensor times Khatri-Rao product
(MTTKRP), e.g. SPLATT [22, 23].

After obtaining st, we keep it fixed and update the
{A(n)} factors. Ideally, we would want to update them
according to all the historical data X 1, . . . ,X t; however,
since in the streaming setting, the number of tensors can
grow very large, this is not feasible. We therefore follow
Vandecappelle et al. [25] and minimize an approximate loss
by replacing X 1, . . . ,X t−1 with the existing factorization
[[{A(n)

t−1};St−1]], where St−1 ∈ Rt−1×K is the matrix with
rows s1, . . . , st−1. We arrive at the following optimization
problem:

minimize
{A(n)∈C}

1

2

∥∥∥X t − [[{A(n)}; st]]
∥∥∥2

+
t−1∑
i=1

µt−i

2

∥∥∥[[{A(n)
t−1}; si]]− [[{A(n)}; st]]

∥∥∥2 ,
where µ ∈ [0, 1] is a forgetting factor to down-weight the
importance of fitting the data that was observed long ago.
However, the nonlinear least squares update of Vandecap-
pelle et al. requires access to all of the prior {si}, and is
thus infeasible for the long-term streaming setting that we
consider. Instead, we adopt an alternating update rule and see
that the optimization with respect toA(n) is equivalent to

(4.4) minimize
A(n)∈C

1

2
tr
(
A(n)Φ(n)A(n)>

)
− tr

(
Ψ (n)>A(n)

)
,

where

Φ(n)=

(
~
ν 6=n

A(ν)>A(ν)

)
~
(
µGt−1 + sts

>
t

)
,(4.5)

Ψ (n)=

(
N
�
ν 6=n

A(ν)

)>
vec(X t)(4.6)

+A(n)

((
~
ν 6=n

A
(ν)>
t−1A

(ν)

)
~ µGt−1

)
,

and

Gt−1 =
t−1∑
i=1

µt−isis
>
i .

This formulation closely resembles the alternating least
squares formulation for computing the traditional (i.e., non-
streamed) CPD [13, 19]. Intuitively, Φ(n) ∈ RK×K is
a matrix of normal equations that includes the updated
factors and a down-weighted matrix of temporal information,
Gt−1 ∈ RK×K . Similarly, Ψ (n) ∈ RIn×K is a matrix of
In right-hand-sides and its two summed terms incorporate
current and historical tensor data, respectively.

Problem (4.4) is a constrained least squares problem
that does not have a closed-form solution. However, an
approximate solution can be efficiently obtained via the

Algorithm 1 CP-stream

Require: X 1,X 2, ...,X T ; forgetting factor µ
1: initializeA(1)

0 , ...,A
(N)
0

2: G0 ← 0
3: for t = 1, ..., T do
4: st ← least-squares update (4.3)
5: repeat
6: for n = 1, ..., N do
7: construct Φ(n) and Ψ (n) per (4.5) and (4.6)
8: ρ = tr(Φ(n))/K

9: A
(n)
t ← ADMM iterates (4.7)

10: end for
11: until convergence
12: Gt = µGt−1 + sts

>
t

13: end for

alternating direction method of multipliers (ADMM) [5].
Specifically, for solving problem (4.4), we follow the matrix
form updates derived in prior work [10, 20]

(4.7)


Ã←

(
Ψ (n)+ ρ(A(n)+U)

)(
Φ(n)+ ρI

)−1
,

A(n)← ProjC
[
Ã−U

]
,

U ← U + Ã−A(n),

where Ã and U are auxiliary variables, and the notation
ProjC [·] denotes the operation of projecting the argument
onto the set C. Since (4.4) is a convex problem, in principle
any choice of ρ > 0 guarantees convergence of (4.7) to
an optimal solution of (4.4). It was found empirically that
ρ = tr(Φ(n))/K results in a fast convergence rate, together
with warm start using the previous update, which we adopt
here as well [10]. Computationally, the most expensive step
is the construction of Φ(n) and Ψ (n)—afterwards, if we cache
the Cholesky decomposition of Φ(n)+ ρI , the per-iteration
complexity of (4.7) is only O(InK

2). For a few number of
ADMM iterations, the computation is almost the same as that
of a single (unconstrained) least-squares update.

Lastly, after updating all of the factor matrices we
update Gt for the next timestep. This can be accomplished
recursively:

Gt = µGt−1 + sts
>
t .

Note that by adopting an alternating solution, the temporal
vectors s1, . . . , st are compactly stored inGt.

Our proposed algorithm is fleshed out in Algorithm 1.

5 Extensions of the algorithm
5.1 Imposing structures In many cases, we not only want
to factor a stream of tensors into a joint CPD model, but
also want to impose structural constraints onto the latent
factors {A(n)} and/or st’s. We consider two of the most
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popular structure people like to impose: non-negativity
and sparsity, via adding an additional ≥ 0 constraint or
an `1-norm regularization term. Since the update of st
essentially solves an unconstrained least-squares problem,
it will be easy to add non-negativity constraint and/or `1-
norm regularization and solve by ADMM instead. The iterate
will be similar to (4.7), and details of the derivation and
pertinent projection/proximity operators can be found in prior
work [10, 20].

Things are more complicated in the case of the A(n)

factors. For formulation purposes, we have already imposed
the constraint that each column ofA(n) should have norm no
greater than one. The question is whether non-negativity/`1-
regularization, together with the norm constraint, still leads
to a computationally efficient update as in the second line
of (4.7)? The answer is yes. However, to the best of
our knowledge, it has not been specifically derived in the
literature. We therefore provide detailed derivation here.

PROPOSITION 5.1. The optimal solution for

minimize
x

1

2
‖x− z‖2 subject to x ≥ 0, ‖x‖2 ≤ 1

is
(z)+

max(1, ‖(z)+‖)
.

Proof. Since it is a convex problem, it suffices to find the x
that satisfies the KKT condition. Denote the dual variable for
x ≥ 0 as y ≥ 0, and that of ‖x‖2 ≤ 1 as β ≥ 0. Taking the
derivative of the Lagrangian and setting it equal to zero, we
have

x =
z + y

1 + β
.

Since both x and y are non-negative, this implies that

y = −(z)−, and x =
(z)+
1 + β

.

Furthermore, dual variable β should be chosen so that the
constraint ‖x‖2 ≤ 1 is satisfied, resulting in the solution
given in Proposition 5.1. Q.E.D.

PROPOSITION 5.2. The optimal solution for

minimize
x

1

2
‖x− z‖2 + γ‖x‖1 subject to ‖x‖2 ≤ 1

is
Sγ(z)

max(1, ‖Sγ(z)‖)
, where Sγ(z) denotes the soft-

thresholding operator.

Proof. Similar to Proposition 5.1, we prove it by finding
the x that satisfies the KKT condition. Since γ‖x‖1 is non-
differentiable, the optimality condition states that zeros is a
sub-gradient of the Lagrangian

0 ∈ x− z + ∂γ‖x‖1 + βx.

If β = 0, then it is well-known that Sγ(z) satisfy this
condition, meaning if ‖Sγ(z)‖2 ≤ 1, the solution is simply
Sγ(z). Otherwise, β > 0, but we can see that if (1 + β)x =
Sγ(z), it again satisfies the condition. Again, β should be
chosen so that ‖x‖2 ≤ 1 is satisfied as equality, according
to complimentary slackness, rendering the solution given in
Proposition 5.2. Q.E.D.

As we can see, for both non-negativity constraint and
`1-regularization, an additional bound on the norm simply
results in a normalization, if the corresponding projection
or soft-thresholding has norm greater than one. This is an
interesting result because projection onto the intersection of
two sets is in general not obtained by two consecutive single
projections.

To summarize, if we want to impose non-negativity
constraint or `1-regularization to the latent factorA(n), we can
simply replace the second step of (4.7) with Proj[(Ã−U)+]

or Proj[Sγ(Ã − U)]. The ADMM iterates (4.7) are still
guaranteed to find a conditionally optimal update, and the
per-iteration complexity remains low.

5.2 Considerations for sparse data Some additional chal-
lenges arise when the streamed data is sparse.

The discussion thus far assumes that the lengths of the
tensor modes are known ahead of time in order to initialize
the problem. However, in a sparse setting many indices will
not appear in the data stream until later in the factorization.
To address this challenge, we dynamically grow the factor
matrices throughout the computation. Whenever a new index
is observed in the incoming data, a new row is added to the
corresponding factor matrix A(n)

t and initialized randomly.
We additionally add a row to the existing factorizationA(n)

t−1,
but initialize it with zero in order to signify it not appearing
in the data stream previously.

Another challenge in the sparse setting is that the
distribution of incoming non-zeros can be highly non-uniform,
with some indices not receiving updates for many timesteps.
This challenge is not present in the traditional factorization
setting, as all indices are available to be updated each iteration
of the factorization. As a result, rows which do not observe
non-zeros will be updated and converge to zero, losing their
significance in the factorization.

This challenge can be addressed in multiple ways,
depending on the application and needs of the user. The
most simple solution is to allow rows of the factors to receive
no updates and ultimately converge to zero. This strategy is
sensible in the subspace tracking scenario, when the goal of
the streaming factorization is to primarily model recent data.
If instead the quality of the factorization over all timesteps
is important, then the strategy employed by SamBaTen [9]
may instead by preferable: only factor rows which observe
non-zeros in the current timestep are updated. This strategy

Copyright © 2018 by SIAM
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Table 2: Summary of real-world datasets.

Dataset NNZ Dimensions T Sparse?
AirportHall [11] 5M 144 × 176 200
ChicagoCrime [21] 5M 24 × 77 × 32 6K X
Reddit2008 [21] 66M 88K × 2K × 30K 367 X
CyberLANL [12] 165M 26K × 16K × 16K × 13K 1.4K X

NNZ is the number of nonzero entries in the dataset. K and M stand for thousand and million, respectively. Dimensions
are the dimensions of the streamed data, excluding the streamed mode. T is the length of the temporal mode (i.e., the
number of batches).

will prevent rows from converging to zero and better model
the data at a global scale. However, it is not applicable in
applications when the absence of activity is important, such
as a cybersecurity scenario. Given the subspace tracking
motivation of this work, we elect to always update rows and
allow them to converge to zero.

6 Experimental Methodology & Results
6.1 Experimental Setup

Configuration. Results on sparse datasets are acquired
using the Cori supercomputer at NERSC. We use the Intel
Xeon Phi 7250 (“Knights Landing”) many-core processors,
each with 68 cores, 16GB of MCDRAM configured as a
last-level cache, and 96GB of DDR4 memory. CP-stream
is implemented both in Matlab and C++. We use the
Matlab version to evaluate on synthetic datasets and to
compare against the state-of-the-art algorithms which are
also implemented in Matlab. The C++ version of CP-stream
is parallelized for multi- and many-core systems and is
integrated into the upcoming SPLATT software release.

Datasets. We evaluate our factorization on a set of
public, real-world tensor datasets. The tensors are chosen
to reflect a diverse set of applications and are summarized in
Table 2. AirportHall is surveillance footage distributed
with OLSTEC [11], in which each batch is a frame of video.
The remaining tensors are sparse and taken from the from
the FROSTT collection [21]. ChicagoCrime is a date-
hourofday-neighborhood-crime tensor representing crime
reports in Chicago over a sixteen year time period. Tensor
entries are counts. Reddit2008 is a date-user-community-
word tensor representing all user comments from Reddit1

from 2008. Tensor entries are word counts. CyberLANL
is an hour-user-machine-machine-domain tensor of network
logins at Los Alamos National Laboratory over a two month
period. Tensor entries are a count of login attempts.

6.2 Synthetic Data Evaluations We first evaluate the
correctness of CP-stream on a stream of synthetic two-way
tensor data samples, which is equivalent to factoring a three-
way tensor in the batch manner. Fixing I1=I2=100 and
K=10, the ground truth factors A(1)

\ and A(2)
\ are generated

by first randomly draw each entry from i.i.d. Gaussian

1https://reddit.com/
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Figure 2: Normalized error in the recovery of the ground-truth
latent factors over time. The estimation error is measured via
Equation (6.8).

distribution N (0, 1). Next, each column of A(1)
\ and A(2)

\

are normalized to have norm equal to one, which can be done
without loss of generality because of the scaling ambiguity
inherent in the CPD model. At each time t, a vector
s\t ∈ RK is generated from N (0, I), and a tensor sample
X t is constructed as

X t = [[A(1)
\ ,A

(2)
\ ; s

\
t]] +Wt,

where W is a random tensor with each entry generated from
i.i.d. N (0, σ2). Here we choose σ = 10−3.

We compare the performance of CP-stream with Online-
SGD [16] and Online-CP [28]. The criteria is to compare with
an algorithm dealing with the same streaming setting and joint
CPD model, and has the same property of memory efficiency.
For this reason, the adaptive PARAFAC algorithm [17] is
not compared, since it requires to keep track of at least a
dense matrix of size I1I2×K, with another version requiring
to store all the historical data, which exceeds the memory
requirement considered in this paper. Another baseline is
OLSTEC [11], which is similar to Online-CP, and thus we
omit for brevity. For our method, we choose λ to be a
relatively small number λ = 10−4 so as not to affect the
quality of fitting the data, and a forgetting factor µ = 0.99.
For Online-SGD, there is a similar parameter λ (for all the
factors, since there is no bound constraint on {A(n)} as we
did), and we choose it to be λ =

√
2MNσ as suggested by

the authors. All methods are initialized at the same random
factorsA(1)

0 andA(2)
0 .

Figure 2 shows the progress of normalized estimation
error of the latent factors after resolving the permutation
ambiguity of the columns, defined as

(6.8)
‖A(1)

\ −A
(1)
t ‖2

‖A(1)
\ ‖2

+
‖A(2)

\ −A
(2)
t ‖2

‖A(2)
\ ‖2

.

This is a meaningful evaluation criterion due to the generic
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Figure 3: The amount of time in seconds to process each
batch of the dense synthetic dataset.

uniqueness property of the CPD model. We see that the
estimation error rapidly converges to a small value, and the
final estimation quality of CP-stream is more than 10 times
better than that of Online-SGD. Online-CP fails to obtain a
good estimate of the latent factors within the given 1000 data
samples. Notice that we also need to tune the step size for
Online-SGD, which is a non-trivial task. For this simulation
we set the step size of Online-SGD to be 2, which works the
best among a few dozens of ones that we tried. If we change
the problem sizes and/or noise levels, this parameter needs
to be tuned again for better performances. CP-stream, on the
other hand, is completely free from tuning—we only need
to choose an appropriate λ, and our general rule-of-thumb is
simply a relatively small number—which is a good property
for practical purposes.

Figure 3 shows the execution time for each iteration while
factoring the synthetic dataset. Since Online-SGD only does
a simple stochastic gradient step to update A(n), it is much
faster than that of Online-CP. An interesting observation of
our proposed CP-stream is that the number of ADMM (4.7)
iterations quickly drops down to 1, therefore after about t>30,
the per-iteration execution time of CP-stream is comparable
to Online-SGD.

6.3 Real-World Data Evaluations We evaluate the fitting
ability of the methods on the AirportHall tensor in
Figure 4. We measure two forms of fitting error. Solid lines
denote the instantaneous fitting error, defined as

(6.9)
1

I1I2

∥∥∥X t − [[A(1)
t ,A

(2)
t ; st]]

∥∥∥2 ,
and dashed lines denote the overall fitting error, defined as

(6.10)
1

I1I2t

t∑
i=1

∥∥∥X i − [[A(1)
t ,A

(2)
t ; si]]

∥∥∥2 .
All three methods perform well in terms of local error.
However, only CP-stream is able to reduce the global error
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Figure 4: Scaled fitting error on the dense AirportHall
tensor. Local and Global errors are defined by Equa-
tions (6.9) and (6.10), respectively.
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Figure 5: Relative fitting error on the ChicagoCrime
tensor forK=50 and two forgetting factors (µ). CPD denotes
a non-streaming CPD using all preceding batches. Local
denotes the relative fitting error using only the previous ten
batches. The first 1000 batches are executed, but not shown
due to noise resulting from few data points (i.e., orders of
magnitude fewer non-zeros than later times).

down to comparable scale as the local error. We attribute
this to Online-CP and Online-SGD having large errors in the
estimates of the st vectors over the first few batches, which
dominate global error and are not revisited in a streaming
setting. CP-stream, on the other hand, is able to obtain very
accurate estimate of the st vectors at an early stage, giving
rise to the strong performance in terms of global error.

Figure 5 shows the fitting error over time on the sparse
ChicagoCrime tensor using two forgetting factors, µ. We
now use relative error for the sparse dataset, as it lends a more
interpretable result. Relative global error is defined as

(6.11)
1

‖X‖2
∥∥∥X − [[{A(n)};S]]

∥∥∥2 ,
and local error is defined similarly. We compare against
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Figure 6: Signal of the word “Obama” and the community
“stocks” over the year 2008 in the Reddit2008 dataset.
Signal is the inner product of the time vector st and the
corresponding rows of the factor matrices. Signals are from
the same rank-100 non-negative factorization.

a batched CPD as baseline. At each time t, CPD simply
recomputes a new factorization using all preceding batches.
We do not evaluate against Online-CP because it has not
been adapted to support sparsity, and we do not evaluate
against Online-SGD due to its treatment of sparse data (i.e.,
they treat sparsity as missing values, which is useful in other
applications that we do not consider).

When µ=0.99, both the global and local error closely
follow the CPD baseline. This indicates that CP-stream can
learn trends from a noisy dataset with a small accuracy loss
compared to the significantly more expensive batched CPD
computation. When µ=0.70, CP-stream instead trades off
a loss of higher global error for a model which captures
local information better than the CPD baseline. We can thus
conclude that the “forgetting” parameter µ allows CP-stream
to be useful in a variety of applications.

6.4 Case Studies Lastly, we evaluate the capability of CP-
stream to perform two typical streaming tasks.

Discussion tracking. Figure 6 demonstrates the capabil-
ity of CP-stream to discover events in a real-world streaming
dataset. We compute the rank-100 non-negative CPD of the
Reddit2008 tensor and simultaneously track the activity of
a word (“Obama”) and a community (“stocks”) over time. At
each timestep t, we extract the corresponding latent vectors
representing the tracked concepts and compute their inner
product with st. Since the factorization is non-negative, the
resulting value is easily interpretable and can be viewed as a
level of activity (denoted signal). Several major events from
2008 emerge as clear outliers, such as the USA presidential
election and the stock market crash.
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Figure 7: The relative reconstruction error of each slice over
two weeks of the CyberLANL tensor. Dashed red lines are
placed every 24 hours. We use K=100, µ = 0.2 to closely
track localized behavior, and λ=0.01, though we found all
small values of λ to show similar results.

Network traffic analysis. We examine two weeks of
network traffic in the CyberLANL dataset in Figure 7.
Values are the relative reconstruction error at one hour
increments. A clear day-night cycle emerges, as nighttime
features less traffic and can be better modeled by a low-rank
factorization. Moreso, we can observe spans of two days with
low error, which correspond to weekends which also feature
low amounts of traffic. Spans of high error during the daytime
decrease over time, as the factorization is able to better learn
the model for both day and night events.

7 Conclusions
Tensor factorization is a powerful tool for multi-way data
analysis. In many applications, we are interested in factoring a
tensor which includes temporal data that is not available ahead
of time, and can potentially be of unbounded length (i.e., it is
streamed). In this work, we present CP-stream, an algorithm
for streaming tensor factorization that is suitable for both
dense and sparse data. CP-stream is shown to converge faster
than state-of-the-art approaches on synthetic and real-world
datasets and improve factorization quality by 10×. It can
additionally incorporate constraints such as non-negativity or
factor sparsity. We demonstrate its applicability to large-scale
sparse data in two application areas and identify events and
patterns in real-world datasets.
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