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Abstract

Humans make complex inferences on faces, ranging from ob-
jective properties (gender, ethnicity, expression, age, identity,
etc) to subjective judgments (facial attractiveness, trustworthi-
ness, sociability, friendliness, etc). While the objective as-
pects of face perception have been extensively studied, rela-
tively fewer computational models have been developed for
the social impressions of faces. Bridging this gap, we de-
velop a method to predict human impressions of faces in 40
subjective social dimensions, using deep representations from
state-of-the-art neural networks. We find that model perfor-
mance grows as the human consensus on a face trait increases,
and that model predictions outperform human groups in cor-
relation with human averages. This illustrates the learnability
of subjective social perception of faces, especially when there
is high human consensus. Our system can be used to decide
which photographs from a personal collection will make the
best impression. The results are significant for the field of so-
cial robotics, demonstrating that robots can learn the subjective
judgments defining the underlying fabric of human interaction.
Keywords: social impression; deep learning; face perception

Introduction

With the huge success of deep learning techniques, current

state-of-the-art computer vision algorithms have approached

or exceeded human ability in recognizing a face (Taigman,

Yang, Ranzato, & Wolf, 2014; Stewart, Andriluka, & Ng,

2016) and identifying the objective properties of a face, such

as age and gender estimation, (Guo, Fu, Dyer, & Huang,

2008). However, humans not only read objective properties

from a face, like expression, age, and identity, but also form

subjective impressions of social aspects of a face (Todorov,

Olivola, Dotsch, & Mende-Siedlecki, 2015) at first sight,

such as facial attractiveness (Thornhill & Gangestad, 1999),

friendliness, trustworthiness (Todorov, Baron, & Oosterhof,

2008), sociability, dominance (Mignault & Chaudhuri, 2003),

and typicality. In spite of the subjective nature of social per-

ceptions, there is often a consensus among human in how

they perceive attractiveness, trustworthiness, and dominance

†These authors contributed equally.

in faces (Falvello, Vinson, Ferrari, & Todorov, 2015; Eisen-

thal, Dror, & Ruppin, 2006). This indicates that faces contain

high-level visual cues for social inferences, therefore making

it possible to model the inference process computationally.

Social judgments, as an important part of people’s daily inter-

actions, have a significant impact on social outcomes, ranging

from electoral success to sentencing decisions (Oosterhof &

Todorov, 2008; Willis & Todorov, 2006).

Are deep learning models, which are successful in vari-

ous visual tasks, also capable of predicting subjective social

impressions of faces? Even before the advent of deep learn-

ing, there have been models using traditional computer vi-

sion algorithms and simulated faces to model the perception

of facial attractiveness (Thornhill & Gangestad, 1999; Eisen-

thal et al., 2006; Kagian et al., 2008; Gray, Yu, Xu, & Gong,

2010), trustworthiness (Falvello et al., 2015; Todorov, Baron,

& Oosterhof, 2008), sociability, aggressiveness (Mignault

& Chaudhuri, 2003), familiarity (Peskin & Newell, 2004),

and memorability (Bainbridge, Isola, & Oliva, 2013; Khosla,

Bainbridge, Torralba, & Oliva, 2013). Recently, there has

been work on modeling the “big five ” personality traits per-

ceived by humans when viewing another person in video clips

(Escalera et al., 2016).

In this paper, we examine human social perceptions of

faces in 40 dimensions extensively and systematically. We

evaluate the human consistency and correlation in 40 social

features (20 relevant pairs) that are typically studied by social

psychologists (Todorov, Said, Engell, & Oosterhof, 2008),

and relevant to social interactions (Todorov et al., 2015;

Oosterhof & Todorov, 2008), and use state-of-the-art deep

learning algorithms to model all 40 of them. Using the in-

ternal representations learned from the deep learning models,

our model can successfully predict human social perception

whenever human have a consensus. We further visualize the

key features defining different social attributes to facilitate a

understanding of what makes a face salient in a certain social

dimension.
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Methods

Dataset

To predict human social impressions of faces, we use a public

dataset (Bainbridge et al., 2013) consisting of 2,222 face im-

ages and annotations for 40 social attributes. Each attribute

is rated on a scale of 1-9 by 15 subjects. We take the aver-

age rating from all raters as a collective estimation of human

judgment for the social features of each face.

The 40 social attributes consist of 20 pairs of related traits:

(attractive, unattractive), (happy, unhappy), (friendly, un-

friendly), etc. Some of these traits are highly correlated and

predictable from others, especially within the trait pairs. To

understand the human-perceived correlations between these

traits, we compute the Spearman’s rank correlation between

the average human ratings of every pair of social features and

show their correlations in a heatmap (Figure 1(a)). We order

traits in the map based on similarity and positive or nega-

tive connotation. From the figure, we see that negative social

features such as untrustworthy, aggressive, cold, introverted,

and irresponsible form a correlated block. Likewise, the most

positive features such as attractive, sociable, caring, friendly,

happy, intelligent, interesting, and confident are highly cor-

related with each other. Although we choose 20 pairs of op-

posite features, they are not completely complementary and

redundant. Principal Component Analysis of the covariance

matrix shows that it takes 24 principal components to cover

95% of the variance.

Regression Model for Social Attributes

After averaging human ratings, each face receives a continu-

ous score from 1 to 9 in all social dimensions. We model these

social scores with a regression model. We propose a ridge

regression model on either features from deep convolutional

neural networks (CNN) or traditional face geometry based

features, and present results from both feature sets. Such vi-

sual features are usually high-dimensional, so we first per-

form Principal Component Analysis (PCA) on the extracted

features of the training set to reduce dimensionality. The PCA

dimensionality is chosen by cross-validation on a validation

set, separately for each trait. The PCA weights are saved and

further used in fine-tuning our CNN-regression model.

Regression on Geometric Features

Past studies have found that facial attractiveness can be in-

ferred from the geometric ratios and configurations of a face

(Eisenthal et al., 2006; Kagian et al., 2008). We suggest that

other social attributes can also be inferred from geometric

features. We compute 29 geometric features based on defi-

nitions described in (Ma, Correll, & Wittenbrink, 2015), and

further extract a ’smoothness’ feature and ’skin color’ feature

according to the procedure in (Eisenthal et al., 2006; Kagian

et al., 2008). The smoothness of a face was evaluated by ap-

plying a Canny edge detector to regions from the cheek and

forehead areas (Eisenthal et al., 2006). The more edges de-

tected, the less smooth the skin is. The regions we chose

to compute smoothness and skin color are highlighted in the

right subplot of Figure 2. The skin color feature is extracted

from the same region as smoothness, converted from RGB

to HSV. However, regressing on these handcrafted features

alone is not enough to capture the richness of geometric de-

tails in a face. We therefore use a computer vision library

(dlib, C++) to automatically label 68 face landmarks (see Fig-

ure 2) for each face, and then compute distances and slopes

between any two landmarks. Combining 29 handcrafted geo-

metric features, smoothness, color and the distance-slope fea-

tures, we obtain 4592 features in total. Since the features are

highly correlated, we apply PCA to reduce dimensionality.

Again, the PCA dimensionality is chosen by cross-validating

on the hold out set separately for each facial attribute. Then

a ridge regression model is applied to predict social attribute

ratings of a face. The hyper-parameter of ridge regression is

selected by leave-one-out validation within the training set.

Regression on CNN Features

Previous studies have shown that pretrained deep learning

models can provide feature representations versatile for re-

lated tasks. We therefore extract image features from pre-

trained neural networks, choosing from six architectures with

different original training goals: (1) VGG16, trained for ob-

ject recognition (Simonyan & Zisserman, 2014), (2) VGG-

Face, trained for face identification (Simonyan & Zisser-

man, 2014), (3) AlexNet, trained for object classification

(Krizhevsky, Sutskever, & Hinton, 2012), (4) Inception from

Google, trained for object recognition (Szegedy et al., 2015),

(5) a shallow Siamese neural network that we train from

scratch to cluster faces by identity, (6) a state of the art

VGG-derived network (Face-LandmarkNN) trained for the

face landmark localization task.

To find the best CNN features among the six networks, we

first find the best-performing feature layers of each network

in the ridge regression prediction task. Before the ridge re-

gression, we perform PCA and pick the PCA dimensionality

that gives best results on the validation set. Then, we compare

the results among networks to select the best features overall.

Results

After comparing all 6 networks, we find that the conv5 2

layer of VGG16 (trained for object classification) lead to the

best results. This set of features significantly outperforms

the three networks trained solely on faces, while also slightly

outperforming AlexNet and Inception networks. These best-

performing CNN features also exceed the prediction corre-

lation of the geometric features in most attributes. Figure 3

compares prediction performance of the CNN model and the

geometric feature model.

We speculate that the poor performance from the face

recognition networks can be attributed to their optimization

for specific facial tasks. Learning face landmark configura-

tions and differences between faces that define identity may

not correlate well with the task at hand, which looks for com-

monalities behind certain social features beyond identity. The
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consider them in a decision. A robot need not treat an attrac-

tive or unattractive person differently for its own purposes,

but this knowledge could affect how interactions are made for

the sake of the human, knowing in advance how that person

may feel that they fit into the social landscape.

Expansions on this work may include investigating the

image properties that determine high level social features,

beyond the attractiveness features we display in Figure 5.

Additionally, social trait prediction may benefit from a sin-

gle model with a shared representation, while this paper ap-

proaches each attribute as a separate regression task.

For future work, we aim to develop a generative model

which can automatically modify a face’s attributes (either ob-

jective or subjective) while preserving its realism and iden-

tity. Practically speaking, such a model could improve a

face’s perceived social features in positive ways (e.g. make

a face look more sociable, trustworthy). More importantly, it

would enable psychologists to quantify human biases during

the formation of social impression in a precise and systematic

manner. Psychologists could generate variants of a real face

differing in age, gender, race, and explore how various factors

separately and jointly affect the social impressions of faces.
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