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Abstract

Saliency detection, finding the most important parts of an image, has become increasingly popular in computer vision. In

this paper, we introduce Hierarchical Cellular Automata (HCA)—a temporally evolving model to intelligently detect salient

objects. HCA consists of two main components: Single-layer Cellular Automata (SCA) and Cuboid Cellular Automata

(CCA). As an unsupervised propagation mechanism, Single-layer Cellular Automata can exploit the intrinsic relevance of

similar regions through interactions with neighbors. Low-level image features as well as high-level semantic information

extracted from deep neural networks are incorporated into the SCA to measure the correlation between different image

patches. With these hierarchical deep features, an impact factor matrix and a coherence matrix are constructed to balance

the influences on each cell’s next state. The saliency values of all cells are iteratively updated according to a well-defined

update rule. Furthermore, we propose CCA to integrate multiple saliency maps generated by SCA at different scales in a

Bayesian framework. Therefore, single-layer propagation and multi-scale integration are jointly modeled in our unified HCA.

Surprisingly, we find that the SCA can improve all existing methods that we applied it to, resulting in a similar precision

level regardless of the original results. The CCA can act as an efficient pixel-wise aggregation algorithm that can integrate

state-of-the-art methods, resulting in even better results. Extensive experiments on four challenging datasets demonstrate

that the proposed algorithm outperforms state-of-the-art conventional methods and is competitive with deep learning based

approaches.

Keywords Saliency detection · Hierarchical Cellular Automata · Deep contrast features · Bayesian framework

1 Introduction

Humans excel in identifying visually significant regions in a

scene corresponding to salient objects. Given an image, peo-

ple can quickly tell what attracts them most. In the field of

computer vision, however, performing the same task is very
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challenging, despite dramatic progress in recent years. To

mimic the human attention system, many researchers focus

on developing computational models that locate regions of

interest in the image. Since accurate saliency maps can

assign relative importance to the visual contents in an image,

saliency detection can be used as a pre-processing proce-

dure to narrow the scope of visual processing and reduce the

cost of computing resources. As a result, saliency detection

has raised a great amount of attention (Achanta et al. 2009;

Goferman et al. 2010) and has been incorporated into various

computer vision tasks, such as visual tracking (Mahadevan

and Vasconcelos 2009), object retargeting (Ding et al. 2011;

Sun and Ling 2011) and image categorization (Siagian and

Itti 2007; Kanan and Cottrell 2010). Results in perceptual

research show that contrast is one of the decisive factors

in the human visual attention system (Itti and Koch 2001;

Reinagel and Zador 1999), suggesting that salient objects

are most likely in the region of the image that significantly

differs from its surroundings. Many conventional saliency

detection methods focus on exploiting local and global con-
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Fig. 1 An example illustrates that conventional saliency detection

methods based on handcrafted low-level features fail in complex cir-

cumstances. From top left to bottom right: stimulus, HS (Yan et al.

2013), DSR (Li et al. 2013), MR (Yang et al. 2013), ground truth,

wCO (Zhu et al. 2014), and our method SCA and HCA

trast based on various handcrafted image features, e.g., color

features (Liu et al. 2011; Cheng et al. 2015), focusness (Jiang

et al. 2013c), textual distinctiveness (Scharfenberger et al.

2013), and structure descriptors (Shi et al. 2013). Although

these methods perform well on simple benchmarks, they may

fail in some complex situations where the handcrafted low-

level features do not help salient objects stand out from the

background. For example, in Fig. 1, the prairie dog is sur-

rounded by low-contrast rocks and bushes. It is challenging

to detect the prairie dog as a salient object with only low-

level saliency cues. However, humans can easily recognize

the prairie dog based on its category as it is semantically

salient in high-level cognition and understanding.

In addition to the limitation of low-level features, the

large variations in object scales also restrict the accuracy

of saliency detection. An appropriate scale is of great impor-

tance in extracting the salient object from the background.

One of the most popular ways to detect salient objects of dif-

ferent sizes is to construct multi-scale saliency maps and then

aggregate them with pre-defined functions, such as averaging

or a weighted summation. In most existing methods (Wang

et al. 2016; Li and Yu 2015; Li et al. 2014a; Zhou et al. 2014;

Borji et al. 2015), however, these constructed saliency maps

are usually integrated in a simple and heuristic way, which

may directly limit the precision of saliency aggregation.

To address these two obvious problems, we propose a

novel method named Hierarchical Cellular Automata (HCA)

to extract the salient objects from the background efficiently.

A Hierarchical Cellular Automata consists of two main com-

ponents: Single-layer Cellular Automata (SCA) and Cuboid

Cellular Automata (CCA). First, to improve the features, we

use fully convolutional networks (Long et al. 2015) to extract

deep features due to their successful application to seman-

tic segmentation. It has been demonstrated that deep features

are highly versatile and have stronger representational power

than traditional handcrafted features (Krizhevsky et al. 2012;

Farabet et al. 2013; Girshick et al. 2014). Low-level image

features and high-level saliency cues extracted from deep

neural networks are used by an SCA to measure the sim-

ilarity of neighbors. With these hierarchical deep features,

the SCA iteratively updates the saliency map through inter-

actions with similar neighbors. Then the salient object will

naturally emerge from the background with high consistency

among similar image patches. Secondly, to detect multi-scale

salient objects, we apply the SCA at different scales and

integrate them with the CCA based on Bayesian inference.

Through interactions with neighbors in a cuboid zone, the

integrated saliency map can highlight the foreground and

suppress the background. An overview of our proposed HCA

is shown in Fig. 2.

Furthermore, the Hierarchical Cellular Automata is capa-

ble of optimizing other saliency detection methods. If a

saliency map generated by one of the existing methods is

used as the prior map and fed into HCA, it can be improved

to the state-of-the-art precision level. Meanwhile, if multiple

saliency maps generated by different existing methods are

used as initial inputs, HCA can naturally fuse these saliency

maps and achieve a result that outperforms each method.

In summary, the main contributions of our work include:

(1) We propose a novel Hierarchical Cellular Automata to

adaptively detect salient objects of different scales based

on hierarchical deep features. The model effectively

improves all of the methods we have applied it to to state-

of-the-art precision levels and is relatively insensitive to

the original maps.

(2) Single-layer Cellular Automata serve as a propagation

mechanism that exploits the intrinsic relevance of similar

regions via interactions with neighbors.

(3) Cuboid Cellular Automata can integrate multiple sali-

ency maps into a more favorable result under the

Bayesian framework.

2 RelatedWork

2.1 Salient Object Detection

Methods of saliency detection can be divided into two

categories: top-down (task-driven) methods and bottom-up

(data-driven) methods. Approaches like (Alexe et al. 2010;

Marchesotti et al. 2009; Ng et al. 2002; Yang and Yang 2012)

are typical top-down visual attention methods that require

supervised learning with manually labeled ground truth. To
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Fig. 2 The pipeline of our proposed Hierarchical Cellular Automata.

First, the stimulus is segmented into multi-scale superpixels, and super-

pixels on the image boundary are selected as seeds for the propagation

of the background (Sect. 3.1). Then FCN-32s (Long et al. 2015) is used

as a feature extractor to obtain deep features (Sect. 3.2). The generated

prior maps and deep features are both fed into the Single-Layer Cellu-

lar Automata (Sect. 3.3.1) to create multi-scale saliency maps. Finally,

we integrate these saliency maps via the Cuboid Cellular Automata

(Sect. 3.3.2) to obtain our ultimate result

better distinguish salient objects from the background, high-

level category-specific information and supervised methods

are incorporated to improve the accuracy of saliency maps.

In contrast, bottom-up methods usually concentrate on low-

level cues such as color, intensity, texture and orientation

to construct saliency maps (Hou and Zhang 2007; Jiang

et al. 2011; Klein and Frintrop 2011; Sun et al. 2012;

Tong et al. 2015; Yan et al. 2013). Some global bottom-

up approaches tend to build saliency maps by calculating

the holistic statistics on uniqueness of each element over the

whole image (Cheng et al. 2015; Perazzi et al. 2012; Bruce

and Tsotsos 2005).

As saliency is defined as a particular part of an image that

visually stands out compared to their neighboring regions

or the rest of image, one of the most used principles, con-

trast prior, measures the saliency of a region according to

the color contrast or geodesic distance against its surround-

ings (Cheng et al. 2013, 2015; Jiang et al. 2011; Jiang and

Davis 2013; Klein and Frintrop 2011; Perazzi et al. 2012;

Wang et al. 2011). Recently, the boundary prior has been

introduced in several methods based on the assumption that

regions along the image boundaries are more likely to be the

background (Jiang et al. 2013b; Li et al. 2013; Wei et al.

2012; Yang et al. 2013; Borji et al. 2015; Shen and Wu

2012), although this takes advantage of photographer’s bias

and is less likely to be true for active robots. Considering the

connectivity of regions in the background, Wei et al. (2012)

define the saliency value for each region as the shortest-path

distance towards the boundary. Yang et al. (2013) use man-

ifold ranking to infer the saliency score of image regions

according to their relevance to boundary superpixels. Fur-

thermore, in (Jiang et al. 2013a), the contrast against the

image border is used as a new regional feature vector to char-

acterize the background.

However, one of the fundamental problems with all these

conventional saliency detection methods is that the features

used are not representative enough to capture the contrast

between foreground and background, and this limits the

precision of saliency detection. For one thing, low-level

features cannot help salient objects stand out from a low-

contrast background with similar visual appearance. Also,

the extracted global features are weak in capturing semantic

information and have much poorer generalization compared

to the deep features used in this paper.

2.2 Deep Neural Networks

Deep convolutional neural networks have recently achieved

a great success in various computer vision tasks, includ-

ing image classification (Krizhevsky et al. 2012; Szegedy

et al. 2015), object detection (Girshick et al. 2014; Hariharan

et al. 2014; Szegedy et al. 2013) and semantic segmenta-

tion (Long et al. 2015; Pinheiro and Collobert 2014). With

the rapid development of deep neural networks, researchers

have begun to construct effective neural networks for saliency

detection (Zhao et al. 2015; Li and Yu 2015; Zou and

Komodakis 2015; Wang et al. 2015; Li et al. 2016; Kim

and Pavlovic 2016). In (Zhao et al. 2015), Zhao et al. pro-

pose a unified multi-context deep neural network taking both

global and local context into consideration. Li et al. (Li and

Yu 2015) and Zou et al. (Zou and Komodakis 2015) explore

high-quality visual features extracted from DNNs to improve

the accuracy of saliency detection. DeepSaliency in (Li et al.

2016) is a multi-task deep neural network using a collabo-

rative feature learning scheme between two correlated tasks,

saliency detection and semantic segmentation, to learn bet-

ter feature representation. One leading factor for the success

of deep neural networks is the powerful expressibility and
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strong capacity of deep architectures that facilitate learn-

ing high-level features with semantic information (Hariharan

et al. 2015; Ma et al. 2015).

In (Donahue et al. 2014), Donahue et al. point out that

features extracted from the activation of a deep convolu-

tional network can be repurposed to many other generic

tasks. Inspired by this idea, we use the hierarchical deep

features extracted from fully convolutional networks (Long

et al. 2015) to represent smaller image regions. The extracted

deep features incorporate low-level features as well as high-

level semantic information of the image and can be fed into

our Hierarchical Cellular Automata to measure the similarity

of different image patches.

2.3 Cellular Automata

Cellular Automata are a model of computation first proposed

by Von Neumann (1951). They can be described as a tempo-

rally evolving system with simple construction but complex

self-organizing behavior. A Cellular Automaton consists of

a lattice of cells with discrete states, which evolve in dis-

crete time steps according to specific rules. Each cell needs

to make a decision on its next state in order to survive in

the environment. How to make a better decision? The sim-

pliest way is to hold the current state forever. However, it is

not wise as there will be no improvements. Intuitively, we

can see the nearest neighbors’ states as a reference. If we

are similar, then we should have similar states; otherwise,

we should have different states. Therefore, at each time step,

each cell intends to make a wise decision for its next state

based on its current state as well as its neighbors’. Cellu-

lar Automata have been applied to simulate the evolution of

many complicated dynamical systems (Batty 2007; Chopard

and Droz 2005; Cowburn and Welland 2000; Almeida et al.

2003; Martins 2008; Pan et al. 2016).

Considering that salient objects are spatially coherent, we

introduce Cellular Automata into this field as an unsupervised

propagation mechanism. For saliency detection, we treat the

saliency map as a dynamic system and the saliency values

will be considered as the cell’s states. The saliency value

will evolve as time goes by in order to get a better saliency

map, in other words, to make the dynamic system more sta-

ble. Because most salient objects in the images share similar

feature representations as well as similar saliency values, we

propose Single-layer Cellular Automata to exploit the intrin-

sic relationships of neighboring elements of the saliency map

and eliminate gaps between similar regions. Furthermore, it

can be observed that there is a high contrast between salient

objects and its surrounding backgrounds in the feature space.

Through interacting with neighbors, it is easy for the dynamic

system to differentiate the foreground and background.

In addition, we propose a method to combine multiple

saliency maps generated by different algorithms, or com-

bine saliency maps at different scales through what we call

Cuboid Cellular Automata (CCA). In CCA, states of the

automaton are determined by a cuboid neighborhood cor-

responding to automata at the same location as well as their

adjacent neighbors in different saliency maps. An illustration

of the idea is in Fig. 3b. In this setting, the saliency maps are

iteratively updated through interactions among neighbors in

the cuboid zone. The state updates are determined through

Bayesian evidence combination rules. Variants of this type

of approach have been used before (Rahtu et al. 2010; Xie

and Lu 2011; Xie et al. 2013; Li et al. 2013). Xie et al. (2013)

use the low-level visual cues derived from a convex hull to

compute the observation likelihood. Li et al. (2013) con-

struct saliency maps through dense and sparse reconstruction

and propose a Bayesian algorithm to combine them. Using

Bayesian updates to combine saliency maps puts the algo-

rithm for Cuboid Cellular Automata on a firm theoretical

foundation.

3 Proposed Algorithm

In this paper, we propose an unsupervised Hierarchical Cel-

lular Automata (HCA) for saliency detection, composed of

two sub-units, a Single-layer Cellular Automata (SCA), and a

Cuboid Cellular Automata (CCA), as described below. First,

we construct prior maps of different scales with superpix-

els on the image boundary chosen as the background seeds.

Then, hierarchical deep features are extracted from fully

convolutional networks (Long et al. 2015) to measure the

similarity of different superpixels. Next, we use SCA to iter-

atively update the prior maps at different scales based on the

hierarchical deep features. Finally, a CCA is used to inte-

grate the multi-scale saliency maps using Bayesian evidence

combination. Figure 2 shows an overview of our proposed

method.

3.1 Background Priors

Recently, there have been various mathematical models pro-

posed to generate a coarse saliency map to help locate

potential salient objects in an image (Tong et al. 2015a; Zhu

et al. 2014; Gong et al. 2015). Even though prior maps are

effective in improving detection precision, they still have sev-

eral drawbacks. For example, a poor prior map may greatly

limit the accuracy of the final saliency map if it incorrectly

estimates the location of the objects or classifies the fore-

ground as the background. Also, the computational time to

construct a prior map can be excessive. Therefore, in this

paper, we build a quite simple and time-efficient prior map

that only provides the propagation seeds for HCA, which is

quite insensitive to the prior map and is able to refine this

coarse prior map into an improved saliency map.
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First, we use the efficient Simple Linear Iterative Cluster-

ing (SLIC) algorithm (Achanta et al. 2010) to segment the

image into smaller superpixels in order to capture the essen-

tial structural information of the image. Let si ∈ R denote the

saliency value of the superpixel i in the image. Based on the

assumption that superpixels on the image boundary tend to

have a higher probability of being the background, we assign

a close-to-zero saliency value to the boundary superpixels.

For others, we assign a uniform value as their initial saliency

values,

si =

{

0.001 i ∈ boundary

0.5 i /∈ boundary.
(1)

Considering the great variation in the scales of salient objects,

we segment the image into superpixels at M different scales,

which are displayed in Fig. 2 (Prior Maps).

3.2 Deep Features from FCN

As is well-known, the features in the last layers of CNNs

encode semantic abstractions of objects, and are robust

to appearance variations, while the early layers contain

low-level image features, such as color, edge, and texture.

Although high-level features can effectively discriminate the

objects from various backgrounds, they cannot precisely cap-

ture the fine-grained low-level information due to their low

spatial resolution. Therefore, a combination of these deep

features is preferred compared to any individual feature map.

In this paper, we use the feature maps extracted from the

fully-convolutional network (FCN-32s (Long et al. 2015)) to

encode object appearance. The input image to FCN-32s is

resized to 500×500, and a 100-pixel padding is added to the

four boundaries. Due to subsampling and pooling operations

in the CNN, the outputs of each convolutional layer in the

FCN framework are not at the same resolution. Since we only

care about the features corresponding to the original image,

we need to (1) crop the feature maps to get rid of the padding;

(2) resize each feature map to the input image size via the

nearest neighbor interpolation. Then each feature map can

be aggregated using a simple linear combination as:

g(ri , r j ) =

L
∑

l=1

ρl · ‖d f l
i − d f l

j ‖2, (2)

where d f l
i denotes the deep features of superpixel i on the

l-th layer and ρl is a weighting of the importance of the l-th

feature map, which we set by cross-validation. The weights

are constrained to sum to 1:
∑L

l=1 ρl = 1. Each superpixel

is represented by the mean of the deep features of all con-

tained pixels. The computed g(ri , r j ) is used to measure the

similarity between superpixels.

3.3 Hierarchical Cellular Automata

Hierarchical Cellular Automata (HCA) is a unified fram-

ework composed of single-layer propagation (Single-layer

Cellular Automata) and multi-scale aggregation (Cuboid

Cellular Automata). It can generate saliency maps at different

scales and integrate them to get a fine-grained saliency map.

We will discuss SCA and CCA respectively in Sects. 3.3.1

and 3.3.2.

3.3.1 Single-Layer Cellular Automata

In Single-layer Cellular Automata (SCA), each cell denotes a

superpixel generated by the SLIC algorithm. SLIC takes the

number of desired superpixels as a parameter, so by using

different numbers of superpixels with SCA, we can obtain

maps at different scales. In this section, we assume one scale,

denoted m. We represent the number of superpixels in scale

m as nm , but we omit the subscript m in most notations in

this section for clarity, e.g., F for Fm , C for Cm and s for sm .

Different superpixel scales are treated independently.

We make three major modifications to the previous cel-

lular automata models (Smith 1972; Von Neumann 1951)

for saliency detection. First, the states of cells in most exist-

ing Cellular Automata models are discrete (Von Neumann

et al. 1966; Wolfram 1983). However, in this paper, we use

the saliency value of each superpixel as its state, which is

continuous between 0 and 1. Second, we give a broader def-

inition of the neighborhood that is similar to the concept of

z-layer neighborhood (here z = 2) in graph theory. The z-

layer neighborhood of a cell includes adjacent cells as well

as those sharing common boundaries with its adjacent cells.

Also, we assume that superpixels on the image boundaries

are all connected to each other because all of them serve as

background seeds. The connections between the neighbors

are clearly illustrated in Fig. 3a. Finally, instead of uniform

(b)(a)

Fig. 3 The constructed graph models used in our algorithm. a Is used

in SCA, the orange lines and the blue lines represent the connections

between the blue center cell and its 2-layer neighbors. The purple lines

indicate that superpixels on the image boundaries are all connected to

each other; b is used in CCA, a cell (e.g. the red pixel in the bottom layer)

is connected to the pixels with the same coordinates in other layers as

well as their four adjacent neighbors (e.g. cells in blue color). All these

pixels construct a cuboid interaction zone (Color figure online)
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influence of the neighbors , the influence is based on the sim-

ilarity between the neighbor to the cell in feature space, as

explained next.

Impact Factor Matrix Intuitively, neighbors with more sim-

ilar features have a greater influence on the cell’s next state.

The similarity of any pair of superpixels is measured by a pre-

defined distance in feature space. For the m-th saliency map,

which has nm superpixels in total, we construct an impact

factor matrix F ∈ R
nm×nm . Each element fi j in F defines the

impact factor of superpixel i to j as:

fi j =

{

exp(
−g(ri ,r j )

σ 2
f

) j ∈ NB(i)

0 j = i or otherwise,
(3)

where g(ri , r j ) is a function that computes the distance

between the superpixel i and j in feature space with ri as the

feature descriptor of superpixel i . In this paper, we use the

weighted distance of hierarchical deep features computed by

Eq. (2) to measure the similarity between neighbors. σ f is a

parameter that controls the strength of similarity and NB(i) is

the set of the neighbors of the cell i . In order to normalize the

impact factors, a degree matrix D = diag{d1, d2, . . . , dnm } is

constructed, where di =
∑

j fi j . Finally, a row-normalized

impact factor matrix can be calculated as F∗ = D−1 · F.

Coherence Matrix Given that each cell’s next state is deter-

mined by its current state as well as its neighbors, we need to

balance the importance of these two factors. On the one hand,

if a superpixel is quite different from all its neighbors in the

feature space, its next state will be primarily based on itself.

On the other hand, if a cell is similar to its neighbors, it should

be assimilated by the local environment. To this end, we build

a coherence matrix C = diag{c1, c2, . . . , cnm } to promote

the evolution among all cells. Each cell’s coherence towards

its current state is initially computed as: ci = 1
max( fi j )

, so

it is inversely proportional to its maximum similarity to its

neighbors. As ci represents the coherence of the current state,

we normalize it to be in a range ci ∈ [ b , a + b ], where

[ b , a + b ] ⊆ [ 0, 1 ], via:

c∗
i = a ·

ci − min
(

c j

)

max
(

c j

)

− min
(

c j

) + b, (4)

where the min and max are computed over j = 1, 2, . . . , nm .

Based on preliminary experiments, we empirically set the

parameters a and b in Eq. (4) to be 0.9 and 0. The final,

normalized coherence matrix is then: C∗ = diag{c∗
1, c∗

2, . . . ,

c∗
nm

}.

Synchronous Update Rule In the existing Cellular Automata

models, all cells will simultaneously update their states

according to the update rule, which is a key point in Cel-

lular Automata, as it controls whether the ultimate evolving

S
t
im

u
li

S
C

A
G

r
o

u
n

d
 

T
r
u

t
h

Fig. 4 Saliency maps generated by SCA (nm = 200). The first three

columns show that salient objects can be precisely detected when the

saliency appears in the center of the image. The last three columns

indicate that SCA can still have good performance even when salient

objects touch the image boundary

state is chaotic or stable (Wolfram 1983). Here, we define the

synchronous update rule based on the impact factor matrix

F∗ ∈ R
nm×nm and coherence matrix C∗ ∈ R

nm×nm :

s(t+1) = C∗s(t) +
(

I − C∗
)

F∗s(t), (5)

where I is the identity matrix of dimension nm × nm and

s(t) ∈ R
nm denotes the saliency map at time t . When t = 0,

s(0) is the prior map generated by the method introduced in

Sect. 3.1. After TS time steps (a time step is defined as one

update of all cells), the saliency map can be represented as

s(TS). It should be noted that the update rule is invariant over

time; only the cells’ states s(t) change over iterations.

Our synchronous update rule is based on the generalized

intrinsic characteristics of most images. First, superpixels

belonging to the foreground usually share similar feature

representations. By exploiting the correlation between neigh-

bors, the SCA can enhance saliency consistency among

similar regions and develop a steady local environment. Sec-

ond, it can be observed that there is a high contrast between

the object and its surrounding background in feature space.

Therefore, a clear boundary will naturally emerge between

the object and the background, as the cell’s saliency value is

greatly influenced by its similar neighbors. With boundary-

based prior maps, salient objects can be naturally highlighted

after the evolution of the system due to the connectivity and

compactness of the object, as exemplified in Fig. 4. Specif-

ically, even though part of the salient object is incorrectly

selected as the background seed, the SCA can adaptively

increase their saliency values under the influence of the local

environment. The last three columns in Fig. 4 show that when

the object touches the image boundary, the results achieved

by the SCA are still satisfying.

3.3.2 Cuboid Cellular Automata

To better capture the salient objects of different scales, we

propose a novel method named Cuboid Cellular Automata

(CCA) to incorporate M different saliency maps generated
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by SCA under M scales, each of which serves as a layer

of the Cuboid Cellular Automata. In CCA, each cell cor-

responds to a pixel, and the saliency values of all pixels

constitute the set of cells’ states. The number of all pix-

els in an image is denoted as H. Unlike the definition of

a neighborhood in Multi-layer Cellular Automata in (Qin

et al. 2015), where each pixel will only be influenced by the

pixels with the same coordination on other saliency maps,

in CCA, we enlarge the neighborhood into a cuboid zone.

Here pixels with the same coordinates in different saliency

maps as well as their 4-connected pixels are all regarded as

neighbors. That is, for any cell in a saliency map, it should

have 5M − 1 neighbors, constructing a cuboid interaction

zone. The hierarchical graph is presented in Fig. 3b to illus-

trate the connections between neighbors. The idea that we

want to enlarge the influential zone is inspired by the suc-

cess of SCA, which indicates that the neighboring pixels

will have a good impact on the evolution of the saliency

map.

In Cuboid Cellular Automata, the saliency value of pixel

i in the m-th saliency map at time t is its probability of being

the foreground F , represented as s
(t)
m,i = P(i ∈

(t)
m F), while

1−s
(t)
m,i is its probability of being the background B, denoted

as 1 − s
(t)
m,i = P(i ∈

(t)
m B). We binarize each map with an

adaptive threshold using Otsu’s method (Otsu 1975), which is

computed from the initial saliency map and does not change

over time. The threshold of the m-th saliency map is denoted

by γm . If pixel i in the m-th binary map is classified as fore-

ground at time t (s
(t)
m,i ≥ γm), then it will be denoted as

η
(t)
m,i = +1. Correspondingly, η

(t)
m,i = −1 means that pixel i

is binarized as background (s
(t)
m,i < γm).

If pixel i belongs to the foreground, the probability

that one of its neighboring pixels j in the m-th binary

map is classified as foreground at time t is denoted as

P( η
(t)
m, j = +1|i ∈

(t)
m F ). In the same way, the probabil-

ity P( η
(t)
m, j = −1|i ∈

(t)
m B ) represents that the pixel j

is binarized as B conditioned on that pixel i belongs to the

background at time t . We make the simplifying assumption

that P( η
(t)
m, j = +1|i ∈

(t)
m F ) is the same for all the pixels

in any saliency map and it does not change over time. Addi-

tionally, it is reasonable to assume that P( η
(t)
m, j = +1|i ∈

(t)
m

F ) = P( η
(t)
m, j = −1|i ∈

(t)
m B ) if we simply consider to be

the foreground and to be the background as two choices with

the same probability. Then we can use a constant λ to denote

these two probablities:

P( η
(t)
m, j = +1|i ∈(t)

m F ) = P( η
(t)
m, j = −1|i ∈(t)

m B ) = λ.

(6)

Then the posterior probability P(i ∈
(t)
m F |η

(t)
m, j = +1) can

be calculated as follows:

P
(

i ∈(t)
m F

∣

∣

∣
η

(t)
m, j = +1

)

∝ P
(

i ∈(t)
m F

)

P
(

η
(t)
m, j = +1

∣

∣

∣
i ∈(t)

m F
)

= s
(t)
m,i · λ

(7)

In order to get rid of the normalizing constant in Eq. (7),

we define the prior ratio Ω(i ∈
(t)
m F) as:

Ω

(

i ∈(t)
m F

)

=
P

(

i ∈
(t)
m F

)

P
(

i ∈
(t)
m B

) =
s
(t)
m,i

1 − s
(t)
m,i

. (8)

Combining Eq. (7) and Eq. (8), the posterior ratio Ω(i ∈
(t)
m

F | η
(t)
m, j = +1) turns into:

Ω

(

i ∈(t)
m F

∣

∣

∣
η

(t)
m, j = +1

)

=
P

(

i ∈
(t)
m F

∣

∣

∣
η

(t)
m, j = +1

)

P
(

i ∈
(t)
m B

∣

∣

∣
η

(t)
m, j = +1

)

=
s
(t)
m,i

1 − s
(t)
m,i

·
λ

1 − λ
.

(9)

As the posterior probability P(i ∈
(t)
m F |η

(t)
m, j = +1) rep-

resents the probability of pixel i of being the foreground

F conditioned on that its neighboring pixel j in the m-th

saliency map is binarized as foreground at time t, P(i ∈
(t)
m

F |η
(t)
m, j = +1) can also be used to represent the probability

of pixel i of being the foreground F at time t + 1. Then,

s
(t+1)
m,i = P(i ∈(t)

m F |η
(t)
m, j = +1). (10)

According to Eq. (9) and Eq. (10), we can get:

s
(t+1)
m,i

1 − s
(t+1)
m,i

=
P(i ∈

(t)
m F |η

(t)
m, j = +1)

1 − P(i ∈
(t)
m F |η

(t)
m, j = +1)

=
P(i ∈

(t)
m F |η

(t)
m, j = +1)

P(i ∈
(t)
m B|η

(t)
m, j = +1)

=
s
(t)
m,i

1 − s
(t)
m,i

·
λ

1 − λ
.

(11)

It is much easier to deal with the logarithm of this quantity

because the changes in logodds will be additive. So Eq. (11)

turns into:

l
(

s
(t+1)
m,i

)

= l
(

s
(t)
m,i

)

+ �, (12)

where l
(

s
(t+1)
m,i

)

= ln

(

s
(t+1)
m,i

1−s
(t+1)
m,i

)

and � = ln( λ
1−λ

) is a

constant. The intuitive explanation for Eq. (12) is that: if
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HCASCA120 SCA140 SCA160 SCA180 SCA200 GTStimuli

Fig. 5 Visual comparison of saliency maps generated by SCA at dif-

ferent scales (n1 = 120, n2 = 140, n3 = 160, n4 = 180 and n5 = 200) and

HCA

a pixel observes that one of its neighbors is binarized as

foreground, it ought to increase its saliency value; otherwise,

it should decrease its saliency value. Therefore, Eq. (12) can

be turned into:

l
(

s
(t+1)
m,i

)

= l
(

s
(t)
m,i

)

+ sign(s
(t)
j,k − γk) · �, (13)

where s
(t)
j,k is the saliency value of the pixel i’s j-th neighbor

in the k-th saliency map at time t and � must be greater than

0. In this paper, we empirically set � = 0.04.

As each pixel has 5M −1 neighbors in total, the pixel will

decide its action (increase or decrease it saliency value) based

on all its neighbors’ current states. Assuming the contribution

of each neighbor is conditionally independent, we derive the

synchronous update rule from Eq. (13) as:

l
(

s(t+1)
m

)

= l
(

s(t)
m

)

+ �
(t)
m · �, (14)

where s
(t)
m ∈ R

H is the m-th saliency map at time t and H

is the number of pixels in the image. �
(t)
m ∈ R

H can be

computed by:

�
(t)
m =

5
∑

j=1

M
∑

k=1

δ(k = m, j > 1) · sign
(

s
(t)
j,k − γk · 1

)

,

(15)

where M is the number of different saliency maps, s
(t)
j,k ∈ R

H

is a vector containing the saliency values of the j-th neighbor

for all the pixels in the m-th saliency map at time t and 1 =

[1, 1, . . . , 1]� ∈ R
H . We use δ(k = m, j > 1) to represent

the occasion that the cell only has 4 neighbors instead of 5 in

the m-th saliency map when it is in the m-th saliency map.

After TC iterations, the final integrated saliency map s(TC ) is

calculated by

s(TC ) =
1

M

M
∑

m=1

s(TC )
m . (16)

In this paper, we use CCA to integrate saliency maps

generated by SCA at M = 5 scales. The five scales are

Fig. 6 Comparison of saliency maps generated by different methods

and their optimized results via Single-layer Cellular Automata. The

first row is respectively input images, ground truth and saliency maps

generated by our proposed SCA with 200 superpixels. The second row

displays original saliency maps generated by three traditional methods

(from left to right: CAS (Goferman et al. 2010), LR (Shen and Wu

2012), RC (Cheng et al. 2015)). The third row is their corresponding

optimized results by SCA with 200 superpixels

respectively, n1 = 120, n2 = 140, n3 = 160, n4 = 180 and n5

= 200. This combination is denoted as HCA, and the visual

saliency maps generated by HCA can be seen in Fig. 5. Here

we use the notation SCAn to denote SCA applied with n

superpixels. We can see that the detected objects in the inte-

grated saliency maps are uniformly highlighted and much

closer to the ground truth.

3.4 Consistent Optimization

3.4.1 Single-Layer Propagation

Due to the connectivity and compactness of the object, the

salient part of an image will naturally emerge with the Single-

layer Cellular Automaton, which serves as a propagation

mechanism. Therefore, we use the saliency maps generated

by several well-known methods as the prior maps and refresh

them according to the synchronous update rule. The saliency

maps achieved by CAS (Goferman et al. 2010), LR (Shen

and Wu 2012) and RC (Cheng et al. 2015) are taken as s(0) in

Eq. (5). The optimized results via SCA are shown in Fig. 6.

We can see that the foreground is uniformly highlighted and

a clear object contour naturally emerges with the automatic

single-layer propagation mechanism. Even though the orig-

inal saliency maps are not particularly good, all of them are

significantly improved to a similar accuracy level after evo-

lution. That means our method is independent of prior maps

and can make a consistent and efficient optimization towards

state-of-the-art methods.

3.4.2 Pixel-Wise Integration

A variety of methods have been developed for visual saliency

detection, and each of them has its advantages and limita-

tions. As shown in Fig. 7, the performance of a saliency
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Stimuli BL HS MR CCA GT

Stimuli MDF DS MCDL CCA GT

(a)

(b)

Fig. 7 Effects of pixel-wise saliency aggregation with Cuboid Cellular

Automata. We integrate saliency maps generated by three conventional

algorithms: BL (Tong et al. 2015a), HS (Yan et al. 2013) and MR (Yang

et al. 2013) in (a) and incorporate saliency maps generated by three

deep learning methods: MDF (Li and Yu 2015), DS (Li et al. 2016),

MCDL (Zhao et al. 2015) in (b). The integrated result is denoted as

CCA. a Saliency aggregation of three conventional methods. b Saliency

aggregation of three deep learning methods

detection method varies with individual images. Each method

can work well for some images or some parts of the images

but none of them can perfectly handle all the images. Fur-

thermore, different methods may complement each other. To

take advantage of the superiority of each saliency map, we

use Cuboid Cellular Automata to aggregate two groups of

saliency maps, which are generated by three conventional

algorithms: BL (Tong et al. 2015a), HS (Yan et al. 2013)

and MR (Yang et al. 2013) and three deep learning meth-

ods: MDF (Li and Yu 2015) and DS (Li et al. 2016) and

MCDL (Zhao et al. 2015). Each of them serves as a layer

of Cellular Automata s
(0)
m in Eq. (14). Figure 7 shows that

our proposed pixel-wise aggregation method, Cuboid Cellu-

lar Automata, can appropriately integrate multiple saliency

maps and outperforms each one. The saliency objects on

the aggregated saliency map are consistently highlighted and

much closer to the ground truth.

3.4.3 SCA + CCA = HCA

Here we show that when CCA is applied to some (poor) prior

maps, it does not perform as well as when the prior map

is post-processed by SCA. This motivates their combination

into HCA. As is shown in Fig. 8, when the candidate saliency

maps are not well constructed, both CCA and MCA (Qin et al.

2015) fail to detect the salient object. Unlike CCA and MCA,

HCA overcomes this limitation through incorporating single-

layer propagation (SCA) together with pixel-wise integration

(CCA) into a unified framework. The salient objects can

be intelligently detected by HCA regardless of the original

performance of the candidate methods. When we use HCA

HCA*CCAMCA

FT-SCA ITTI-SCA CAS-SCA

FT ITTI CAS

GT

Stimulus

Fig. 8 Effects of holistic optimization by Hierarchical Cellular

Automata. We use MCA (Qin et al. 2015), CCA and HCA to inte-

grate saliency maps generated by three classic methods: FT (Achanta

et al. 2009), ITTI (Itti et al. 1998) and CAS (Goferman et al. 2010).

Their respective saliency maps optimized by SCA with 200 superpixels

are shown in the second row. Note that HCA* uses as input the saliency

maps processed by SCA (the second row) and applies CCA to them,

while the MCA and CCA models are applied directly to the first row

to integrate existing methods, the optimized results will be

denoted as HCA*.

4 Experiments

In order to demonstrate the effectiveness of our proposed

algorithms, we compare the results on four challenging

datasets: ECSSD (Yan et al. 2013), MSRA5000 (Liu et al.

2011), PASCAL-S (Li et al. 2014b) and HKU-IS (Li and

Yu 2015). The Extended Complex Scene Saliency Dataset

(ECSSD) contains 1000 images with multiple objects of dif-

ferent sizes. Some of the images come from the challenging

Berkeley-300 dataset. MSRA- 5000 contains more compre-

hensive images with complex background. The PASCAL-

S dataset derives from the validation set of PASCAL

VOC2010 (Everingham et al. 2010) segmentation challenge

and contains 850 natural images. The last dataset, HKU-

IS, contains 4447 challenging images and their pixel-wise

saliency annotation. In this paper, we use ECSSD as the vali-

dation dataset to help choose the feature maps in FCN (Long

et al. 2015).

We compare our algorithm with 20 classic or state-of-the-

art methods including ITTI (Itti et al. 1998), FT (Achanta

et al. 2009), CAS (Goferman et al. 2010), LR (Shen and

Wu 2012), XL13 (Xie et al. 2013), DSR(Li et al. 2013),

HS (Yan et al. 2013), UFO (Jiang et al. 2013c), MR (Yang

et al. 2013), DRFI (Jiang et al. 2013b), wCO (Zhu et al. 2014),

RC (Cheng et al. 2015), HDCT (Kim et al. 2014), BL (Tong

et al. 2015a), BSCA (Qin et al. 2015), LEGS (Wang et al.

2015), MCDL (Zhao et al. 2015), MDF (Li and Yu 2015),

DS (Li et al. 2016), SSD-HS (Kim and Pavlovic 2016), where
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the last 5 methods are deep learning-based methods. The

results of different methods are either provided by authors or

achieved by running available code or binaries. The code of

HCA will be publicly available at our project site and github.

4.1 Parameter Setup

For the Single-layer Cellular Automaton, we set the number

of iterations TS = 20. For the Cuboid Cellular Automata,

we set the number of iterations TC = 3. We determined

empirically that SCA and CCA converge by 20 and 3 iter-

ations, respectively. We choose M = 5 and run SCA with

n1 = 120, n2 = 140, n3 = 160, n4 = 180 and n5 = 200

superpixels to generate multi-scale saliency maps for CCA.

4.2 EvaluationMetrics

We evaluate all methods by standard Precision-Recall (PR)

curves via binarizing the saliency map with a threshold slid-

ing from 0 to 255 and then comparing the binary maps with

the ground truth. Specifically,

precision =
|SF ∩ G F |

|SF |
, recall =

|SF ∩ G F |

|G F |
, (17)

where SF is the set of the pixels segmented as the foreground,

G F denotes the set of the pixels belonging to the foreground

in the ground truth, and | · | refers to the number of elements

in a set. In many cases, high precision and recall are both

required. These are combined in the F-measure to obtain a

single figure of merit, parameterized by β:

Fβ =

(

1 + β2
)

· precision · recall

β2 · precision + recall
(18)

where β2 is set to 0.3 as suggested in (Achanta et al. 2009) to

emphasize the precision. To complement these two measures,

we also use mean absolute error (MAE) to quantitatively

measure the average difference between the saliency map

s ∈ R
H and the ground truth g ∈ R

H in pixel level:

MAE =
1

H

H
∑

i=1

|si − gi |. (19)

MAE indicates how similar a saliency map is compared to the

ground truth, and is of great importance for different appli-

cations, such as image segmentation and cropping (Perazzi

et al. 2012). In addition, we also compute the Area Under

ROC Curve (AUC) to better compare the performance of

different methods.

4.3 Validation of the Proposed Algorithm

4.3.1 Feature Analysis

In order to construct the Impact Factor matrix, we need to

choose the features that will enter into Eq.( 2). Here we ana-

lyze the efficacy of the features in different layers of a deep

network in order to choose these feature layers. In deep neural

networks, earlier convolutional layers capture fine-grained

low-level information, e.g., colors, edges and texture, while

later layers capture high-level semantic features. In order to

select the best feature layers in the FCN (Long et al. 2015),

we use ECSSD as a validation dataset to measure the perfor-

mance of deep features extracted from different layers. The

function g(ri , r j ) in Eq. (3) can be computed as

g(ri , r j ) =

∥

∥

∥
d f l

i − d f l
j

∥

∥

∥

2
, (20)

where d f l
i denotes the deep features of superpixel i on the

l-th layer. The outputs of convolutional layers, relu layers

and pooling layers are all regarded as a feature map. There-

fore, we consider in total 31 layers of fully convolutional

networks. We do not take the last two convolutional layers

into consideration as their spatial resolutions are too low.

We use the F-measure (the higher, the better) and mean

absolute error (MAE) (the lower, the better) to evaluate the

performance of different layers on the ECSSD dataset. The

results are shown in Fig. 10a and b. The F-measure score is

obtained by thresholding the saliency maps at twice the mean

saliency value. We use this convention for all of the subse-

quent F-measure results. The x-index in Fig. 10a and b refers

to convolutional, ReLu, and pooling layers as implemented

in the FCN. We can see that deep features extracted from

the pooling layer in Conv1 and Conv5 can achieve the best

two F-measure scores, and also perform well on MAE. The

saliency maps in Fig. 9 correspond to the bars in Fig. 10. Here

it is visually apparent that salient objects are better detected

with the final pooling layers of Conv1 and Conv5 . There-

fore, in this paper, we combine the feature maps from pool1

and pool5 with a simple linear combination. Equation (2)

then turns into:

g(ri , r j ) = ρ1 ·

∥

∥

∥
d f 5

i − d f 5
j

∥

∥

∥

2

+(1 − ρ1) ·

∥

∥

∥
d f 31

i − d f 31
j

∥

∥

∥

2
, (21)

where ρ1 balance the weight of pool1 and pool5.

4.3.2 Parameter Learning

We learn the parameters in our HCA via a grid search with the

ECSSD dataset as the validation set, e.g., ρ1 in Eq. (21), σ f in
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Fig. 9 Visual comparison of saliency maps with different layers of deep

features. The left two columns are the input images and their ground

truth. Other columns present the saliency maps with different layers of

deep features. The color bars on the top stand for different convolutional

layers (see Fig. 10a, b)
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Fig. 10 a The F-measure score for each layer in FCN-32s on ECSSD; b

the MAE score for each layer in FCN-32s on ECSSD; c and d Precision-

Recall curves of SCA using deep features extracted from pool1 and

pool5 as well as a weighted summation of these two layers of deep

features. a F-measure bars, b MAE bars, c and d Precision-Recall

curves comparison

Eq. (3), a and b in Eq. (4) and Λ in Eq. (12). The F-measure,

AUC and MAE scores of SCA200 are used for parameter

selection. We vary ρ1 from 0 to 1 and plot the performance

versus ρ1 in Fig. 11a. We can see that when ρ1 = 0.325,

the F-measure and AUC achieve the highest scores (higher is

better) and MAE achieves the lowest value (lower is better).

Therefore, we empirically set ρ1 = 0.325 and apply it to all

other datasets.

For the parameter σ f , we test the performance of SCA200

when 1

σ 2
f

varies from 1 to 25. The plots of F-measure, AUC

and MAE are shown in Fig. 11b. It can be seen that the best

performance is achieved when 1

σ 2
f

= 17. Therefore, we use

1

σ 2
f

= 17 in all other experiments.

In our paper, we use the two hyperparameters a and b to

control c∗
i ∈ [b, a+b], where [b, a+b] ⊆ [0, 1]. In Fig. 11d,

we compare the performance of different combinations of a

and b. First, we choose a from 0.1 to 1, taking an interval

of 0.1. Correspondingly, the parameter b is also chosen from

0.1 to 1 with an interval of 0.1, constrained by a + b ≤ 1.
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Fig. 11 Experiments for the parameter learning on the ECSSD dataset.

The F-measure, AUC and MAE scores of SCA200 are used for param-

eter selection. a ρ1 in SCA200. b σ f in SCA200. c � in CCA. d a and

b in SCA200

We can see from Fig. 11d that when a = 0.9 and b = 0, the

MAE value is the smallest, AUC and F-measure scores are the

highest. All the three evaluation metrics have the best scores

when c∗
i ∈ [0.0.9]. Therefore, we use the this combination:

a = 0.9, b = 0 for all the experiments in our paper.

After fixing all the hyperparameters discussed above

(ρ1 = 0.325, 1/σ 2
f = 17, a = 0.9 and b = 0), we con-

duct a grid search when the parameter Λ in CCA varies from

0 to 0.2. The plots of F-measure, AUC and MAE scores of

CCA versus the parameter Λ are shown in Fig. 11c. It is easy

to see that as Λ becomes larger, the MAE value becomes
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featuers and our SCA using deep features (Color figure online)

smaller (better). However, the AUC score also decreases a

bit. This is because that when Λ is large, the saliency map

integrated by CCA will be much closer to a binary map.
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Fig. 14 PR curves, FT curves and MAE scores of different methods compared with our algorithm (HCA). From top to bottom: ECSSD, MSRA5000,

PASCAL-S and HKU-IS are tested. a PR curves. b FT curves
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Table 1 Comparison of AUC, F-measure and MAE scores of 20 state-of-the-art methods as well as our proposed HCA on all four benchmarks

Method ECSSD HKU-IS MSRA5000 PASCALS

AUC F-measure MAE AUC F-measure MAE AUC F-measure MAE AUC F-measure MAE

ITTI 0.794 0.428 0.290 0.840 0.465 0.255 0.853 0.515 0.249 0.781 0.394 0.297

FT 0.635 0.353 0.291 0.667 0.376 0.253 0.746 0.498 0.230 0.610 0.327 0.316

CAS 0.784 0.430 0.309 0.831 0.464 0.272 0.856 0.537 0.250 0.780 0.404 0.301

LR 0.864 0.563 0.274 0.866 0.555 0.257 0.924 0.694 0.221 0.814 0.479 0.287

XL13 0.854 0.568 0.259 0.853 0.552 0.254 0.925 0.704 0.184 0.800 0.469 0.285

DSR 0.889 0.662 0.178 0.923 0.677 0.142 0.957 0.784 0.117 0.841 0.557 0.215

HS 0.885 0.635 0.227 0.879 0.636 0.215 0.930 0.767 0.162 0.838 0.531 0.264

UFO 0.872 0.644 0.203 – – – 0.928 0.774 0.147 0.822 0.553 0.232

MR 0.891 0.691 0.186 0.867 0.655 0.188 0.939 0.801 0.128 0.835 0.586 0.232

DRFI 0.945 0.733 0.164 0.949 0.722 0.145 0.970 0.831 0.106 0.901 0.618 0.207

wCO 0.896 0.677 0.171 0.908 0.677 0.142 0.947 0.794 0.111 0.865 0.600 0.202

RC 0.836 0.456 0.300 0.854 0.501 0.272 0.896 0.575 0.263 0.815 0.404 0.313

HDCT 0.868 0.645 0.197 0.890 0.658 0.167 0.960 0.797 0.142 0.812 0.536 0.232

BL 0.916 0.684 0.216 0.916 0.660 0.207 0.955 0.784 0.169 0.870 0.574 0.249

BSCA 0.922 0.705 0.182 0.910 0.654 0.175 0.953 0.793 0.132 0.872 0.601 0.223

LEGS 0.925 0.785 0.118 0.905 0.723 0.119 0.954 0.834 0.083 0.892 0.704 0.155

MCDL 0.953 0.796 0.101 0.949 0.757 0.092 – – – 0.913 0.691 0.145

MDF 0.947 0.807 0.105 0.969 0.784 0.129 0.980 0.850 0.104 0.904 0.709 0.146

DS 0.977 0.826 0.122 0.981 0.790 0.079 – – – 0.943 0.659 0.176

SSD-HS 0.972 0.707 0.192 0.976 0.740 0.177 0.984 0.816 0.160 0.942 0.589 0.219

HCA 0.938 0.791 0.112 0.933 0.765 0.104 0.957 0.841 0.079 0.907 0.708 0.152

We mark the first, second, third results in bold, italic, bolditalic respectively. Deep methods are annotated with underlines

4.3.3 Component Effectiveness

To test the effectiveness of the integrated deep features, we

show the Precision-Recall curves of Single-layer Cellular

Automata with each layer of deep features as well as the inte-

grated deep features on two datasets. The Precision-Recall

curves in Fig. 10c and d demonstrate that hierarchical deep

features outperform single-layer features, as they contain

both category-level semantics and fine-grained details.

In addition, we compare the performance between our

SCA and the BSCA in (Qin et al. 2015) to see the superiority

of deep features over low-level color features. The PR curves

and F-measure/Threshold curves are displayed in Fig. 12.

Here we compare the two SCAs at different scales and the

performance of HCA on the ECSSD dataset. It is notable to

see that the deep features improve the performance with a

large margin compared to using color features.

In order to demonstrate the effectiveness of our proposed

HCA, we test the performance of each component in HCA on

the standard ECSSD and PASCAL-S datasets. We generate

saliency maps at five scales: n1 = 120, n2 = 140, n3 = 160,

n4 = 180, n5 = 200 and use CCA to integrate them. FT

curves in Fig. 13 indicate that the results of the Single-layer

Cellular Automata are already quite satisfying. In addition,

CCA can improve the overall performance of SCA with a

wider range of high F-measure scores than SCA alone. Sim-

ilar results are also achieved on other datasets but are not

presented here to be succinct.

4.3.4 Performance Comparison

We display the Precision-Recall curves and F-measure/-

Threshold curves of 20 state-of-art methods as well as our

proposed HCA in Fig. 14 and the AUC, F-measure and MAE

scores in Table 1. As is shown in Fig. 14 and Table 1, our

proposed Hierarchical Cellular Automata performs favorably

against state-of-the-art conventional algorithms with higher

precision and recall values on four challenging datasets. HCA

is competitive with deep learning based approaches. The

fairly low MAE value indicates that our saliency maps are

very close to the ground truth. As MCDL (Zhao et al. 2015)

and DS (Li et al. 2016) trained the network on the MSRA

dataset, we do not report their results on this dataset in Fig. 14

and Table. 1. In addition, LEGS (Wang et al. 2015) used part

of the images in the MSRA and PASCAL-S datasets as the

training set. As a result, we only test LEGS with the test
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Stimuli GT Ours BL DRFI DSR HS MR wCO LEGS MDF DS MCDLSSD-HS

Fig. 15 Visual comparison of saliency maps of different methods. GT: Ground Truth, Ours: Saliency maps generated by Hierarchical Cellular

Automata (HCA)

images on these two datasets. Saliency maps are shown in

Fig. 15 for visual comparison of our method with other mod-

els.

4.4 Optimization of State-of-the-Art Methods

In the previous sections, we showed qualitatively that our

model creates better saliency maps by improving initial

saliency maps with SCA, or by combining the results of mul-

tiple algorithms with CCA, or by applying SCA and CCA.

Here we compare our methods to other methods quantita-

tively. When the initial maps are imperfect, we apply SCA

to improve them and then apply CCA. When the initial maps

are already very good, we show that we can combine state-

of-the-art methods to perform even better by simply using

CCA.

4.4.1 Consistent Improvement

In Sect. 3.4.1, we concluded that results generated by differ-

ent methods can be effectively optimized via Single-layer

Cellular Automata. Figure 16 shows the precision-recall

curves and mean absolute error bars of various saliency meth-

ods and their optimized results on four datasets. These results

demonstrate that SCA can greatly improve existing results to

a similar precision level. Even though the original saliency

maps are not well constructed, the optimized results are com-

parable to the state-of-the-art methods. It should be noted

that SCA can even optimize deep learning-based methods

to a better precision level, e.g., MCDL (Zhao et al. 2015),

MDF (Li and Yu 2015), LEGS (Wang et al. 2015), SSD-

HS (Kim and Pavlovic 2016). In addition, for one existing

method, we can use SCA to optimize it at different scales
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Fig. 16 Consistent improvement of our proposed SCA and HCA on

four datasets. (a) and (b): PR curves of different methods (dashed line)

and their optimized version via SCA200 (solid line). The right col-

umn shows that SCA200 (triangle), improves the MAEs of the original

methods (multiplication symbol) and that HCA* (circle), here applied

to SCA120, SCA160, and SCA200, further improves the results. a PR

curves for unsupervised models. b PR curves for supervised models. c

MAE scores

and then use CCA to integrate the multi-scale saliency maps.

The ultimate optimized result is denoted as HCA*. The low-

est MAEs of saliency maps optimized by HCA in Fig. 16c

show that HCA’s use of CCA improves performance over

SCA alone.
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Fig. 17 Effects of pixel-wise aggregation via Cuboid Cellular

Automata on ECSSD, PASCAL-S and HKU-IS dataset. For each

dataset, the first row compares three conventional methods BL (Tong

et al. 2015a), HS (Yan et al. 2013), MR (Yang et al. 2013) and their

integrated results via Cuboid Cellular Automata, denoted as CCA. The

second row compares three deep learning models, e.g. DS (Li et al.

2016), MCDL (Zhao et al. 2015), MDF ((Li and Yu 2015)) and their

integrated results. The precision, recall and F-measure scores in the

right column are obtained by thresholding the saliency maps at twice

the mean saliency value. a PR curves. b FT curves. c Score bars
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Fig. 18 Comparison between three different integration methods MCA (Qin et al. 2015), CCA and HCA when integrating FT (Achanta et al. 2009),

ITTI (Itti et al. 1998) and CAS (Goferman et al. 2010) on ECSSD and MSRA datasets. a PR curves. b FT curves. c MAE scores

4.4.2 Effective Integration

In Sect. 3.4.2, we used Cuboid Cellular Automata as a

pixel-wise aggregation method to integrate two groups of

state-of-the-art methods. One group includes three of the

latest conventional methods while the other contains three

deep learning-based methods. We test the various methods

on the ECSSD, PASCAL-S and HKU-IS datasets, and the

integrated result is denoted as CCA. PR curves in Fig. 17a

strongly prove the effectiveness of CCA that outperforms

all the individual methods. FT curves of CCA in Fig. 17b

are fixed at high values that are insensitive to the selective

thresholds. In addition, we binarize the saliency map with

two times mean saliency value. From Fig. 17c we can see

that the integrated result has higher precision, recall and F-

measure scores compared to each method that is integrated.

Also, the mean absolute errors of CCA are always the lowest

as displays. The fairly low mean absolute errors indicate that

the integrated results are quite similar to the ground truth.

Although Cuboid Cellular Automata has exhibited great

strength in integrating multiple saliency maps, it has a major

drawback that the integrated result highly relies on the pre-

cision of candidate saliency detection methods as MCA

in (Qin et al. 2015). If saliency maps fed into Cuboid Cel-

lular Automata are not well constructed, Cuboid Cellular

Automata cannot naturally detect the salient objects via

ineractions between these candidate saliency maps. HCA,

however, can easily address this problem as it incorporates

single-layer propagation and multi-scale integration into a

unified framework. Unlike MCA and CCA, HCA can achieve

better integrated saliency map regardless of their original

detection performance. PR curves, FT curves and MAE

scores in Fig. 18 show that (1) CCA has a better perfor-

mance than MCA as it considers the influence of adjacent

cells at different scales. (2) HCA can greatly improve the

aggregation results compared to MCA and CCA because it

is independent to the initial saliency maps. Similar results are

also achieved on other datasets but are not presented here to

be succinct.

4.5 Run Time

The run time is to process one image in MSRA5000 dataset

via Matlab R2014b-64bit with a PC equipped with an i7-

4790k 3.60 GHz CPU and 32GB RAM. Table 2 displays

the average run time of each component in our algorithm

except for the time for extracting deep features. We can

see that Single-layer Cellular Automata and Cuboid Cellu-

lar Automata are very fast to process one image, on average

0.1196 s. And the holistic HCA takes only 0.3582 s to pro-

cess one image without superpixel segmentation and 0.6324 s

with SLIC.
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Table 2 Run time of each

component of HCA
Method SCA120 SCA140 SCA160 SCA180 SCA200 CCA HCA

w/ SLIC(s) .0848 .0929 .0997 .1140 .1214 – .6324

wo/ SLIC(s) .0310 .0371 .0444 .0585 .0676 .1196 .3582

Table 3 Comparison of run time

Model Year Code Time(s) Model Year Code Time(s) Model Year Code Time (s)

HCA Matlab 1.7168 HDCT 2014 Matlab 5.1248 MR 2013 Matlab 0.4542

MCDL 2015 Python 2.2521 wCO 2014 Matlab 0.1484 XL13 2013 Matlab 65.5491

LEGS 2015 Matlab + C 1.9050 DRFI 2013 Matlab 8.0104 LR 2012 Matlab 10.0259

MDF 2015 Matlab 25.7328 DSR 2013 Matlab 3.4796 RC 2011 C 0.1360

BL 2015 Matlab 21.5161 HS 2013 EXE 0.3821 CA 2010 Matlab + C 44.3270
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Fig. 19 Failure cases of our proposed HCA

We also compare the run time of our method with other

state-of-the-art methods in Table 3. Here we compute the run

time including superpixel segmentation and feature extrac-

tion for all models. It can be observed that our algorithm

has the least run time compared to other deep learning based

methods and is the top 5 fastest method among all the meth-

ods.

4.6 Failcure Cases

We further qualitatively analyze some failure cases with our

proposed HCA and present the saliency maps in Fig. 19.

We can see that when a large amount of objects are touch-

ing the image boundary, our HCA fails to detect the whole

objects. This is because we directly use the image boundary

as the background seeds in our algorithm. We hypothesize

that well-selected background seeds may alleviate the prob-

lem to a great extent. How to efficiently and effectively select

the background seeds is left as a future work.

5 Conclusion

In this paper, we propose an unsupervised Hierarchical Cel-

lular Automata, a temporally evolving system for saliency

detection. With superpixels on the image boundary chosen

as the background seeds, Single-layer Cellular Automata

is designed to exploit the intrinsic connectivity of saliency

objects through interactions with neighbors. Low-level image

features and high-level semantic information are both

extracted from deep neural networks and incorporated into

SCA to measure the similarity between neighbors. The

saliency maps will be iteratively updated according to well-

defined update rules, and salient objects will naturally emerge

under the influence of neighbors. This context-based propa-

gation mechanism can improve the saliency maps generated

by existing methods to a similar performance level with

higher accuracy. In addition, Cuboid Cellular Automata is

proposed to aggregate multiple saliency maps generated by

SCA under different scales based on Bayesian framework.

Meanwhile, Cuboid Cellular Automata and Hierarchical Cel-

lular Automata can act as a saliency aggregation method to

incorporate saliency maps generated by multiple state-of-art

methods into a more discriminative saliency map with higher

precision and recall. Experimental results demonstrate the

superior performance of our algorithms compared to other

existing methods.
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