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ABSTRACT: In most noncollinear crystal magnets, the number of
metastable states is quite large and any calculation that tries to predict
the ground state can fall into one of the possible metastable phases. In
this work, we generalize the population based meta-heuristic firefly
algorithm to the problem of the noncollinear magnetic phase ground
state prediction within density functional theory (DFT). We extend
the different steps in the firefly algorithm to this specific problem by
using polarized constrained DFT calculations, whereby using
Lagrange multipliers the directions of the atom magnetic moments
remain fixed. By locking the directions of the magnetic moments at each search iteration, the method allows one to explore the
entire Born−Oppenheimer energy surface of existing and physically plausible noncollinear configurations present in a crystal.
We demonstrate that the number of minima can be large, which restrains the use of exhaustive searches.

1. INTRODUCTION

Author: The construction of our modern society is strongly
linked to the development of new technologies. Therefore,
rapid discovery of new material systems with properties
tailored to solve particular technological problems is necessary
to meet this demand. Thanks so far to ever-increasing
computational power, the discovery and prediction of these
materials can now rely on the computer before they are
synthesized in the laboratory.1 One approach to this problem is
the targeted exploration of a system’s configuration space by
detailing the possible minima configurations present in the
Born−Oppenheimer surface. Since the minima of this space
correspond to physically stable states, the goal of this approach
is to locate the global minimum, as this corresponds to the
ground state of the system. Even if the solution to this problem
seems trivial, locating the minima of a high-dimensional surface
is a highly nontrivial task. As such, a multitude of methods
such as genetic algorithms, basin hopping, and random search
methods, etc., have been developed to explore this space and
identify minima.2−7 However, these methods have only been
applied to the problem of structural prediction.8 The idea of
optimizing physical properties other than atomic positions has
also been used, as the work presented in ref 9, where a genetic
algorithm to optimize the band structure of silicon and
germanium semiconductors has been implemented. In that
work, an undiscovered direct band gap was found. However, to
the limit of our knowledge, these methods have not been
applied to optimize magnetic properties, which we propose to
explore in this work with noncollinear magnetism.
The magnetic properties of materials are a particularly

enticing application for global search methods, from both
technological and physical standpoints. Technologically, novel

magnetic states could prove to be useful for next-generation
storage devices. From the standpoint of basic physics,
noncollinear magnetic states are of particular interest since
they arise from electron correlation effects, spin−orbit
coupling (SOC), surface broken symmetries, and/or geometric
frustration in strongly correlated materials (SCMs).10 On top
of the exchange−correlation functional problem, studying the
possible magnetic phases of noncollinear magnetic materials
with DFT had limited success. This is due to the large number
of metastable states that common self-consistent algorithms,
such as DFT+U with spin−orbit, fail to handle when the
ground state has to be identified.11,12 Performing a calculation
with initial conditions that correspond to a random point on
the potential energy surface (PES) could end in any of these
minima, be it a fictitious minima from the method or a minima
which has a physical meaning. Additionally, these minima are
very close in energy when compared to the ground state. Thus,
identifying and differentiating between these minima are vital
to the prediction of the correct magnetic ground state.
Meta-heuristics algorithms can provide a solution to this

multiple minima problem. Meta-heuristics are general
strategies to find optimal solutions of a problem by efficiently
searching over the landscape of possible solutions.13 In general,
they provide rules for both crystal modifications to different
states in the configuration space as well as evaluating how
optimal a state is. In other words, they are used to show how
energetically favorable a state is. Since they do not depend on
particular details of a system, this means they can be applied to
optimization of magnetic systems regardless of how the
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magnetism arises. In particular, a member of the subclass of
population based meta-heuristics, the firefly algorithm (FA), is
ideally suited to the problem at hand (this method will be
discussed in more detail in section 2). We should point out
that though we have limited our work to the use of DFT+U,
our methodology does not rely on this approximation and can
be used with any exchange−correlation functional or even
different methodologies used to describe the system’s magnetic
properties. We will make use of DFT+U in this work, since FA
does not depend on which self-consistent algorithm is used.
However, we are not trying to solve the problem of the
selection of the correct values of U and J, or any other
problems inherent to DFT+U, in the context of ground state
prediction. Rather we will show that the FA allows for the
identification of the energy spectra of all local minima of a
magnetic crystal and thus predicts which one has the lowest
energy. Since the DFT+U approximation generates many
nonphysical metastable states, it provides an ideal testing
ground for FA.
The structure of this work is as follows: First, the general

methodology of FA is introduced. Next, the computational
details of the implementation is discussed. Then, the method is
applied to three magnetic systems: NiF2, a rutile antiferro-
magnetic compound which is known to display small canting
away from its magnetic configuration; Mn3Pt, a magnetic
system which displays frustration and a large degeneracy of
magnetic states with respect to the total energy; and a Mn
model trimer [(MnIV)3O4L4(H2O)], where L = N,N′-bis-
(methylene)-Z-1,2-ethenediamine, a molecular system which
models the oxygen-evolving complex of photosystem II.14 The
Mn atoms are magnetic in this system, and it has recently been
shown to exhibit noncollinear spin states.

2. METHODOLOGY

The firefly algorithm belongs to a class of population based
meta-heuristic algorithms that aim to mimic optimization
techniques used in nature.15 As its name suggests, FA is
inspired by the behavior of fireflies. In nature, fireflies are
attracted to regions of space with brighter fireflies, and this
attraction is modulated by the distance between these fireflies.
In adapting this to magnetic materials prediction, differing
magnetic moment configurations are the ”fireflies”, the energy
of each configuration is each configuration’s ”brightness”, and
the similarity between two configurations is their ”distance”.
Our starting point is a predefined crystal structure that will
remain fixed during the magnetic phase search. A flowchart of
the methodology is represented graphically in Figure 1, and the
steps are summarized as follows:

1. creation of a population of random candidates,
corresponding to magnetic random orientations;

2. evaluation of energies by means of DFT+U with
magnetic moments constrained to the defined direction;

3. determining the distances between candidate pairs
between all population elements;

4. moving candidates toward all other candidates which are
lower in energy;

5. removal and replacement of identical candidates;
6. generation of new random candidates to replace

identical candidates (this step completes the first
generation; the process starts over on step 1 and
continues until the lowest-energy candidate survives for
a specified number of generations).

First, a population must be generated which correspond to a
collection of magnetic moment configurations on the same
crystal structure. This requires both an optimized structure as
well as the identification of which atoms play a role in the
magnetic properties in the system. In defining this initial
population, a number of random configurations per generation

Figure 1. Firefly algorithm flowchart. Step 1 corresponds to the evaluation of the candidates’ energy. After evaluation, the similarity between pairs
of candidates is evaluated by using the distance function. If a candidate is identical to any other candidate, it is discarded. This corresponds to steps
3 and 4. Step 5 corresponds to when the stabilization limit is reached. This candidate is considered the ground state.
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should be specified (this step can be relaxed by allowing
predefined magnetic phases as input for the initial population).
If the population size is too small, the searcher will only sample
a small area of the configuration space; thus there is no chance
of ever finding the global minimum, unless randomness acts as
the driving force of the search. With this in mind, it would
seem reasonable to have as large a population size as possible.
However, at a certain critical value, the searcher already
samples enough of the configuration space, so nothing more is
gained from the addition of more random structures. On the
contrary, computational efficiency is lost. There is no general
rule to determine precisely how large a population is enough.
For all of our calculations using this method we have found
that 16 configurations per generation strike a nice balance
between sampling the configuration space and efficiency. Our
initial motivation for 16 candidates is the previously
application of FA to structural search.15 Figure 2 displays the

different minima located for NiF2, with U = 4 eV and J = 0 eV.
It can be seen that a multitude of minima were located with the
use of 16 candidates per generation. Figure 3 displays both the
relative energy with respect to the ground state for each
candidate and a curve showing the average energy of the
candidates for each generation. After 14 generations, this line
stabilizes, indicating that the majority of the candidates in the
subsequent generations are either in a minima or are exploring
the local neighborhood around a minima. Four generations
after this stabilization, the lowest-energy candidate located by
the searcher is found. Together, these two plots suggest that 16
candidates per generation are sufficient.
Once the number of candidates in a given generation is

defined, the population itself can be generated. To create this
random population, magnetic moments with arbitrary
direction are assigned to each magnetic atom. We define the
magnetic moments in terms of spherical polar coordinates, so

each angle is randomly assigned to a value from a continuous
uniform distribution over their respective ranges; [0,2π) for
the azimuthal angle and [−π,π) for the polar angle. The
magnitude is determined from the prior optimization and
remains fixed for all configurations. These randomly assigned
directions remained fixed; during the static calculation of each
configuration the energy is used as the criterion to rank each
random configuration in terms of energetic favorability (in
structural search, the enthalpy is the used quantity).
Once the total energy is calculated, each configuration

evolves toward candidate configurations which are more
energetically favorable. The main expression that relates the
interaction between different population elements emulating
the firefly behavior is given as

∑ β α= + − + ϵγ+ −x x x xe ( )i
t

i
t

j

r
j
t

i
t

t t
1 ij

2

(1)

The left-hand side of this equation, xi
t+1, is the candidate in

generation t + 1 which evolves from candidate i in generation t.
The first term on the right-hand side, xi

t, is the vector which
represents the current magnetic moment of a single candidate,
i, in generation t. For instance, in a system with two magnetic
atoms, both of these vectors will be a six-dimensional vector,
where the first three components are the Cartesian directions
of the magnetic moment vector for the first atom and the last
three are for the magnetic moment of the second atom. The
summation in the second term is evaluated over every

candidate j, which is lower in energy than i. The term βe−γrij
2

defines the attractiveness of firefly i to firefly j. β0 defines the
overall strength of attraction, since terms with rij = 0 evaluate
to β0. If β0 = 0, the searcher becomes a random walk. γ acts as a
length scale and controls the speed of convergence of the
calculation. For the special case γ = 0, candidate i finds all
lower-energy candidates equally attractive, and the algorithm
becomes a particle swarm. The last term adds randomness to
the search, where ϵt is a vector with components that come
from a random selection of a Gaussian distribution. αt

essentially controls the amount of randomness in the searcher.
The parameter rij (in eq 2) is the pairwise distance between
two configurations. This parameter seeks to mimic the physical
distance between two fireflies in nature.16 In our case, physical
distance is meaningless. In order to evaluate the distance
between two candidate configurations, the relative angle
between magnetic moment vectors on the same magnetic

Figure 2. Polar plot of the distances and energies of all candidates
relative to the lowest-energy candidate for NiF2, with U = 4 eV and J
= 0 eV. The energy is relative to the lowest-energy candidate found.
The smaller plot is the plot for every candidate, and the zoomed plot
is for candidates whose energy is less than 1 meV higher than the
lowest-energy candidate. The distance function is defined as the
average angle between magnetic sites between two candidates, so
slices of constant angle correspond to candidates which are the same
distance away from the lowest-energy candidate. It will be shown in a
subsequent section that the minima found are all less than 1 meV in
energy higher than the lowest-energy candidate. Candidates form a
number of clumps in the zoomed plot; these clumps are the different
minima which were located.

Figure 3. Relative energy of every candidate for NiF2 with U = 4 eV
and J = 0 eV with respect to the lowest-energy candidate. The blue
curve is the average energy of each generation relative to the ground
state. The lowest-energy candidate found is shown as well.
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site is evaluated between the two candidates. This angle is
evaluated for each magnetic site, and the average value of this
angle is used as a measure of distance. The functional form of
this measure is explicitly stated in eqs 2 and 3. This function is
restricted to the interval [0,π] to ensure that it is always
positive.

∑ θ=r
N

1
ij

k

N

ij
k

(2)÷ ◊÷÷÷ ÷ ◊÷÷÷
θ = − M Mcos ( )ij
k

k i k j
1

, , (3)

The magnetic moments in eq 3 are normalized, and the dot
product is taken between configuration i and configuration j at
magnetic atom k. As this distance is evaluated pairwise
between candidates, it has an index for each, i and j. The
summation index, k, runs over all magnetic atoms in the
system, and θij

k is the angle between the magnetic moments at
site k in candidates i and j. N is the total number of atoms
which the summation runs over. We will now show that this
definition of the distance satisfies the definition of a metric.
Since a sum of metrics is also a metric, showing that the inverse
cosine between a single magnetic site satisfies the definition of
a metric automatically means a sum of inverse cosine function
is a metric, which is the distance function defined in eq 2. For

the following arguments, θ= = ∑d x y r( , )
N k

N k
ij

1
ij .

• d(x,y) ≥ 0

The inverse cosine function can take on values in the interval
[0,π], so it is always positive.

• d(x,y) = 0 iff x = y

This is similar to the above property in that the dot product
is defined on the interval [0,π], so it only evaluates to zero if
the magnetic moment configurations are identical, as this is the
only case where the angle between moments on each site is
zero.

• d(x,y) = d(y,x)

This property is satisfied since the dot product is
commutative. Thus, changing the order in which the dot
product is evaluated does not change the inverse cosine of this
dot product.

• d(x,z) ≤ d(x,y) + d(y,z)

Consider three unit vectors x, y, and z. These vectors map to
points on the unit sphere. These points can be connected to
form a triangle. Since the legs form a triangle, they clearly
satisfy the triangle inequality. The legs of this triangle are
directly proportional to the angle between the vectors which
comprise its end points, meaning there is a mapping from the
length of the leg to the angle between the two vectors. Thus,
the angles themselves must also satisfy the triangle inequality.
Therefore, our choice of distance function satisfies the
definition of a metric.
Once this distance function is evaluated, each candidate is

moved toward every other candidate that is lower in energy.
The lowest-energy candidate remains unmodified, as it has no
lower-energy candidates to move toward. It is simply promoted
to the next generation within an elitism rule. Additionally,
candidates which are degenerate in energy will not be moved
toward one another, as candidates with the same energy are
not attracted toward one another. This is why FA is ideal for
multimodal problems, as different degenerate configurations

do not mix with another, which means each can be found
simultaneously. After this movement, the distance function is
evaluated once more and identical candidates are discarded.
They are in turn replaced with new random candidates so that
the number of candidates per generation remains fixed. These
new random candidates as well as the moved candidates are
once more subjected to a static calculation, and the process
begins anew. This process is continued until the lowest-energy
candidate survives for a set number of generations, known as
the stabilization limit. Just like the number of candidates per
generation, if this number is too small, the global minimum
may never be found, as the configuration space is only being
sampled in a small region whenever the searcher stops. If it is
too large, the searcher will continue even after the global
minimum is found. We have found that a stabilization limit of
10 generations is a nice balance between these two extremes.
In ref 15, the method has been applied to perform a structural
search, but in this work we have generalized the implementa-
tion to include the optimization of the energy with respect to
the magnetic phase. The candidate that survives this process is
called the best candidate, and if the searcher parameters are
properly specified so that the configuration space is
appropriately sampled, this will be the ground state magnetic
configuration.

3. COMPUTATIONAL DETAILS

FA has been implemented in the PyChemia package,17 an
open-source software package for materials discovery using
meta-heuristic methods, which is used to perform the global
search over the configuration space. This package allows
flexible generation of randomly oriented magnetic moment
configurations and implements the search as described in
section 2. The parameters in eq 1 are necessary for the FA to
operate. For all calculations we use β = 0.8, γ = 0.3, and α = 0.
Setting α = 0 does not significantly modify FA, as only the first
term on the right-hand side of eq 1 encodes the rules of the
firefly meta-heuristic. Each parameter was chosen based on the
work of ref 15.
The evaluation of the objective function, which is the energy

of each configuration, is carried out using the Vienna ab Initio
Software Package (VASP).18−21 To take into account the
interactions between the crystal structure and the spin
magnetic moments, the spin−orbit coupling is turned on,
which is added to the plane augmented wave Hamiltonian in a
variational setup as described in ref 22. Since magnetic systems
require corrections to include correlation effects, we used an
extension of local density approximation (LDA) to fully
capture the relevant physics. Since the magnetic atoms in each
test case have localized d-electrons,23 the LDA+U method is
well-suited for evaluation of each configuration’s energy.
However, any particular computational method can be used
for this step, as FA does not depend on the method used to
evaluate energies. For all DFT calculations, we used the LDA
+U method as implemented in VASP. We use the
Liechtenstein approach to LDA+U, as the two commonly
used approaches where the parameter J is either ignored or J ≃
10% U are not justified in noncollinear systems.11 The work of
ref 11 shows that U acts on the electronic density, while J acts
on the noncollinear magnetization densities mx, my, and mx.
This does not mean that J = 0 cannot yield the correct
magnetic ground state in noncollinear systems; it is the
assumption that J = 0 will yield it is not valid. Additionally, to
ensure that each candidate’s magnetic moments remain fixed
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during energy evaluation, the constrained density functional
approach, as implemented in VASP, is used.24 This approach
uses Lagrange multipliers to constrain the direction of the
magnetic moments, which in turn introduces an energy penalty
term in the total energy functional. The input for every
constrained calculation specifies a preferred magnetic moment
orientation, and the additional term in the total energy
functional penalizes orientations which deviate from this
preferred direction. This preferred direction is defined by a
random point on the unit sphere for each magnetic atom in the
system. These are randomly defined for each candidate so that
each candidate has a unique magnetic moment orientation.
The magnetic moment orientations must remain fixed during
the calculation so that the energy of the initially defined
preferred orientation is evaluated. Since there are 16
candidates per generation, this will allow for the identification
of 16 different points on the PES. Since FA itself handles the
movement of each candidate’s magnetic moment orientation,
the full relaxation of the magnetic moment directions in VASP
is not necessary to explore the PES. Thus, FA determines how
these 16 initial points on the PES are moved to other points on
the PES. In order to force this constraint to hold, the value of
the weight of the Lagrange multiplier must be specified. In the
VASP code, this is denoted by the flag λ, and a value of λ = 10
was found to keep the magnetic moments constrained in the
three systems we considered. However, LDA+U, as imple-
mented in VASP, does not support the use of noncollinear
kernels. It is emphasized that noncollinearity rises from the
spin−orbit interaction; LDA+U is merely used to correct the
correlation effects. Through the inclusion of spin−orbit
coupling in our calculations, noncollinear states can still be
found.25

The projector augmented wave (PAW) pseudopotentials as
supplied with VASP were used for all elements so that spin−
orbit coupling can be included, and noncollinear calculations
can be performed.26,27 An energy cutoff of 800 eV and a 6 × 6
× 10 Monkhorst−Pack k-point grid were used to ensure
convergence to 10−8 eV, which is below the energy difference
between magnetic configurations in NiF2. In Mn3Pt, a 16 × 16
× 16 Monkhorst−Pack k-point grid and an energy cutoff of
800 eV were used to ensure convergence to 10−8 eV. For
(MnIV)3O4L4(H2O) molecule, a unit cell of 30 × 30 × 35 Å3

was constructed to break the periodicity inherent to VASP. As
it is a molecular system, a single γ point was used.
We note that the magnetic search relies on the interface

created in the PyChemia package and it can be easily
generalized to any other DFT code that has the constrained
magnetization implementation, for example, ABINIT28,29 or
Elk.30

4. RESULTS

4.1. NiF2. Our first application is for the prediction of the
noncollinear ground state of NiF2. This well-studied material
has been shown experimentally to be antiferromagnetic with
spin canting along the c-axis that drives weak ferromagnetism
in this direction.31,32 This canting is very small and has been
measured to be 0.5°,310.38°,33 and 2.5°.34 The canting is
believed to arise from the magnetocrystalline anisotropy
(MCA).35 Since LDA+U is used for all calculations, the
results should be compared with the experiments, as energies
cannot be compared between differing values of U and J. While
the MCA energy has never been measured experimentally,
theoretically it has been found to vary between 200 and 300

μeV depending on the values of U and J which are used.11

Additionally, it has a bandgap of 6.5 eV36 and an atomic
magnetic moment of 2.213 ± 0.012 μB.

37 Our challenge is to
show that our method can locate the multitude of minima
which lie in the PES and compare them with experimental
results. The firefly searcher was run with 16 candidates per
generation, with a stabilization limit of 10 generations. We
performed this search for values of U = 1.0, 2.0, 3.0, 4.0, 5.0,
and 6.0 eV and J = 0.0 and 1.0 eV with U > J. The results in
terms of canting angles for this search are listed in Table 1.

Before any physics is discussed, we stress that the FA works
as intended. First we have to show that the searcher actually
explores a significant region of the PES. Second, we have to
show that this exploration is both targeted and is
fundamentally different than that of a random search. Finally,
as the generation increases, we have to show that the energy of
the low-energy candidate decreases until a lowest-energy
candidate is found.
Figure 4 shows the initial canting angles and angles with

respect to the x-axis of each candidate for U = 2 eV and J = 0
eV. It is clear that the searcher explored a large region of the

Table 1. Canting Angle and Energies of Best Candidates for
All Values of U and J Considered for NiF2 after Relaxation

U (eV) J (eV) canting angle (deg)

0.0 0.0 0.000

1.0 0.0 0.036

1.5 0.0 0.050

1.5 1.0 0.078

2.0 0.0 0.031

2.0 1.0 0.122

2.5 0.0 0.069

3.0 0.0 0.067

3.0 1.0 0.048

3.5 0.0 0.073

4.0 0.0 0.088

4.0 1.0 0.247

4.5 0.0 0.109

5.0 0.0 0.122

5.0 1.0 0.327

5.5 0.0 0.205

6.0 1.0 0.425

Figure 4. Initial magnetic moment configurations of candidates
evaluated for U = 2 eV and J = 0.6 eV.
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PES. Figure 5 displays the targeted nature of FA more
convincingly. Each node represents a single candidate; that is,

each node corresponds to a unique point on the PES. For this
case, there were 563 unique candidates evaluated. The blue
regions correspond to the lowest-energy candidates evaluated.
If two nodes are linked, that means that their magnetic
moment orientations are similar to one another. If a node is
not linked, this means that the magnetic moment configuration
which corresponds to the node is not similar to any other
candidate configuration. While the searcher does explore a
large region, i.e., there are many disconnected points, the

density of points near the minima is significantly greater. The
degree of connectedness of a plot can be numerically
evaluated. Here we use the average connectivity, which is the
average of the maximum number of disjoint paths between
nodes.38 For this plot, the average connectivity is 0.229. This is
because FA prefers to probe the PES near minima. From this
figure, it can be seen that there are three regions which have
been extensively explored.
Figure 6 shows the semilog of the energy difference between

the lowest-energy configuration in each generation and the
overall best candidate for J = 0 and J = 1. Several things are
apparent from the plot. First, the energy of the best candidate
decreases in each subsequent generation. This shows two
things: As the searcher evolves, better candidate magnetic
configurations are found. Additionally, this means that the
searcher is sampling different points in configuration space.
Second, the energy differences between candidates is small, as
the maximum range between the starting best candidate and
final best candidate is only on the order of 10−1 eV. This is
unsurprising, as the energy difference between configurations
corresponding to different local minima is only on the order of
1 meV. In Figure 6, we see that the energy difference is less
than 1 meV after 15 generations. This means that the firefly
searcher has located a magnetic moment configuration with
magnetic moments which are perturbed slightly from their
minimum values. Since the FA efficiently searches in the local
area around a candidate configuration in configuration space, it
is unsurprising that once the searcher locates a candidate which
is close to a minimum, it only takes a few generations to find
that minimum.
After the searcher has completed, each candidate should be

relaxed with the constraint removed to check if the best
candidate truly lies in a minimum on the PES, as well as to see
how many minima lie close to the best candidate. This is done
because it is possible that FA finds low-energy candidates
which lie in different basins of attraction, it may not actually
reach the true minimum. However, since the goal of this
method is to show that it explores the many minima on the
PES, showing that the candidates that the FA generates lie in
different basins is enough to show that it explores much of the
PES. Figure 7 shows the energy after relaxation of the last
generation for U = 2 eV and J = 0.6 eV.
To show that this minimum corresponds to the ground

state, we will compare the canting angles of the best candidate

Figure 5. Network plot of the entire search for U = 2 eV and J = 0 eV.
The colors denote the energy, where blue is the lowest energy and red
is the highest. If two nodes are linked, the link represents eqs 2 and 3,
where rij < 0.3. Many of the points are disconnected from the entire
plot; this means these candidates were not close to any others after
the initial evaluation. These points represent the stoichiastic aspect of
FA, in that they are the randomly generated initial candidates as well
as the replacements when duplicates are found. The other three
regions which are highly linked show us the targeted nature of FA;
that is that it extensively probes the regions around low-energy
candidates.

Figure 6. Energy difference between the final best candidate and the best candidate of each generation for J = 0 and J = 1 eV. This plot is
logarithmic in order to show multiple values of U on the same plot. The 10 points corresponding to the 10 generations in which a structure must
survive to be deemed the final best candidate are where each case plateaus. While the energy difference should be 0 eV in this case, the difference is
plotted at a value which is less than the energy tolerance of every calculation. The left plot is for J = 0 eV; the right plot is J = 1 eV.
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that we find to the canting angles reported experimentally for
NiF2. We also compare our results to the experimentally
measured bandgap and magnetic moment magnitude. Figure 8

shows the canting angles as a function of U for J = 0 and J = 1,
before relaxation. We can see that there is no obvious trend
between the value of U and the canting angle. Figure 9 shows
this relationship after relaxation. This further highlights the
importance of relaxation with which we see an overall trend
toward an increase in the canting angle as the value of U
increases. The discrepancies in this plot are due to the
candidates which do not relax into the true ground state
candidate.
In Figure 10 we show the energy difference between the

lowest-energy candidate found for a given U for J = 1 and all
other candidates of the same U as a function of the canting
angle. The dependence between the canting angle and U is
expected to be monotonic, yet the results observed in Figure 8

show a dependence which is not monotonic. This is because
two candidates with the same canting angle can have magnetic
moments that are orientated in different directions with
respect to the c-axis, which means they will have different
energies after evaluation. This highlights the importance of
removing the magnetic constraint, as candidates with magnetic
moments that are not parallel to the c-axis will adjust their
magnetic moments to lie in this plane. This is why there is such
a drastic change between Figures 8 and 9.
Experimentally, the magnetic moments lie in a plane

perpendicular to the c-axis.,31,32 and the majority of the
lowest-energy candidates after relaxation are in agreement with
this. Each low-energy candidate has both bandgap and
magnetic moments that are lower than experimentally
measured values. The maximal value found for the magnetic
moment is for U = 6 eV and J = 1 eV, and it is 1.76 μB. The
maximal bandgap found was also for U = 6 eV and J = 1 eV,
and it is 4.82 eV. Experimentally, these values are slightly
higher than the values found, as the magnetic moment is
measured to be 2.23 μB and the bandgap is 6.5 eV.
While our method has been able to define the lowest-energy

configuration for a system with a single global minimum, i.e., in
NiF2, it is important to test that it is also able to find solutions

Figure 7. Energies of the last generation of candidates after relaxation
for U = 2 eV and J = 0.6 eV. The left energy plot of the figure displays
all of the candidates in the final generation. The middle plot is the
zoomed in portion of the plot on the left. From this plot, there are
three minima that are within 1−4 eV of the lowest-energy candidate.

Figure 8. Canting angle for all values of U and J which have been
considered, before relaxation.

Figure 9. Canting angles for all values of U and J which have been
considered after removing the constraint on the magnetic moment
direction. This ensures that each candidate relaxes to a minima on the
PES.

Figure 10. Energy difference for all candidates as a function of their
canting angles for J = 1 eV (where, for example, 1.8e+05 represents
1.8 × 105).
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which correspond to degenerate states with several and
different magnetic configuration, e.g., in Mn3Pt.
4.2. Mn3Pt. Our second application of our FA algorithm is

on Mn3Pt. This system exhibits a first order magnetic
transition between two different magnetic phases at 400 K.39

The low-temperature phase is of interest since it is known to
display frustration.39 Neutron diffraction experiments have
shown that the magnetic moments of the Mn atoms in this
phase are along the [111] direction of the unit cell.40

Additionally, the average magnetic moment of the Mn atoms
is 3.0 ± 0.3 μB.

41

Similarly to the previous example, we first want to show that
the FA performs as intended. Figure 11 shows each different

initial magnetic moment configuration evaluated for U = 4 eV
and J = 0 eV. The searcher evaluated a significant portion of
configuration space. Also, we can see that there are several
regions where the evaluated points are very close to one
another. As for NiF2, a network plot shows the targeted nature
of the FA more convincingly. We show in Figure 12 the
network plot for U = 2.0 and J = 0.0. Similarly to the plot for

NiF2 each node corresponds to one candidate, and two nodes
are linked only if their distance function evaluates to a value
which is less than 0.3. The number of nodes in the plot is 496,
which means that 496 unique candidates were evaluated. Just
as before, the average connectivity can be found, and it is
0.125, which means it is less connected than the plot for NiF2.
Considering that Mn3Pt is a frustrated system and NiF2 is not,
the graph should be more disconnected, as there should be
several disconnected islands of connected nodes, with each
island corresponding to a frustrated state.
Figure 13 shows the semilog plot of the energy difference

between the best candidate and the lowest-energy candidate

for each generation. As expected, the energy difference
decreases as the number of generations increase as the FA is
locating better and better candidates as the search evolves. It is
also clear that as the U value increases, the potential energy
surface becomes more rough and the location of the lowest-
energy configuration needs more iterations. This is consistent
with the fact that as U increases, the electron−electron
correlation increases, which makes magnetic energy barriers
larger and the exploration of the surface more difficult, though
our method is still able to find the right minima even at large U
values.
We performed the search for U values of 0.0,1.0,2.0,3.0 eV,

and 4.0 eV for J = 0 eV. Figure 14 shows our results for the
magnetic moment magnitudes for all low-energy candidates
which have been found after relaxation. We found two cases in
which two lowest-energy candidates have magnetic moment
magnitudes that agree with experiment, U = 2 eV and U = 3
eV.
We also need to determine if FA yields magnetic moment

orientations that agree with experiment. Figure 15 shows the
magnetic moments of two candidates after relaxation, U = 2.0
and U = 1.0. Only U = 2.0 has magnetic moments which lie in
the [111] plane. Combining these two results together, we find
that the low-energy candidate found for U = 2 eV and J = 0 eV
is consistent with experimental measurements. Additionally,
previous computational studies have identified three potential

Figure 11. Initial magnetic moment configurations of candidates
evaluated for U = 4 eV and J = 0 eV in Mn3Pt. The x-axis is the angle
between the first and second Mn magnetic moments, the y-axis is the
angle between the first and third Mn moments, and the z-axis is the
angle between the second and third Mn moments.

Figure 12. Network plot of the entire search for U = 4 eV and J = 0
eV in Mn3Pt. The colors denote the energy, where blue is the lowest
energy and red is the highest. If two nodes are linked, the link
represents eqs 2 and (3), where rij < 0.3.

Figure 13. Energy difference between the final best candidate and the
best candidate of each generation for both J = 0 in Mn3Pt. This plot is
logarithmic in order to show multiple values of U on the same plot.
The nine points corresponding to the final plateau for each candidate
are the best candidate. Since this is a semilog plot, the energy
difference has been selected as less than that of the energy tolerance
used (10−9 eV) to avoid infinities in the graph.
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configurations which agree with neutron diffraction experi-
ments.39

The diversity of the minima of the relaxed generation can
also be checked. Since the lowest-energy candidate should lie
in the [111] plane, the relative orientation of the plane the
magnetic moments lie in can be used to differentiate results.
We show this result in Figure 16 for U = 2.0 and J = 0.0.
Unsurprisingly, most of the candidates relax to a configuration
which either is in the [111] plane or is close to the [111]
plane. Most of the candidates lie within 0.5 meV above the
lowest-energy candidate. The candidate which is 3 meV higher
in energy can be identified with another theoretically predicted
orientation which agrees with experiment, even though it is not
exactly in the [111] plane.39 This orientation was predicted to
be 2.8 meV higher in energy than the lowest-energy
orientation, a result that is in agreement with our calculations.
Since Mn3Pt is a frustrated system, there should be at least one
more magnetic moment configuration which has the same
energy as the lowest-energy candidate. The third configuration
identified in Figure 16 is only 1 μeV higher in energy than the
lowest-energy candidate. Since this energy difference is
significantly lower than what was previously reported, this

candidate is identified as a degenerate configuration. Thus, the
expected degeneracy in this system has been reproduced by the
FA.

4.3. (MnIV)3O4L4(H2O). Our final application of FA is on
the molecular system (MnIV)3O4L4(H2O), where L = N,N′
-bis(methylene)-Z-1,2-ethenediamine. This molecular system
mimics the oxomanganese complex of photosystem II, and the
action of this complex causes the oxidation of water to
dioxygen. Because of this, the considered molecular system is a
simplified version of the well-studied (MnIV)3O4(bpy)4(H2O)
system.42 This oxidation is a key step in the utilization of solar
energy in biological systems. Experimental work with
(MnIV)3O4(bpy)4(H2O) has indicated that strong antiferro-
magnetic coupling exists between the spin centers. The three
oxomanganese complexes in this molecular system are aligned
such that the Mn atoms in each complex lie on the vertices of a
triangle, similarly to the case for Mn3Pt. Because of this, it is
believed that competition between the three spin centers leads
to frustration. The theoretical work of Luo et al.14 showed that
if the spins of these atoms adopt a noncollinear configuration,
then this frustration is minimized, resulting in a state lower in
energy than the previously expected frustrated collinear
configurations. Since this system has been shown previously
to display a noncollinear spin arrangement, it provides a
molecular system where FA can be tested. Luo et al. found a
ground state configuration where the magnetic moments of the
Mn atoms lie in the x−y plane, where each magnetic moment
points outward from the center of the triangle connecting the
three Mn atoms. The energy difference between this
noncollinear state and the lowest-energy collinear state is 0.3
eV. While they also considered excited states of this molecule,
these are not necessary for our purposes, as we are trying to
predict the ground state of the system. For our searcher, we
selected U = 0, 1, and 2 eV, with J = 0 eV, based on our results
for Mn3Pt, since the Mn atoms are the magnetic atoms in both

Figure 14. Average Mn magnetic moments of the lowest-energy
candidates for Mn3Pt.

Figure 15. Magnetic moments of each low-energy candidate for
Mn3Pt. Panels a and c display the orientation of the magnetic
moments relative to the [111] plane. U = 2.0 lies in this plane; U =
1.0 does not. Panels b and d display the orientations of the magnetic
moments within the plane they lie in. The result for U = 2.0 agrees
with both experiment and previous theoretical results.

Figure 16. Relative energy of each candidate in terms of its
orientation of the planes in which its magnetic moments lie after
relaxation, relative to the [111] plane for Mn3Pt. These are for the
candidates in the final generation of the search for U = 2.0 and J = 0.0.
There are many minima located near the lowest-energy candidate.
The peak of the figure is 3 meV higher in energy than the lowest-
energy configuration. This higher-energy candidate is identified as one
of the three theoretically predicted orientations which agrees with
experiment. The candidate which has an energy difference of 1 μeV
with the lowest-energy candidate is identified as a degenerate state.
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systems. As with the previous cases, we first want to show that
a significant portion of configuration space is explored. Figure
17 disp lays the network plot we obta ined for

(MnIV)3O4L4(H2O). As discussed for the previous two cases,
each node corresponds to a single candidate and nodes are
linked based on their distance from one another. As before, the
distance cutoff was specified to be 0.3, on a scale where 0.1
specifies candidates which are identical. Since the average
angles between magnetic sites are used to define the distance,
this cutoff means the average angle must be less than 0.3
radians between magnetic moment sites. Just as in the previous
cases, the graph is primarily a collection of completely
disconnected nodes and highly connected nodes, which
shows that the searcher is targeted. There are 424 nodes,
which means there were 424 unique magnetic moment
configurations which were evaluated by FA.
Figure 18 shows the energy difference between different

candidates for the final generation for U = 2 eV and J = 0 eV.
The first remark we can make is that the energy differences
between minima are on the order of 0.1 meV. The second
remark is that 16 different minima were located in this final
generation. This, coupled with the network plot in Figure 17,
shows that a calculation that starts with initial conditions that
correspond to a random point on the PES has very little hope
of relaxing into the global minimum.
Finally, the lowest-energy candidate has properties which

agree with the results from the work of Luo et al. The magnetic
moments lie in the a−c plane, and they are oriented pointing
outward from the center of the triangle where the Mn atoms lie
on. However, our results yield magnetic moment magnitudes
which are significantly higher than those previously reported.
Figure 19 displays the average magnetic moment magnitude of
the best candidate for the values of U and J considered, along
with the value from the previous theoretical study. The
disagreement between our results on the previous theoretical
work is not a failure of the FA, however, but is more than likely
due to our use of a different exchange−correlation functional

as well as our use of LDA+U. Experimentally, the reported
magnetic moments of (MnIV)3O4(bpy)4(H2O) go from 1.71
μB at 4.6 K to 3.77 μB at 292 K,42 which is higher than those
reported by Luo et al. and in better agreement with our results.

5. CONCLUSION

In this work we have shown that meta-heuristic firefly
algorithm is ideally suited to the problem of ground state
prediction in noncollinear magnetic systems due to its ability

Figure 17. Network plot for the molecular sys tem
(MnIV)3O4L4(H2O).

Figure 18. Energy differences between candidates in the final
generation for U = 2 eV and J = 0 eV after relaxation. Each line
corresponds to a different minimum.

Figure 19. Average magnetic moment magnitude of the best
candidate for all values of U and J considered for the molecular
system. The dashed lines are the average magnetic moment values
from previous theoretical and experimental work.14,42
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to efficiently search over multiple regions of configuration
space simultaneously. It does not depend on specific details of
a system, so it can be applied to a wide range of materials with
wildly varying properties. Both of these reasons make it well-
suited to locate the global minima of noncollinear magnetic
systems. When applied to NiF2, it has been shown that FA can
yield correct values for the canting angle without taking into
account crystal symmetry, the existence of MCA, nor any other
specific property of NiF2. For Mn3Pt, not only was the FA able
to locate the correct ground state magnetic moment
orientation but also it was able to locate a second previously
reported orientation which agrees with the experiment.
Additionally, for several values of U and J, the magnetic
moments were found to lie in the [111] plane before
relaxation, and the correct orientation within this plane was
found after relaxation. For the molecular system
(MnIV)3O4L4(H2O), the FA algorithm was able to find a
low-energy magnetic moment configuration whose orientation
agrees with previous theoretical work.14 The FA could also be
used in the identification of the values of U and J which
correctly reproduce the experimental noncollinear properties
of crystals. More importantly, in all three cases a multitude of
minima were identified, which enabled differentiation between
different stable and metastable magnetic moment configu-
rations. This improves on the weakness of current random
methods, as calculations using random methods can relax into
any of the numerous minima which were located using FA. It
should be noted that there were approximately 500 unique
candidates evaluated in each test case. While it is not necessary
for FA to function properly, analysis of magnetic symmetries
has been used successfully to limit the number of possible
states which are physically realizable.43 An implementation of
magnetic symmetry analysis in the PyChemia package would
be useful addition to limit the number of possible states.
In general, we have demonstrated that the FA is a very

flexible method to be used in the search of global minima in
problems where the potential energy surface is rather complex.
This implementation could thus be very useful to search low-
energy magnetic phases of noncollinear magnets with a larger
number of cations, in particular those where there is a role
between the magnetic and the electronic properties.
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