Proceedings of the ASME 2018 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

. IDETC/CIE 2018
August 26-29, 2018, Quebec City, Quebec, Canada

DETC2018-86198

TRUST BASED CYBER-PHYSICAL SYSTEMS NETWORK DESIGN

Yan Wang
Woodruff School of Mechanical Engineering
Georgia Institute of Technology, Atlanta, GA 30332
yan.wang@me.gatech.edu

ABSTRACT

Cyber-physical systems (CPS) extensively share informa-
tion with each other, work collaboratively over Internet of
Things, and seamlessly integrated with human society. Desig-
ning CPS requires the new consideration of design for connecti-
vity where security, privacy, and trust are of the main concerns.
Particularly trust can affect system behavior in a networked en-
vironment. In this paper, trustworthiness is quantitatively mea-
sured by the perceptions of ability, benevolence, and integrity.
Ability indicates the capabilities of sensing, reasoning, and in-
fluence in a society. Benevolence measures the genuineness of
intention and reciprocity in information exchange. Integrity cap-
tures the system predictability and dependability. With these cri-
teria, trust-based CPS network design and optimization are de-
monstrated.

1 Introduction

Systems with integrated capabilities of sensing, computing,
communication, and execution were recently termed as cyber-
physical systems (CPS). They are the realization of mechanisms
where physical components are directly controlled and monito-
red by computational algorithms and tightly integrated with In-
ternet and users. Most of future industry and consumer products
such as manufacturing equipment, office and home appliances,
personal health care devices, automobiles, and many others are
likely to be the examples of CPS. The unprecedented values and
functions of CPS rely on the networks formed by themselves,
which is also referred to as the Internet of Things.

In addition to common design challenges for systems of sy-

stems such as interoperability, scalability, lifecycle management,
resiliency, usability, adaptability, safety, security, and sustainabi-
lity, there are a few unique characteristics about CPS products.
First, with the advancement of novel materials for sensing, ac-
tuation, computation, and communication, future CPS may have
diverse physical forms and properties, including those with self-
adaptive, biomorphological, and soft structures. CPS can be cre-
ated at different size scales and can exist at micro- and nano-
scales. CPS may also have certain levels of reasoning capability
and intelligence as well as self-production and self-organization
characteristics [1,2]. Second, the complexity of CPS products
has significantly increased from traditional ones. Designing each
product requires the consideration of materials, hardware, soft-
ware, algorithms, as well as network connectivity [3]. High com-
plexity requires new systems design principles. For instance, it is
impossible to keep networked low-cost CPS with millions of no-
des secure and failure-proof. Instead resilience should be the de-
sign objective [4,5]. Third, CPS extensively interact with human
users and will be deeply embedded in human society. Social con-
sciousness and cognitive capability will also be important factors
in systems design. For instance, issues of privacy and trust in the
context of information sharing and collaboration should be con-
sidered.

The controllability of shared information quickly diminis-
hes as it propagates through CPS networks. Therefore trust is
essential for CPS nodes to collaborate. Here, how to quantify
trustworthiness and apply it in the design of CPS is studied. In
recent research of trust quantification for networked systems, two
approaches are taken. In the top-down approach, trustworthiness
is treated as an overall perception or belief about an individual’s
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reputation or ability. It is quantified with probabilistic or non-
probabilistic measures. In the bottom-up approach, trustworthi-
ness consists of multiple factors such as availability, dependa-
bility, and quality of services, each of which can be calculated
from the statistics of physical systems, e.g. data transmission ra-
tes, executed routing protocols, and positive recommendations.
In CPS networks, the quantification of trustworthiness needs to
be at the systems level with multiple functions and networked
communities, instead of only at individual components.

With the intensive interaction between humans and CPS,
user-oriented trust management is essential. Trust is a state of
mind, subjective, and multi-faceted. The study of trust should be
in the context of social behavior. The dynamics of human percep-
tion and subjectivity needs to be emphasized in trustworthiness
quantification for CPS.

In this paper, a perception-oriented approach is taken to
quantify trustworthiness. Trustworthiness is measured by per-
ceptions of three major metrics instead of an abstract one. The
three metrics, which include perceptions of ability, benevolence,
and integrity, are carefully chosen based on the concepts studied
in social sciences and to avoid redundancy. To model large-
scale CPS networks, a probabilistic graph model is applied to
capture the functions of sensing, prediction, and communication.
This mesoscale model provides a generic abstraction of CPS net-
works with scalability consideration. The three trustworthiness
metrics are calculated based on the probabilistic graph model.
These three perception-level metrics are calculated with Baye-
sian methods. Compared to other trustworthiness quantification
approaches, the uniqueness of the proposed approach includes
the considerations of different CPS functions including sensing,
prediction, and communication. The perception based quanti-
fication method directly models subjectivity of beliefs and the
influence of social behavior, with quantitative measures of abi-
lity, benevolence, and integrity, which have not been considered
in other quantitative approaches.

In the remainder of the paper, a review of relevant work on
trust quantification in the domains of computer and social scien-
ces is first provided. Then the new probabilistic graph model is
introduced in Section 2.2. The metrics of ability, benevolence,
and integrity are provided in Sections 3.1, 3.2, and 3.3 respecti-
vely. The estimation of metrics from network traffic statistics is
demonstrated in Section 4. In Section 5, the network design and
optimization approach based on the metrics of ability and bene-
volence is described.

2 Background
2.1 Trust quantification

The study of trust in computer science had been traditio-
nally focused on security policy for exchanging credentials, con-
trolling access, and referring reputation [6, 7]. Recently, it was
studied in the context of social networks and semantic web [8,9].

In the vast majority of those studies, trust was only defined qua-
litatively instead of providing quantitative specifications and cal-
culations.

In social networks and multi-agent environments, most re-
searchers model trust as reputation and rely on users’ explicit
ratings and recommendations to estimate the levels of trust. For
instance, trust was calculated from the scaled reputation ratings
[10], the number of finished transactions [11], and users’ explicit
ratings [12].

In computer networks, trust was measured by quality of ser-
vices, the numbers of forwarded data packets, executed routing
protocols, etc. For sensor networks, trust has been measured with
local and global success rates of transactions [13], consistency
of individual nodes from their historical data [14], consistency
between nodes in local regions [15], as well as neighbors’ data
forwarding behaviors [16].

The subjective and uncertain aspects of trustworthiness
has been modeled with belief of information reliability [17],
Dempster-Shafer evidence [18], expectation of fulfilled com-
mitments [19], Bayesian networks [20], probability of resource
availability [21], and information entropy in data exchange [22].
Fuzzy logic was also applied to capture the linguistic imprecision
of trust description, either as one concept [23,24], or a combina-
tion of multiple factors such as ability, availability, motivation,
usefulness, honesty, and others [25,26].

Different qualitative definitions of trust exist in the dom-
ains of psychology, marketing, human behavior, and organiza-
tion. Mayer et al. [27] carefully studied dozens of characteristics
of trust in literature, identified commonality, and defined trus-
tworthiness as a set of three categories of perception: ability,
benevolence, and integrity. Ability is about perception of skills,
expertise, and competency associated with trustee. Benevolence
is the extent to which the trustor believes that the trustee acts for
the welfare of the trustor, rather than just maximizing its own
profit. Benevolence is a summary of related characteristics such
as loyalty, openness, receptivity, and availability. Integrity is the
trustor’s perception that the trustee will be honest and adhere to
an acceptable set of principles. Integrity is associated with con-
sistency, discreetness, fairness, promise fulfillment, reliability,
and value congruence.

The ability-benevolence-integrity model has been widely
adopted in different fields. The three factors have been applied in
designing psychological and behavioral studies of trust [28,29].
The model was applied to measure the trustworthiness of online
shopping merchants [30], and electronic banking service provi-
ders [31]. The model has also been adopted in designing infor-
mation systems with better privacy policies [32], better under-
standing of users intention [33], user participation [34], secu-
rity [35], and technology integration [36]. The concerns of se-
curity, privacy, and trust in CPS networks are similar to those in
traditional information systems. The trust model of ability, bene-
volence, and integrity thus can be applied in CPS. Nevertheless,
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Figure 1: The probabilistic graph model

in all of the above studies ability, benevolence, and integrity were
defined qualitatively without providing quantitative measures.

In this work, quantitative metrics of ability, benevolence,
and integrity are defined. The perceptions of these three me-
trics are captured based on a generic probabilistic graph model
of CPS networks. The graph model provides a mesoscale ab-
straction to represent the major functions of information gather-
ing and exchange between nodes in CPS networks. Particularly,
the probability of accurate sensing and prediction by each node,
as well as the probabilities of positive and negative correlations
as mutual influence between nodes are explicitly modeled, which
allows for quantitative measurement of ability and benevolence
directly. Notice that ability, benevolence, and integrity aspects
of trust co-exist in trustworthiness quantification. These three in-
dependent dimensions need to be considered separately and not
simply combined into one metric.

2.2 Probabilistic graph model

As illustrated in Fig. 1, a probabilistic graph [4,5] G =
(V,E,R,P,Q) is a collection of nodes V¥ = {v;} and directed
edges £ = {(v;,v;)}. Each node vy is associated with a pre-
diction probability p; € R, and each edge (v;,v;) is associated
with a P-reliance probability p;; € P and a Q-reliance probabi-
lity qij € Q.

The prediction probability py is the probability that node k
predicts the true state of world 6 and is defined as

P(x; = 6) = pr, ey

where x; is the state variable of node k. The information de-
pendency between node j and node i is modeled by P-reliance
probability

P(xj:9|xi:6):p,-j, (2)
and Q-reliance probability
P(ije‘xi#e)zq[j. (3)

P-reliance probability indicates the positive effect of infor-
mation exchange between nodes, whereas Q-reliance probability

captures the negative influence. Particularly P(x; = 6|x; =6) and
P(x; = 0]x; # 0) indicate how much a node’s prediction relies
on its own observation. To simplify the notation, we use P(x;) to
denote P(x; = 8), P(x{) to denote P(x; # 8), P(x;|x;) to denote
P(xj =0|x; = 0), and P(x;|x{) to denote P(x; = O|x; # 6). Note
that the probabilistic graph model here is different from Bayesian
belief network.

CPS nodes collect information by themselves or from their
neighboring collaborators. With the new information, the pre-
diction probabilities are updated. Different information assimi-
lation rules can be adopted by nodes to update their prediction
probabilities, such as best-case, worst-case, and Bayesian rules.

An example best-case or optimistic fusion rule is

P'(xe) =1 =TI, (1= P(xili)), 4

where node k has a positive prediction with updated probability
P if any of the M nodes as its information sources provides a
positive cue. Some variations of this rule can also be used, such
as

P(x) = 1 =TI, (1 = P i) )IT2, (1= P [x5)),  (5)

where both positive cues from M| nodes and negative cues from
M> nodes (M| + M, = M) are considered. Another version could
be

Plg) =1-T1, (1= P(wl), (6)

where the node’s own prior observation is not included in the
update.
The worst-case or pessimistic fusion rule is

P'(xi) = TIL Py |xi), (7

where the prediction of a node is positive only if all cues it recei-
ves from other nodes are positive.
The Bayesian fusion rule is

P (i) o< P(xi) [(P(xe))" (1= Pa))™ 7|, ®)

where the prediction of node k is updated from prior prediction
probability P(x;) given that r out of a total of M cues provided
by others are positive.

For simplicity, only binary value of state variables is con-
sidered here. Obviously, further generalization to multi-valued
discrete state variables is straightforward. Suppose there are a
finite set of discrete values {8;,...,0y} that the state variable
Xy can take. The multi-valued prediction probability P(x; = 6,,)
(ne€{l,...,N}) can be obtained similar to binary values. Simi-
larly, reliance probabilities P(x; = 0,|x; = 6,,) (m,n € {1,...,N}
) can be obtained enumeratively.

The above information fusion rules can be similarly exten-
ded to multi-valued state variables. For instance, the optimistic
fusion rule in Eq.(5) becomes

P/(xk) = 1*H?i'1(1fP(xk|xi:91))... )
I (1 P(xlx; = Oy)),
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The prediction and reliance probabilities can be estimated
from the collected historical data. For instance, the prediction
probability of a CPS node can be based on data collected by its
sensing and reasoning units. It can be estimated as the frequency
of correct prediction. The reliance probabilities can be estimated
similarly from the frequencies of positive and negative predicti-
ons by the neighboring nodes given the node’s own prediction. If
no data are available, subjective estimations from domain experts
can be elicited, with standard probability elicitation procedure.

3 Trustworthiness Metrics

The new quantitative trustworthiness metrics are perceptions
of ability, benevolence, and integrity. They are summarized in
this section. Detailed description and evaluation of the metrics
are available in Ref. [37].

3.1 Ability

The ability of CPS consists of capability and influence. In
the context of probabilistic graph model, the capability of a node
is generally quantified as the perceived probability that it can pro-
vide accurate prediction about the true state of the world based on
its available information. Within a networked society, the influ-
ence of a node to others, which can be interpreted as leadership,
is also regarded as part of its ability. The leadership that a CPS
node has is characterized as the extent of its positive or negative
influence to its neighbors.

3.1.1 Capability of prediction The perception of abi-
lity is subjective and varies among different people. Suppose that
the perceived capability for node j is the perceived prediction
probability A;(0) = P(P(x; = 0)) with respect to the true state
of world 8, which follows a Gaussian distribution with mean p;
and precision To. Here IP(-) denotes perception. In other words,
the perceived capability of node j is randomly distributed, with
expectation

E(A;(8)) = pj, (10)
and variance
V(Aj(8)) =7, (11)

In a society with extensive information exchange, the per-
ception of capability can be updated with newly obtained infor-
mation. For instance, if reliance probabilities with respect to
node j are made available to the public, then the perceived ca-
pability of the node can be updated.

Suppose that the perceived reliance probabilities L;; =
P(P(xjlx;)) and Lf; = P(P(x;|x{)) for all i,j € V are Gaussian
random variables, with expectations

E(Lij|Aj) = pij(Vi,j € V) (12)

and
E(L{;A)) = qij(Vi,j € V) (13)
under the condition of the perceived capability A ;.
The variances of the perceptions may depend on the nature

of information sources. For the perceptions related to the infor-
mation shared with node j from others, the variances are

V(Ll]‘A ) 1] p(Vl € 5]) (14)
and

( |A ) lj q(Vle‘S‘j) (15)

where §; = {vi|(vi,v;) € E} is the collection of source nodes
with respect to node j and each of the source nodes sends in-
formation to node j. Without the loss of generality, we can as-
sume that the variances of the perceived reliance probabilities
are the same, i.e. Tjj, = Tsp and T;j 4 = T,y (Vi € S5;). The
complete set of perceived P- and Q-reliance probabilities for the
source nodes with respect to node j is denoted as £(*+/) ={Lijlie
SULLEli €5}

With the reliance probability information, the perception of
capability is updated based on the Bayesian belief update scheme
or Bayes’ rule. Because the perceptions follow Gaussian distri-
butions, the expectation of posterior perception for capability of
node j is
TjPj+ Ts.p Lies; Pij t Ts.q Lics; 9ij

Tj+ Ts.pSj+TsgSj

E(A;(0]£0))) = . (16)
where s; =
node j.

The consideration of Q-reliance probabilities in capability in
Eq.(16) is necessary. When a node gives correct prediction even
when its information sources provide negative or wrong predicti-
ons, the node exhibits good capability. Also note that if the as-
sumption of equal variances is not made, the posterior perception
of capability in Eq.(16) still can be calculated with T, } ;e $; Pij
replaced by Y'ies; Tij pPij» Ts.q Lies; 4ij bY Lies; Tijqdijs Ts,pSj bY
Yies; Tij.p» and Ty gs; by Yie, Tij 4 respectively.

The variance of the updated perceptions for the capability of
node j is

= |$;| is the number of source nodes with respect to

V(A (O] L)) = (1) + Ty p8j +To.g87) - (17)

3.1.2 Influence The influence or leadership of node j
is associated with the effectiveness of information sharing from
node j to others. When the information sharing from node j to
destination nodes in Dj = {vi|(v;,vk) € E} is considered, where
each of the destination nodes receives information from node j,
the perception of the capability of node j can be further updated.
When the precision of the perceptions related to the information
shared from node j to others are characterized by

V(Ljgldj) =3, (Vk € D)) (18)
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and

V(LA)) = T, (Vk € D;), (19)
the complete set of perceived P- and Q-reliance probabilities
for the destination nodes with respect to node j is denoted as
L) ={Lylk € D} U{LS |k € D;}. Similarly, to simplify the
notation, it is assumed that the variances of the perceived reli-
ance probabilities are the same, i.e. Tjx, = T, and Tjx 4 = Ta gy
(Vk € D;) . The expectation of the updated perception of ability
based on the influence to others is

E(A;(6|L7))) =
Tjipj+ Tdp Liken,; Pjk + Tdq Lken; (1 —qji) 5 (20)
Tj+Tapdj+Taqd;

where d; = |D;| is the number of destination nodes with respect
to node j. Notice that (1 — g ;i) is used here to quantify the influ-
ence of node j to others, which captures how likely others end up
with negative predictions given that node j provides a negative
cue.

The variance of the updated perceptions for node j’s ability
after obtained information from destination nodes is

V(Aj(L<_j))) = (‘CjJr’Cd.’deJr’Cd’qdj)_l. 21

3.1.3 Overall ability The expectation of the further up-
dated perception of ability that includes both capability of pre-
diction and influence to others is

E(A; (0] L), L)) =
ijj+TS,pZi€5j Pij""cs,quejf qij .2
+Tap Lien, Pjk + Tag Lien; (1 — i)
Tj+ Tsp8j+ TsqSj T pdj + T gd;

The variance of the updated perceptions for node j’s ability
after both information from source and destination nodes is

V(4,010 L07)) =

(23)
(T +Ts,pSj + Tsg8) +Ta,pdj + Taqd)

3.1.4 Higher-order perception In a society, one’s
perception can be influenced by others’ perceptions. In the con-
text of trust, one’s perceived trustworthiness can be a function
of others’ perceived trust levels because of mutual influence in
judgment and decision making. Therefore, the previous ability
perception model can be further extended to a higher-order one
with the consideration of mutual influence. The expected ability
in Eq.(22) and variance in Eq.(23) are considered as the first-
order model, where the perception of a node’s ability is only
affected by its interaction with the immediate neighbors. For the
second-order model, the ability of a node is also affected by the
perceived abilities of its intermediate neighbors, particularly the

destination nodes which it directly shares information with. That
is, the ability of a node is also related to the abilities of the nodes
that it has direct influence on.

If the notations of E(A;(0|£H) L))  and
V(A;(8] L), £=1)) are simplified to
E(A;(6]+ —)) =E; 24)
and
V(A;(6]+,-)) =V; (25)

respectively, then in the second-order model, the expected ability
is

E®)(A;(8]+,-))
V,-_l Ej+Tap Yren, pi(Vi ' Ex)
B +Tag Yken, (1 — ) (V' Ex)
Vil %0 p Yhen, PitVi ' +Tag Lien,(1— gV

which is the same as the first-order expectation, and the variance
is

V@ (a;(0]+,-)

» (26)

—1
. » Loen
= |\Viltta, Y, PV g Y, (1—qi)Vy
kE@j kE@j

Similarly, the third-order model can be constructed by in-
corporating the perceived abilities of the neighbors’ neighbors,
which the reference node indirectly shares information with.
Therefore, the higher-order perception model incorporates the
lower-order perceptions, as an extension of weighted averages
where weights are the associated precisions. Recursively the n'"
order model is defined based on the (n — 1)/ order ones.

3.1.5 An illustrative example A graph with 11 no-
des shown in Fig. 2 is used to illustrate. In the first case, the
mean values of prediction probabilities for the 11 nodes are as-
sumed to be 0.5, and the variances are 0.3. The means of P-
and Q-reliance probabilities for all edges are assumed to be 0.9
and 0.1 respectively. The variances for reliance probabilities are
0.1. This is a scenario that individual nodes’ sensing capabilities
is limited. They need to work collaboratively to make predicti-
ons. The nodes rely on shared information in decision making.
The CPS are working in a “collaborative” mode. The ability per-
ceptions of all nodes, including the capability, influence, overall
ability, and the second-order ability perception are shown in Fig.
3a, where the mean values are denoted by dots and standard de-
viations are denoted by error bars. Notice that a variance of 0.3
already overestimates variation. The corresponding standard de-
viation is over 0.7, whereas a probability value is between 0 and
1. Typically the variance of perceptions should be less than 0.3.
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Figure 2: A simple graph with 11 nodes

From the result, it is seen that additional information from ot-
her nodes reduces the variance of prediction capability. When a
node has no source nodes such as node 4, the variance of pre-
diction capability is large. Similarly, the variance of influence
is not reduced when nodes do not share information with others,
such as node 5. Incorporating both capability and influence, the
overall abilities are expected to increase when nodes work in the
collaborative mode. Here, the means of abilities are mostly gre-
ater than 0.5. The variances also reduce. When the perceptions
are incorporated in the second-order abilities, the variances are
further reduced.

In the second scenario, nodes work in an “independent”
mode. The mean values of prediction probabilities are 0.9, whe-
reas the variances are 0.1. The means of P- and Q-reliance pro-
babilities are 0.5, and their variances are 0.3. The nodes rely
much more on individual predictions. The ability perceptions
are shown in Fig. 3b. It is seen that variance reduction of the
overall ability from capability and influence is not as significant
as in the previous collaborative scenario. The changes of mean
values by incorporating more information are not as dramatic as
in the previous case, where the perceived trustworthiness for no-
des 4 and 5 can fluctuate significantly from first order to second
order.

3.2 Benevolence

Benevolence is a measure of the trustor’s belief that how li-
kely the trustee is motivated to do good to trustor, instead of for
its own benefit. It captures the intention and motivation of the
trustee. The degree of benevolence is low if the motivation is
originated from ergocentric gain, and high from mutual bene-
fits. Benevolence between individuals is critical for information
sharing. Without such aspect of trust, large-scale data sharing
in CPS networks is not possible. Reciprocity is proposed here
to measure the extent that the partners whom we share informa-
tion with reciprocally share information with us. There are also
some other characteristics associated with benevolence such as
loyalty and dependability. Motive as the second metric proposed
here is to measure the level of good intention and motivation for
interactions within the community.
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(b) Perceived abilities of the 11 nodes in an independent scenario.

Figure 3: The first- and second-order abilities of nodes in the
model of Fig. 2 in two scenarios.
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3.2.1 Deterministic reciprocity The pairwise deter-
ministic reciprocity of node j with respect to node i, 7; j, is mea-
sured by the shortest topological distance, in terms of the number
of hops in the network that node j shares information with node
i, as

rij = exp(—hj;) —exp(—hi;) +exp(—=hi;—hj;), (28)

where /1j_,; is the minimum number of hops or the shortest to-
pological distance for information flow from node j to node i.
Note that h;,; =0 and r;; = 1. When i # j, dr; j/ohj_,; <0 and
ari’j/ahiﬁj > 0.

3.2.2 Perceived reciprocity With the further consi-
deration of reliance probabilities as weights of edges in probabi-
listic graphs, the expected value of the perceived reciprocity of
node j with respect to node i is calculated as

E(R; j) = Dkr(pi—jl|pj—i) — Dkr(pj-illpisj) + Do, (29)

where Dk, (P||Q) is the Kullback-Leibler divergence from pro-
bability distribution Q to P, pj_; = I1;;pgp is the product of
all P-reliance probabilities where information flows through al-
ong the shortest path from node j to node i, and p,;, corresponds
to the P-reliance probability from node a to node b along the
path. Similarly, we have p;_,; =I1;_,;p.q. When path j — i does
not exist, the principle of maximum entropy is applied, thereof
pi—j = 0.5. by is a reference threshold of neutral value, which
is predetermined such that E(R; ;) > by when node j has a high
reciprocity with respect to node i, and E(R; ;) < by otherwise. To
make the value range of reciprocity be between 0 and 1, the re-
ference threshold is typically set as bp = 0.5. Additional scaling
can be applied if necessary to keep the value range. Notice that
E(R; ;) = bo because Dkz(piil||pi—i) = 0.

The variance of the perceived reciprocity can be calculated
from the variances of P-reliance probabilities. Assuming the in-
dependence between the perceptions of P-reliance probabilities,
the variance will be associated with the high-dimensional Gaus-
sian distribution formed by these perceptions.

High-dimensional Gaussian distributions are costly to calcu-
late and use. If there are m hops in the path from node j to node
i, the variance associated with p;_.; will be an m-dimensional
Gaussian distribution. To simplify the calculation for ease of ap-
plication, a one-dimensional Gaussian distribution is used here
for estimation purpose. The variance associated with the percei-
ved reciprocity is conservatively estimated as

V(Rij) =min( Yt + Y 1) Vinar), (30)

j—i i
where T,, and T.; are the precisions associated with the P-
reliance probabilities along paths j — i and i — j respectively,
and V), is the theoretical maximum value of variance. As dis-
cussed in Section 3.1.5, for a value range from O to 1 as proba-
bility, an upper bound of variance is around 0.5. The theoretical

limit can be V,,,,x = 1.0. When a path j — i does not exist, the as-
sociated variance is set to be Vyuqy. At the same time, V(R;;) = 0.

3.2.3 Motive Motive measures the motivation and in-
tention of information sharing in a community. A high level of
motive for a node indicates that it shares high-quality information
with neighbors for the purpose of improving the overall functi-
onality and performance of the community, whereas a low level
of motive shows an ergocentric purpose instead of community-
oriented benefit.

In the context of probabilistic graph model, the expected va-
lue of the perceived motive of node j is defined as

E(M;) = p;Y, 31

where p; is the prediction probability associated with node j,
and d; = |D;| is the number of destination nodes with respect to
node j. The baseline of motive (M; = 1) is when the node has
no destination nodes and does not share information with others.
Compared to those sharing accurate predictions with others, a
node sharing low-quality predictions with others tends to have a
lower level of motive. Particularly, the more neighboring nodes
it shares inaccurate predictions with, the less trustable the node
is. In this case, the expected value of motive reduces quickly for
low p; as d; increases.

The variance associated with the perceived motive of node j
is related to the precision T; of the perceived prediction probabi-

lity p; as
V(M) =1 (32)

3.2.4 Overall benevolence With the considerations
of both reciprocity and motive, the expected overall benevolence
perception of node j respect to node i is

V(R )E(R;;) +V 1 (M))E(M))
V(R ;) + V-1 (M) ,

E(B; ;) = (33)
according to Bayes’ rule. The variance associated with the per-
ception is

V(Bij) = (V' (Rij)+ V(M) " (34)
Notice that E(B; ;) = by and V(B; ;) = 0.

3.3 Integrity

Integrity is associated with the perceived characteristics of
reliability, predictability, honesty, and consistency. Integrity is
a relatively well studied topic in the context of cyber security.
It is essential to protect the operation of CPS and the networks.
The quantification of integrity needs to consider the risk of de-
ception attacks and replay attacks. In deception attack, adversary
or compromised nodes send false information such as incorrect
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measurement, incorrect time of measurement, incorrect metadata
(e.g. who measured the data), etc. to others. In replay attack, data
transmitted between nodes are intercepted or delayed so that the
decisions of the receiving nodes are maliciously manipulated.

Suppose that the prior belief of integrity for node jis E(/;) =
g; with imprecision or variance V(I;) = 0)171. The likelihood that
node j is free from deception attack and maintains its integrity
can be quantified as the deviation between its state variable value
and the average state variable value in its neighborhood ; where
the same quantity of interest is measured and detected, as

(xj—fm)z]

35
2 (35)

P(xjlxicq,) = &} o< exp l

where £(/) = ﬁ Ziegix,- is the average prediction of the neig-
] /

hboring nodes with respect to node j, and (5)% indicates the natural
variation between sensing units as the random error.

Based on Bayes’ rule, the perception of integrity about node
J can be updated to

8jw;+ g?@? 2

] X

; (36)
when new information about the behaviors of nodes is obtained.

The likelihood function can also be formulated to incorpo-
rate the temporal factor. If the x;(#) denotes the predicted state
value by node j at time f¢, the likelihood can be extended to cap-
ture the node’s own consistency as

x(te) —%;)?
mmwnmqwﬁm:gxwﬂ—“%gf)}on

X

where X; = % Zé:ol x;j(t;) is the average value of previous predicti-
ons by node j at time stamps from 7 to #;_;. The perception of
integrity can be similarly updated to

8o +gio P +glo?

®;+20;°

E(Ij|xicq,xj(ti—1,-.-,10)) (38)

4 Metrics Estimation in Networks

To demonstrate how the probabilities and trust metrics can
be estimated from network traffic data, a ring network with 9
nodes, as shown in Fig. 4, is used to demonstrate the proposed
trust metrics. The ring network is built in networks emulator ns-
2 [38], which simulates detailed packet-level communication in
networks [39]. Network protocols such as transmission control
protocol (TCP), user datagram protocol (UDP), file transfer pro-
tocol (FTP), etc. are emulated. In this example, simplex data
flow is used with single directional traffic,0 -1 —--- — 8 = 0.
Other settings of the networks include: network speed 10M bits
per second for each connection, delay 2 ms, maximum queue size
is 20 packets. In addition, the probability of packet drop for each

]
e Jo¥o)

. |
o

Figure 4: A ring network with 9 nodes

connection is 1% in the emulator. TCP is used to establish con-
nection between each pair of data source and destination. FTP
application is used to send data.

Some example statistics of communication for 60 seconds
in the ring network are listed in Table 1. Data are generated as
a result of sensing and prediction. The P-reliance probability is
estimated as the ratio between data received by destination and
data sent by source. Therefore, the P-reliance probabilities are
pPo1 = 1, P02 = 0.9996, P10 = 0.9773, P12 = 1, and P21 = 0.9701,
P20 =0.9811. Itis also assumed that sending more data indicates
higher prediction probability. Therefore, the prediction probabi-
lity for each source node is estimated as the ratio between the
size of data it generates and a reference maximum possible value.
Here the reference maximum value is set to be 28000. Therefore,
the prediction probabilities of source nodes are py = 0.9655,
p1 = 0.6317, and p, = 0.1834, as shown in Table 1. Note that
nodes other than #0, #1, #2 are assumed to be simple relay nodes
for communication without sensing and prediction capabilities.
The Q-reliance probabilities are not considered in this example.
With the prediction and P-reliance probabilities, the capability,
influence, and ability of nodes can be calculated according to
Eqgs.(16-17), (20-21) and (22-23). It is assumed that the variance
associated with each prediction or reliance probability is 0.01.
The expected values of capability, influence, and overall ability
for #0 are 0.9746, 0.9884, and 0.9847. Similarly, the ability me-
trics for #1 are 0.8673, 0.8697, and 0.9158. The ability metrics
for #2 are 0.7277, 0.7115, and 0.8268. The deterministic and
perceived reciprocity for each pair are calculated according to
Eqgs.(28) and (29) respectively, and the results are listed in Table
2.

5 Strategic Network Design

A strategic network for a CPS node is a trustable network or
society that the node is willing to collaborate with. The design of
a strategic network is to maximize the expected utility, where uti-
lities U’s as design criteria are chosen based on the trust metrics.
In this section, two criteria are used to illustrate. In the first crite-
rion, the utility function is defined as the node’s reciprocity and
benevolence. In the second criterion, the utility is individual’s
ability.
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Table 1: Statistics of communication in the network in Fig. 4

Pair packets sent  packets received ~ P-reliance prob.
#0to#1 17220 17220 1.0
#0to#2 9813 9809 0.9996
#1to#0 3260 3186 0.9773
#lto#2 14427 14427 1.0
#2to#1 2074 2012 0.9701
#2to#0 3061 3003 0.9811
Source  packets sent Ref. maximum Prediction prob.
#0 27033 28000 0.9655
#1 17687 28000 0.6317
#2 5153 28000 0.1834

Table 2: Reciprocity metrics for the nodes in Fig. 4

Pair deterministic reciprocity ~ perceived reciprocity
#0 to #1 —0.3674 0.5099
#1 to #0 0.3677 0.6799
#0 to #2 —0.1343 0.5074
#2 to #0 0.1345 0.5236
#1 to #2 —0.3674 0.5132
#2 to #1 0.3677 0.7406

To exhaustively search and choose the optimum combina-
tion of n from a total of N nodes is an NP-hard problem and not
feasible for large networks. A more efficient searching strategy
is to use heuristic or greedy algorithms. Starting from the source
node, greedy algorithms selectively add nodes sequentially if the
objective function value increases. Here, a breadth-first search
(BFS) greedy algorithm is developed to demonstrate the optimi-
zation process. Starting from the reference node, a subgraph is
formed and updated iteratively by inserting a new node from the
neighboring nodes of the current graph. For each iteration, if the
value of utility function for the new subgraph is non-decreasing
from the previous one, the new node is accepted. The greedy al-
gorithm allows for quick formation of the strategic network, but
obviously could potentially miss the true optimum solution. Ot-
her algorithms for combinatorial problems can also be applied.

5.1 Benevolence criteria

If the utility function is based on reciprocities, it can be de-
fined as the weighted average reciprocity in the society with re-
spect to the reference node. For instance, for node i, the utility
based on deterministic reciprocity is defined as

U =Y wF (39)
jev®)

where 7; = (1/n;) ¥, o) 7« is the average reciprocity of node
J among its n; neighboring nodes in the society of node i. The
average reciprocity of a node indicates how well other nodes treat
it reciprocally. Determining the self-interest weights w;’s has an
effect on how much emphasis on the reference node’s benefit
verses other nodes when forming strategic partnerships. For a
‘selfish” approach, w; = 1 and w; = 0(Vj # i) with respect to re-
ference node i. For an ‘altruistic’ approach, w; = 0 and the weig-
hts associated with other nodes are equal. Similarly, the utility
based on average perceived reciprocity can be defined similarly
with the deterministic reciprocity in Eq. (39) replaced by the
probabilistic reciprocity perception.

To illustrate, a directed graph containing 40 nodes, shown
in Fig. 5, is constructed, where the edge connections between
nodes are randomly generated. The heavy tail at the end of an
edge in the figure denotes an arrow, indicating an incoming ver-
tex (e.g. the information flow direction from node 35 to node
36 is shown). The probability that there is an edge between two
nodes is set to be 0.08. The prediction, P-, and Q-reliance pro-
babilities are randomly generated from an uniform distribution
between 0 and 1. Similarly, the variances associated with the pre-
diction and reliance probabilities are randomly generated from a
uniform distribution between 0 and 0.5.

With the utility function defined as the average determinis-
tic reciprocity, the resulting optimum networks with selfish and
altruistic weights are shown in Fig. 6. Furthermore, with the uti-
lity defined as the average probabilistic reciprocity perception,
the optimum results are shown in Fig. 7, where the selfish case
is the same as the deterministic one.

As a further generalization, the average benevolence percep-
tion is used as the utility, where the reciprocity in Eq. (39) is
replaced by benevolence. The optimum networks in the previous
example are shown in Fig. 8.

5.2 Ability criteria

The reference node’s ability can be used as the optimization
criterion. In addition to the prediction capability, ability also me-
asures how influential a node is in a society. Therefore, the natu-
ral objective of a node to build a strategic network around itself
is to maximize its influence within the network if its prediction
capability is fixed.

The utility based on the k"-order ability in Eq.(26) with re-
spect to node i can be defined as

U =EY(4;(8]+,-)) (40)

The strategic network of node i can be obtained by finding the
network where the ability of the reference node is maximized.
The optimization process is applied to the random graph mo-
del in Fig. 5. The optimum network with respect to node O using
the first-order ability as utility is shown in Fig. 9, where the evo-
lution of the utility during the search is also shown. Similarly,
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Figure 5: A random graph with 40 nodes
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Figure 6: Trustworthy strategic network of Node O from Fig. 5
with deterministic reciprocity as utility.

when the second-order ability is used as utility, the results are
shown in Fig. 10.

Higher-order abilities instead of the second-order one in Eq.
(40) can be similarly used as the criterion in network optimi-
zation. When higher-order abilities are used, the influence of a
node in the network gains more weights in calculating abilities,
which is emphasized more in obtaining the optimum network.

Note that the integrity of nodes is not used in designing a
node’s strategic network. Because the integrity of an individual
node is mostly independent from the topological relationship be-
tween those nodes. The network rarely has effects on how an
individual node behaves or how it is compromised when attac-
ked. The goal of the strategic network with respect to a reference
node is building a trustable community which the reference node
can rely on and work with. Nevertheless, if the integrity of net-
works instead of individual nodes is concerned and the goal is to
maintain the integrity of the network, optimization in this case
becomes straightforward and is to increase the size of the net-

10
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Figure 7: Trustworthy strategic network of Node O from Fig. 5
with probabilistic reciprocity as utility.
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Figure 8: Trustworthy strategic network of Node O from Fig. 5
with general benevolence as utility.
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Figure 9: Utility evolution during search and the resulting trus-
tworthy network of Node 0 from random graph in Fig. 5 where
the first-order ability is applied as the utility for optimization.

work as much as resources allow. Introducing redundancy can
increase the reliability, resilience, and thus the integrity of the
system. This can also be seen in the perception based integrity
measure in Eq.(38), where the large variation among nodes, cau-
sed by individual compromised nodes, helps reduce the impact
of the individual’s swing and keeps the overall perception stable.
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Figure 10: Utility evolution during search and the resulting trus-
tworthy network of Node 0 from random graph in Fig. 5 where
the second-order ability is applied as the utility for optimization.

6 Concluding Remarks

In this paper, a perception based trust framework is descri-
bed in order to include human user and societal aspects in trust.
The trustworthiness of CPS nodes in a networked environment
is quantified by three independent metrics, including ability, be-
nevolence, and integrity. Ability indicates how capable a CPS
node is to provide accurate sensing, reasoning, and prediction,
and how influential a node is in affecting other’s decision ma-
king process. Benevolence measures the motivation of informa-
tion sharing and how much reciprocity a node may receive from
its neighbors during information and data exchange. Integrity
shows the level of reliability, predictability and security of a node
in the network.

The three quantitative metrics can be obtained objectively
from the statistical data of performance as well as perceptual
reputation, including prediction and reliance probability values.
The perceptual models can also be applied when beliefs are eli-
cited from experts as subjective probabilities. The calculation of
trustworthiness metrics is all based on the Bayesian approach.
The only assumption made in the model is the Gaussian distribu-
tions of perceptions.

The proposed modeling method can be regarded as a mesos-
cale model of networks, where detailed network communication
protocols between nodes is not considered, nor detailed sensing
and control mechanisms within each node. The mesoscale mo-
del needs to be compared with fine-grained bottom-up models in
the future. In addition, multi-valued state variables can be con-
sidered in future work. Multi-objective optimization can be also
applied when multiple criteria are used simultaneously.
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