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ABSTRACT
Cyber-physical systems (CPS) extensively share informa-

tion with each other, work collaboratively over Internet of

Things, and seamlessly integrated with human society. Desig-

ning CPS requires the new consideration of design for connecti-

vity where security, privacy, and trust are of the main concerns.

Particularly trust can affect system behavior in a networked en-

vironment. In this paper, trustworthiness is quantitatively mea-

sured by the perceptions of ability, benevolence, and integrity.

Ability indicates the capabilities of sensing, reasoning, and in-

fluence in a society. Benevolence measures the genuineness of

intention and reciprocity in information exchange. Integrity cap-

tures the system predictability and dependability. With these cri-

teria, trust-based CPS network design and optimization are de-

monstrated.

1 Introduction
Systems with integrated capabilities of sensing, computing,

communication, and execution were recently termed as cyber-

physical systems (CPS). They are the realization of mechanisms

where physical components are directly controlled and monito-

red by computational algorithms and tightly integrated with In-

ternet and users. Most of future industry and consumer products

such as manufacturing equipment, office and home appliances,

personal health care devices, automobiles, and many others are

likely to be the examples of CPS. The unprecedented values and

functions of CPS rely on the networks formed by themselves,

which is also referred to as the Internet of Things.

In addition to common design challenges for systems of sy-

stems such as interoperability, scalability, lifecycle management,

resiliency, usability, adaptability, safety, security, and sustainabi-

lity, there are a few unique characteristics about CPS products.

First, with the advancement of novel materials for sensing, ac-

tuation, computation, and communication, future CPS may have

diverse physical forms and properties, including those with self-

adaptive, biomorphological, and soft structures. CPS can be cre-

ated at different size scales and can exist at micro- and nano-

scales. CPS may also have certain levels of reasoning capability

and intelligence as well as self-production and self-organization

characteristics [1, 2]. Second, the complexity of CPS products

has significantly increased from traditional ones. Designing each

product requires the consideration of materials, hardware, soft-

ware, algorithms, as well as network connectivity [3]. High com-

plexity requires new systems design principles. For instance, it is

impossible to keep networked low-cost CPS with millions of no-

des secure and failure-proof. Instead resilience should be the de-

sign objective [4,5]. Third, CPS extensively interact with human

users and will be deeply embedded in human society. Social con-

sciousness and cognitive capability will also be important factors

in systems design. For instance, issues of privacy and trust in the

context of information sharing and collaboration should be con-

sidered.

The controllability of shared information quickly diminis-

hes as it propagates through CPS networks. Therefore trust is

essential for CPS nodes to collaborate. Here, how to quantify

trustworthiness and apply it in the design of CPS is studied. In

recent research of trust quantification for networked systems, two

approaches are taken. In the top-down approach, trustworthiness

is treated as an overall perception or belief about an individual’s
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reputation or ability. It is quantified with probabilistic or non-

probabilistic measures. In the bottom-up approach, trustworthi-

ness consists of multiple factors such as availability, dependa-

bility, and quality of services, each of which can be calculated

from the statistics of physical systems, e.g. data transmission ra-

tes, executed routing protocols, and positive recommendations.

In CPS networks, the quantification of trustworthiness needs to

be at the systems level with multiple functions and networked

communities, instead of only at individual components.

With the intensive interaction between humans and CPS,

user-oriented trust management is essential. Trust is a state of

mind, subjective, and multi-faceted. The study of trust should be

in the context of social behavior. The dynamics of human percep-

tion and subjectivity needs to be emphasized in trustworthiness

quantification for CPS.

In this paper, a perception-oriented approach is taken to

quantify trustworthiness. Trustworthiness is measured by per-

ceptions of three major metrics instead of an abstract one. The

three metrics, which include perceptions of ability, benevolence,

and integrity, are carefully chosen based on the concepts studied

in social sciences and to avoid redundancy. To model large-

scale CPS networks, a probabilistic graph model is applied to

capture the functions of sensing, prediction, and communication.

This mesoscale model provides a generic abstraction of CPS net-

works with scalability consideration. The three trustworthiness

metrics are calculated based on the probabilistic graph model.

These three perception-level metrics are calculated with Baye-

sian methods. Compared to other trustworthiness quantification

approaches, the uniqueness of the proposed approach includes

the considerations of different CPS functions including sensing,

prediction, and communication. The perception based quanti-

fication method directly models subjectivity of beliefs and the

influence of social behavior, with quantitative measures of abi-

lity, benevolence, and integrity, which have not been considered

in other quantitative approaches.

In the remainder of the paper, a review of relevant work on

trust quantification in the domains of computer and social scien-

ces is first provided. Then the new probabilistic graph model is

introduced in Section 2.2. The metrics of ability, benevolence,

and integrity are provided in Sections 3.1, 3.2, and 3.3 respecti-

vely. The estimation of metrics from network traffic statistics is

demonstrated in Section 4. In Section 5, the network design and

optimization approach based on the metrics of ability and bene-

volence is described.

2 Background
2.1 Trust quantification

The study of trust in computer science had been traditio-

nally focused on security policy for exchanging credentials, con-

trolling access, and referring reputation [6, 7]. Recently, it was

studied in the context of social networks and semantic web [8,9].

In the vast majority of those studies, trust was only defined qua-

litatively instead of providing quantitative specifications and cal-

culations.

In social networks and multi-agent environments, most re-

searchers model trust as reputation and rely on users’ explicit

ratings and recommendations to estimate the levels of trust. For

instance, trust was calculated from the scaled reputation ratings

[10], the number of finished transactions [11], and users’ explicit

ratings [12].

In computer networks, trust was measured by quality of ser-

vices, the numbers of forwarded data packets, executed routing

protocols, etc. For sensor networks, trust has been measured with

local and global success rates of transactions [13], consistency

of individual nodes from their historical data [14], consistency

between nodes in local regions [15], as well as neighbors’ data

forwarding behaviors [16].

The subjective and uncertain aspects of trustworthiness

has been modeled with belief of information reliability [17],

Dempster-Shafer evidence [18], expectation of fulfilled com-

mitments [19], Bayesian networks [20], probability of resource

availability [21], and information entropy in data exchange [22].

Fuzzy logic was also applied to capture the linguistic imprecision

of trust description, either as one concept [23,24], or a combina-

tion of multiple factors such as ability, availability, motivation,

usefulness, honesty, and others [25, 26].

Different qualitative definitions of trust exist in the dom-

ains of psychology, marketing, human behavior, and organiza-

tion. Mayer et al. [27] carefully studied dozens of characteristics

of trust in literature, identified commonality, and defined trus-

tworthiness as a set of three categories of perception: ability,

benevolence, and integrity. Ability is about perception of skills,

expertise, and competency associated with trustee. Benevolence

is the extent to which the trustor believes that the trustee acts for

the welfare of the trustor, rather than just maximizing its own

profit. Benevolence is a summary of related characteristics such

as loyalty, openness, receptivity, and availability. Integrity is the

trustor’s perception that the trustee will be honest and adhere to

an acceptable set of principles. Integrity is associated with con-

sistency, discreetness, fairness, promise fulfillment, reliability,

and value congruence.

The ability-benevolence-integrity model has been widely

adopted in different fields. The three factors have been applied in

designing psychological and behavioral studies of trust [28, 29].

The model was applied to measure the trustworthiness of online

shopping merchants [30], and electronic banking service provi-

ders [31]. The model has also been adopted in designing infor-

mation systems with better privacy policies [32], better under-

standing of users intention [33], user participation [34], secu-

rity [35], and technology integration [36]. The concerns of se-

curity, privacy, and trust in CPS networks are similar to those in

traditional information systems. The trust model of ability, bene-

volence, and integrity thus can be applied in CPS. Nevertheless,
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Figure 1: The probabilistic graph model

in all of the above studies ability, benevolence, and integrity were

defined qualitatively without providing quantitative measures.

In this work, quantitative metrics of ability, benevolence,

and integrity are defined. The perceptions of these three me-

trics are captured based on a generic probabilistic graph model

of CPS networks. The graph model provides a mesoscale ab-

straction to represent the major functions of information gather-

ing and exchange between nodes in CPS networks. Particularly,

the probability of accurate sensing and prediction by each node,

as well as the probabilities of positive and negative correlations

as mutual influence between nodes are explicitly modeled, which

allows for quantitative measurement of ability and benevolence

directly. Notice that ability, benevolence, and integrity aspects

of trust co-exist in trustworthiness quantification. These three in-

dependent dimensions need to be considered separately and not

simply combined into one metric.

2.2 Probabilistic graph model
As illustrated in Fig. 1, a probabilistic graph [4, 5] G =

(V ,E ,R ,P ,Q ) is a collection of nodes V = {vk} and directed

edges E =
{
(vi,v j)

}
. Each node vk is associated with a pre-

diction probability pk ∈ R , and each edge (vi,v j) is associated

with a P-reliance probability pi j ∈ P and a Q-reliance probabi-
lity qi j ∈ Q .

The prediction probability pk is the probability that node k
predicts the true state of world θ and is defined as

P(xk = θ) = pk, (1)

where xk is the state variable of node k. The information de-

pendency between node j and node i is modeled by P-reliance

probability

P(x j = θ|xi = θ) = pi j, (2)

and Q-reliance probability

P(x j = θ|xi �= θ) = qi j. (3)

P-reliance probability indicates the positive effect of infor-

mation exchange between nodes, whereas Q-reliance probability

captures the negative influence. Particularly P(xk = θ|xk = θ) and

P(xk = θ|xk �= θ) indicate how much a node’s prediction relies

on its own observation. To simplify the notation, we use P(xk) to

denote P(xk = θ), P(xc
k) to denote P(xk �= θ), P(x j|xi) to denote

P(x j = θ|xi = θ), and P(x j|xc
i ) to denote P(x j = θ|xi �= θ). Note

that the probabilistic graph model here is different from Bayesian

belief network.

CPS nodes collect information by themselves or from their

neighboring collaborators. With the new information, the pre-

diction probabilities are updated. Different information assimi-

lation rules can be adopted by nodes to update their prediction

probabilities, such as best-case, worst-case, and Bayesian rules.

An example best-case or optimistic fusion rule is

P′(xk) = 1−ΠM
i=1(1−P(xk|xi)), (4)

where node k has a positive prediction with updated probability

P′ if any of the M nodes as its information sources provides a

positive cue. Some variations of this rule can also be used, such

as

P′(xk) = 1−ΠM1
i=1(1−P(xk|xi))ΠM2

j=1(1−P(xk|xc
j)), (5)

where both positive cues from M1 nodes and negative cues from

M2 nodes (M1+M2 = M) are considered. Another version could

be

P′(xk) = 1−ΠM
i=1,i�=k(1−P(xk|xi)), (6)

where the node’s own prior observation is not included in the

update.

The worst-case or pessimistic fusion rule is

P′(xk) = ΠM
i=1P(xk|xi), (7)

where the prediction of a node is positive only if all cues it recei-

ves from other nodes are positive.

The Bayesian fusion rule is

P′(xk) ∝ P(xk)
[
(P(xk))

r (1−P(xk))
M−r

]
, (8)

where the prediction of node k is updated from prior prediction

probability P(xk) given that r out of a total of M cues provided

by others are positive.

For simplicity, only binary value of state variables is con-

sidered here. Obviously, further generalization to multi-valued

discrete state variables is straightforward. Suppose there are a

finite set of discrete values {θ1, . . . ,θN} that the state variable

xk can take. The multi-valued prediction probability P(xk = θn)
(n ∈ {1, . . . ,N} ) can be obtained similar to binary values. Simi-

larly, reliance probabilities P(x j = θn|xi = θm) (m,n ∈ {1, . . . ,N}
) can be obtained enumeratively.

The above information fusion rules can be similarly exten-

ded to multi-valued state variables. For instance, the optimistic

fusion rule in Eq.(5) becomes

P′(xk) = 1−ΠM1
i=1(1−P(xk|xi = θ1)) · · · (9)

ΠMN
j=1(1−P(xk|x j = θN)),
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The prediction and reliance probabilities can be estimated

from the collected historical data. For instance, the prediction

probability of a CPS node can be based on data collected by its

sensing and reasoning units. It can be estimated as the frequency

of correct prediction. The reliance probabilities can be estimated

similarly from the frequencies of positive and negative predicti-

ons by the neighboring nodes given the node’s own prediction. If

no data are available, subjective estimations from domain experts

can be elicited, with standard probability elicitation procedure.

3 Trustworthiness Metrics
The new quantitative trustworthiness metrics are perceptions

of ability, benevolence, and integrity. They are summarized in

this section. Detailed description and evaluation of the metrics

are available in Ref. [37].

3.1 Ability
The ability of CPS consists of capability and influence. In

the context of probabilistic graph model, the capability of a node

is generally quantified as the perceived probability that it can pro-

vide accurate prediction about the true state of the world based on

its available information. Within a networked society, the influ-

ence of a node to others, which can be interpreted as leadership,

is also regarded as part of its ability. The leadership that a CPS

node has is characterized as the extent of its positive or negative

influence to its neighbors.

3.1.1 Capability of prediction The perception of abi-

lity is subjective and varies among different people. Suppose that

the perceived capability for node j is the perceived prediction

probability A j(θ) = P(P(x j = θ)) with respect to the true state

of world θ, which follows a Gaussian distribution with mean p j
and precision τ0. Here P(·) denotes perception. In other words,

the perceived capability of node j is randomly distributed, with

expectation

E(A j(θ)) = p j, (10)

and variance

V(A j(θ)) = τ−1
j . (11)

In a society with extensive information exchange, the per-

ception of capability can be updated with newly obtained infor-

mation. For instance, if reliance probabilities with respect to

node j are made available to the public, then the perceived ca-

pability of the node can be updated.

Suppose that the perceived reliance probabilities Li j =
P(P(x j|xi)) and Lc

i j = P(P(x j|xc
i )) for all i, j ∈ V are Gaussian

random variables, with expectations

E(Li j|A j) = pi j(∀i, j ∈ V ) (12)

and

E(Lc
i j|A j) = qi j(∀i, j ∈ V ) (13)

under the condition of the perceived capability A j.

The variances of the perceptions may depend on the nature

of information sources. For the perceptions related to the infor-

mation shared with node j from others, the variances are

V(Li j|A j) = τ−1
i j,p(∀i ∈ S j), (14)

and

V(Lc
i j|A j) = τ−1

i j,q(∀i ∈ S j), (15)

where S j = {vi|(vi,v j) ∈ E} is the collection of source nodes
with respect to node j and each of the source nodes sends in-

formation to node j. Without the loss of generality, we can as-

sume that the variances of the perceived reliance probabilities

are the same, i.e. τi j,p = τs,p and τi j,q = τs,q (∀i ∈ S j). The

complete set of perceived P- and Q-reliance probabilities for the

source nodes with respect to node j is denoted as L(+ j) = {Li j|i∈
S j}∪{Lc

i j|i ∈ S j}.

With the reliance probability information, the perception of

capability is updated based on the Bayesian belief update scheme

or Bayes’ rule. Because the perceptions follow Gaussian distri-

butions, the expectation of posterior perception for capability of

node j is

E(A j(θ|L(+ j))) =
τ j p j + τs,p ∑i∈S j pi j + τs,q ∑i∈S j qi j

τ j + τs,ps j + τs,qs j
, (16)

where s j = |S j| is the number of source nodes with respect to

node j.
The consideration of Q-reliance probabilities in capability in

Eq.(16) is necessary. When a node gives correct prediction even

when its information sources provide negative or wrong predicti-

ons, the node exhibits good capability. Also note that if the as-

sumption of equal variances is not made, the posterior perception

of capability in Eq.(16) still can be calculated with τs,p ∑i∈S j pi j
replaced by ∑i∈S j τi j,p pi j, τs,q ∑i∈S j qi j by ∑i∈S j τi j,qqi j, τs,ps j by

∑i∈S j τi j,p, and τs,qs j by ∑i∈S j τi j,q respectively.

The variance of the updated perceptions for the capability of

node j is

V(A j(θ|L(+ j))) = (τ j + τs,ps j + τs,qs j)
−1. (17)

3.1.2 Influence The influence or leadership of node j
is associated with the effectiveness of information sharing from

node j to others. When the information sharing from node j to

destination nodes in D j = {vk|(v j,vk)∈ E} is considered, where

each of the destination nodes receives information from node j,
the perception of the capability of node j can be further updated.

When the precision of the perceptions related to the information

shared from node j to others are characterized by

V(L jk|A j) = τ−1
jk,p(∀k ∈ D j) (18)
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and

V(Lc
jk|A j) = τ−1

jk,q(∀k ∈ D j), (19)

the complete set of perceived P- and Q-reliance probabilities

for the destination nodes with respect to node j is denoted as

L(− j) = {L jk|k ∈ D j}∪{Lc
jk|k ∈ D j}. Similarly, to simplify the

notation, it is assumed that the variances of the perceived reli-

ance probabilities are the same, i.e. τ jk,p = τd,p and τ jk,q = τd,q
(∀k ∈ D j) . The expectation of the updated perception of ability

based on the influence to others is

E(A j(θ|L(− j))) =

τ j p j + τd,p ∑k∈D j p jk + τd,q ∑k∈D j(1−q jk)

τ j + τd,pd j + τd,qd j

, (20)

where d j = |D j| is the number of destination nodes with respect

to node j. Notice that (1−q jk) is used here to quantify the influ-

ence of node j to others, which captures how likely others end up

with negative predictions given that node j provides a negative

cue.

The variance of the updated perceptions for node j’s ability

after obtained information from destination nodes is

V(A j(L(− j))) = (τ j + τd,pd j + τd,qd j)
−1. (21)

3.1.3 Overall ability The expectation of the further up-

dated perception of ability that includes both capability of pre-

diction and influence to others is

E(A j(θ|L(+ j),L(− j))) =[
τ j p j + τs,p ∑i∈S j pi j + τs,q ∑i∈S j qi j

+ τd,p ∑k∈D j p jk + τd,q ∑k∈D j(1−q jk)

]

τ j + τs,ps j + τs,qs j + τd,pd j + τd,qd j

. (22)

The variance of the updated perceptions for node j’s ability

after both information from source and destination nodes is

V(A j(θ|L(+ j),L(− j))) =

(τ j + τs,ps j + τs,qs j + τd,pd j + τd,qd j)
−1
. (23)

3.1.4 Higher-order perception In a society, one’s

perception can be influenced by others’ perceptions. In the con-

text of trust, one’s perceived trustworthiness can be a function

of others’ perceived trust levels because of mutual influence in

judgment and decision making. Therefore, the previous ability

perception model can be further extended to a higher-order one

with the consideration of mutual influence. The expected ability

in Eq.(22) and variance in Eq.(23) are considered as the first-
order model, where the perception of a node’s ability is only

affected by its interaction with the immediate neighbors. For the

second-order model, the ability of a node is also affected by the

perceived abilities of its intermediate neighbors, particularly the

destination nodes which it directly shares information with. That

is, the ability of a node is also related to the abilities of the nodes

that it has direct influence on.

If the notations of E(A j(θ|L(+ j),L(− j))) and

V(A j(θ|L(+ j),L(− j))) are simplified to

E(A j(θ|+,−)) = E j (24)

and

V(A j(θ|+,−)) =Vj (25)

respectively, then in the second-order model, the expected ability

is

E
(2)(A j(θ|+,−))

=

[
V−1

j ·E j + τd,p ∑k∈D j p jk(V−1
k ·Ek)

+ τd,q ∑k∈D j(1−q jk)(V−1
k ·Ek)

]

V−1
j + τd,p ∑k∈D j p jkV−1

k + τd,q ∑k∈D j(1−q jk)V−1
k

, (26)

which is the same as the first-order expectation, and the variance

is

V
(2)(A j(θ|+,−))

=

⎡
⎣V−1

j + τd,p ∑
k∈D j

p jkV−1
k + τd,q ∑

k∈D j

(1−q jk)V−1
k

⎤
⎦
−1
. (27)

Similarly, the third-order model can be constructed by in-

corporating the perceived abilities of the neighbors’ neighbors,

which the reference node indirectly shares information with.

Therefore, the higher-order perception model incorporates the

lower-order perceptions, as an extension of weighted averages

where weights are the associated precisions. Recursively the nth

order model is defined based on the (n−1)th order ones.

3.1.5 An illustrative example A graph with 11 no-

des shown in Fig. 2 is used to illustrate. In the first case, the

mean values of prediction probabilities for the 11 nodes are as-

sumed to be 0.5, and the variances are 0.3. The means of P-

and Q-reliance probabilities for all edges are assumed to be 0.9
and 0.1 respectively. The variances for reliance probabilities are

0.1. This is a scenario that individual nodes’ sensing capabilities

is limited. They need to work collaboratively to make predicti-

ons. The nodes rely on shared information in decision making.

The CPS are working in a “collaborative” mode. The ability per-

ceptions of all nodes, including the capability, influence, overall

ability, and the second-order ability perception are shown in Fig.

3a, where the mean values are denoted by dots and standard de-

viations are denoted by error bars. Notice that a variance of 0.3
already overestimates variation. The corresponding standard de-

viation is over 0.7, whereas a probability value is between 0 and

1. Typically the variance of perceptions should be less than 0.3.
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Figure 2: A simple graph with 11 nodes

From the result, it is seen that additional information from ot-

her nodes reduces the variance of prediction capability. When a

node has no source nodes such as node 4, the variance of pre-

diction capability is large. Similarly, the variance of influence

is not reduced when nodes do not share information with others,

such as node 5. Incorporating both capability and influence, the

overall abilities are expected to increase when nodes work in the

collaborative mode. Here, the means of abilities are mostly gre-

ater than 0.5. The variances also reduce. When the perceptions

are incorporated in the second-order abilities, the variances are

further reduced.

In the second scenario, nodes work in an “independent”

mode. The mean values of prediction probabilities are 0.9, whe-

reas the variances are 0.1. The means of P- and Q-reliance pro-

babilities are 0.5, and their variances are 0.3. The nodes rely

much more on individual predictions. The ability perceptions

are shown in Fig. 3b. It is seen that variance reduction of the

overall ability from capability and influence is not as significant

as in the previous collaborative scenario. The changes of mean

values by incorporating more information are not as dramatic as

in the previous case, where the perceived trustworthiness for no-

des 4 and 5 can fluctuate significantly from first order to second

order.

3.2 Benevolence

Benevolence is a measure of the trustor’s belief that how li-

kely the trustee is motivated to do good to trustor, instead of for

its own benefit. It captures the intention and motivation of the

trustee. The degree of benevolence is low if the motivation is

originated from ergocentric gain, and high from mutual bene-

fits. Benevolence between individuals is critical for information

sharing. Without such aspect of trust, large-scale data sharing

in CPS networks is not possible. Reciprocity is proposed here

to measure the extent that the partners whom we share informa-

tion with reciprocally share information with us. There are also

some other characteristics associated with benevolence such as

loyalty and dependability. Motive as the second metric proposed

here is to measure the level of good intention and motivation for

interactions within the community.
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(a) Perceived abilities of the 11 nodes in a collaborative scenario.
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(b) Perceived abilities of the 11 nodes in an independent scenario.

Figure 3: The first- and second-order abilities of nodes in the

model of Fig. 2 in two scenarios.
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3.2.1 Deterministic reciprocity The pairwise deter-

ministic reciprocity of node j with respect to node i, ri, j, is mea-

sured by the shortest topological distance, in terms of the number

of hops in the network that node j shares information with node

i, as

ri, j = exp(−h j→i)− exp(−hi→ j)+ exp(−hi→ j −h j→i), (28)

where h j→i is the minimum number of hops or the shortest to-

pological distance for information flow from node j to node i.
Note that hi→i = 0 and ri,i = 1. When i �= j, ∂ri, j/∂h j→i < 0 and

∂ri, j/∂hi→ j > 0.

3.2.2 Perceived reciprocity With the further consi-

deration of reliance probabilities as weights of edges in probabi-

listic graphs, the expected value of the perceived reciprocity of

node j with respect to node i is calculated as

E(Ri, j) = DKL(pi→ j||p j→i)−DKL(p j→i||pi→ j)+b0, (29)

where DKL(P||Q) is the Kullback-Leibler divergence from pro-

bability distribution Q to P, p j→i = Π j→i pab is the product of

all P-reliance probabilities where information flows through al-

ong the shortest path from node j to node i, and pab corresponds

to the P-reliance probability from node a to node b along the

path. Similarly, we have pi→ j = Πi→ j pcd . When path j → i does

not exist, the principle of maximum entropy is applied, thereof

pi→ j = 0.5. b0 is a reference threshold of neutral value, which

is predetermined such that E(Ri, j) > b0 when node j has a high

reciprocity with respect to node i, and E(Ri, j)< b0 otherwise. To

make the value range of reciprocity be between 0 and 1, the re-

ference threshold is typically set as b0 = 0.5. Additional scaling

can be applied if necessary to keep the value range. Notice that

E(Ri,i) = b0 because DKL(pi→i||pi→i) = 0.

The variance of the perceived reciprocity can be calculated

from the variances of P-reliance probabilities. Assuming the in-

dependence between the perceptions of P-reliance probabilities,

the variance will be associated with the high-dimensional Gaus-

sian distribution formed by these perceptions.

High-dimensional Gaussian distributions are costly to calcu-

late and use. If there are m hops in the path from node j to node

i, the variance associated with p j→i will be an m-dimensional

Gaussian distribution. To simplify the calculation for ease of ap-

plication, a one-dimensional Gaussian distribution is used here

for estimation purpose. The variance associated with the percei-

ved reciprocity is conservatively estimated as

V(Ri, j) = min(∑
j→i

τ−1
ab + ∑

i→ j
τ−1

cd ,Vmax), (30)

where τab and τcd are the precisions associated with the P-

reliance probabilities along paths j → i and i → j respectively,

and Vmax is the theoretical maximum value of variance. As dis-

cussed in Section 3.1.5, for a value range from 0 to 1 as proba-

bility, an upper bound of variance is around 0.5. The theoretical

limit can be Vmax = 1.0. When a path j → i does not exist, the as-

sociated variance is set to be Vmax. At the same time, V(Ri,i) = 0.

3.2.3 Motive Motive measures the motivation and in-

tention of information sharing in a community. A high level of

motive for a node indicates that it shares high-quality information

with neighbors for the purpose of improving the overall functi-

onality and performance of the community, whereas a low level

of motive shows an ergocentric purpose instead of community-

oriented benefit.

In the context of probabilistic graph model, the expected va-

lue of the perceived motive of node j is defined as

E(M j) = p j
d j , (31)

where p j is the prediction probability associated with node j,
and d j = |D j| is the number of destination nodes with respect to

node j. The baseline of motive (M j = 1) is when the node has

no destination nodes and does not share information with others.

Compared to those sharing accurate predictions with others, a

node sharing low-quality predictions with others tends to have a

lower level of motive. Particularly, the more neighboring nodes

it shares inaccurate predictions with, the less trustable the node

is. In this case, the expected value of motive reduces quickly for

low p j as d j increases.

The variance associated with the perceived motive of node j
is related to the precision τ j of the perceived prediction probabi-

lity p j as

V(M j) = τ−1
j . (32)

3.2.4 Overall benevolence With the considerations

of both reciprocity and motive, the expected overall benevolence

perception of node j respect to node i is

E(Bi, j) =
V
−1(Ri, j)E(Ri, j)+V

−1(M j)E(M j)

V−1(Ri, j)+V−1(M j)
, (33)

according to Bayes’ rule. The variance associated with the per-

ception is

V(Bi, j) = (V−1(Ri, j)+V
−1(M j))

−1. (34)

Notice that E(Bi,i) = b0 and V(Bi,i) = 0.

3.3 Integrity
Integrity is associated with the perceived characteristics of

reliability, predictability, honesty, and consistency. Integrity is

a relatively well studied topic in the context of cyber security.

It is essential to protect the operation of CPS and the networks.

The quantification of integrity needs to consider the risk of de-

ception attacks and replay attacks. In deception attack, adversary

or compromised nodes send false information such as incorrect
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measurement, incorrect time of measurement, incorrect metadata

(e.g. who measured the data), etc. to others. In replay attack, data

transmitted between nodes are intercepted or delayed so that the

decisions of the receiving nodes are maliciously manipulated.

Suppose that the prior belief of integrity for node j is E(I j)=

g j with imprecision or variance V(I j) = ω−1
j . The likelihood that

node j is free from deception attack and maintains its integrity

can be quantified as the deviation between its state variable value

and the average state variable value in its neighborhood Ω j where

the same quantity of interest is measured and detected, as

P(x j|xi∈Ω j) = gS
j ∝ exp

[
− (x j − x̂( j))2

2σ2
x

]
, (35)

where x̂( j) = 1
|Ω j | ∑i∈Ω j xi is the average prediction of the neig-

hboring nodes with respect to node j, and σ2
x indicates the natural

variation between sensing units as the random error.

Based on Bayes’ rule, the perception of integrity about node

j can be updated to

E(I j|xi∈Ω) =
g jω j +gS

j σ
−2
x

ω j +σ−2
x

, (36)

when new information about the behaviors of nodes is obtained.

The likelihood function can also be formulated to incorpo-

rate the temporal factor. If the x j(tk) denotes the predicted state

value by node j at time tk, the likelihood can be extended to cap-

ture the node’s own consistency as

P(x j(tk)|x j(tk−1, . . . , t0)) = gT
j ∝ exp

[
− (x j(tk)− x j)

2

2σ2
x

]
(37)

where x j =
1
k ∑k−1

i=0 x j(ti) is the average value of previous predicti-

ons by node j at time stamps from t0 to tk−1. The perception of

integrity can be similarly updated to

E(I j|xi∈Ω,x j(tk−1, . . . , t0)) =
g jω j +gS

j σ
−2
x +gT

j σ−2
x

ω j +2σ−2
x

. (38)

4 Metrics Estimation in Networks
To demonstrate how the probabilities and trust metrics can

be estimated from network traffic data, a ring network with 9

nodes, as shown in Fig. 4, is used to demonstrate the proposed

trust metrics. The ring network is built in networks emulator ns-

2 [38], which simulates detailed packet-level communication in

networks [39]. Network protocols such as transmission control

protocol (TCP), user datagram protocol (UDP), file transfer pro-

tocol (FTP), etc. are emulated. In this example, simplex data

flow is used with single directional traffic, 0 → 1 → ·· ·→ 8 → 0.

Other settings of the networks include: network speed 10M bits

per second for each connection, delay 2 ms, maximum queue size

is 20 packets. In addition, the probability of packet drop for each

Figure 4: A ring network with 9 nodes

connection is 1% in the emulator. TCP is used to establish con-

nection between each pair of data source and destination. FTP

application is used to send data.

Some example statistics of communication for 60 seconds

in the ring network are listed in Table 1. Data are generated as

a result of sensing and prediction. The P-reliance probability is

estimated as the ratio between data received by destination and

data sent by source. Therefore, the P-reliance probabilities are

p01 = 1, p02 = 0.9996, p10 = 0.9773, p12 = 1, and p21 = 0.9701,

p20 = 0.9811. It is also assumed that sending more data indicates

higher prediction probability. Therefore, the prediction probabi-

lity for each source node is estimated as the ratio between the

size of data it generates and a reference maximum possible value.

Here the reference maximum value is set to be 28000. Therefore,

the prediction probabilities of source nodes are p0 = 0.9655,

p1 = 0.6317, and p2 = 0.1834, as shown in Table 1. Note that

nodes other than #0, #1, #2 are assumed to be simple relay nodes

for communication without sensing and prediction capabilities.

The Q-reliance probabilities are not considered in this example.

With the prediction and P-reliance probabilities, the capability,

influence, and ability of nodes can be calculated according to

Eqs.(16-17), (20-21) and (22-23). It is assumed that the variance

associated with each prediction or reliance probability is 0.01.

The expected values of capability, influence, and overall ability

for #0 are 0.9746, 0.9884, and 0.9847. Similarly, the ability me-

trics for #1 are 0.8673, 0.8697, and 0.9158. The ability metrics

for #2 are 0.7277, 0.7115, and 0.8268. The deterministic and

perceived reciprocity for each pair are calculated according to

Eqs.(28) and (29) respectively, and the results are listed in Table

2.

5 Strategic Network Design
A strategic network for a CPS node is a trustable network or

society that the node is willing to collaborate with. The design of

a strategic network is to maximize the expected utility, where uti-

lities U’s as design criteria are chosen based on the trust metrics.

In this section, two criteria are used to illustrate. In the first crite-

rion, the utility function is defined as the node’s reciprocity and

benevolence. In the second criterion, the utility is individual’s

ability.
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Table 1: Statistics of communication in the network in Fig. 4

Pair packets sent packets received P-reliance prob.

#0 to #1 17220 17220 1.0
#0 to #2 9813 9809 0.9996

#1 to #0 3260 3186 0.9773

#1 to #2 14427 14427 1.0
#2 to #1 2074 2012 0.9701

#2 to #0 3061 3003 0.9811

Source packets sent Ref. maximum Prediction prob.

#0 27033 28000 0.9655

#1 17687 28000 0.6317

#2 5153 28000 0.1834

Table 2: Reciprocity metrics for the nodes in Fig. 4

Pair deterministic reciprocity perceived reciprocity

#0 to #1 −0.3674 0.5099

#1 to #0 0.3677 0.6799

#0 to #2 −0.1343 0.5074

#2 to #0 0.1345 0.5236

#1 to #2 −0.3674 0.5132

#2 to #1 0.3677 0.7406

To exhaustively search and choose the optimum combina-

tion of n from a total of N nodes is an NP-hard problem and not

feasible for large networks. A more efficient searching strategy

is to use heuristic or greedy algorithms. Starting from the source

node, greedy algorithms selectively add nodes sequentially if the

objective function value increases. Here, a breadth-first search

(BFS) greedy algorithm is developed to demonstrate the optimi-

zation process. Starting from the reference node, a subgraph is

formed and updated iteratively by inserting a new node from the

neighboring nodes of the current graph. For each iteration, if the

value of utility function for the new subgraph is non-decreasing

from the previous one, the new node is accepted. The greedy al-

gorithm allows for quick formation of the strategic network, but

obviously could potentially miss the true optimum solution. Ot-

her algorithms for combinatorial problems can also be applied.

5.1 Benevolence criteria
If the utility function is based on reciprocities, it can be de-

fined as the weighted average reciprocity in the society with re-

spect to the reference node. For instance, for node i, the utility

based on deterministic reciprocity is defined as

U (i) = ∑
j∈V (i)

w jr̄ j (39)

where r̄ j = (1/n j)∑k∈V (i) r j,k is the average reciprocity of node

j among its n j neighboring nodes in the society of node i. The

average reciprocity of a node indicates how well other nodes treat

it reciprocally. Determining the self-interest weights w j’s has an

effect on how much emphasis on the reference node’s benefit

verses other nodes when forming strategic partnerships. For a

‘selfish’ approach, wi = 1 and w j = 0(∀ j �= i) with respect to re-

ference node i. For an ‘altruistic’ approach, wi = 0 and the weig-

hts associated with other nodes are equal. Similarly, the utility

based on average perceived reciprocity can be defined similarly

with the deterministic reciprocity in Eq. (39) replaced by the

probabilistic reciprocity perception.

To illustrate, a directed graph containing 40 nodes, shown

in Fig. 5, is constructed, where the edge connections between

nodes are randomly generated. The heavy tail at the end of an

edge in the figure denotes an arrow, indicating an incoming ver-

tex (e.g. the information flow direction from node 35 to node

36 is shown). The probability that there is an edge between two

nodes is set to be 0.08. The prediction, P-, and Q-reliance pro-

babilities are randomly generated from an uniform distribution

between 0 and 1. Similarly, the variances associated with the pre-

diction and reliance probabilities are randomly generated from a

uniform distribution between 0 and 0.5.

With the utility function defined as the average determinis-

tic reciprocity, the resulting optimum networks with selfish and

altruistic weights are shown in Fig. 6. Furthermore, with the uti-

lity defined as the average probabilistic reciprocity perception,

the optimum results are shown in Fig. 7, where the selfish case

is the same as the deterministic one.

As a further generalization, the average benevolence percep-

tion is used as the utility, where the reciprocity in Eq. (39) is

replaced by benevolence. The optimum networks in the previous

example are shown in Fig. 8.

5.2 Ability criteria
The reference node’s ability can be used as the optimization

criterion. In addition to the prediction capability, ability also me-

asures how influential a node is in a society. Therefore, the natu-

ral objective of a node to build a strategic network around itself

is to maximize its influence within the network if its prediction

capability is fixed.

The utility based on the kth-order ability in Eq.(26) with re-

spect to node i can be defined as

U (i) = E
(k)(A j(θ|+,−)) (40)

The strategic network of node i can be obtained by finding the

network where the ability of the reference node is maximized.

The optimization process is applied to the random graph mo-

del in Fig. 5. The optimum network with respect to node 0 using

the first-order ability as utility is shown in Fig. 9, where the evo-

lution of the utility during the search is also shown. Similarly,
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Figure 5: A random graph with 40 nodes
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Figure 6: Trustworthy strategic network of Node 0 from Fig. 5

with deterministic reciprocity as utility.

when the second-order ability is used as utility, the results are

shown in Fig. 10.

Higher-order abilities instead of the second-order one in Eq.

(40) can be similarly used as the criterion in network optimi-

zation. When higher-order abilities are used, the influence of a

node in the network gains more weights in calculating abilities,

which is emphasized more in obtaining the optimum network.

Note that the integrity of nodes is not used in designing a

node’s strategic network. Because the integrity of an individual

node is mostly independent from the topological relationship be-

tween those nodes. The network rarely has effects on how an

individual node behaves or how it is compromised when attac-

ked. The goal of the strategic network with respect to a reference

node is building a trustable community which the reference node

can rely on and work with. Nevertheless, if the integrity of net-

works instead of individual nodes is concerned and the goal is to

maintain the integrity of the network, optimization in this case

becomes straightforward and is to increase the size of the net-
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Figure 7: Trustworthy strategic network of Node 0 from Fig. 5

with probabilistic reciprocity as utility.
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Figure 8: Trustworthy strategic network of Node 0 from Fig. 5

with general benevolence as utility.

Figure 9: Utility evolution during search and the resulting trus-

tworthy network of Node 0 from random graph in Fig. 5 where

the first-order ability is applied as the utility for optimization.

work as much as resources allow. Introducing redundancy can

increase the reliability, resilience, and thus the integrity of the

system. This can also be seen in the perception based integrity

measure in Eq.(38), where the large variation among nodes, cau-

sed by individual compromised nodes, helps reduce the impact

of the individual’s swing and keeps the overall perception stable.
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Figure 10: Utility evolution during search and the resulting trus-

tworthy network of Node 0 from random graph in Fig. 5 where

the second-order ability is applied as the utility for optimization.

6 Concluding Remarks
In this paper, a perception based trust framework is descri-

bed in order to include human user and societal aspects in trust.

The trustworthiness of CPS nodes in a networked environment

is quantified by three independent metrics, including ability, be-

nevolence, and integrity. Ability indicates how capable a CPS

node is to provide accurate sensing, reasoning, and prediction,

and how influential a node is in affecting other’s decision ma-

king process. Benevolence measures the motivation of informa-

tion sharing and how much reciprocity a node may receive from

its neighbors during information and data exchange. Integrity

shows the level of reliability, predictability and security of a node

in the network.

The three quantitative metrics can be obtained objectively

from the statistical data of performance as well as perceptual

reputation, including prediction and reliance probability values.

The perceptual models can also be applied when beliefs are eli-

cited from experts as subjective probabilities. The calculation of

trustworthiness metrics is all based on the Bayesian approach.

The only assumption made in the model is the Gaussian distribu-

tions of perceptions.

The proposed modeling method can be regarded as a mesos-

cale model of networks, where detailed network communication

protocols between nodes is not considered, nor detailed sensing

and control mechanisms within each node. The mesoscale mo-

del needs to be compared with fine-grained bottom-up models in

the future. In addition, multi-valued state variables can be con-

sidered in future work. Multi-objective optimization can be also

applied when multiple criteria are used simultaneously.
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