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ABSTRACT To design and evaluate airborne networks (ANs), it is crucial to utilize random mobility
models (RMMs) that capture the physical movement patterns of different aerial vehicles in real scenarios.
Compared to expensive flight field tests, RMM-based modeling, simulation and emulation is cost-effective
with a large set of RMM-generated flight trajectories. Despite the importance of RMMs, we notice that
most existing models focus on the 2-Dimensional (2-D) movement, and do not consider the temporal and 3-
Dimensional (3-D) spatial correlation of aerial mobility patterns. In this paper, we propose a comprehensive
3-D smooth turn (ST) modeling framework for fixed-wing aircraft, which can serve as a design and
evaluation foundation for future ANs. In the proposed framework, we develop two realistic 3-D ST RMMs
that capture the diverse mobility patterns of fixed-wing aircraft, through coupling stochastic forcing with
physical laws that govern the 3-D aerial maneuvers. We also develop two boundary models to determine the
movement of aerial vehicles when they approach simulation boundaries. Moreover, we propose an approach
to estimate the optimal 3-D ST RMMs, with which we can produce rich trajectory ensembles with statistical
mobility patterns that match with the real trajectory data.

INDEX TERMS Modeling, parameter estimation, random mobility model, stochastic systems, unmanned
aerial vehicles

I. INTRODUCTION

A IRBORNE networks (ANs) that use direct flight-to-
flight communication are envisioned to be an important

component of the next generation air transportation system,
and are essential for applications that involve multiple coop-
erative unmanned aerial vehicles (UAV). With the prolifera-
tion of unmanned and manned aerial vehicles in the airspace,
it is urgently needed to design an effective and robust AN
to enable real-time information sharing required for safe
maneuvering and effective coordination. Unlike ground ve-
hicle/sensor networks with relatively low mobility and stable
topology, aerial vehicles move fast in a 3-dimensional (3-
D) airspace, change network topologies frequently, and are

subject to stringent mechanical and aerodynamic constraints
to maintain safety. These unique properties lead to intricate
difficulties for the design of ANs, and traditional networking
protocols designed for ground vehicles/sensors cannot be
directly used for these ANs.

Since flight field tests are usually cost-expensive, espe-
cially for large fixed-wing flights, random mobility models
(RMMs) have been widely adopted to facilitate the design
and evaluation of networking protocols. RMMs can produce
a large number of flight trajectories as test cases for statistical
performance evaluation. Existing simulation environments
including EMANE/CORE, NS-3, and OPNET only support
RMMs designed for ground vehicles/sensors-based Mobile
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Ad Hoc Networks (MANETs) [1]–[9]. Commonly used
MANET RMMs include Random Walk [10], [11], Random
Waypoint [10], [12], and Random Direction [10], [13], [14].
In these models, the node trajectory does not reflect the real
movement pattern as the nodes are assumed to be able to
make sharp turns and directional changes abruptly. There-
fore, these ground-based RMMs are not suitable for fixed-
wing aircraft that demonstrate smooth turning behaviors.
Considering the significant impact of RMMs on networking
performance, it is important to develop a realistic RMM that
captures the unique mobility attributes of aerial vehicles such
as the temporal and 3-D spatial correlations that are subject
to the safety requirement and mechanical and aerodynamic
constraints.

In the literature, several AN-specific RMMs have recently
been developed to capture the movement patterns of aerial
vehicles in different scenarios. The Semi-Random Circular
Movement (SRCM) model [15] abstracts the mobility of
UAVs for the search and rescue mission, in which the po-
tential location of the target is assumed to be known. In
particular, the UAV is modeled to repeatedly circle around a
fixed target location with different turn radii. The Three-Way
Random and its extension, the Pheromone Repel model, have
been developed for group reconnaissance missions [16]–[18].
They allow variable turn centers, and limit the possible values
of the turn radius to +r, −r, and ∞, where r > 0 is a
constant. To realize that, they use a 3-state Markov chain to
describe the motion of aircraft, and restrict the aircraft to take
one of three states: go straight, turn left and turn right.

Although the aforementioned AN-specific RMMs can
guarantee smooth turns, they place constraints on the turn
center or turn radius, which are not typical in general aerial
maneuvers. To achieve a flexible RMM for aerial vehicles, we
developed a 2-D Smooth Turn (ST) RMM [19], [20], which
allows aircraft to make smooth turns of varying turn centers
and turn radii, and also captures the tendency of aircraft to go
straight and make turns of large radii. Since its development,
the 2-D ST RMM has been widely used for aerial networking
studies (see e.g., [21]–[23]). Although this 2-D ST RMM
captures smooth turns with flexible radii, it does not consider
the aircraft dynamics along the vertical dimension and hence
is insufficient to capture rich 3-D aerial maneuvers. A more
comprehensive investigation of 3-D aerial movement patterns
and the development of realistic 3-D AN-specific RMMs are
needed to enable accurate evaluation and design of ANs in a
3-D airspace. Other AN-specific RMMs include the Flight-
Plan based models [24] that record pre-defined trajectory
plans and the Multi-Tier models [25] that incorporate mul-
tiple RMMs. Interested readers are recommended to read the
survey paper [26] for a detailed discussion and comparison
of these recently developed AN-specific RMMs.

Driven by the need of realistic 3-D AN-specific RMMs
for aerial networking studies, we develop in this paper a
comprehensive modeling framework with the following con-
tributions:

1) Realistic RMMs to capture smooth 3-D aerial mobility.

We extend the basic 2-D ST RMM [19], [20] to the 3-
D airspace. We develop two 3-D ST RMMs to capture
different aerial mobilities along the vertical dimen-
sion. The first model assumes that the z-dimensional
movement is independent from the movement on the
horizontal plane. This model captures normal aerial
maneuvers, mostly observed in civilian applications.
The second model relaxes this assumption and captures
the correlation of movement among all three dimen-
sions. This model can thus describe military aircraft
performing “high-g” turns. Furthermore, both models
capture the correlation of accelerations across temporal
and spatial directions during turns that comply with
physical laws.

2) A systematic procedure for parameter estimation. We
develop a systematic procedure to estimate RMM pa-
rameters from real flight field test data. Statistical fea-
tures of the resulting RMM match with those of flight
field tests, and hence maximize the value of field tests.
In particular, the resulting RMM can in turn produce
a large number of trajectory ensembles to facilitate the
evaluation and design of ANs. These ensembles follow
the same statistics of the original flight field tests. The
RMMs can also be used as uncertain mobility predic-
tion models for the design of UAV mobility control
strategies.

3) Various model enhancements to support flexible and
advanced user configuration. We also make several
other generalizations to the 2-D ST mobility modeling
framework. For instance, we allow the heading speed
and turn radius in the 3-D ST RMMs to vary during
each travel time interval, as compared to fixed constant
values in the 2-D ST RMM. We also place mechanical
and aerodynamic constraints and safety requirements
for parameters in the model configuration. In addition,
to capture realistic 3-D aerial mobility at simulation
boundaries, we also develop new boundary models for
the proposed 3-D ST RMMs.

In the rest of the paper, we first briefly review the 2-D ST
RMM developed in our previous study in Section II. We then
describe the two 3-D ST RMMs in Section III and elaborate
on the realistic boundary models in Section IV. In Section V,
we present the procedures to estimate model parameters from
flight field test data and to configure random variables in the
3-D ST RMMs. Finally, we conclude the paper in Section VI.

II. REVIEW OF THE 2-D SMOOTH-TURN RANDOM
MOBILITY MODEL
The 2-D ST RMM [19], [20] succinctly captures the mobility
attributes of aerial vehicles moving in a 2-D airspace, through
coupling stochastic forcing with physical dynamics. In this
model, an aircraft randomly picks a turn center and circles
around it with a constant heading speed for a randomly
selected time period, τi, called travel time interval (see Figure
1 for an illustration). As the turn center is always on the line
perpendicular to the heading direction, the generated flight
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FIGURE 1: Illustration of the 2-D ST RMM and the direc-
tions of the tangential acceleration at and normal accelera-
tion an.

trajectories are guaranteed to be smooth. The continuous-
time dynamics of this model during the i-th travel time
interval, τi, are described by the following equations:

at(t) = 0

an(t) =
V 2

R(t)

φ̇(t) = −w(t) = − V

R(t)

ṗx(t) = vx(t) = V cos(φ(t))

ṗy(t) = vy(t) = V sin(φ(t))

where px(t), py(t), vx(t) and vy(t) denote the x and y
coordinates, and the velocities in x and y directions at time t,
respectively. w(t) is the angular velocity, and φ(t) represents
the heading angle measured anti-clockwise. at(t) and an(t)
are the tangential and normal accelerations, respectively. V
is the heading speed, which is assumed to be a constant.
R(t) ∈ R is the turn radius, with R(t) > 0 and R(t) < 0
representing right and left turns respectively. Both w(t) and
R(t) are constants within the travel time interval τi. The
inverse of R(t) is assumed to follow a Gaussian distribution
with a small variance σ2 and zero mean. This distribution
captures the tendency of aircraft to follow straight lines or
make turns of large radii. The travel time interval τi is
assumed to follow an exponential distribution with mean λ.
This model can capture diverse moving patterns of fixed-
wing aircraft, through configuring these three parameters V ,
λ, and σ2.

Other than accurately and succinctly capturing flexible
random aircraft movement in a 2-D airspace, the 2-D ST
RMM has many other appealing analytical properties. For
instance, the node distribution is uniform, and hence leads
to rich closed-form statistical results that are important for
networking studies, such as the expected node degree and the
probability for the network to be connected [19], [20].

Despite these advantages, the 2-D ST RMM cannot cap-
ture the mobility along the vertical dimension. In particular,
the 2-D model is developed by analyzing two commonly
observed aerial maneuvers: cruise and level coordinated
turns [27]. Cruise refers to the scenario when an aircraft

moves along a straight line with a constant speed1, which
is achieved when balanced forces are applied onto the air-
craft. The level coordinated turns describe an aircraft making
steady and level turns with constant turn rate and heading
speed, and are achieved when the aircraft has a non-zero
constant bank angle besides the balanced forces. Therefore,
the 2-D ST RMM can not capture 3-D maneuvers such as
climb, descend, steep turns, skidded turns, slipping turns, and
spirals, etc [29]. In addition, the 2-D ST RMM makes various
assumptions to facilitate the closed-form analysis, such as the
constant heading speed and simple boundary models. In this
paper, we introduce two 3-D ST RMMs extended from this
basic 2-D version to address the aforementioned limitations.
The two 3-D models are more comprehensive and flexible for
user configurations, and thus can be more convenient for the
evaluation and design of ANs.

III. 3-D SMOOTH TURN RANDOM MOBILITY MODELS

In this section, we extend the basic 2-D ST RMM to 3-D by
incorporating the features of 3-D aerial movement patterns.
Two models are developed to capture different aerial maneu-
vers: 1) the z-independent ST RMM that captures nominal
maneuvers in civilian applications, and 2) the z-dependent
ST RMM that captures extreme maneuvers, such as those
in air shows and military applications. Both models assume
that an aircraft can be represented as a point mass, and all
forces act on this point. Environmental effects such as wind
and rain are not considered, as are commonly assumed in
RMMs. The major difference between these two 3-D models
lies in whether the aircraft mobility along the z direction is
independent from that on the x-y plane.

A. Z-INDEPENDENT ST RMM

The z-independent ST RMM assumes that the aircraft move-
ment on the x-y plane is independent from that in the z
direction. This assumption holds for aerial maneuvers that
commonly appear in civilian applications, such as coordi-
nated turns, cruise, climb, and descend [30]. Under this as-
sumption, the aerial mobilities on the x-y plane and along the
z direction can be analyzed separately, which significantly
simplifies the analysis. In this model, the aircraft can vary its
speed and altitude in the z direction. The dynamics on the
x-y plane are similar to that in the basic 2-D ST RMM [19],
[20]. The only difference is that the heading speed is allowed
to vary in each travel time interval.

Let us analyze the underlying physical laws for aerial vehi-
cles and succinctly capture those in the RMMs. In particular,
the aircraft’s tangential and normal accelerations on the x-
y plane, denoted as axyt(t) and axyn(t) respectively, and its
vertical acceleration, denoted as az(t), can be described by

1The “speed” used in this paper refers to the airspeed, i.e., speed relative
to the air [28].
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the following equations [31]:

axyt(t) =D(t) cos(α(t))− L(t) cos(β(t)) sin(α(t))

axyn(t) =L(t) sin(β(t))

az(t) =L(t) cos(β(t)) cos(α(t)) +D(t) sin(α(t))− g

where D(t), L(t), α(t), and β(t) are the thrust-drag ac-
celeration, lift acceleration, pitch angle, and roll angle at
time t. g is the gravity acceleration and is assumed to be a
constant. D(t), L(t), β(t) and α(t) are constants for each
maneuver within each travel time interval τi. Therefore,
axyn(t), axyt(t) and az(t) are also constants within each
travel time interval. Note that when axyt(t) = 0, the aircraft
turns with a constant heading speed. When axyt(t) 6= 0,
the vehicle’s heading speed is allowed to vary. Based on
whether axyt(t) = 0 or not within each τi, we develop two
z-independent ST RMMs with either a constant or variable
horizontal heading speed.

1) Constant Horizontal Heading Speed

In this case, axyt(t) = 0, and both axyn(t) and az(t) are
constants within each travel time interval τi. This leads to
the heading speed Vxy(t), turn radius Rxy(t), and angular
velocity wxy(t), all being constants within each travel time
interval τi. The continuous-time dynamics of this 3-D ST
RMM model within each τi are then captured by the follow-
ing equations:

axyt(t) = 0

axyn(t) =
V 2
xy(t)

Rxy(t)

φ̇xy(t) = −wxy(t) = − Vxy(t)

Rxy(t)
(1)

ṗx(t) = vx(t) = Vxy(t) cos(φxy(t))

ṗy(t) = vy(t) = Vxy(t) sin(φxy(t))

The aerial motion along the z-direction can be described by

p̈z(t) = v̇z(t) = az(t),

where pz(t) and vz(t) represent the z coordinate and vertical
speed of the aircraft at time t, respectively. The turn radius
can be negative values to represent left turns. Similar to the
2-D ST model, at the end of the (i−1)-th travel time interval,
we randomly select a new set of values for the following
random variables: travel time interval τi, heading speed Vxy ,
turn radius Rxy , and vertical acceleration az . The modeling
of the switching of heading speeds Vxy(t) using the thrust-
drag force is neglected at the end of a travel time interval, to
be consistent with the practice in the RMM literature.
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FIGURE 2: Example trajectories generated by the z-
independent ST RMM with a) constant horizontal heading
speed within each travel time interval τi, and b) variable
horizontal heading speed within each travel time interval τi.

The discrete-time model obtained through sampling (1) at
every small sampling time ∆t is as follows:

cx[Ti] = px[Ti] +Rxy[Ti] sin(φxy[Ti])

cy[Ti] = py[Ti]−Rxy[Ti] cos (φxy[Ti])

φxy[k + 1] = φxy[k]− θ − 2π
⌊φxy[k]− θ

2π

⌋
(2)

px[k + 1] = cx[Ti]−Rxy[Ti] sin (φxy[k + 1])

py[k + 1] = cy[Ti] +Rxy[Ti] cos (φxy[k + 1])

and

pz[k + 1] = pz[k] + az[Ti]∆t.

where Ti and Ti+1 define the start and end times of the i-th
travel time interval, i.e., Ti+1 − Ti = τi. θ = wxy[Ti]∆t =
Vxy [Ti]
Rxy [Ti]

∆t is the turn angle at each time instance k∆t, and
Ti ≤ k∆t ≤ Ti+1, k ∈ Z+. cx[Ti] and cy[Ti] represent the
x and y coordinates of the turn center, denoted as pcxy[Ti],
at time instance Ti respectively. An example trajectory gen-
erated by this model is shown in Figure 2(a).

2) Variable Horizontal Heading Speed

When axyt(t) 6= 0, the horizontal heading speed Vxy(t)
varies over time. axyt(t), axyn(t) and az(t) remain to be con-
stants within each travel time interval. Then the continuous-
time dynamics of this model can be described using Equation
(1), with axyt(t) changed to V̇xy(t). At the end of the (i−1)-
th travel time interval, Ti, the set of random variables to be
updated include the travel time interval τi, heading speed
Vxy , turn radius Rxy , vertical acceleration az and horizontal
tangential acceleration axyt.

The discrete-time dynamics are described by the following
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FIGURE 3: Illustration of the z-dependent ST RMM and the
maneuver planes. nm1[Ti+1], nm2[Ti+1], nm3[Ti+1] are unit
vectors that define the maneuver plane at Ti+1.

equations, assuming that ∆t is small enough:

axyn[Ti] =
V 2
xy[Ti]

Rxy[Ti]

Vxy[k + 1] = axyt[Ti]∆t+ Vxy[k]

Rxy[k] =
V 2
xy[k]

axyn[Ti]

θ[k] =
Vxy[k]

Rxy[k]
∆t

cx[k] = px[k] +Rxy[k] cos (φxy[k]) (3)
cy[k] = py[k]−Rxy[k] sin (φxy[k])

φxy[k + 1] = φxy[k]− θ[k]− 2π
⌊φxy[k]− θ[k]

2π

⌋
px[k + 1] = cx[k]−Rxy[k] cos (φxy[k + 1])

py[k + 1] = cy[k] +Rxy[k] sin(φxy[k + 1])

and

pz[k + 1] = pz[k] + az[Ti]∆t.

An example trajectory generated by this model is shown in
Figure 2(b).

B. Z-DEPENDENT ST RMM
The z-dependent ST RMM captures the correlation of an
aircraft’s motion across the x, y and z directions, and hence is
useful for aerial maneuvers such as climbing and descending
turns. This correlation is captured through the introduction
of a maneuver plane uniquely determined by the aircraft’s
tangential and normal acceleration vectors [32]. The key
idea is that an aircraft circles around a randomly selected
turn center on the maneuver plane for a randomly selected
duration before it chooses a new maneuver plane and a new
turn center (see Figure 3 for an illustration). The new turn
center is on the plane perpendicular to the current heading
direction. This perpendicularity guarantees the smoothness
of turns.

The tangential and normal accelerations on the maneuver
plane can be described by the following equations:

at(t) = D(t)− g sin(α(t))

an(t) = L(t) sin(β(t))

Within each travel time interval, the forces perpendicular to
the maneuver plane add up to zero, i.e., L(t) cos(β(t)) −
g cos(α(t)) = 0, and hence the aircraft remains on this
maneuver plane during this entire interval. at(t) and an(t)
are also constants within each travel time interval. At the
end of each travel time interval, the maneuver plane changes
and the velocity vector is on the line intersecting the old
and new maneuver planes. The modeling of the switching
of maneuver planes using the bank angle and lift force is
neglected, to be consistent with the practice in the RMM
literature.

The dynamics of this model can be captured by similar
equations as shown in the z-independent ST RMMs. The
difference is that the maneuver on the x-y plane is moved
to the maneuver plane. In particular, within each travel time
interval, the aerial mobility in the maneuver coordinate frame
(determined by the maneuver plane and its normal vector)
can be described by Equation (2) when at(t) = 0, and
Equation (3), otherwise. Then the dynamics in the inertial
coordinate frame can be obtained through coordinate trans-
formation.

Now we describe the key steps to determine the velocity
vector and turn center, and hence the maneuver plane and
the maneuver coordinate frame. Specifically, at the end of the
(i−1)-th travel time interval Ti, the aircraft randomly selects
a new heading speed V [Ti] (without changing the direction),
and a new turn center pc[Ti] = [cx[Ti], cy[Ti], cz[Ti]]

′ on
the plane perpendicular to its velocity direction, where su-
perscript ′ denotes the transposition operator. This new turn
center is uniquely determined by a randomly selected new
turn radius R[Ti] and altitude of the new turn center cz[Ti].
Mathematically, the position of the new turn center pc[Ti]
can be determined by solving the following equations:

v[Ti] · (pc[Ti]− p[Ti]) = 0 (4)
‖pc[Ti]− p[Ti]‖ = R[Ti]

where ‖x‖ represents the euclidean norm of vector x. Solu-
tions exist when

pz[Ti]−K ≤ cz[Ti] ≤ pz[Ti] +K (5)

where K =
R[Ti]
√
V 2[Ti]−v2z [Ti]
V [Ti]

. p[Ti] = [px[Ti], py[Ti],

pz[Ti]]
′, v[Ti] = [vx[Ti], vy[Ti], vz[Ti]]

′ denote the aircraft’s
position and velocity vectors in the inertial coordinate frame,
respectively. Note that Equation (4) has two solutions. We
here randomly select one as the new turn center. Then the
new maneuver plane can be uniquely determined by pc[Ti]
and v[Ti]. We define the maneuver coordinate frame using
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FIGURE 4: Example trajectories generated by the z-
dependent ST RMM with a) constant and b) variable heading
speed.

the following unit vectors (see Figure 3 for an illustration)
measured in the inertial coordinate frame:

nm1[Ti] =

{
pc[Ti]−p[Ti]
‖pc[Ti]−p[Ti]‖ , for right turns

− pc[Ti]−p[Ti]
‖pc[Ti]−p[Ti]‖ , for left turns

nm2[Ti] =
v[Ti]

‖v[Ti]‖
,

nm3[Ti] = nm1[Ti]× nm2[Ti],

where p[Ti] is the original point. Denote n1 = [1, 0, 0]′,
n2 = [0, 1, 0]′, and n3 = [0, 0, 1]′ as the unit vectors
in the x, y and z directions of the inertial coordinate
frame. The aircraft’s location pm[Ti] and velocity vm[Ti] =
[vm1[Ti], vm2[Ti], vm3[Ti]]

′ represented in the maneuver co-
ordinate frame can be projected onto the inertial coordinate
frame by using the following equations

p[Ti] =

n1 · nm1[Ti] n1 · nm2[Ti] n1 · nm3[Ti]
n2 · nm1[Ti] n2 · nm2[Ti] n2 · nm3[Ti]
n3 · nm1[Ti] n3 · nm2[Ti] n3 · nm3[Ti]


(pm[Ti]− om[Ti])

v[Ti] = vm1[Ti]nm1[Ti] + vm2[Ti]nm2[Ti]

+vm3[Ti]nm3[Ti]

where · represents the dot product operator. om[Ti] is the
coordinate of p[Ti] projected onto the maneuver coordinate
frame and

om[Ti] = −

p[Ti] · nm1[Ti]
p[Ti] · nm2[Ti]
p[Ti] · nm3[Ti]


Figure 4 shows example trajectories generated by this model.

In the case when at(t) = 0, instead of frequently switching
between the maneuver and inertial coordinate frames, we can
also directly calculate the aircraft’s motion in the inertial co-
ordinate frame. In particular, the continuous-time dynamics

of this model within each τi with at(t) = 0 can be described
by the following equations,

ṗ(t) = v(t)

v̇(t) = a(t)

v(t) = Ω(t)×(p(t)− pc(t))

a(t) = Ω̇(t)×(p(t)− pc(t)) + Ω(t)×(ṗ(t)− ṗc(t))

where a(t) = [ax(t), ay(t), az(t)]
′ is the acceleration vector,

Ω(t) is the turn rate vector with magnitudew(t) = ‖Ω(t)‖ =
an(t)
V (t) = V (t)

R(t) , V (t) = ‖v(t)‖, and R(t) is the turn radius.
The symbol × denotes the vector cross product operator. As
at(t) = 0 and an(t) is a constant within each travel time
interval τi, we have Ω̇(t) = 0. Furthermore, as pc(t) is fixed,
we have ṗc(t) = 0 and hence a(t) = Ω(t)×v(t). Then the
derivative of a(t) can be calculated as

ȧ(t) = Ω̇(t)×v(t) + Ω(t)× v̇(t) = −w2(t)v(t)

We can now obtain the state-space dynamics of aircraft
within each travel time interval as follows

ẋ(t) =

03×3 I 03×3
03×3 03×3 I
03×3 −w2(t)I 03×3

x(t)

where the state x(t) = [p′(t),v′(t),a′(t)]′, and I ∈ R3×3 is
an identity matrix. The discrete-time model is given by

w[Ti] =
V [Ti]

R[Ti]

x[k + 1] =

1 sin(θ)
w[Ti]

1−cos(θ)
w2[Ti]

0 cos θ sin(θ)
w[Ti])

0 −w[Ti] sin(θ) cos(θ)

⊗ Ix[k]

where θ = w[Ti]∆t is the turn angle within each time
instance. ⊗ is the kronecker product.

IV. REALISTIC BOUNDARY MODELS
In the basic 2-D ST RMM, we applied the canonical “wrap-
around” model [14] and the “reflection” model [33] to de-
scribe aerial mobilities close to boundaries. Both boundary
models demonstrate sharp directional changes that are not
observed in realistic fixed-wing aerial trajectories. In this
section, we design boundary models for the 3-D ST RMMs,
by adopting the “buffer zone” idea used in the Gauss-Markov
[10], [33] and Reconnaissance RMMs [16]–[18].

The buffer zone is defined as the area between the simu-
lation boundary (blue cube) and the inner zone (grey cube)
shown in Figure 5(a), where dx, dy , dz determine the depth
of the buffer zone. The key idea of this boundary model
is that once an aircraft reaches the buffer zone, it switches
immediately to a new motion pattern until it moves out of
the buffer zone. The boundary models for the z-independent
and z-dependent ST RMMs differ slightly due to the aerial
motion along the vertical direction as discussed below.

6 VOLUME xx, 2018
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A. BOUNDARY MODEL FOR THE Z-INDEPENDENT ST
RMM
In the boundary model for the z-independent ST RMM,
the motion pattern on the x-y plane when an aircraft ap-
proaches the boundary can be described by Figure 5(b). In
particular, once an aircraft reaches the buffer zone, assuming
at time kb, it checks its heading direction with respect to
the boundary, reselects a new turn radius Rs and speed Vs
(without changing the direction), and sets axyt[kb] to zero, if
axyt[kb] 6= 0. If its heading is to the right of the vector normal
to the boundary, the aircraft turns clockwise until it moves
out of the buffer zone, otherwise it turns anticlockwise. Rs
is selected as the minimum safe turn radius of this aircraft
type (see configuration of Rs in Section V for reference).
Alternatively, we can also set Rs as the minimum safe
turn radius associated with the particular speed when the
aircraft reaches the buffer zone, i.e., Vxy[kb]. In this case,
the aircraft does not reselect the speed, i.e., Vs = Vxy[kb].
To ensure that the aircraft does not cross the boundary, the
minimum depths of the buffer along the x and y directions are
dx = dy = (1 + 1√

2
)Rs (see Figure 5(c) for the illustration).

To analyze the motion pattern along the z-direction,
we first introduce some notations. Define azmax =
max{|az[k]|} and vzmax = max{|vz[k]|}. When the aircraft
reaches the buffer zone near the ceiling, it chooses az[kb]
from the range of (−azmax,− 2dz

v2z [kb]
), where vz[kb] is the

vertical speed when the aircraft enters the buffer zone at time
kb. Similarly, when the aircraft reaches the buffer zone near
the bottom, it chooses az from the range of ( 2dz

v2z [kb]
, azmax).

It’s easy to prove that the minimum buffer depth dz required
to keep the aircraft within the simulation area is v2zmax

2azmax
.

B. BOUNDARY MODEL FOR THE Z-DEPENDENT ST
MOBILITY MODEL
For the z-dependent ST RMM, the aircraft can follow similar
motion patterns adopted in the z-independent ST RMM on
the x-y plane when it reaches the buffer zone. To determine
whether the aircraft should turn clockwise or anticlockwise,
we need to find the intersection of the maneuver plane and
the buffer zone, which can be complex. For simplicity, we
increase the depths of the buffer zone to dx = dy = dz =
2Rs. It can be proved that this depth allows the aircraft to
turn in either directions without leaving the simulation area
(see Figure 5(d) for an illustration).

V. ESTIMATION USING REAL FLIGHT FIELD TEST DATA
In this section, we provide a procedure to estimate random
variables in the 3-D ST RMMs from real flight field test
data. This procedure produces a realistic RMM with the
same statistics as those of the real flight trajectories. The
field test data we use in this study include two trajectories
of the Tempest fixed-wing UAV (see Figure 6). These two
trajectories, denoted as A and B last for about 3 and 5
minutes respectively. Each trajectory dataset consists of 3-
D global GPS positions of the UAV (measured by latitude φ,
longitude λ, and altitude h) tagged with their measurement

(a) (b)

(c) (d)

FIGURE 5: Illustration of the a) buffer zone, which is the area
between the blue and the grey cubes, b)-c) boundary model
for the z-independent mobility model, which requires dx =

dy = (1 + 1√
2
)Rs, dz =

v2zmax
2azmax

to ensure that the aircraft
stays within the simulation area, and d) boundary model for
the z-dependent ST RMM, which requires dx = dy = dz =
2Rs to ensure that the aircraft stays within the simulation
area.

(a) (b)

FIGURE 6: Real flight trajectories: a) A and b) B. The
blue solid curves represent the flight field test data after
conversion, resampling and smoothing. The green dotted and
red dashed curves are estimated trajectories using the z-
independent and z-dependent ST RMMs, respectively.

time points. The estimation procedure includes four major
steps: 1) data preparation, 2) estimation of trajectory-specific
random variable values, 3) estimation of a key threshold, and
4) estimation of parameters in model random variables. Next
we illustrate the steps for estimating both the z-independent
(with atxy(t) = 0) and the z-dependent (with at(t) = 0)
ST RMMs. Similar procedures apply for the cases when the
tangential acceleration is not zero.

VOLUME xx, 2018 7
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A.DATAPREPARATION

Thedatapreparationstepconsistsoftwosteps:1)coordinate
transformationtoconvertdataintothenavigationcoordi-
nates;and2)datapreprocessingtocleanthedataandremove
noises.

1)Coordinatetransformation

TheconversionfromtheGPSlocations(φ,λ,h)tothe
navigation(east-north-up,ENU)coordinates(pe,pn,pu),is
achievedthroughtwosteps.Thefirststepistoconvertthe
GPSlocationstotheearth-centeredearth-fixed(ECEF)coor-
dinates(X,Y,Z)usingthefollowingequations[34],[35]:

X=(N(φ)+h)cos(φ)cos(λ)

Y=(N(φ)+h)cos(φ)sin(λ)

Z= N(φ)(1−e2)+hsin(φ)

wherea=6378137ande2=0.0067arethesemi-major
axisandthefirstnumericaleccentricityoftheellipsoid,
respectively.N(φ)= a√

1−e2sin2(φ)
isthedistancefromthe

surfacetothez-axisalongtheellipsoidnormal.

ThesecondstepistoconverttheECEFcoordinatestothe
ENUcoordinates:

pe
pn
pu
=

sin(λ) cos(λ) 0
sin(ϕ)cos(λ) sin(ϕ)sin(λ) cos(ϕ)
cos(ϕ)cos(λ) cos(ϕ)sin(λ) sin(ϕ)

X Xr
Y Yr
Z Zr

where(Xr,Yr,Zr)representsthereferencepoint,whichis
thestartinglocationineachdataset.

2)Datapreprocessing

Asthesamplingrateoftheflightfieldtestdataisnot
consistentovertime,weresamplethedataevery∆t=0.1s.
Wethenfilterthedatausingthe“movingaverage”algorithm
[36]with100pointsusedintheaverageoperationtoremove
noises.Theresultingflightlocationdataarethendenotedas
p[k]=[px[k],py[k],pz[k]],showninthebluesolidcurves
inFigure6.

B.ESTIMATIONOFTRAJECTORY-SPECIFICRANDOM

VARIABLEVALUES

Thisstepaimstoestimatevaluesoftherandomvariablesin
the3-DSTRMMs(seethelistofrandomvariablesinvolved
ineachmodelinTable1).Twosubstepsareinvolved.The
firstsubstepistoextractvaluesofrandomvariablesateach
timeinstance.Thesecondsubstepistoestimatevaluesof
randomvariablesduringeachtraveltimeinterval.

TABLE1:Randomvariablestobeestimated

Model RandomVariables

z-independent(atxy(t)=0) Rxy,Vxy,az,τ

z-dependent(at(t)=0) R,V,cz,τ

1)Extractionofrandomvariablevaluesateachtime

instance

Weextractvaluesofvelocity v[k] =[vx[k],vy[k],vz[k]],
turnradiusR[k](orRxy[k]),turnratew[k](orwxy[k]),turn
centerpc=[cx[k],cy[k],cz[k]](orpcxy=[cx[k],cy[k]])
andverticalaccelerationaz[k]ateachtimeinstance.In
particular,

v[k] = (p[k+1]−p[k])/∆t

az[k] = (vz[k+1]−vz[k])/∆t

Thevaluesfortheotherrandomvariablesareextracteddif-
ferentlyforthez-independentandz-dependentSTRMMs.

Forthez-independentSTRMM,thepositionandvelocity
dataalongthexandydirectionsareusedtocalculate
Rxy[k]andwxy[k].Specifically,wefirstderivetheturn
centerpcxy[k]byfittingthetrajectorywith2-Dcircles,using
twoadjacentlocationsandvelocityvectorsonthex-yplane,
i.e.,(px[k],py[k]),(px[k+1],py[k+1]),(vx[k],vy[k]),and
(vx[k+1],vy[k+1]).TheturnradiusRxy[k]andturnrate
wxy[k]arethencalculatedas

Rxy[k] = (px[k]−cx[k])2+(py[k]−cy[k])2

wxy[k] =Vxy[k]/Rxy[k]

Vxy[k] = v2x[k]+v
2
y[k]

Forthez-dependentSTRMM,theturncenterisfoundin
asimilarway,i.e.,byfittingthetrajectorywith3-Dcircles
using3-Dlocationandvelocityvectorsattwoadjacenttime
instances.TheturnradiusR[k]andturnratew[k]arethen
calculatedas

R[k] = p[k]−pc[k]

w[k] =V[k]/R[k]

V[k] = v2x[k]+v
2
y[k]+v

2
z[k]

2)Estimationofrandomvariablevaluesduringeachtravel

timeinterval

Asthespeedandturnradiusareconstantsduringeachtravel
timeintervalforboththez-independent(withatxy(t)=0)
andz-dependent(withat(t) =0)STRMMs,wecan
determinethelengthofeachtraveltimeintervalbasedon
eitherspeedorturnradius.Weherechoosetheturnradius,
whichisassumedtobeindependentoverdifferenttraveltime
intervals.Inparticular,startingfromtheinitialtimek=0,
wescantheturnradiusR[k](orRxy[k])ateachtimeinstance
untilthechangeofR[k](orRxy[k])exceedsathreshold
Rthrd(orRthrdxy )oritssignswitchesattimek.Notethat
positive(ornegative)turnradiusrepresentsright(orleft)
turns.Thenthefirsttraveltimeinterval̂τ1=k.Thisprocess
repeatstillthelasttimeinstance.WehereusêTiandT̂i+1to
representthestartingandendtimeoftheestimatedi-thtravel
timeinterval.Thevaluesoftherandomvariablesduringeach
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travel time interval in the z-independent ST RMM can be
estimated as

τ̂i = T̂i+1 − T̂i

V̂xy[T̂i] =
1

τ̂i

T̂i+1∑
k=T̂i

Vxy[k]

R̂xy[T̂i] =
1

τ̂i

T̂i+1∑
k=T̂i

R̂xy[k]

âz[T̂i] = (vz[T̂i+1]− vz[T̂i])/τ̂i

The turn rate during τ̂i can be computed by ŵxy[T̂i] =
V̂xy[T̂i]

R̂xy [T̂i]
.

For the z-dependent ST RMM, The values of the random
variables can be estimated similarly,

V̂ [T̂i] =
1

τ̂i

T̂i+1∑
k=T̂i

V [k]

R̂[T̂i] =
1

τ̂i

T̂i+1∑
k=T̂i

R̂[k]

ĉz[T̂i] = cz[T̂i]

and ŵ[T̂i] = V̂ [T̂i]

R̂[T̂i]
.

We note that the estimated values of these random vari-
ables can be further used to estimate the location and velocity
of the aircraft at each time instance k ∈ [T̂i, T̂i+1], denoted as
p̂[k] = [p̂x[k], p̂y[k], p̂y[k]]′ and v̂[k] = [v̂x[k], v̂y[k], v̂y[k]]′.
Figure 6 shows the estimated trajectories using the z-
independent (red dashed curves) and z-dependent (green
dotted curves) ST RMMs. Figure 7 shows the estimated
turn rate ŵxy[T̂i], horizontal speed V̂xy[T̂i] and vertical ac-
celeration âz[T̂i] for the dataset A using z-independent ST
RMM. Figure 8 shows the estimated turn rate ŵ[T̂i] and
speed V̂ [T̂i] for the same dataset using the z-dependent ST
RMM. The thresholdRthrd (orRthrdxy ) used to generate these
figures adopts the values listed in Table 2. Of note, the speed
trajectory shown in Figure 7(b) is very close to the one shown
in Figure 8(b), as the vertical speed vz[k] in dataset A is
small.

C. DETERMINATION OF THRESHOLD RTHRD OR
RTHRDXY

The threshold Rthrd (or Rthrdxy ) has a significant impact
on the estimation performance. A smaller threshold leads
to shorter travel time intervals and hence better estimation
accuracy but worse predictability. A smaller threshold results
in higher correlation of turn radii across different travel time
intervals, deviating from the independence assumption of
turn radii in ST models. In this section, we introduce a
systematic approach to select the best threshold Rthrd (or
Rthrdxy ) that balances between the estimation accuracy and
model predictability. Here we first introduce two metrics to
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FIGURE 7: Comparison of the estimated a) turn rate ŵxy[T̂i],
b) horizontal heading speed V̂xy[T̂i], and c) vertical ac-
celeration âz[T̂i] during each travel time interval with the
associated values extracted at each time instance from the
field test dataset A using the z-independent ST RMM.
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FIGURE 8: Comparison of the estimated a) turn rate ŵ[T̂i]
and b) heading speed V̂ [T̂i] during each travel time interval
with the associated values extracted at each time instance
from the field test dataset A using the z-dependent ST RMM.

measure the estimation performance. The threshold selection
algorithm then follows.

1) Evaluation of estimation accuracy
Different metrics can be used to evaluate the estimation
accuracy, such as Root Mean Squared Error (RMSE) [27],
[37], R-square [38], Sum of Squares due to Error (SSE) [39].
Here, we adopted a modified RMSE metric described by the
following equation to penalize large errors at small portions
of the trajectories:

Error = 4

√√√√ 1

N

N∑
k=1

‖p[k]− p̂[k]‖44

where ‖x‖4 represents the l4-norm of vector x and N is
the total number of samples in a trajectory. Figure 9 shows
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the estimation accuracy of the two trajectories with different
Rthrd (or Rthrdxy ) using the two 3-D ST RMMs. As expected,
small thresholds lead to shorter travel time intervals, and
thus small estimation errors and good estimation accuracy.
The relationship between the travel time interval and the
estimation accuracy is shown in Figure 10(a) generated using
example dataset A, where τ̄ =

∑M
i=1 τ̂ [Ti]

M , and M is the total
number of travel time intervals.

As the turn radius R̂xy[Ti] estimated by the z-independent
ST RMM is smaller than R̂[Ti] obtained by the z-dependent
model (because of the 3-D to 2-D projection), to achieve the
same performance, the threshold Rthrdxy required by the z-
independent ST RMM is also smaller than Rthrd required by
the z-dependent model. This is further illustrated in Figure
10. As an example, to achieve an estimation accuracy of 20m,
Rthrdxy = 34m and Rthrd = 800m are selected, which lead
to mean estimated travel time intervals of 0.54s and 0.31s
respectively.
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FIGURE 9: Evaluation of the estimation accuracy for the
a) z-independent ST RMM with different Rthrdxy , and b) z-
dependent ST RMM with different Rthrd. Both figures are
generated using dataset A.
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FIGURE 10: Relationship a) between the estimation accu-
racy and the mean estimated travel time interval τ̄ for the
two 3-D ST RMMs, and b) between the threshold Rthrd (or
Rthrdxy ) and the mean estimated travel time interval τ̄ . Both
figures are generated using dataset A.

2) Evaluation of model predictability

We use the Pearson’s correlation coefficient [40] to measure
the correlation, ρ, of turn radii in adjacent travel time inter-

vals, as a metric for model predictability.

ρ =

M−1∑
i=1

(R̂[T̂i]− R̄1)(R̂[T̂i+1]− R̄2)√
M−1∑
i=1

(R̂[T̂i]− R̄1)2

√
M−1∑
i=1

(R̂[T̂i+1]− R̄2)2

where R̄1 = 1
M−1

∑M−1
i=1 R̂[T̂i], R̄2 = 1

M−1
∑M−1
i=1 R̂[T̂i+1].

Figure 11 shows the correlation coefficients computed at
different values of the thresholds. As expected, ρ decreases
with the increase of Rthrd (or Rthrdxy ), indicating an enlarged
travel time interval and improved model predictability. In
addition, the sustained low correlations observed in the z-
dependent ST RMM even at small values ofRthrd indicate its
good model predictability compared with the z-independent
ST RMM.
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FIGURE 11: Comparison of the correlation coefficient with
a) different Rthrdxy in the z-independent ST RMM and b)
different Rthrd z-dependent ST RMM.

3) Algorithm to select threshold Rthrd or Rthrdxy

The threshold Rthrd (or Rthrdxy ) is selected using the follow-
ing two steps to balance the estimation accuracy and model
predictability.
• Step 1: Find thresholds Rthrd (or Rthrdxy ) with errors

less than a constant chosen by users. In this study, we
set this value as 20m.

• Step 2: Among all thresholds selected in the first step,
find the one with the minimum |ρ|.

The thresholds selected using the above algorithm for the two
trajectories are summarized in Table 2.

TABLE 2: Values of thresholds selected for each trajectory

Trajectories Rthrdxy (z-independent) Rthrd (z-dependent)
A 34m 800m

B 10m 550m

D. ESTIMATION AND CONFIGURATION OF RANDOM
VARIABLES
We estimate random variables in the RMMs, and in particular
their probability density functions (PDFs). The estimated 3-D
ST RMMs can be used to generate rich trajectory ensembles.
Note that all flight field test data are used to derive the PDFs.
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FIGURE 12: PDF of the inverse of turn radius for the a) z-
independent and b) z-dependent ST RMMs.

1) Turn radius random variable
Turn radius is one of the most important random variables
in the RMMs. Appropriate turn radii guarantee safe aerial
maneuvers.

By analyzing all R̂[T̂i] (or R̂xy[T̂i] for the z-independent
ST RMM) data extracted from the two datasets in Section
V-B2, we find that the PDF of 1

|R̂| approximately matches
with the exponential distribution (see Figure 12). The bias
may be caused by the lack of data and effect of smoothing.
Due to the structural constraints of aircraft, safe ranges of
turn radii need to be imposed. Suppose the safe range of the
turn radius |R̂| is [Rs,∞) (turn radius of∞ leads to straight
trajectories), the PDF of 1

|R̂| can be expressed as a truncated
exponential distribution:

f(
1

|R̂|
) =

λre
− λr
|R̂|

1− e−
λr
|R̂s|

, |R̂| ≥ Rs

where 1
λr

= E( 1
|R̂| ) = 1

M1+M2

∑2
j=1

∑M2

i=1
1

|R̂[Ti]|
. Mj

is the total number of travel time intervals in trajectory j,
where j = {A,B}. A larger λr indicates a higher possibility
to choose a large turn radius, and therefore a straighter
trajectory.

The minimum (safe) turn radius, Rs, is dependent on the
mechanical structure of an aircraft. In particular, the turn
radius is proportional to V 2

n , where n = L
g is the load

factor measuring an aircraft’s structural limits. Therefore, Rs
is achieved at the lowest speed for the highest allowable n,
which is the corner speed [29]. The maximum load factor
varies for different types of aircraft. For instance, for normal
and commuter category airplanes, n cannot exceed 3.8 [41].

2) Travel time interval random variable
The PDF of the travel time interval τ̂ also approximately
matches the exponential distribution with mean 1/λτ as
shown in Figure 13. Similarly, the bias may be caused by
the lack of data and effect of smoothing. A constraint can be
enforced to avoid frequent changes of turn centers, through a
truncated distribution if necessary. We here do not place any
constraint on the travel time interval.
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FIGURE 13: PDFs of the travel time interval random variable
in the a) z-independent and b) z-dependent ST RMMs.

3) Speed random variable
A similar approach can be used to find the PDFs for the speed
V̂xy in the z-independent ST RMM and V̂ in the z-dependent
ST RMM. Here, we model the correlation of speed over time
using a Gauss-Markov model. In particular, we model the
speed V̂ (or V̂xy) at the i-th travel time interval using the
following equation [42]–[44]:

V̂ [T̂i] = γ̂V̂ [T̂i−1] + (1− γ̂)µ̂+
√

(1− γ̂2)D̂[T̂i−1] (6)

where 0 < γ̂ < 1 is a correlation factor, µ̂ is the mean speed
as k →∞, D̂[T̂i−1] is a random variable following a normal
distribution with zero mean and variance σ̂2. These param-
eters are computed for each trajectory using the following
equations [37], [42], [43]:

µ̂ =
1

M

M∑
i=1

V̂ [T̂i]

σ̂2 =
1

M − 1

M∑
i=1

(V̂ [T̂i]− µ̂)2

γ̂ =

{
1, if σ̂ ≈ 0

max(0, σ̂
′2

σ̂2 ), else

where σ̂′2 = 1
M−1

∑M−1
i=1 (V̂ [T̂i] − µ̂)(V̂ [T̂i+1] − µ̂). After

we obtain the values of µ̂, σ̂ and γ̂ for each dataset, we
calculate their averages, denoted as µ̄, σ̄ and γ̄, which are
used to generate trajectory ensembles. See Table 3 for the
values of µ̄, σ̄ and γ̄ estimated from the flight field test data.

Due to mechanical constraints, the aircraft’ speed should
not exceed a certain range. Typically, the speed is minimized
at the stall speed and maximized at the Velocity to Never
Exceed (VNE) [45]. This speed range constraint can be
enforced by modeling D̂[T̂i−1] in Equation (6) as a truncated
normal distribution [46], with its range calculated according
to the range of the speed and V̂ [T̂i−1] at the end of each travel
time interval.

4) Altitude random variable
In the z-dependent ST RMM, the altitude of the turn center,
cz , is a random variable to be configured. As shown in
Equation (5), the range of cz[T̂i] depends on the aircraft’s
altitude pz[T̂i], velocity v[T̂i] and turn radius R[T̂i]. For
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FIGURE 14: PDF of the acceleration along the z direction
for the z-independent ST RMM.

simplicity, we here model cz as a uniform random variable,
the range of which is updated at the end of each travel time
interval using Equation (5).

Federal Aviation Administration (FAA) places the altitude
constraints for various aircraft, e.g., small UAVs should fly
below 400 feet [47]. We can enforce such altitude constraints
through configuring the sizes of the simulation area and the
boundary model described in Section IV.

5) Acceleration random variable

The vertical acceleration az needs to be configured in the z-
independent ST RMM. Using all acceleration data extracted
from the two datasets, we plot the PDF of âz in Figure
14, which approximately matches with a double exponential
distribution. The bias may be caused by the lack of data. As
âz impacts the vertical speed and altitude of the aircraft, a
range constraint should be enforced to ensure that the vertical
speed and altitude do not exceed their bounds. Suppose âz
should remain in the range of [azmin, azmax], its PDF can be
described by a truncated double exponential distribution

f(âz) =

{
λae
−λaâz

2(1−eλaazmax ) , if 0 ≤ âz ≤ azmax
λae

λaâz

2(1−e−λaazmin ) , if azmin ≤ âz < 0

where 1
λa

= 1
M1+M2

2∑
j=1

Mj∑
i=1

âz[T̂i].

Now let’s determine the range [azmin, azmax]. Note that
although the altitude is impacted by âz , its range con-
straint can be satisfied through restricting the simulation area.
Therefore, we only need to consider the impact of âz on the
vertical speed v̂z . Suppose the vertical speed of the aircraft
cannot exceed the range [vzmin, vzmax], then the bounds of
âz[T̂i] satisfy the following equations

azmax =
vzmax − v̂z[T̂i]

τ̂i−1
≥ 0

azmin =
vzmin − v̂z[T̂i]

τ̂i−1
≤ 0

which are updated at the end of each travel time interval.

(a) (b)

FIGURE 15: Example random trajectories generated by the
a) z-independent and b) z-dependent ST RMM.

E. RANDOM TRAJECTORY GENERATION
Table 3 lists the estimated values of the parameters for
the random variables in the RMMs. The ranges of turn
radius and speed for the z-independent ST RMM are set
to |Rxy| ∈ (10.4637m,∞), Vxy ∈ [3.98m/s, 23.01m/s]
and vz ∈ [0.00027m/s, 0.1580m/s] respectively. For the
z-dependent ST RMM, we set |R| ∈ (210.1077m,∞) and
V ∈ [3.74m/s, 23.04m/s]. The size of the simulation area
is set to 1000m × 1000m × 100m. With the estimated
parameters, we can generate rich trajectory ensembles with
the same statistics as the original flight test data. Figure 15
shows the example trajectories generated from the configured
3-D ST RMMs.

TABLE 3: Random variables (RV) to be configured

Model RV Parameters Value

z-independent

Rxy λr 210 (m)

Vxy

µ̄ 15.34 (m/s)
σ̄ 2.35
γ̄ 0.9413

τ λτ 0.6987 (s)
az λa 169.4915(s2/m)

z-dependent

R λr 2577 (m)

V

µ̄ 15.06 (m/s)
σ̄ 3.04
γ̄ 0.98

τ λτ 0.6349 (s)
cz Uniformly distributed with changing range

F. DISCUSSIONS
Various other distribution models can be used to model the
aforementioned random variables to meet different applica-
tion requirements. For example, in the SRCM model [15],
the turn radius is randomly chosen from a set of uniformly-
spaced constants for search and rescue purposes. The selec-
tion of turn radius, travel time interval, or acceleration can
also be modeled as correlated across time, using a similar
approach as described in Equation (6).

VI. CONCLUSION
In this paper, we introduced two 3-D Smooth-Turn (ST)
random mobility models (RMMs) to facilitate the design
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and evaluation of airborne networks (ANs). Both models
are extended from the basic 2-D ST RMM, but differ in
motion patterns along the z direction. In particular, the aerial
mobility along the z direction is assumed to be independent
from the other two dimensions in the z-independent ST
RMM, while dependent in the z-dependent ST RMM. The
z-independent ST RMM is more suitable for applications
with less variation in aerial mobility along the z direction,
such as civilian and commercial applications; while the z-
dependent ST RMM is suitable for applications involving
climbing or descending turns, such as military applications
and air shows. Realistic boundary models have also been
developed to model the aerial mobility near the boundary of
the simulation area. We developed a systematic procedure to
estimate and configure parameters of the random variables in
the proposed models, and illustrated the procedure step-by-
step using real flight field test data. The good match between
the estimated and real trajectories suggests the promising
performance of proposed models and estimation methods in
capturing smooth aerial turns. In the future, we will conduct
networking performance analysis on the RMM-based UAV
swarms that are subject to collision avoidance protocols.
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