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Abstract

We define the notion of an RO(G)-graded Tambara functor and prove that
any G-spectrum with norm multiplication gives rise to such an RO(G)-graded
Tambara functor.

1. Introduction

Let G be a finite group. The basic algebraic concept arising in G-equivariant
homotopy theory is that of a G-Mackey functor. Mackey functors are well stud-
ied and their important role in equivariant homotopy theory has been docu-
mented since the 1970s—see, e.g., [4] or [I3]. For example, the appropriate
G-equivariant version of cohomology with coefficients in an abelian group is co-
homology with coefficients in a G-Mackey functor. Such a cohomology theory
is represented by a G-equivariant Eilenberg—MacLane spectrum.

A commutative multiplication on this type of G-cohomology theory pro-
duces a more complicated algebraic structure, called a Tambara functor. This
type of structure arises from a commutative G-equivariant Eilenberg—MacLane
ring spectrum [14]. Compared with Mackey functors, Tambara functors have
additional structure. Loosely speaking, a Mackey functor M consists of an
abelian group M (G/H) for each subgroup H < G, together with restriction
and transfer maps between these groups that satisfy certain relations. A Tam-
bara functor has an additional type of map, called a “norm map,” relating the
groups M (G/H). One can think of restriction as an equivariant version of a
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diagonal map, transfer as an equivariant version of addition, and norm as an
equivariant version of multiplication.

The theory of Tambara functors, which was first introduced by Tambara in
[12] under the name of TNR-functors, is not as well developed as that of Mackey
functors. Brun [3] and Strickland [II] both discuss Tambara functors with an
eye towards homotopy theory. Both prove that the zeroth homotopy group of
an Fo-ring spectrum form a Tambara functor. However, neither work considers
the algebraic structure present on the homotopy groups in nonzero grading. The
main goal of the present work is to understand this structure, which is that of
a graded Tambara functor. Thus, our results can be thought of as generalizing
Strickland’s and Brun’s work. At the Mackey functor level, the analogous results
are well known, but our work requires a refinement of the existing treatment
of graded Mackey functors. To set the stage for our graded Tambara functors
we define the notion of an RO(G)-graded Mackey functor, and prove that any
G-spectrum E determines such an RO(G)- graded Mackey functor in Theorem
Here RO(G) is a categorification of the real representation ring of G, and
our first task is to define RO(G) carefully.

Additionally, the literature suggests that £ has to be a G-equivariant F,
ring spectrum in order for its homotopy groups to define a Tambara functor,
see e.g. the first paragraph on p. 235 of [2]. This condition seems stronger than
necessary, as in the case G = {e} a homotopy associative and commutative
multiplication clearly suffices to give m, FE the structure of a graded commutative
ring. We remedy this situation by defining the notion of a norm multiplication
on a G-spectrum, and prove in Theorem [I.4] that if E has a norm multiplication
then its RO(G)-graded homotopy groups constitute a graded Tambara functor.

1.1. Statement of results
Our first contribution is a precise definition of the categorified representation
ring. Given a finite G-set X, we make the following definition.

Definition 1.1. Let RO(G)(X) denote the category Fun(BGX7f°p) of func-
tors from the translation category BgX to the Grayson—Quillen construction
on the category of finite dimensional real inner product spaces. The morphisms
are natural transformations.

As a first step we define a category RO(G) by declaring a morphism from

(X, x) to (Y,7) to be a pair (f, f) where
f: X—-Y
is an isomorphism of G-sets and
fix=nof

is a natural transformation of functors from Bg X to 7P,

We go on to define a category RO(G)Mak by adding restriction and transfer
maps to RO(G), and define an RO(G)-graded Mackey functor to be a functor
RO(G)Mack 5 Ab to the category of abelian groups. The following result is
also restated as Theorem [AT1}



Theorem 1.2. Let E be an orthogonal G-spectrum. Then E determines an
RO(G)-graded Mackey functor

7 (E): RO(G)Mak 5 Ap.

Next we define a category RO(G) TP by also adding norm maps to RO(G),
and define an RO(G)-graded Tambara functor to be a functor RO(G)Tmb —
Ab. We then pin down the exact amount of multiplicative structure E needs in
order for 7, (E) to determine an RO(G)-graded Tambara functor.

Definition 1.3. A norm multiplication on a G-spectrum F is a natural trans-
formation
1B - nlconst o (E) = constp(E)

in the homotopy category of functors BgB = Sp for each n: A — B satisfying
the properties listed in Definition [5.9] below.

For the definition of n)} see Section A norm multiplication on E amounts
to a map N II_I( E — E for each H < K, where N II_I( is the Hill-Hopkins—Ravenel
norm [0], together with a map E A E — E. These then have to satisfy certain
compatibility axioms. If F is a commutative orthogonal G-spectrum then the
ring structure determines a norm multiplication, but our conditions are weaker.
If G = {e} is the trivial group a norm multiplication is the same as a multiplica-
tion map that is homotopy unital, associative and commutative. The following
result is also restated as Theorem [F.16

Theorem 1.4. Let E be an orthogonal G-spectrum with a norm multiplication.
Then E determines an RO(G)-graded Tambara functor

7 (E): RO(G)™m> — Ab.
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2. Orthogonal G-spectra

2.1. Orthogonal spectra

We will give a very brief review of orthogonal spectra; see e.g. [8] or [6]
Appendix A and B] for a more complete description. Recall that we can define an
orthogonal spectrum as follows. Let Z denote the category of finite dimensional
real inner product spaces and linear isometric embeddings. Then an orthogonal
spectrum is a functor E: 7T — T to the category of based spaces which is in
addition a module over the sphere spectrum. A map of orthogonal spectra is
a natural transformation of functors. We denote the category of orthogonal
spectra by Sp.

To spell this out, an orthogonal spectrum E consists of a based space E(V)
with an O(V)-action for each finite dimensional real inner product space V,
together with structure maps SV AE(W) — E(V@&W) which are O(V) x O(W)-
equivariant. Note that given E(V) and some V' € 7 with V = V' E(V’) is
determined up to homeomorphism by E (V).

A map f: E — E’ of orthogonal spectra is a map f(V): E(V) — E'(V) for
each V which commutes with all the structure maps.

There is a neat way to package a functor E: Z — 7T which is also a module
over the sphere spectrum, namely as a functor J — 7. Here J is the category
with the same objects as Z, and J(V, U) is defined as follows. Counsider the space
Z(V,U) of linear isometric embeddings. It has a normal bundle, and J(V,U) is
the Thom space of this normal bundle. In symbols we have

TV U) ={(f,w) [ f: V =U, uelU—f(V)}U{oo}.

Example 2.1. Let V be a finite dimensional real inner product space and let
X be a based space. Then there is an orthogonal spectrum Fy (X) defined by

Fv(X)(U)=JV,U) A X.

The functor Fy (—) is left adjoint to the functor evy : Sp — T which picks out
the V’th space. If V' = 0 then Fy (X) is the usual suspension spectrum of X.

The spectrum Fy (SY) plays an important role. We construct the (posi-
tive) stable model structure on Sp from the (positive) level model structure
by formally declaring the maps Fy/(SV) — S = Fp(5°) = B°8° to be weak
equivalences.

2.2. FEquivariant orthogonal spectra

Now let G be either a finite group or a compact Lie group. (Later we will
restrict our attention to finite groups.) We define a G-equivariant orthogonal
spectrum simply as an orthogonal spectrum F with a G-action, and we denote
the category of G-equivariant orthogonal spectra by G-Sp.

To the reader who is used to dealing with universes this might seem like a
naive definition, but by varying the model structure we recover both the naive



and genuine homotopy categories. The point is that if V is an n-dimensional
G-representation we can define E(V') by

E(V)=Z(R", V) Now) E(R"),

with G acting on the target of Z(R™, V) and diagonally on the smash product.

This is non-equivariantly homeomorphic to E(R™). Given a universe U
we can define the homotopy groups of E by taking a colimit over the finite-
dimensional subspaces of U. For example,

¢ E = colvim[sv, E(V)e.

A map of G-spectra is a weak equivalence if it induces an isomorphism
of H-equivariant homotopy groups for each closed H < G. When discussing
homotopy classes of maps between orthogonal G-spectra we always work with
the model structure corresponding to a complete G-universe.

2.8. Homotopy groups and the Pontryagin—Thom construction

Here is one way to define the homotopy groups of a spectrum E. Let g € Z,
and write ¢ = m — n for m,n > 0. Then we can define

mo(E) = [S™,S™ A E]

where [—, —] denotes maps in hoSp.
Similarly, if E is a G-spectrum and (V, W) is a pair of G-representations we
can define
v _w(E) =[SV, 8" A Elg

where [—, —]¢ denotes maps in hoG-Sp.

We now briefly explain how to use the Pontryagin—-Thom construction to
define addition in the homotopy groups of E. Suppose dim(V%) > 0. Then for
any n > 0 we can find a G-equivariant embedding of {1,2,...,n} in V. Here G
acts trivially on {1,2,...,n}. It follows that for e sufficiently small the disjoint
union of n balls of radius € injects G-equivariantly in V.

Given these embedded e-balls, we get a Pontryagin—-Thom collapse map
SV — V.. SV, and precomposing with this gives a map

(W‘(/{W(E))" - chfiw(E)

This is the addition map, which adds up n elements in Wg_W(E) using the
abelian group structure.

As we will explain in Section [4] below the transfer map is a generalization
of this idea. This is of course well known, but precision here helps clarify the
overall structure.



3. The categorified representation ring

3.1. The Grayson—Quillen construction

Let G be a compact Lie group, and let RO(G) denote the real representation
ring of G. If @« € RO(G) we can choose G-representations V and W with
a = [V] — [W], and if E is a G-spectrum we can attempt to define 75 (F) =
[SV,SW AE]g to be the set of homotopy classes of G-equivariant maps as above.
The problem is that this is only well defined up to non-canonical isomorphism,
and we would like to avoid having to make arbitrary choices. See [5] for a related
discussion and a proof that it is possible to make all choices necessary to define
7% (E) for each a € RO(G) coherently.

Instead we define a category whose objects are actual pairs (V, W) of G-re-
presentations. In fact, we will start with a non-equivariant category of pairs
and introduce equivariance by considering functors from the category Bg* with
one object and morphism set G. In what follows we restrict to finite groups G.

As in the definition of orthogonal spectra, let Z be the category of finite
dimensional real inner product spaces, with morphisms given by linear isometric
embeddings.

In analogy with the construction in [0, §4] we define the Grayson—Quillen
category 7 as follows. This category also appears in [7, §3] and [I0, Definition
2.6].

Definition 3.1. The category Z has objects pairs (V, W) of finite dimensional
inner product spaces. A morphism (Vi,W;) — (Vo,Ws) is a triple (f,g,¢),
where f: Vi — Vo and ¢g: Wy — Wy are maps in Z and ¢: (V2 — f(Vl)) —
(W3 — g(W7y)) is an isomorphism in Z.

To obtain a G-action we consider the category Bg* with one object * and
morphism set G. If C is any category, giving a functor from Bg* to C is precisely
the same data as an object in C together with a G-action on that object. A
natural transformation of functors is precisely the same data as a G-equivariant
morphism between G-objects in C. R R

We claim that the category Fun(Bg*,Z°P) of G-objects in Z°P is a categori-
fication of the representation ring RO(G). We use the opposite category of 7
because we can then use Lemma [3.2] below to get a functor from Be* to spectra.

There is a “connected components” map Fun(Bg*,Z°P) — RO(G) which
takes a pair (V,W) € Fun(Bg*,I°) to the equivalence class [V] — [W] €
RO(G). The existence of a map (Vi,W1) — (Va, W3) in Z° implies that the
equivalence classes [V;] — [W1] and [Va] — [W3] are equal in RO(G), and thus we
regard this map as taking my of Fun(Bg*,fOP).

The category 7°P fits well with the category of orthogonal spectra, as the
following lemma (which also appears as [10, Lemma 4.3]) shows.

Lemma 3.2. There is a functor F: I°° — Sp given on objects by (V,W) —
Fw(SY). This functor takes any map in I°P to a stable equivalence in Sp.



Remark 3.3. We will denote F(V, W) by SV~ remembering that SV~ is
only weakly equivalent to S(VOU)=(WOU) 1y [6] the spectrum SV =" is denoted
SWASY.
Proof. Given a map

(f.9,0): (Vi,W1) = (Va, Wa)
in 7 we need to produce a map

SVz—Wz N SV1 —W;

of spectra. Such a map is adjoint to a map
SV2 s Fu, (SY) (W) = T (W, Wa) A SV
of spaces. Using (f, g, ¢) we get a homeomorphism
§Ve 25 gWama(Wi) \ g1
and we recall that the Thom space J (W7, Wa) is given by
T (W1, W) = {(h: Wy = Wa,w € Wy — h(W1))} U {c0}.
We have a map
ig: SW2mIWY Ly T (W, Wa)
defined by w — (g, w) for w # oo and oo — co. Hence we get a composite map

= ipANid

SV2 = GWaema(Wi) A g1 2285, 7 (W, W) A SV

as required. N
We leave it to the reader to check that this is indeed a functor from Z°
to Sp. It is clear that SY2="W2 — §Vi=W1 i a stable equivalence because we
localized with respect to those maps when defining the stable model category
structure on Sp. O

Recall that Bg* denotes the category with one object and morphism set G.

Definition 3.4. We denote the category Fun(Bg+, f(’p) of functors from Bg* to
Z°P and natural transformations between them by RO(G)(Bgx) or RO(G)(x).
Now suppose G is a finite group and X is a finite G-set. We let Bg X denote
the category with object set X, and with a morphism = — y for each g € G
with gz = y. This category is sometimes called the “translation category” of G
acting on X. Then we can generalize the above definition as follows.
Definition 3.5. We denote the category Fun(BgX,fOP) of functors from Bg X
to Z°P and natural transformations between them by RO(G)(BgX) or RO(G)(X).

Composition with F yields a map
RO(G)(X) = Fun(BaX,1%) — Fun(BaX, Sp).

Notation 3.6. Given a functor x: B X — Z°P we will write SX for the com-
posite B X — Z°P — Sp.



3.2. Wedge sums and smash products

For any finite G-set X, there are two functors
p)p: Fun(BgX, Sp) — G-Sp

which we will now describe. The first takes F': BgX — Sp to

pl(F)="\/ F(z)

zeX

and the second takes F' to

PAF) = N\ Fla).

zeX

The G-action is given by permuting the wedge sums or smash factors using
the maps F(g): F(z) — F(gz) coming from the functoriality of F. These
constructions are examples of the “indexed monoidal products” discussed in [6].

More generally, suppose f: X — Y is a map of G-sets and let f also denote
the functor B X — BgY of translation categories. Then we have functors

£ PR Fun(Be X, Sp) — Fun(BgY, Sp)

defined by
(fYP)w) =\ Fl)
flz)=y
and
LRy = N\ Fla).
f(x)=y
The functors pY and p/ are induced by the map p: X — .
As one might expect, these functors participate in adjunctions. Denote by
f*: Fun(BgY, Sp) — Fun(BgX, Sp) the functor induced by precomposition.

Proposition 3.7. Let f: X — Y be a map of finite G-sets. Then there is an
adjunction
1 Fun(BgX, Sp) = Fun(BgY, Sp) : f*.

To get the corresponding adjunction for the smash product we restrict our
attention to commutative ring spectra. Let CSp denote the category of commu-
tative orthogonal ring spectra. Then f2 and f* restrict to functors with target
CSp.

Proposition 3.8. Let f: X — Y be a map of finite G-sets. Then there is an
adjunction
2 Fun(BgX,CSp) = Fun(BgY,CSp) : f*.

The functor f2 is essentially the Hill-Hopkins—Ravenel norm; see Definition

[B.11 below.



8.8. An equivalence of categories

We pause to remark on an equivalence of categories that allows us to relate
our constructions to more familiar definitions. If X = G/H, we have equiva-
lences

BoG/H = By

Here ¢ is given by the inclusion of the identity coset, while x depends on a
choice of coset representatives g1 H, ..., g,H for G/H with gtH = eH. Given
such a choice, & is defined as follows. For each g: g;H — g;H there is a unique
way to write gg; = g;h with h € H, and we send g: g;HH — g;H to h: x — *.
Then £ ot = idp,+, while there is a natural transformation id = ¢ o k given by
g; 1. g;H — eH.

A functor F': BG/H — Sp consists of a spectrum F(g;H) = Eg g for
each coset, together with a map g: Ey, g — Eg p for each g with gg; = g;h.
Precomposing with ¢ has the effect of only remembering F.py and forgetting the
other Ey, ;. Conversely, a functor F': B+ — Sp consists of an H-spectrum E’.
Precomposing with k has the effect of producing a functor F': BG/H — Sp
with F(g;H) = E’ for each i and with G-action as defined as above.

If X is isomorphic to G/H, where G/H has cosets ¢g; H, then X is also iso-
morphic to G/H; with H; = gZ-Hgfl. Using the inclusion By, * — BgX we get a
different equivalence of categories where we remember E,, ;r as an H;-spectrum
rather than E.p as an H-spectrum. We can interpret this as saying that given
a G-set X and a functor F': BaX — Sp, we have to choose a “basepoint” of
each orbit in order to identify F' with a collection of H;-equivariant spectra.

This equivalence of categories allows us to understand homotopy classes of
maps in the functor categories Fun(BgX, Sp). When X is a point, Fun(BgX, Sp)
is simply the category of G-spectra, and we endow it with the genuine model
structure. For an orbit G/H, the category Fun(BgG/H, Sp) is equivalent to
Fun(Bg*, Sp), the category of H-spectra. Hence Fun(BgG/H, Sp) inherits the
genuine H-equivariant model structure from the category of H-spectra. For a
more general G-set X, we can view the category Fun(Bg X, Sp) as the product
of categories of the form Fun(BgG/H;, Sp) via a decomposition of X into or-
bits. This endows Fun(BgX, Sp) with the model structure given by taking the
product of the genuine H; model structures. This process is independent of the
chosen decomposition of X into orbits; see [0, §B.5] where they also provide the
following lemmas.

Lemma 3.9 ([6, §B.5.1]). The adjunction of Pmposz’tion is a Quillen ad-
Junction.

Lemma 3.10 ([0, Proposition B.104]). The adjunction in Proposition 15 also
a Quillen adjunction. In fact, the functor fI further descends to a left derived
functor between the homotopy categories Fun(BgX, Sp) and Fun(BgY, Sp).

This result is an important technical underpinning to the Hill-Hopkins—
Ravenel norm. For us, this fact will permit us to use the functor smash-induction



functor f* even when dealing with spectra that do not enjoy a commutative
ring structure, which we will do throughout the remainder of this paper.

To illustrate how these definitions fit into the existing literature, we next
define the Hill-Hopkins—Ravenel norm.

Definition 3.11 ([6]). Given an H-spectrum E and a choice of k: BcG/H —
Bp* as above, define the transfer TG (E) to be

TH (E) = p! (x*(E))
and define the norm NG (E) to be
NG(E) = pl (5*(E)).
Here T (E) =\, y E, and we have an equivalence
TG(E) - G, Ag E

given by sending the wedge summand of E indexed by g;H to [g;, F]. Hence
T§ is equivalent to the usual induction functor.

3.4. Equivariant homotopy groups

Above we defined a category RO(G)(X) for each finite G-set X. Let RO(G)
be the set of pairs (X, x) where X is a finite G-set and x: BgX — Z°P is an
object of RO(G)(X). In the next two sections we will make RO(G) into a
category in two interesting ways. For now we make RO(G) into a category by

defining Homgo(c)((X, x), (Y,7)) to be the set of pairs (f, f) where f: X — Y

is an isomorphism and f: xy = f*v is a natural transformation of functors.
Composition is defined in the obvious way: Given (f, f): (X, x) — (Y,7) and

(9:9): (Y,7) = (Z,(), the composite (g,7) o (f, f) is defined as (go f, f*(g) o f).
For each (X, x) € RO(G) and orthogonal G-spectrum E we can define the
RO(G)-graded homotopy group

T (E)(X,x) = [\ $7, Elg = [p!(5%), Ela
zeX

to be the set of homotopy classes of G-equivariant maps from the wedge of
spheres determined by (X, x).

Given a map (f, f): (X,x) — (Y,7) in RO(G), we can apply F(—) to f
to get a natural transformation F(f): X — S7 7. Moreover, because f is an
isomorphism the G-spectra pY (S7 7) and pY(S?) are canonically isomorphic.
Hence we have a map

i oy
pl(S%) = pl(S777) = pl(S7).
By precomposing with this we get a map

(f; )" m(B)(Y, ) = m(B)(X, X)-

10



This is clearly compatible with composition in RO(G), so we get a functor
m,(E): RO(G)® — Ab.

In Section We will add maps to the category RO(G)°P to define a category
RO(G)Mack | 5o that m, (E) defines a functor from RO(G)Mak to Ab. This will
be our notion of a graded Mackey functor.

In Section [5| we will add additional maps to RO(G)Ma°k to define a category
RO(G)™mb " and show that if £ has the appropriate multiplicative structure
then m, (E) defines a functor from RO(G)T#™P to Ab. This will be our notion
of a graded Tambara functor.

3.5. The constant functor at E

If F is a G-spectrum and X is a finite G-set we can define a functor
constx (E): BaX — Sp

by sending any x to E. A map ¢g: x — y is sent to the map £ — E given by
the action of g € G.

Above we defined 7, (E)(X,x) = [p)(SX), E]g, but by the adjunction in
Proposition[3.7]this is naturally isomorphic to [SX, const x (E)]s, x. Here [—, —]g, x
denotes the set of homotopy classes of natural transformations of functors from
Ba X, defined using the model structure of This simply says that giving a
G-equivariant map from \/,_y S x(*) to E is the same as giving a G-equivariant
map from \/ Sx(®) to V.ex E sending the sphere indexed by z to the copy
of F indexed by z.

Given (f, f) (X,x) — (Y,7), note that f* gives a map from the set of
(homotopy classes of) natural transformations of functors from Y to the set of
(homotopy classes of) natural transformations from X and that f*consty (E) =
constx (E). So from this point of view the induced map (f, f)*: =, (E)(Y,v) —
7w, (E)(X, x) is given by the composite

[S7, consty (E)]suy 2 [S77, constx (E)]s.x 2 [S¥, constx (E)]sex.
We will use this repeatedly in the rest of the paper.

3.6. Relation to usual homotopy groups

If X is an orbit G/H, the RO(G)-graded homotopy group =, (F)(X, x) can
be identified with an H-equivariant homotopy group. As above we have a weak
equivalence

pY(SX) = \/ Sx(9) ~ Gy Am gx(eH)
gHeG/H

given on the wedge summand indexed by gH by mapping to g in the first smash
factor and by using the map ¢~ *: SX(@H) — gx(eH) op the second smash factor.
(By abuse of notation one might want to write v +— [g, g~ 1v].)

11



The standard change of groups adjunctions then apply to show that

[ \/ Sxf) g = (X0 By
gHeG/H

where on the right hand side we have regarded the G-spectrum E as an H-
spectrum by restricting the action. Notice that SX(¢) is also an H-spectrum
because the coset eH is stabilized by H. The group on the right hand side is
the usual RO(H)-graded homotopy group

T er) (B)-

4. Graded spans and graded Mackey functors

Recall that an ordinary Mackey functor consists of an abelian group M (X)
for each finite G-set X, and a morphism M (X) — M(Y) for each diagram

X< aby

The map r: A — X determines a restriction map r*: M(X) — M(A) and the
map t: A — Y determines a transfer map t): M(A) — M(Y). (We add the
superscript V to distinguish this from the map n,' we will define later.) Diagrams
of this form yield a category in which composition is given by pullback. If

vl g

is another span, the composite span is given by the pullback D = A xy B
together with the obvious maps to X and Z. In this section, we define an
RO(G)-version of this construction.

4.1. Restriction maps
We define a category RO(G)® with the same objects as RO(G) as follows.

Definition 4.1. Let (X, x) and (4, a) be in RO(G). A map in RO(G)% from
(A4, ) to (X, x) is a pair (r,7) where r: A — X is a G-map and 7: o = r*x is
a natural transformation of functors.

Composition in RO(G)* is defined in the obvious way, by composing maps
of G-sets and natural transformations.

Remark 4.2. The existence of the natural transformation 7 implies that for
each a € A there is a map 7, : a(a) — x(r(a)) in Z°P. The map 7, gives an iso-
morphism of virtual vector spaces between (Vy(r(a)), Wy(r(a))) a0d (Va(a), Wa(a)),
i.e., an isomorphism Vi (q) © Wy (r(a)) = Vi(r(a)) ® Wa(a)-

Taking the G-action into account we can say the following. Let G, denote
the stabilizer of a. Then a(a) determines a representative [a(a)] € RO(G,) and
x(r(a)) determines a representative [x(r(a))] € RO(G,(,)), and it follows that

[a(a)] = Resg” ™ [x(r(a))]-

12



In other words, if the above equation does not hold then a restriction map does
not exist. Another point of view is that up to maps in Z the map r: A — X
and x € RO(G)(X) determines «.

If we decompose X and A into orbits by specifying isomorphisms X = G/H;
and A = G/K then x determines an element [x] € @ RO(H;) and a determines
an element [a] € @ RO(K;). If we choose the isomorphisms in such a way that
r corresponds to maps eK; — eH; then [a]; = ResK;([X]i). Any other choice
involves additional conjugation.

By Proposition the pair (r,7) gives a G-equivariant map

(r, ) : \/ gala) _y \/ gx(@)

a€A zeX

In more categorical language, the natural transformation F(7) € Fun(Bg A, Sp)
is adjoint to a natural transformation )y« = x in Fun(Bg X, Sp) which induces
the displayed map on equivariant bouquets of spheres.
Given a map (r,7): (A,a) — (X, x) in RO(G)? and a G-spectrum E, we
then get a map
(r,7)": m (E)(X,x) = m,(E)(A, @)

by precomposing with this map of bouquets of spheres. This is clearly compat-
ible with composition, so we have a functor

7 (E): (RO(G)F)P — Ab.

We can also phrase this in terms of the constant spectrum const4(F). Given
an element ¢ € [SX, constx (E)|g,x we map it to the composite

§e L prgx 28 r*constx (E) = const 4 (F).

Remark 4.3. A map (f,f): (X,x) — (Y,7) in RO(G)® for which f is an
isomorphism is exactly the same as a map in the category RO(G) defined earlier.
Hence we can view RO(G)* as a natural generalization of RO(G).

4.2. Transfer maps
Next we define a category RO(G)T with the same objects as RO(G).

Definition 4.4. Let (4, ) and (Y,7) be in RO(G). A map in~RO(G)T from

(A, @) to (Y,) is a pair (¢,t) where t: A — Y is a G-map and t: o = t*y is a
natural transformation satisfying the following conditions:

e Each component #,: a(a) — v(t(a)) is an isomorphism in Z°. In other
words, i, is a pair of isomorphisms Vata) = Vyi(a)) and Weay = Wy i(a))-

e There exists a G-equivariant embedding of A in [TV, ) with a € V, 4(a))-
This implies that for e sufficiently small the corresponding e-balls are dis-
joint, and it implies that we can construct an injective (G-equivariant
and continuous, but not linear) map [[ Va@) — [ V5, with image the
disjoint union of the e-balls.

13



Composition in RO(G)T is defined in the obvious way. The condition that
each component of ¢ is an isomorphism is obviously stable under composition
and the existence of a G-equivariant embedding is too.

Given (t,%) in RO(G)T the conditions on ¢ give us a Pontryagin-Thom
collapse map
PT@#): \/ W = \/ s,
yey acA

In more detail, we pick a G-equivariant embedding of A in J]V,,) and an ¢
such that the e-balls are disjoint. The U’th space of \/, s S7W) is by definition
given by

V00,0, 1550,

yey
and similarly for \/ . , S(@) Collapsing everything outside the e-balls in each
SVy to a point gives a map to Vaea I Wyt(ay), U) A SVvt@) | and we can then
use (tq)~" to identify this with \/ e 4 T (Wa(a), U) A SVt

Remark 4.5. The definition of the map

PT(): \/ 57W = \/ 2@

yey acA

involved a choice of an embedding and a choice of an €, but any two choices give
stably equivalent maps between the bouquets of spheres.

The Pontryagin-Thom construction can be interpreted as a natural trans-
formation
PT(t): 87 = t/S°.

Remark 4.6. The natural transformation ¢ gives isomorphisms Vyta) = Va(a)
and W, (¢(a)) = Wa(ae) in 7. Taking the G-action into account this implies that

Gia
[a(a)] = Resg! [v(t(a))].

Hence t: A — Y and v € RO(G)(Y) determine o up to isomorphism. But

note that the converse is not true: given t: A - Y and o € RO(G)(A) there

are potentially many non-isomorphic choices of v € RO(G)(Y) that can be the

target of the transfer map.

Given a map (t,7): (4,a) — (Y,7) in RO(G)T and a G-spectrum E, we
then get a map
(t, 1)) T (E) (A, a) = m,(E)(Y,7)

by sending a natural transformation ¢ € [S®, const4(F)|p,4 to the composite

§v £EH ) S« L2 t)/const 5 (E) = consty (E),

14



where the last natural transformation is given on y € Y by the fold map
Vi(a)=y £ — E. This is compatible with maps in RO(G)T, so we get a functor

7, (E): RO(G)T — Ab.

If we choose isomorphisms A =2 [[ G/K; and Y = [[ G/Ly, in such a way that
t corresponds to eK; — eLj then (t,¢)) corresponds to a combination of the
usual transfer map and addition maps. Specifically, if we identify =, (E)(A, a)

with
@[Sa(eKj)’ E]Kj7
J

then (t,t) corresponds to the composite of the standard transfer maps

@[Sa(eKj),E]Kj N @[S"V(eLk)’E]Lk’
k

J

which the Pontryagin-Thom construction produces from the isomorphism S¢(¢%s) =
Lk L
ghesw;e k), and of addition over the eKj’s in the preimage of eLy.

Remark 4.7. Given a map (f, f): (Y,7) = (X, x) in RO(G)" where f is an

isomorphism, the definition implies that f is also invertible. It follows that the
inverse (f, f)~1: (X,x) — (Y,7) is a map in the category RO(G), and given a
G-spectrum E the two maps

(LD (D7) m(B)Y ) = m(B)(X, X)

agree. Hence we can regard RO(G)T as a generalization of RO(G)°P.

4.3. RO(G)-graded spans and Mackey functors

We can now define a category RO(G)Mak with the same objects as RO(G),
where a morphism (X, x) — (Y,~) is an equivalence class of spans

(r,7) (t,t
(X, x) ¢ (4,0) = (Y, 7).
Here (r,7) is a map in RO(G)® and (¢,%) is a map in RO(G)T. The equiva-
lence relation is generated by declaring two spans to be equivalent if there is
a commutative diagram (on both the level of G-sets and the level of natural
transformations):

(A1, 01)

(X, x) = Y, 7)

o

(A2, a2)

15



Composition in RO(G)Mak is given by pullback, as follows. Consider spans

(X, x) <22 (4,0) L2, (v,4)

and

Their composite is the span

(’l‘,f) (T//’,,://) (tll,fll) (t/,{')
(X7X) (Ava) (D,é)—>(376)—>(ZaC)
where D = A xy B is the pullback of A and B in G-sets and 6: BgD — 7°P is
the functor given by sending (a,b) to 5(b).

Then there is an obvious map (t”,#"): (D,6§) — (B, 8). To define the other
map (TN7 ’FH) : (Da 5) - (Aa Oé) we need a map (Voz(a)a Wa(a)) - (%(a,b% WS(a,b)) =
(Va@w), Wamy) in 7. This we simply define to be the composite of the in-
verse of the isomorphism from (V,,), Wy(,)) to (Va(a), Wa(e)) and the map
Vaw)s Waw) = (Vaw), Waw))-

Remark 4.8. When (r,7) and (#',#') are the identity, we think of this composi-
tion as “moving a restriction map past a transfer map.” Explicitly, the compos-
ite of the transfer map (A, @) — (Y, ) and the restriction map (Y,~) + (B, 5)
is the span

(A, a) < (D,6) = (B, B)
with (D, §) as above. We will use this terminology in Section

With these definitions we claim that there are obvious functors from (RO(G))°P
and RO(G)T to RO(G)Ma<k that are the identity on objects, given by inserting
the identity map as one leg of the span. It suffices to observe that the compo-
sition laws are compatible. For RO(G)® this is clear: if (¢,7): (A,a) — (Y,7)
is the identity then (D, ) = (B, ) and (r",7") = (+', 7).

For RO(G)T this is somewhat less obvious. Using the composition law in
RO(G)T we get

(=,=) (t'ot,t* ¥ ot)
(A7 a) A— (Av O[) (Za C)
while using the composition law in RO(G)Mak we get
(4,0) S (4, 01) L5, (2,0),

These define equivalent spans because the isomorphism (A, «) — (A,yot) given

by (id, t) fits into the following commutative diagram:

(4, @)

(idy W‘{/oa

(4, ) (id,%) (Z,¢)

(ik /Ot:; &)

(A,vot)
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Thus we have a well-defined functor RO(G)T — RO(G)Mak given by including
RO(G)T as spans where the left leg is the identity.

It is clear that composition is unital and associative, so that we have a
well defined category RO(G)Mak. An RO(G)-graded Mackey functor is then a
functor out of this category.

Definition 4.9. An RO(G)-graded Mackey functor is a finite product-preserving
functor

M: RO(G)Mak 5 Ap.

Remark 4.10. The product in RO(G)Ma<k is given by disjoint union of G sets,
and the condition that a graded Mackey functor be product preserving enforces
the condition that M (X [[Y,x[[v) & M(X,x) ® M(Y,~).

Now we can restate Theorem

Theorem 4.11. Let E be a G-spectrum. Then E determines an RO(G)-graded
Mackey functor
, (E): RO(G)Mak 5 Ap

sending (X, X) to m,(E)(X,x).

Proof. Note that by definition, 7, (F) takes disjoint union in RO(G) to direct
sum of abelian groups, and is thus finite product-preserving. Since we have
functors from RO(G)T and RO(G)T into RO(G)M2k the only thing left to
prove is that given a diagram

(4, ) (B,5)

m A
(Y,

defining the composite (r,7) o (¢,%) in RO(G)MaCk the two maps
(r, 7)o (t,1)), (¢, ) o (r',7)": 1 (E) (A, @) = @, (E)(B, B)

(r',7") (t',t)

agree.
The first map is given by sending ¢: S¢ = const4(FE) to the composite

§8 L prgy ZLLA v g 108
r*t)const 4 (E) = r*consty (E) = const(F)
while the second map sends ¢ to

Sﬁ PT(# % Sé [(AMGON (tl)V(r/)*Soc (t’)f(r')*q&g
()Y (r")*const o (E) = (') const p (E) = constp(E).
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The result then follows from three observations. First, the functors r*ty .S
and (¢')/ (r")*S* are naturally isomorphic, with both given by b — \/, ;). Sola),
and the two maps from S? are homotopic.

Second, the functors 7*t)const4(F) and (¢')Y (r')*const4(F) are naturally
isomorphic, and the two maps from r*tY S® = (¢)Y (r')*S* agree.

And third, the two maps from r*tYconst4(E) = (¢')Y(r')*consts(E) to
constp(E) agree. O

"y
E

Remark 4.12. The standard double coset formula for Mackey functors follows
from the proof of Theorem just as in the standard definition of Mackey
functors in terms of functors on the Burnside category. Concretely, let G/H
and G/K be G-orbits. The usual formulation of the double coset formula is the
equality
ResGTre = Z Trf_ngchgResgﬂgK.
g

Given maps (t,7): (G/H,a) — (G/G,7) in RO(G)T and (r,7): (G/K,) —
(G/G,v) in RO(G), we can derive this equality by considering their composite
in R(’)(G)MaCk. We calculate this composite via the pullback square

(r',7") (t',t)

(G/H, o) (G/K,B)

(G/G,~)

where D = G/H xg/q G/K and 0 = [ o m. By definition, the composite
(r,7)* o (t,1), is

ResGTrg.
As in the proof of Theorem this is equal to the composite (¢/,#). o (r',7)*.

We identify this latter composite as the right hand side of the double coset
formula as follows. The pullback D decomposes into G-orbits as

D =[] G/(HnK)

geG

where 9K denotes the conjugate gK g~!. Hence the composite (#',#). o (r/,7)*
is
K H
Z TryggnrCoRespno -
g
We can think of the conjugation ¢, as picking a different basepoint for each
orbit—it is a different choice of the equivalence of categories in Section
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5. Graded bispans and graded Tambara functors

Recall that an ordinary Tambara functor consists of an abelian group T'(X)
for each finite G-set X, and a morphism T'(X) — T(Y) for each diagram

x<anBhy.

The map n: A — B determines a norm map n,,: T(A) — T(B). In this section,
we define the RO(G)-graded version of Tambara functors.

5.1. The category of norm maps
We define a category RO(G)YN with the same objects as RO(G) as follows.

Definition 5.1. Let (A4, «) and (B, 3) be objects in RO(G). A map in RO(G)Y
from (A, o) to (B, ) is a pair (n,n) where n: A — B is a G-map and

f: B=na

is a natural transformation of functors from BgB to Z°P. Here nPa: B — zop
is given by nfa(b) = D, (4= @(a).

Composition in RO(G)Y is defined as follows: Let (m,m): (4,a) — (B, )
and (n,7n): (B,B) — (C,¢) be maps in RO(G)N. Then their composite is the
pair (n om,n om) where the natural transformation nom: ¢ — (nom)®a is
the composite

7 n?ﬁz
(= nif==nimia= (nom)la
where the final map is the natural isomorphism n om® ~ (nom)® arising from
the symmetric monoidal structure on 7P, By [6} Proposition A.29], such nat-
ural isomorphisms are compatible with composition. That is, given composible
maps of finite G-sets [, m and n, the following diagram of natural isomorphisms
commutes:
ngomg oly ——=n®o(mol)y

l |

(nom)® o1 — > (nomol)?
From this compatibility, we deduce that composition in RO(G)¥ is associative.

Remark 5.2. Note that there are no maps from (A, ) to (B, 8) unless [3(b)] =
@D, (a)=s(a)] as virtual vector spaces. In the case when A = G/H and B =
G/K, with H < K and n: G/H — G/K the canonical map, it follows that
[B(eK)] = N&[a(eH)] in the ordinary representation ring RO(K).

Because F(—) is a symmetric monoidal functor from 7°P to Sp it follows
that 577 is isomorphic to n2S® and that a natural transformation 8 = nPa

in Z° induces a natural transformation S° = nS% of functors from BgB to
Sp.

19



Remark 5.3. Given a map (f, f): (Y,7) — (X,x) in RO(G)N where f is
an isomorphism, the natural transformation f takes the form SX = fASY =
(f~1)*S7, so we see that (f, f) gives the same data as a map (X,x) — (Y,7)
in the category RO(G). Hence RO(G)Y is also a natural generalization of

RO(G)°P.

5.2. RO(G)-graded bispans and Tambara functors

We now define the category RO(G) ™" that is the domain of RO(G)-graded
Tambara functors. Again, the objects of RO(G)T*™P are the same as those of
RO(G).

Definition 5.4. Let (X, ) and (Y, v) be objects of RO(G). A map in RO(G)Tamb

from (X, x) to (Y,7) is an equivalence class of bispans

(n,n)

(X, x) <22 (4,0) 22 (B, 5) LD (v, ),

Here (r,7) is a map in RO(G)®, (n,7) is a map in RO(G)Y and (t,1) is a map
in RO(G)T. The equivalence relation is generated by declaring two bispans
to be equivalent if there is a commutative diagram on the level of G-sets and
natural transformations

(A1, 00) — (B1,61)

/
(X, x) = > (Y. )
\

(Az, ) — (Ba, f2)

Composition in RO(G)T#m is given by a generalization of the composition
formula in [12]. If

(r,7) (t,t)

(X, <2 (4,0) 2 (B, g) L (v,).

and
(Y,7) « (C,§) = (D,d) = (Z,¢)

are bispans in RO(G)T*™P_ then their composite is the bispan

(X, x) = (4", 0") = (D',6") = (Z,¢)
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defined by the following diagram:

(4", ") —(C",§') —= (D", d")

(X, x)

At the level of G-sets, the squares 1, 3, and 4 in this diagram are pullback
squares and the pentagon 2 is an “exponential diagram,” as defined in [12, §1]
or below in Section [5.4] The gradings are determined as follows. We use pr to
denote projection from a pullback to the component specified in the subscript.
Square 4 is given by moving a restriction past a transfer map, as described in
Section above, so that 8 is the functor pri{. Squares 1 and 3 are both
instances of moving a restriction past a norm map, as described in Section [5.3]
below, so that o' = prij« and o = pr¥,a. The definition of the gradings in the
exponential diagram is made explicit in Section [5.4] below.

Indeed, the descriptions of moving restriction maps past norm maps and
norm maps past transfer maps given in the next two sections prove the following
proposition. Compare with the non-graded version in [12, Proposition 7.3].

Proposition 5.5. The category R(’)(G)T"““b is generated by maps of the form
1. (Restriction type) (X, x) < (4,a) = (A,a) = (4, a)
2. (Norm type) (4,0) = (4,a) — (B, B) = (B, 5)
3. (Transfer type) (B, 8) = (B, 8) = (B,8) — (Y,7)

under relations given by the above diagram.

5.8. Moving a restriction map past a norm map

First we consider the following. Given a norm map (n,7n): (4, «) — (B, )
in RO(G)N and a restriction map (r,7): (X, x) — (B, ) in RO(G)* we define
the composite (r,7) o (n,7) to be the bispan

(n',2")

(4,0) 2 (D,0) S (X,5) S (Xo)
where D is the pullback D = Axg X and §: BgD — 7°P is given as follows. On

an object d = (a,z) € D we set d(a,z) = a(a), and on a morphism g¢: (a,z) —
(ga, gx) we set 6(g) to be a(g): a(a) = a(ga).
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The natural transformation #': 6 = (')*« is the identity on objects, while
the natural transformation 7/: x = (n/)®4 is given on objects by the composite

X@) 5a0ra) S @ al= @ ).

n(a)=r(z) deD,n/(d)=x
It follows that (v/,7) is in RO(G)T and (n/,7) is in RO(G)N

Remark 5.6. Note that here, as in the definition of the composite of a transfer
and a restriction map, the composite uses the pullback A x g X, but the trans-
fer /restriction case uses a different grading. In the present case, we project to A,
the source of the norm map; in the transfer/restriction case, we project to the
source of the restriction map. The difference reflects the different requirements
on the gradings in these two cases.

5.4. Moving a norm map past a transfer map

This is the most complicated composition rule in RO(G) TP, Given (,%): (C,&) —

(A,a) in RO(G)T and (n,7n): (A,a) = (B, ) in RO(G)YN we define the com-
posite (n,7) o (t,1) to be the bispan
n’,;n’)

(r,7)

(t )

(C,8) 2 (£,6) © (D,8) £ (B, )
defined in terms of the “exponential diagram”
€0 (D,9)
(r, f)l/ 5
(€.6) = (4,0) 7 (B, 9)
We define
D = {(b,s)|be B, s:n~(b) = C is a section of t}
(b,s) = B(b)
E = {(a,b,5)] (b,s) €D, acn (b))}
(a,b,5) = &(s(a))

The maps r: € — C, n': £ — D and t': D — B are the obvious ones, and the
natural transformations are defined as follows.

We define 7: € = r*¢ and #': § = B ot to be the identity on objects. The
natural transformation 7: § = (n’)Pe is given on objects by maps

5(b,s)=B0) = P elabs)= P &s(a

n’(a,b,s)=(b,s) n(a)=b

which we now define.
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The natural transformation 7 gives a map B(b) — €, (4=, @(a), and the

natural transformation ¢ gives an isomorphism &(s(a)) — «(a), so we can define
the (b, s)’th component of 72’ to be the composite

B0 2 @ ala) Z5 @ €(s(a)).
n(a)=b

n(a)=b

Notice that the set of a € A with n(a) = b is in bijection with the set of
(a,b,s) € E with n'(a,b, s) = (b, s).

The behavior on morphisms should be clear from this description and it fol-
lows from the definitions that indeed (r,7) is in RO(G)%, (n’,7') is in RO(G)N
and (¢',#') is in RO(G)T.

5.5. Graded Tambara functors

Now that we have a category RO(G)T™P  we can define RO(G)-graded
Tambara functors. This requires more care than defining RO(G)-graded Mackey
functors: in particular, we cannot simply consider functors from RO(G)™™b to
abelian groups because norm maps are not maps of abelian groups. Fundamen-
tally, this is because, for a ring R, the multiplication map R x R — R is not a
homomorphism of abelian groups, but rather just a map of sets. Since the norm
maps are a generalization of multiplication, we cannot require them to be maps
in the category of abelian groups either.

The solution is to consider product-preserving functors from 7': RO(G)T2mb
to the category of sets and then to observe that the image T'(X, x) of any object
in RO(G)T*m> inherits a commutative monoid structure. In analogy with [12],
we could call such functors “graded semi-Tambara functors;” because they are
graded semi-ring version of Tambara functors. In the nongraded case, Tambara
functors are simply semi-Tambara functors where each commutative monoid
T(X) is in fact an abelian group, which motivates Definition

Lemma 5.7. Let T: RO(G)™™> — Set be a finite product preserving func-

tor. For every finite G-set X and each grading x: BaX — f"p, the fold map
V: X[IX — X induces a commutative monoid structure on T(X, x).

Proof. Notice that for any G-sets X and Y, the translation category Bg(X [[Y)
is the coproduct of categories B X [[ BgY. The grading x thus induces a
grading xy[[x on X[ X. Let V: X[ X — X be the fold map and observe
that V*y = x ][ x. We therefore have a map

XTI &% (x,0)

in RO(G)T, which we will continue to call the “fold map.” This fold map then
induces a map in RO(G)T2mP

(X0 [T 0 < (X0 [T 0 = (o0 T 0 2 (x,v)
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which gives an addition-type map on (X, x). The inclusion of the empty set
i: 0 — X induces a unit map

©,0) < (0,0) — ©,0) % (X, x)

and it is straightforward to check that these maps give (X, x) the structure of
a commutative monoid object in RO(G)T#mP. Hence the image of (X, x) under
the product-preserving functor 7" is a commutative monoid object in Set, i.e.,a
commutative monoid. O

Definition 5.8. An RO(G)-graded Tambara functor is a finite product-preserving
functor
T: RO(G)Temb 5 Set

such that the inherited commutative monoid structure on each (X, x) in RO(G)Tamb

is in fact an abelian group.

5.6. Norm multiplication

Recall that
constg(E): BagA — Sp

is the functor that sends any a € BgA to E, and that «, (E)(A4, ) is canon-
ically isomorphic to the homotopy classes of natural transformations from S% to
const 4 (E), taken with respect to the model structure on the category Fun(BgA, Sp).

Given a transformation ¢: S = const4(FE), the map (A, «) ), (B, B) gives
a composite

SP = nlS* = nlconst 4 (F)
of natural transformations. In order to produce an element of =, (E)(B,S)

we would like a natural transformation whose codomain is constg(E). This
motivates the following definition.

Definition 5.9. A norm multiplication on a G-spectrum E is, for each G-map
n: A — B, a morphism

u5: nlconsta(E) = constp(F)

in the homotopy category of Fun(BgB, Sp) as described in These mor-
phisms must satisfy the following properties.

1. Given n: A — B and n': B — C the composite u$§ o (n/))(15) is equiva-
lent to p§ in the homotopy category of Fun(BgC, Sp).
2. The natural transformations are stable under pullback.

Note that we are only asking for maps in the homotopy category, which
makes sense because n. is a left derived functor. For example, if G = {e},
the homotopy category of Fun(B. X, Sp) is the category Fun(By.yX,hoSp)
and so we are asking for a homotopy associative and homotopy commutative
multiplication.
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The second condition in Definition [5.9] says that if

AlnH/B/

A—>B
is a pullback diagram then uﬁf is the natural transformation

-x B
(n') const 4/ (E) = j*nl const 4(E) =28 j*constz(E) = constp (E).

Example 5.10. Suppose H < K and n: G/H — G/K is the canonical map.
Then n/ const, ¢ (E) evaluated at eK is the Hill-Hopkins—Ravenel norm N E,
so in this case the natural transformation amounts to a map N5 E — E.

Example 5.11. Suppose we start with the map n: G/G][G/G — G/G. Then
njconstq/aiya/c(E) evaluated at G/G is E A E, so in this case the natural
transformation amounts to a G-map FAE — E.

Applying Property (1) of Definition to the precomposition of n and the
twist map G/G[[G/G = G/G]]G/G shows that the G-map EA E — E is
invariant under the twist map. Because this all takes place up to homotopy
this means that E has a homotopy commutative multiplication. Homotopy
associativity and unitality follows by considering similar diagrams.

Remark 5.12. By decomposing G-sets into orbits, we can write any map
n: A — B of G-sets as a composite of maps of the type of Example [5.10] and
Example Thus the existence of norm multiplications for a spectrum F is
equivalent to the existence of compatible multiplications IV II{( (i E) — i3 E for
all subgroups H, K < G and a usual multiplication map £ A E — FE in the
homotopy category of orthogonal G-spectra.

Example 5.13. Consider the pullback diagram

Gle]]|G/e——GJe

.

G/GI1G/G —— GG

The norm multiplication corresponding to the bottom map amounts to a G-map
ENFE — E and the norm multiplication corresponding to the top map amounts
to a non-equivariant map E A E — E. The second condition in the definition of
a norm multiplication then implies that the non-equivariant map EA E — E is
the underlying map of the G-equivariant map EA E — E.

Another way of conceptualizing this compatibility is as follows. The norm
multiplications induced by the pullback diagram above yield the following dia-
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gram of maps of spectra:

NE (i E) ANNE (il B) —= N (il E)

| |

ENE ——F

The right vertical map is the Hill-Hopkins-Ravenel norm and the left verti-
cal map is the smash product of the norm with itself, whereas the horizontal
maps are ordinary multiplications. Hence this diagram tells us that the norm
N&(i*E) — E is a map of commutative monoidsE|

Example 5.14. Any commutative orthogonal G-ring spectrum FE has norm
multiplication. This follows from the fact that in the category of commutative
orthogonal ring spectra the norm, as constructed by Hill-Hopkins—Ravenel, is
left adjoint to the restriction functor [6, Corollary A.56]. The counit of this
adjunction is a map
NSi,E — E

which produces the norm multiplication. Indeed, this adjunction is a special
case of the adjunction of Proposition (cf. [6, §A.3.5]). To be explicit, let
n: A — B be a map of finite G-sets, and consider the adjunction n. - n* of
Proposition The identity map const4(E) — n*constg(E) has adjunct the
desired norm multiplication n/ const4 & — constgFE. Compatibility condition
(1) is a standard property of adjunctions. Condition (2) follows from inspection
of the definitions of the counit in the adjunction of Proposition [3.8

Remark 5.15. As discussed in [I], there are multiple generalizations of Fo,
operads to the G-equivariant context, known as N, operads. Given an N
operad O, there is a concomitant notion of an O-admissible H-set for each
H<G.

Given a collection of admissible H-sets for each H < G satisfying the con-
ditions spelled out in [I} §4], we say that n: A — B is admissible if each n~1(b)
is an admissible Gy-set. If we only use admissible norm maps we arrive at the
notion of an incomplete RO(G)-graded Tambara functor, and we could modify
Definition by only asking for admissible norm multiplication.

Then any O-algebra E has O-admissible norm multiplication, and given a
G-spectrum E with admissible norm multiplication the obvious generalization
of Theorem below still holds. We have avoided the additional generality in
an attempt at keeping the paper readable.

Now we can prove Theorem [I.4] which we restate here for convenience.

Theorem 5.16. Let E be an orthogonal G-spectrum with a norm multiplication.
Then E determines an RO(G)-graded Tambara functor

7 (E): RO(G)™mP — Ab.

IThanks to Mike Hill for pointing out this alternate interpretation.
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sending (X,x) to 7, (E)(X, x).

Proof. There are only two things left to prove. First, we need to prove that our
definition of m, (F) respects composition of norm maps and restriction maps.
Suppose we have a norm map (n,7): (A,«) — (B,5) and a restriction map
(r,7): (X,x) = (B, ) as in Section We need to prove that the two com-
posites

(r,7)" o (n,R)z, (n',7)0 o (', 7)": o, (E)(A, ) = m,(E)(X,X)

agree.
The first composite is given by sending a natural transformation ¢: S¢ =
const 4(E) to the composite

*
T n

7 N A r*n/\(z)
SX = §F —= ) Y =—=
* B
r*nl const 4 (E) =24 r*const3(E) = consty (E)
while the other sends ¢ to

~/ (n/)ff/
e

SX % (n/)i\Sé (" )* (T ) ¢

)3y 5
(n)2(r")*const 4 (E) = (n')2constp(E) “:g> const x (F)

It follows that the composites are equal from three observations. First, the
functors r*n’S® and (n/)2 (r')*S* are naturally isomorphic, with both given by
T /\n(a)z,.(x)So‘(a), and the two maps from SX are isomorphic.

Second, the functors r*n/ const4(E) and (n'),(')*const 4 (FE) are naturally
isomorphic, and the two maps from r*nS* = (n’)2(r')*S® are homotopic.

And third, the two maps from r*nfconsta(E) = (n').(r")*consta(E) to
constx (E) agree. This follows from the condition that the norm multiplication
maps are stable under pullback.

The final thing to prove is that given an exponentiation diagram as in Section

the two maps

(n,a)7 o (t,))

* 9

(tlvgl)ﬁ\c/ o (n/a ﬁ/)i\ o (7", 7:)*: E*(E)(C7 5) - ﬂ*(E)(Baﬂ)

agree.
The first composite is given by sending a natural transformation ¢: S& —
consto(E) to the composite

7 LPT(E M
§8 & phge LT apyge Retd

B
ntY conste (E) = nyconst4(E) £ constx (E)
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while the other sends ¢ to

Sﬂ PT(F% (t/)isé (tl)*ﬁ/ (t/)l/(n/)i\se (t )* (” )*7:

(¥ (') or 8¢ LB (@) (') " consto (E)

t v, D
= (')} (n")2conste (E) ). e, (t')«constp(FE) = constp(FE)
Again it follows that these two composites are equal from three observations.
First, the functors n)tY S¢ and (/)Y (n’)2r*S¢ are naturally isomorphic, because
the value on b is given by

/\(\/Ss<c>>g\/(/\5£<e>

n(a)=b t(c)=a t'(d)=b n’(e)=d

Moreover, the two maps from S? are isomorphic.

Second, the functors n)'t)constc(E) and (¢')) (n/)2r*constc(E) are natu-
rally isomorphic, and the two maps from n/tYS¢ = (¢)Y(n/)r*S¢ are homo-
topic.

And third, the two maps from ntYconstc(E) = (¢)Y(n') r*consto(F)
agree. This follows because for fixed b € B the map

\/ ( A E)E £
n'(e)=d #(d)=b

is given on a wedge summand d = (b, s) by ,uﬁ, by stability under pullback. [
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