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Abstract. Many example-guided program synthesis techniques use ab-

stractions to prune the search space. While abstraction-based synthe-
sis has proven to be very powerful, a domain expert needs to provide
a suitable abstract domain, together with the abstract transformers of
each DSL construct. However, coming up with useful abstractions can
be non-trivial, as it requires both domain expertise and knowledge about
the synthesizer. In this paper, we propose a new technique for learning
abstractions that are useful for instantiating a general synthesis frame-
work in a new domain. Given a DSL and a small set of training problems,
our method uses tree interpolation to infer reusable predicate templates
that speed up synthesis in a given domain. Our method also learns suit-
able abstract transformers by solving a certain kind of second-order con-
straint solving problem in a data-driven way. We have implemented the
proposed method in a tool called Atlas and evaluate it in the context of
the Blaze meta-synthesizer. Our evaluation shows that (a) Atlas can
learn useful abstract domains and transformers from few training prob-
lems, and (b) the abstractions learned by Atlas allow Blaze to achieve
significantly better results compared to manually-crafted abstractions.

1 Introduction

Program synthesis is a powerful technique for automatically generating programs
from high-level specifications, such as input-output examples. Due to its myriad
use cases across a wide range of application domains (e.g., spreadsheet automa-
tion [1,2,3], data science [4,5,6], cryptography [7,8], improving programming pro-
ductivity [9,10,11]), program synthesis has received widespread attention from
the research community in recent years.

Because program synthesis is, in essence, a very difficult search problem,
many recent solutions prune the search space by utilizing program abstrac-
tions [12,4,13,14,15,16]. For example, state-of-the-art synthesis tools, such as
Blaze [14], Morpheus [4] and Scythe [16], symbolically execute (partial) pro-
grams over some abstract domain and reject those programs whose abstract be-
havior is inconsistent with the given specification. Because many programs share
the same behavior in terms of their abstract semantics, the use of abstractions
allows these synthesis tools to significantly reduce the search space.

While the abstraction-guided synthesis paradigm has proven to be quite pow-
erful, a down-side of such techniques is that they require a domain expert to man-
ually come up with a suitable abstract domain and write abstract transformers
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extracting templates from the predicates used in Ii. The Abstraction Learner
also synthesizes the corresponding abstract transformers for Ai+1 by setting
up a second-order constraint solving problem where the goal is to find the un-
known relationship between symbolic constants used in the predicate templates.
Our method solves this problem in a data-driven way by sampling input-output
examples for DSL operators and ultimately reduces the transformer learning
problem to solving a system of linear equations.

We have implemented these ideas in a tool called Atlas and evaluate it
in the context of the Blaze program synthesis framework [14]. Our evaluation
shows that the proposed technique eliminates the manual effort involved in de-
signing useful abstractions. More surprisingly, our evaluation also shows that the
abstractions generated by Atlas outperform manually-crafted ones in terms of
the performance of the Blaze synthesizer in two different application domains.

To summarize, this paper makes the following key contributions:

– We describe a method for learning abstractions (domains/transformers) that
are useful for instantiating program synthesis frameworks in new domains.

– We show how tree interpolation can be used for learning abstract domains
(i.e., predicate templates) from a few training problems.

– We describe a method for automatically synthesizing transformers for a given
abstract domain under certain assumptions. Our method is guaranteed to
find the unique best transformer if one exists.

– We implement our method in a tool called Atlas and experimentally evalu-
ate it in the context of the Blaze synthesis framework. Our results demon-
strate that the abstractions discovered by Atlas outperform manually-
written ones used for evaluating Blaze in two application domains.

2 Illustrative Example

Suppose that we wish to use the Blaze meta-synthesizer to automate the class
of string transformations considered by FlashFill [1] and BlinkFill [17]. In the
original version of the Blaze framework, a domain expert needs to come up
with a universe of suitable predicate templates as well as abstract transformers
for each DSL construct [14]. We will now illustrate how Atlas automates this
process, given a suitable DSL and its semantics (e.g., the one used in [17]).

In order to useAtlas, one needs to provide a set of synthesis problems E (i.e.,
input-output examples) that will be used in the training process. Specifically, let
us consider the three synthesis problems given below:

E =







E1 :
{
“CAV” 7→ “CAV2018”, “SAS” 7→ “SAS2018”, “FSE” 7→ “FSE2018”

}
,

E2 :
{
“510.220.5586” 7→ “510-220-5586”

}
,

E3 :

{
“\Company\Code\index.html” 7→ “\Company\Code\”,
“\Company\Docs\Spec\specs.html” 7→ “\Company\Docs\Spec\”

}







.

In order to construct the abstract domain A and transformers T , Atlas
starts with the trivial abstract domain A0 = {>} and transformers T0, defined
as JF (>, ··,>)K] = > for each DSL construct F . Using this abstraction, Atlas
invokes Blaze to find a program P0 that satisfies specification E1 under the
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current abstraction (A0, T0). However, since the program P0 returned by Blaze

is incorrect with respect to the concrete semantics, Atlas tries to find a more
precise abstraction that allows Blaze to succeed.

Towards this goal, Atlas enters a refinement loop that culminates in the
discovery of the abstract domain A1 = {>, len( α ) = c, len( α ) 6= c}, where α

denotes a variable and c is an integer constant. In other words, A1 tracks equality
and inequality constraints on the length of strings. After learning these predicate
templates, Atlas also synthesizes the corresponding abstract transformers T1.
In particular, for each DSL construct, Atlas learns one abstract transformer
for each combination of predicate templates used in A1. For instance, for the
Concat operator which returns the concatenation y of two strings x1, x2, Atlas
synthesizes the following abstract transformers, where ? denotes any predicate:

T1 =



























JConcat(>, ?)
)
K] = >

JConcat(?,>)
)
K] = >

JConcat
(
len(x1) 6= c1, len(x2) 6= c2

)
K] = >

JConcat
(
len(x1) = c1, len(x2) = c2

)
K] =

(
len(y) = c1 + c2

)

JConcat
(
len(x1) = c1, len(x2) 6= c2

)
K] =

(
len(y) 6= c1 + c2

)

JConcat
(
len(x1) 6= c1, len(x2) = c2

)
K] =

(
len(y) 6= c1 + c2

)



























.

Since the AGS can successfully solve E1 using (A1, T1), Atlas now moves on to
the next training problem.

For synthesis problem E2, the current abstraction (A1, T1) is not sufficient
for Blaze to discover the correct program. After processing E2, Atlas refines
the abstract domain to the following set of predicate templates:

A2 =
{

>, len( α ) = c, len( α ) 6= c, charAt( α , i) = c, charAt( α , i) 6= c
}

.

Observe thatAtlas has discovered two additional predicate templates that track
positions of characters in the string. Atlas also learns the corresponding ab-
stract transformers T2 for A2.

Moving on to the final training problem E3, Blaze can already successfully
solve it using (A2, T2); thus, Atlas terminates with this abstraction.

3 Overall Abstraction Learning Algorithm

Our top-level algorithm for learning abstractions, called LearnAbstractions,
is shown in Fig. 2. The algorithm takes two inputs, namely a domain-specific
language L (both syntax and semantics) as well as a set of training problems E ,
where each problem is specified as a set of input-output examples Ei. The output
of our algorithm is a pair (A, T ), where A is an abstract domain represented by
a set of predicate templates and T is the corresponding abstract transformers.

At a high-level, the LearnAbstractions procedure starts with the most
imprecise abstraction (just consisting of >) and incrementally improves the pre-
cision of the abstract domain A whenever the AGS fails to synthesize the correct
program using A. Specifically, the outer loop (lines 4–10) considers each training
example Ei and performs a fixed-point computation (lines 5–10) that terminates
when the current abstract domain A is good enough to solve training problem
Ei. Thus, upon termination, the learnt abstract domain A is sufficiently precise
for the AGS to solve all training problems E .
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1: procedure LearnAbstractions(L,E)

input: Domain-specific language L and a set of training problems E.
output: Abstract domain A and transformers T .

2: A ←
{
>

}
; . Initialization.

3: T ←
{

JF (>, ··,>)K] = > | F ∈ Constructs(L)
}
;

4: for i← 1, ··, |E| do

5: while true do . Refinement loop.
6: P ← Synthesize(L, Ei,A, T ); . Invoke AGS.
7: if P = null then break;

8: if IsCorrect(P, Ei) then break;

9: A ← A∪ LearnAbstractDomain(P, Ei);
10: T ← LearnTransformers(L,A);

11: return (A, T );

Fig. 2: Overall learning algorithm. Constructs gives the DSL constructs in L.

Specifically, in order to find an abstraction that is sufficient for solving Ei, our
algorithm invokes the AGS with the current abstract domain A and correspond-
ing transformers T (line 6). We assume that Synthesize returns a program P that
is consistent with Ei under abstraction (A, T ). That is, symbolically executing
P (according to T ) on inputs E in

i yields abstract values ϕ that are consistent
with the outputs Eout

i (i.e., ∀j. Eout

ij ∈ γ(ϕj)). However, while P is guaranteed to
be consistent with Ei under the abstract semantics, it may not satisfy Ei under
the concrete semantics. We refer to such a program P as spurious.

Thus, whenever the call to IsCorrect fails at line 8, we invoke the LearnAb-

stractDomain procedure (line 9) to learn additional predicate templates that
are later added to A. Since the refinement of A necessitates the synthesis of new
transformers, we then call LearnTransformers (line 10) to learn a new T .
The new abstraction is guaranteed to rule out the spurious program P as long
as there is a unique best transformer of each DSL construct for domain A.

4 Learning Abstract Domain using Tree Interpolation

In this section, we present the LearnAbstractDomain procedure: Given a
spurious program P and a synthesis problem E that P does not solve, our goal
is to find new predicate templates A′ to add to the abstract domain A such that
the Abstraction-Guided Synthesizer no longer returns P as a valid solution to the
synthesis problem E . Our key insight is that we can mine for such useful predicate
templates by constructing a tree interpolation problem. In what follows, we first
review tree interpolants (based on [18]) and then explain how we use this concept
to find useful predicate templates.

Definition 1 (Tree interpolation problem). A tree interpolation problem
T = (V, r, P, L) is a directed labeled tree, where V is a finite set of nodes, r ∈ V

is the root, P : (V \{r}) 7→ V is a function that maps children nodes to their
parents, and L : V 7→ F is a labeling function that maps nodes to formulas from
a set F of first-order formulas such that

∧

v∈V L(v) is unsatisfiable.
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In other words, a tree interpolation problem is defined by a tree T where
each node is labeled with a formula and the conjunction of these formulas is un-
satisfiable. In what follows, we write Desc(v) to denote the set of all descendants
of node v, including v itself, and we write NonDesc(v) to denote all nodes other
than those in Desc(v) (i.e., V \Desc(v)). Also, given a set of nodes V ′, we write
L(V ′) to denote the set of all formulas labeling nodes in V ′.

Given a tree interpolation problem T , a tree interpolant I is an annotation
from every node in V to a formula such that the label of the root node is false
and the label of an internal node v is entailed by the conjunction of annotations
of its children nodes. More formally, a tree interpolant is defined as follows:

Definition 2 (Tree interpolant). Given a tree interpolation problem T =
(V, r, P, L), a tree interpolant for T is a function I : V 7→ F that satisfies the
following conditions:

1. I(r) = false;

2. For each v ∈ V :
(

(
∧

P (ci)=v I(ci)
)

∧ L(v)
)

⇒ I(v);

3. For each v ∈ V : Vars
(

I(v)
)

⊆ Vars
(

L(Desc(v))
)
⋂

Vars
(

L(NonDesc(v))
)

.

len(v1) = len(v2) + len(v3)
^ 8 0 ≤ i < len(v2) : v1[i] = v2[i]
^ 8 len(v2) ≤ j < len(v2) + len(v3) :

v1[j] = v3[j − len(v2)]

v1

v2 v3

r

len(v2) = 3 len(v3) = 2

len(v1) 6= 7

false

v2 = “CAV” v3 = “18”

v1 = “CAV2018”

Fig. 3: A tree interpolation problem and
a tree interpolant (underlined).

Intuitively, the first condition en-
sures that I establishes the unsatisfia-
bility of formulas in T , and the second
condition states that I is a valid an-
notation. As standard in Craig inter-
polation [19,20], the third condition
stipulates a “shared vocabulary” con-
dition by ensuring that the annota-
tion at each node v refers to the com-
mon variables between the descen-
dants and non-descendants of v.

Example 1. Consider the tree interpolation problem T = (V, r, P, L) in Fig. 3,
where L(v) is shown to the right of each node v. A tree interpolant I for this
problem maps each node to the corresponding underlined formula. For instance,
we have I(v1) = (len(v1) 6= 7). It is easy to confirm that I is a valid interpolant
according to Definition 2.

To see how tree interpolation is useful for learning predicates, suppose that
the spurious program P is represented as an abstract syntax tree (AST), where
each non-leaf node is labeled with the axiomatic semantics of the corresponding
DSL construct. Now, since P does not satisfy the given input-output example
(ein, eout), we can use this information to construct a labeled tree where the
conjunction of labels is unsatisfiable. Our key idea is to mine useful predicate
templates from the formulas used in the resulting tree interpolant.

With this intuition in mind, let us consider the LearnAbstractDomain

procedure shown in Fig. 4: The algorithm uses a procedure called Construct-

Tree to generate a tree interpolation problem T for each input-output example
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1: procedure LearnAbstractDomain(P, E)

input: Program P that does not solve problem E (set of examples).
output: Set of predicate templates A′.

2: A′ ← ∅;
3: for each (ein, eout) ∈ E do

4: if JPKein 6= eout then
5: T ← ConstructTree(P, ein, eout);
6: I ← FindTreeItp(T );
7: for each v ∈ Nodes(T )\{r} do
8: A′ ← A′ ∪

{
MakeSymbolic

(
I(v)

)}
;

9: return A′;

Fig. 4: Algorithm for learning abstract domain using tree interpolation.

(ein, eout)
4 that program P does not satisfy (line 4). Specifically, lettingΠ denote

the AST representation of P, we construct T = (V, r, P, L) as follows:

– V consists of all AST nodes in Π as well as a “dummy” node d.
– The root r of T is the dummy node d.
– P is a function that maps children AST nodes to their parents and maps the

root AST node to the dummy node d.
– L maps each node v ∈ V to a formula as follows:

L(v) =



























v′ = eout v is the dummy root node with child v′.

v = ein v is a leaf representing program input.

v = c v is a leaf representing constant c.

φF [v
′/x, v/y] v represents DSL operator F with axiomatic semantics

φF (x, y) and v′ represents children of v.

Essentially, the ConstructTree procedure labels any leaf node represent-
ing the program input with the input example ein and the root node with the
output example eout. All other internal nodes are labeled with the axiomatic se-
mantics of the corresponding DSL operator (modulo renaming).5 Observe that
the formula

∧

v∈V L(v) is guaranteed to be unsatisfiable since P does not satisfy
the I/O example (ein, eout); thus, we can obtain a tree interpolant for T .

Example 2. Consider program P : Concat(x, “18”) which concatenates constant
string “18” to input x. Fig. 3 shows the result of invoking ConstructTree for
P and input-output example (“CAV”, “CAV2018”). As mentioned in Example 1,
the tree interpolant I for this problem is indicated with the underlined formulas.

Since the tree interpolant I effectively establishes the incorrectness of pro-
gram P, the predicates used in I serve as useful abstract values that the syn-
thesizer (AGS) should consider during the synthesis task. Towards this goal,

4 Without loss of generality, we assume that programs take a single input x, as we can
always represent multiple inputs as a list.

5 Here, we assume access to the DSL’s axiomatic semantics. If this is not the case (i.e.,
we are only given the DSL’s operational semantics), we can still annotate each node
as v = c where c denotes the output of the partial program rooted at node v when
executed on ein. However, this may affect the quality of the resulting interpolant.
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the LearnAbstractDomain algorithm iterates over each predicate used in I
(lines 7–8 in Fig. 4) and converts it to a suitable template by replacing the con-
stants and variables used in I(v) with symbolic names (or “holes”). Because the
original predicates used in I may be too specific for the current input-output
example, extracting templates from the interpolant allows our method to learn
reusable abstractions.

Example 3. Given the tree interpolant I from Example 1, LearnAbstractDo-

main extracts two predicate templates, namely, len( α ) = c and len( α ) 6= c.

5 Synthesis of Abstract Transformers

In this section, we turn our attention to the LearnTransformers procedure
for synthesizing abstract transformers T for a given abstract domain A. Follow-
ing presentation in prior work [14], we consider abstract transformers that are
described using equations of the following form:

JF
(

χ1(x1, c1), ··, χn(xn, cn)
)

K] =
∧

1≤j≤m

χ′
j

(

y,f j(c)
)

(1)

Here, F is a DSL construct, χi, χ
′
j are predicate templates 6, xi is the i’th

input of F , y is F ’s output, c1, ··, cn are vectors of symbolic constants, and
f j denotes a vector of affine functions over c = c1, ··, cn. Intuitively, given
concrete predicates describing the inputs to F , the transformer returns concrete
predicates describing the output. Given such a transformer τ , let Outputs(τ) be
the set of pairs (χ′

j ,f j) in Eqn. 1.
We define the soundness of a transformer τ for DSL operator F with re-

spect to F ’s axiomatic semantics φF . In particular, we say that the abstract
transformer from Eqn. 1 is sound if the following implication is valid:

(

φF (x, y) ∧
∧

1≤i≤n

χi(xi, ci)
)

⇒
∧

1≤j≤m

χ′
j

(

y,f j(c)
)

(2)

That is, the transformer for F is sound if the (symbolic) output predicate is
indeed implied by the (symbolic) input predicates according to F ’s semantics.

Our key observation is that the problem of learning sound transformers can
be reduced to solving the following second-order constraint solving problem:

∃f . ∀V .
(

(

φF (x, y) ∧
∧

1≤i≤n

χi(xi, ci)
)

⇒
∧

1≤j≤m

χ′
j

(

y,f j(c)
)

)

(3)

where f = f1, ··,fm and V includes all variables and functions from Eqn. 2
other than f . In other words, the goal of this constraint solving problem is to
find interpretations of the unknown functions f that make Eqn. 2 valid. Our key
insight is to solve this problem in a data-driven way by exploiting the fact that
each unknown function fj,k is affine.

Towards this goal, we first express each affine function fj,k(c) as follows:

fj,k(c) = pj,k,1 · c1 + · ·+pj,k,|c| · c|c| + pj,k,|c|+1

6 We assume that χ′
1, ··, χ

′
m are distinct.
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where each pj,k,l corresponds to an unknown integer constant that we would like
to learn. Now, arranging the coefficients of functions fj,1, ··, fj,|fj | in f j into a
|f j | × (|c|+ 1) matrix Pj , we can represent f j(c) in the following way:

f j(c)
ᵀ =





fj,1(c)
··

fj,|fj |(c)





︸ ︷︷ ︸

c′
j
ᵀ

=





pj,1,1 ·· pj,1,|c|+1

·· ··
pj,|fj |,1 ·· pj,|fj |,|c|+1





︸ ︷︷ ︸
Pj







c1
··
c|c|
1







︸ ︷︷ ︸

c†

(4)

where c† is cᵀ appended with the constant 1.
Given this representation, it is easy to see that the problem of synthesizing

the unknown functions f1, ··,fm from Eqn. 2 boils down to finding the unknown
matrices P1, ··, Pm such that each Pj makes the following implication valid:

Λ ≡
((

(c′j
ᵀ
= Pjc

†) ∧ φF (x, y) ∧
∧

1≤i≤n

χi(xi, ci)
)

⇒ χ′
j(y, c

′
j)
)

(5)

Our key idea is to infer these unknown matrices P1, ··, Pm in a data-driven
way by generating input-output examples of the form [i1, ··, i|c|] 7→ [o1, ··, o|fj |]
for each f j . In other words, i and o correspond to instantiations of c and f j(c)
respectively. Given sufficiently many such examples for every f j , we can then
reduce the problem of learning each unknown matrix Pj to the problem of solving
a system of linear equations.

Based on this intuition, the LearnTransformers procedure from Fig. 5
describes our algorithm for learning abstract transformers T for a given abstract
domain A. At a high-level, our algorithm synthesizes one abstract transformer
for each DSL construct F and n argument predicate templates χ1, ··, χn. In
particular, given F and χ1, ··, χn, the algorithm constructs the “return value” of
the transformer as:

ϕ =
∧

1≤j≤m

χ′
j(y,f j(c))

where f j is the inferred affine function for each predicate template χ′
j .

The key part of our LearnTransformers procedure is the inner loop (lines
5–8) for inferring each of these f j ’s. Specifically, given an output predicate tem-
plate χ′

j , our algorithm first generates a set of input-output examples E of the

form [p1, ··, pn] 7→ p0 such that JF (p1, ··, pn)K
] = p0 is a sound (albeit overly spe-

cific) transformer. Essentially, each pi is a concrete instantiation of a predicate
template, so the examples E generated at line 6 of the algorithm can be viewed
as sound input-output examples for the general symbolic transformer given in
Eqn. 1. (We will describe the GenerateExamples procedure in Section 5.1).

Once we generate these examples E, the next step of the algorithm is to
learn the unknown coefficients of matrix Pj from Eqn. 5 by solving a system of
linear equations (line 7). Specifically, observe that we can use each input-output
example [p1, ··, pn] 7→ p0 in E to construct one row of Eqn. 4. In particular, we
can directly extract c = c1, ··, cn from p1, ··, pn and the corresponding value of
f j(c) from p0. Since we have one instantiation of Eqn. 4 for each of the input-
output examples in E, the problem of inferring matrix Pj now reduces to solving
a system of linear equations of the form APT

j = B where A is a |E| × (|c| + 1)
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1: procedure LearnTransformers(L,A)
input: DSL L and abstract domain A.
output: A set of transformers T for constructs in L and abstract domain A.

2: for each F ∈ Constructs(L) do

3: for (χ1, ··, χn) ∈ A
n do

4: ϕ← >; . ϕ is output of transformer.

5: for χ′
j ∈ A do

6: E ← GenerateExamples(φF , χ
′
j , χ1, ··, χn);

7: f j ← Solve(E);

8: if f j 6= null ∧ Valid(Λ[fj ]) then ϕ← (ϕ ∧ χ′
j(y,f j(c1, ··, cn)))

9: T ← T ∪
{
JF (χ1(x1, c1), ··, χn(xn, cn))K

] = ϕ
}
;

10: return T ;

Fig. 5: Algorithm for synthesizing abstract transformers. φF at line 6 denotes the
axiomatic semantics of DSL construct F . Formula Λ at line 8 refers to Eqn. 5.

(input) matrix and B is a |E| × |f j | (output) matrix. Thus, a solution to the
equation APT

j = B generated from E corresponds to a candidate solution for
matrix Pj , which in turn uniquely defines f j .

Observe that the call to Solve at line 7 may return null if no affine function
exists. Furthermore, any non-null f j returned by Solve is just a candidate so-
lution and may not satisfy Eqn. 5. For example, this situation can arise if we
do not have sufficiently many examples in E and end up discovering an affine
function that is “over-fitted” to the examples. Thus, the validity check at line 8
of the algorithm ensures that the learnt transformers are actually sound.

5.1 Example Generation

In our discussion so far, we assumed an oracle that is capable of generating valid
input-output examples for a given transformer. We now explain our Genera-

teExamples procedure from Fig. 6 that essentially implements this oracle. In
a nutshell, the goal of GenerateExamples is to synthesize input-output ex-
amples of the form [p1, ··, pn] 7→ p0 such that JF (p1, ··, pn)K

] = p0 is sound where
each pi is a concrete predicate (rather than symbolic).

Going into more detail, GenerateExamples takes as input the semantics
φF of DSL construct F for which we want to learn a transformer for as well as
the input predicate templates χ1, ··, χn and output predicate template χ0 that
are supposed to be used in the transformer. For any example [p1, ··, pn] 7→ p0
synthesized by GenerateExamples, each concrete predicate pi is an instanti-
ation of the predicate template χi where the symbolic constants used in χi are
substituted with concrete values.

Conceptually, theGenerateExamples algorithm proceeds as follows: First,
it generates concrete input-output examples [s1, ··, sn] 7→ s0 by evaluating F

on randomly-generated inputs s1, ··, sn (lines 4–5). Now, for each concrete I/O
example [s1, ··, sn] 7→ s0, we generate a set of abstract I/O examples of the form
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1: procedure GenerateExamples(φF , χ0, ··, χn)

input: Semantics φF of operator F and templates χ0, ··, χn for output and inputs.
output: A set of valid input-output examples E for DSL construct F .

2: E ← ∅;

3: while ¬FullRank(E) do

4: Draw (s1, ··, sn) randomly from distribution RF over Domain(F );
5: s0 ← JF (s1, ··, sn)K;
6: (A0, ··, An)← Abstract(s0, χ0, ··, sn, χn);

7: for each (p0, ··, pn) ∈ A0 × · · ×An do

8: if Valid
(∧

1≤i≤n pi ∧ φF ⇒ p0
)
then E ← E ∪

{
[p1, ··, pn] 7→ p0

}
;

9: return E;

Fig. 6: Example generation for learning abstract transformers.

[p1, ··, pn] 7→ p0 (line 6). Specifically, we assume that the return value (A0, ··, An)
of Abstract at line 6 satisfies the following properties for every pi ∈ Ai:
– pi is an instantiation of template χi.
– pi is a sound over-approximation of si (i.e., si ∈ γ(pi)).
– For any other p′i satisfying the above two conditions, p′i is not logically
stronger than pi.

In other words, we assume that Abstract returns a set of “best” sound ab-
stractions of (s0, ··, sn) under predicate templates (χ0, ··, χn).

Next, given abstractions (A0, ··, An) for (s0, ··, sn), we consider each candidate
abstract example of the form [p1, ··, pn] 7→ p0 where pi ∈ Ai. Even though each
pi is a sound abstraction of si, the example [p1, ··, pn] 7→ p0 may not be valid
according to the semantics of operator F . Thus, the validity check at line 8
ensures that each example added to E is in fact valid.

Example 4. Given abstract domain A = {len( α ) = c}, suppose we want to
learn an abstract transformer τ for the Concat operator of the following form:

JConcat
(

len(x1) = c1, len(x2) = c2
)

K] =
(

len(y) = f([c1, c2])
)

We learn the affine function f used in the transformer by first generating
a set E of I/O examples for f (line 6 in LearnTransformers). In particu-
lar, GenerateExamples generates concrete input values for Concat at random
and obtains the corresponding output values by executing Concat on the input
values. For instance, it may generate s1 = “abc” and s2 = “de” as inputs, and
obtain s0 = “abcde” as output. Then, it abstracts these values under the given
templates. In this case, we have an abstract example with p1 =

(

len(x1) = 3
)

,

p2 =
(

len(x2) = 2
)

and p0 =
(

len(y) = 5
)

. Since [p1, p2] 7→ p0 is a valid ex-
ample, it is added in E (line 8 in GenerateExamples). At this point, E is
not yet full rank, so the algorithm keeps generating more examples. Suppose it
generates two more valid examples

(

len(x1) = 1, len(x2) = 4
)

7→
(

len(y) = 5
)

and
(

len(x1) = 6, len(x2) = 4
)

7→
(

len(y) = 10
)

. Now E is full rank, so Learn-

Transformers computes f by solving the following system of linear equations:
[

3 2 1
1 4 1
6 4 1

]

PT =

[

5
5
10

]

Solve
====⇒ P = [ 1 1 0 ]
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Here, P corresponds to the function f([c1, c2]) = c1 + c2, and this function de-
fines the sound transformer: JConcat

(

len(x1) = c1, len(x2) = c2

)

K] =
(

len(y) =

c1 + c2

)

which is added to T at line 9 in LearnTransformers.

6 Soundness and Completeness

In this section we present theorems stating some of the soundness, completeness,
and termination guarantees of our approach. All the proofs can be found in the
appendix.

Theorem 1 (Soundness of LearnTransformers). Let T be the set of trans-
formers returned by LearnTransformers. Then, every τ ∈ T is sound ac-
cording to Eqn. 2.

The remaining theorems are predicated on the assumptions that for each DSL
construct F and input predicate templates χ1, ··, χn (i) there exists a unique best
abstract transformer and (ii) the strongest transformer expressible in Eqn. 2 is
logically equivalent to the unique best transformer. Thus, before stating these
theorems, we first state what we mean by a unique best abstract transformer.

Definition 3 (Unique best function). Consider a family of transformers of
the shape JF

(

χ1(x1, c1), ··, χn(xn, cn)
)

K] = χ′(y, ?). We say that f is the unique
best function for (F, χ1, ··, χn, χ

′) if (a) replacing ? with f yields a sound trans-
former, and (b) replacing ? with any other f ′ yields a transformer that is either
unsound or strictly worse (i.e., χ′(y,f) ⇒ χ′(y,f ′) and χ′(y,f ′) 6⇒ χ′(y,f). )

We now define unique best transformer in terms of unique best function:

Definition 4 (Unique best transformer). Let F be a DSL construct and
let (χ1, ··, χn) ∈ An be the input templates for F . We say that the abstract
transformer τ is a unique best transformer for F, χ1, ··, χn if (a) τ is sound, and
(b) for any predicate template χ ∈ A, we have (χ,f) ∈ Outputs(τ) if and only if
f is a unique best function for (F, χ1, ··, χn, χ) for some affine f .

Definition 5 (Complete sampling oracle). Let F be a construct, A an ab-
stract domain, and RF a probability distribution over Domain(F ) with finite
support S. Futher, for any input predicate templates χ1, ··, χn and output predi-
cate template χ0 in A admitting a unique best function f , let C(χ0, ··, χn) be the
set of tuples (c0, ··, cn) such that (χ0(y, c0), χ1(x1, c1), ··, χn(xn, cn)) ∈ A0×··×An

and c0 = f(c1, ··, cn), where A0 × · · ×An = Abstract(s0, χ0, ··, sn, χn) and
(s1, ··, sn) ∈ S and s0 = JF (s1, ··, sn)K. The distribution RF is a complete sam-
pling oracle if C(χ0, ··, χn) has full rank for all χ0, ··, χn.

The following theorem states that LearnTransformers is guaranteed to
synthesize the best transformer if a unique one exists:

Theorem 2 (Completeness of LearnTransformers). Given an abstract
domain A and a complete sampling oracle RF for A, LearnTransformers

terminates. Further, let T be the set of transformers returned and let τ be
the unique best transformer for DSL construct F and input predicate templates
χ1, ··, χn ∈ An. Then we have τ ∈ T .
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Using this completeness (modulo unique best transformer) result, we can now
state the termination guarantees of our LearnAbstractions algorithm:

Theorem 3 (Termination of LearnAbstractions). Given a complete sam-
pling oracle RF for every abstract domain and the unique best transformer as-
sumption, if there exists a solution for every problem Ei ∈ E, then LearnAb-

stractions terminates.

7 Implementation and Evaluation

We have implemented the proposed method as a new tool called Atlas, which is
written in Java. Atlas takes as input a set of training problems, an Abstraction-
Guided Synthesizer (AGS), and a DSL and returns an abstract domain (in the
form of predicate templates) and the corresponding transformers. Internally,
Atlas uses the Z3 theorem prover [21] to compute tree interpolants and the
JLinAlg linear algebra library [22] to solve linear equations.

To assess the usefulness of Atlas, we conduct an experimental evaluation in
which our goal is to answer the following two questions:

1. How does Atlas perform during training? That is, how many training prob-
lems does it require and how long does training take?

2. How useful are the abstractions learnt by Atlas in the context of synthesis?

7.1 Abstraction Learning

To answer our first question, we use Atlas to automatically learn abstractions
for two application domains: (i) string manipulations and (ii) matrix transforma-
tions. We provide Atlas with the DSLs used in [14] and employ Blaze as the
underlying Abstraction-Guided Synthesizer. Axiomatic semantics for each DSL
construct were given in the theory of equality with uninterpreted functions.

Training set information. For the string domain, our training set consists
of exactly the four problems used as motivating examples in the BlinkFill pa-
per [17]. Specifically, each training problem consists of 4-6 examples that demon-
strate the desired string transformation. For the matrix domain, our training set
consists of four (randomly selected) synthesis problems taken from online forums.
Since almost all online posts contain a single input-output example, each training
problem includes one example illustrating the desired matrix transformation.

Main results. Our main results are summarized in Fig. 7. The main take-away
message is that Atlas can learn abstractions quite efficiently and does not
require a large training set. For example, Atlas learns 5 predicate templates
and 30 abstract transformers for the string domain in a total of 10.2 seconds.
Interestingly, Atlas does not need all the training problems to infer these four
predicates and converges to the final abstraction after just processing the first
training instance. Furthermore, for the first training instance, it takes Atlas 4
iterations in the learning loop (lines 5-10 from Fig. 2) before it converges to the
final abstraction. Since this abstraction is sufficient for solving the remaining
training problems, the loop takes just one iteration.
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|A| |T | Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 5 30 4 0.6 0.2 0.2 1.0

E2 5 30 1 4.9 0 0 4.9

E3 5 30 1 0.2 0 0 0.2

E4 5 30 1 4.1 0 0 4.1

Total 5 30 7 9.8 0.2 0.2 10.2

String domain

|A| |T | Iters.
Running time (sec)

TAGS TA TT Ttotal

E1 8 45 3 2.9 0.7 0.5 4.1

E2 8 45 1 2.8 0 0 2.8

E3 10 59 2 0.5 0.3 0.2 1.0

E4 10 59 1 14.6 0 0 14.6

Total 10 59 7 20.8 1.0 0.7 22.5

Matrix domain

Fig. 7: Training results. |A|, |T |, Iters denote the number of predicate templates,
abstract transformers, and iterations taken per training instance (lines 5-10 from
Fig. 2), respectively. TAGS, TA, TT denote the times for invoking the synthesizer
(AGS), learning the abstract domain, and learning the abstract transformers,
respectively. Ttotal shows the total training time in seconds.

Original Blaze
† benchmarks Additional benchmarks All benchmarks

#Solved
Running time
improvement

#Solved
Running time
improvement

Time
(sec)

Running time
improvement

Blaze
?
Blaze

† max. avg. Blaze
?
Blaze

† max. avg. avg. max. avg.

String 93 91 15.7× 2.1× 40 40 56× 22.3× 2.8 56× 8.3×

Matrix 39 39 6.1× 3.1× 20 19 83× 21.5× 5.0 83× 9.2×

Fig. 8: Improvement of Blaze? over Blaze† on string and matrix benchmarks.

Looking at the right side of Fig. 7, we also observe similar results for the ma-
trix domain. In particular, Atlas learns 10 predicate templates and 59 abstract
transformers in a total of 22.5 seconds. Furthermore, Atlas converges to the
final abstract domain after processing the first three problems 7 and the number
of iterations for each training instance is also quite small.

7.2 Evaluating the Usefulness of Learnt Abstractions

To answer our second question, we integrated the abstractions synthesized by
Atlas into the Blaze meta-synthesizer. In the remainder of this section, we
refer to all instantiations of Blaze using the Atlas-generated abstractions as
Blaze?. To assess how useful the automatically generated abstractions are, we
compare Blaze? against Blaze†, which refers to the manually-constructed in-
stantiations of Blaze described in [14].

Benchmark information. For the string domain, our benchmark suite con-
sists of (1) all 108 string transformation benchmarks that were used to evaluate
Blaze† and (2) 40 additional challenging problems that are collected from online
forums which involve manipulating file paths, URLs, etc. The number of exam-
ples for each benchmark ranges from 1 to 400, with a median of 7 examples.
For the matrix domain, our benchmark set includes (1) all 39 matrix trans-
formation benchmarks in the Blaze† benchmark suite and (2) 20 additional
challenging problems collected from online forums. We emphasize that the set of
benchmarks used for evaluating Blaze? are completely disjoint from the set of
synthesis problems used for training Atlas.

7 The learnt abstractions can be found in the appendix.
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Experimental setup. We evaluate Blaze? and Blaze† using the same DSLs
from the Blaze paper [14]. For each benchmark, we provide the same set of
input-output examples to Blaze? and Blaze†, and use a time limit of 20 min-
utes per synthesis task.

Main results. Our main evaluation results are summarized in Fig. 8. The key
observation is that Blaze? consistently improves upon Blaze† for both string
and matrix transformations. In particular, Blaze? not only solves more bench-
marks than Blaze† for both domains, but also achieves about an order of mag-
nitude speed-up on average for the common benchmarks that both tools can
solve. Specifically, for the string domain, Blaze? solves 133 (out of 148) bench-
marks within an average of 2.8 seconds and achieves an average 8.3× speed-up
over Blaze†. For the matrix domain, we also observe a very similar result where
Blaze? leads to an overall speed-up of 9.2× on average.

In summary, this experiment confirms that the abstractions discovered by
Atlas are indeed useful and that they outperform manually-crafted abstractions
despite eliminating human effort.

8 Related Work

To our knowledge, this paper is the first one to automatically learn abstract
domains and transformers that are useful for program synthesis. We also believe
it is the first to apply interpolation to program synthesis, although interpolation
has been used to synthesize other artifacts such as circuits [23] and strategies for
infinite games [24]. In what follows, we briefly survey existing work related to
program synthesis, abstraction learning, and abstract transformer computations.

Program synthesis. Our work is intended to complement example-guided pro-
gram synthesis techniques that utilize program abstractions to prune the search
space [15,16,4,14]. For example, Simpl [15] uses abstract interpretation to speed
up search-based synthesis and applies this technique to the generation of impera-
tive programs for introductory programming assignments. Similarly, Scythe [16]
and Morpheus [4] perform enumeration over program sketches and use abstrac-
tions to reject sketches that do not have any valid completion. Somewhat differ-
ent from these techniques, Blaze constructs a finite tree automaton that accepts
all programs whose behavior is consistent with the specification according to the
DSL’s abstract semantics. We believe that the method described in this paper
can be useful to all such abstraction-guided synthesizers.

Abstraction refinement. In verification, as opposed to synthesis, there have
been many works that use Craig interpolants to refine abstractions [20,25,26].
Typically, these techniques generalize the interpolants to abstract domains by
extracting a vocabulary of predicates, but they do not generalize by adding pa-
rameters to form templates. In our case, this is essential because interpolants
derived from fixed input values are too specific to be directly useful. Moreover,
we reuse the resulting abstractions for subsequent synthesis problems. In verifi-
cation, this would be analogous to re-using an abstraction from one property or
program to the next. It is conceivable that template-based generalization could
be applied in verification to facilitate such reuse.
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Abstract transformers. Many verification techniques use logical abstract do-
mains [27,28,29,30,31]. Some of these, following Yorsh, et al. [32] use sampling
with a decision procedure to evaluate the abstract transformer [33]. Interpola-
tion has also been used to compile efficient symbolic abstract transformers [34].
However, these techniques are restricted to finite domains or domains of finite
height to allow convergence. Here, we use infinite parameterized domains to ob-
tain better generalization; hence, the abstract transformer computation is more
challenging. Nonetheless, the approach might also be applicable in verification.

9 Limitations

While this paper takes a first step towards automatically inferring useful ab-
stractions for synthesis, our proposed method has the following limitations:

Shapes of transformers. Following prior work [14], our algorithm assumes that
abstract transformers have the shape given in Eqn. 1. We additionally assume
that constants c used in predicate templates are numeric values and that func-
tions in Eqn. 1 are affine. This assumption holds in several domains considered
in prior work [4,14] and allows us to develop an efficient learning algorithm that
reduces the problem to solving a system of linear equations.

DSL semantics. Our method requires the DSL designer to provide the DSL’s
logical semantics. We believe that giving logical semantics is much easier than
coming up with useful abstractions, as it does not require insights about the
internal workings of the synthesizer. Furthermore, our technique could, in prin-
ciple, also work without logical specifications although the learnt abstract do-
main may not be as effective (see Footnote 3 in Section 4) and the synthesized
transformers would not be provably sound.

UBT assumption. Our completeness and termination theorems are predicated
on the unique best transformer (UBT) assumption. While this assumption holds
in our evaluation, it may not hold in general. However, as mentioned in Section 6,
we can always guarantee termination by including the concrete predicates used
in the interpolant I in addition to the symbolic templates extracted from I.

10 Conclusion

We proposed a new technique for automatically instantiating abstraction-guided
synthesis frameworks in new domains. Given a DSL and a few training prob-
lems, our method automatically discovers a useful abstract domain and the cor-
responding transformers for each DSL construct. From a technical perspective,
our method uses tree interpolation to extract reusable templates from failed
synthesis attempts and automatically synthesizes unique best transformers if
they exist. We have incorporated the proposed approach into the Blaze meta-
synthesizer and show that the abstractions discovered by Atlas are very useful.

While we have applied the proposed technique to program synthesis, we
believe that some of the ideas introduced here are more broadly applicable. For
instance, the idea of extracting reusable predicate templates from interpolants
and synthesizing transformers in a data-driven way could also be useful in the
context of program verification.



17

References

1. Gulwani, S.: Automating String Processing in Spreadsheets Using Input-output
Examples. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL, ACM (2011) 317–330

2. Singh, R., Gulwani, S.: Transforming Spreadsheet Data Types Using Examples.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. POPL, ACM (2016) 343–356

3. Wang, X., Gulwani, S., Singh, R.: FIDEX: Filtering Spreadsheet Data using Ex-
amples. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA,
ACM (2016) 195–213

4. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-based
Synthesis of Table Consolidation and Transformation Tasks from Examples. In:
PLDI, ACM (2017) 422–436

5. Wang, X., Dillig, I., Singh, R.: Synthesis of Data Completion Scripts Using Finite
Tree Automata. Proc. ACM Program. Lang. 1(OOPSLA) (October 2017) 62:1–
62:26

6. Yaghmazadeh, N., Wang, X., Dillig, I.: Automated Migration of Hierarchical Data
to Relational Tables using Programming-by-Example. Proceedings of the VLDB
Endowment (2018)

7. Gascón, A., Tiwari, A., Carmer, B., Mathur, U.: Look for the Proof to Find
the Program: Decorated-Component-Based Program Synthesis. In: International
Conference on Computer Aided Verification. CAV, Springer (2017) 86–103

8. Tiwari, A., Gascón, A., Dutertre, B.: Program Synthesis Using Dual Interpretation.
In: International Conference on Automated Deduction, Springer (2015) 482–497

9. Feng, Y., Martins, R., Wang, Y., Dillig, I., Reps, T.W.: Component-based synthesis
for complex APIs. In: Proceedings of the 44th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. Volume 52., ACM (2017)
599–612

10. Gvero, T., Kuncak, V., Kuraj, I., Piskac, R.: Complete Completion Using Types
and Weights. In: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI, ACM (2013) 27–38

11. Mandelin, D., Xu, L., Bod́ık, R., Kimelman, D.: Jungloid Mining: Helping to
Navigate the API Jungle. In: Proceedings of the 26th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI, ACM (2005) 48–61

12. Feser, J.K., Chaudhuri, S., Dillig, I.: Synthesizing Data Structure Transformations
from Input-output Examples. In: Proceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. PLDI, ACM (2015)
229–239

13. Polikarpova, N., Kuraj, I., Solar-Lezama, A.: Program Synthesis from Polymorphic
Refinement Types. In: Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI, ACM (2016) 522–538

14. Wang, X., Dillig, I., Singh, R.: Program Synthesis Using Abstraction Refinement.
Volume 2., ACM (2017) 63:1–63:30

15. So, S., Oh, H.: Synthesizing Imperative Programs from Examples Guided by Static
Analysis. In: Static Analysis Symposium, Springer International Publishing (2017)
364–381

16. Wang, C., Cheung, A., Bodik, R.: Synthesizing highly expressive sql queries from
input-output examples. In: Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI, ACM (2017) 452–466



18

17. Singh, R.: BlinkFill: Semi-supervised Programming by Example for Syntactic
String Transformations. Proceedings of the VLDB Endowment 9(10) (2016) 816–
827
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