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ABSTRACT
User authentication is a critical process in both corporate and home

environments due to the ever-growing security and privacy con-

cerns. With the advancement of smart cities and home environ-

ments, the concept of user authentication is evolved with a broader

implication by not only preventing unauthorized users from ac-

cessing confidential information but also providing the opportuni-

ties for customized services corresponding to a specific user. Tra-

ditional approaches of user authentication either require special-

ized device installation or inconvenient wearable sensor attach-

ment. This paper supports the extended concept of user authen-

tication with a device-free approach by leveraging the prevalent

WiFi signals made available by IoT devices, such as smart refrigera-

tor, smart TV and thermostat, etc. The proposed system utilizes the

WiFi signals to capture unique humanphysiological and behavioral

characteristics inherited from their daily activities, including both

walking and stationary ones. Particularly, we extract representa-

tive features from channel state information (CSI) measurements

ofWiFi signals, and develop a deep learning based user authentica-

tion scheme to accurately identify each individual user. Extensive

experiments in two typical indoor environments, a university office

and an apartment, are conducted to demonstrate the effectiveness

of the proposed authentication system. In particular, our system

can achieve over 94% and 91% authentication accuracywith 11 sub-

jects through walking and stationary activities, respectively.
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1 INTRODUCTION
In recent years, user authentication, the process of verifying the

identity of a personwho connects to private resources (e.g., access-

ing proprietary information and operating risky home appliances),

has become increasingly vital due to the growing concern of user

security and privacy leakage. For instance, unauthorized usersmay

access the confidential documents or offices that only allow desig-

nated personnel or operate on private devices (e.g., computers) that

always contain sensitive information. Furthermore, the emerging

applications in smart homes/offices are also exploring the ability

to distinguish different people and launch customized services ac-

cordingly, such as prohibiting children and elderly people to oper-

ate risky appliances (e.g., oven and dryer), adjusting room temper-

ature/lighting conditions and recommending TV content. Such ad-

vancement of smart environments makes the user authentication

process evolve to a broader context than traditional applications.

Traditional user authentication approachesmainly rely oneither

password [13], handwriting [3] or physiological biometrics such as

fingerprints and iris [10, 12] to authenticate users. However, they

usually require extra and dedicated devices installed before deploy-

ment. Other research studies reveal the behavioral features of users,

such as key-press durations [17] during typing and mouse dynam-

ics [26], could be applied to perform continuous user authentica-

tion. However, these approaches onlyworkwhen the user operates

the keyboard or mouse. Additionally, gait patterns [16] derived

through mobile devices require users to carry additional devices

when user authentication is performed. To support the evolving

concept of user authentication, in this paper we explore a device-

free approach that could performuser authentication through daily

activities without requiring a user to carry any device. The basic

idea is to exploit unique physical properties embedded in people’s

daily activities (e.g., entering an office with proprietary informa-

tion, opening a refrigerator or cooking on a stove) to capture each

person’s physiological and behavioral characteristics to facilitate

user authentication.

With the advent of Internet ofThings (IoT) over the past decade,

almost every electronics in indoor environments (such as smart re-

frigerator, smart TV, smart thermostat, home security system and

wearable devices) are interconnected wirelessly. Because of this,

the wireless connection among IoT devices provides rich web of re-

flected rays that spread every indoor corner. Although the wireless

signal generated by IoT devices that are designed for many special
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applications, it has the potential to capture human’s unique physio-

logical and behavioral characteristics inherited from people’s daily

activities when operating such devices (e.g., opening the refrigera-

tor and entering the restricted office), which provides an appealing

direction to differentiate each individual.

Recent studies [20, 24, 25] already show the success of using

WiFi signals to capture gait patterns for user identification. How-

ever, these approaches only apply to a small group of people (i.e.,

2 to 7) and are limited to walking people. They require either the

users to walk through well-designed paths (e.g., clear Line of Sight

(LoS) path between theWiFi devices) or have theWiFi transceivers

placed close to each other, which is not practical inmany real world

scenarios. In contrast,wepropose a device-freeuser authentication

system relying on the existing WiFi signals generated by IoT de-

vices to capture unique characteristics of each user inherited from

both walking and stationary daily activities (e.g., working in front

of the computer, operating a hot stove at home or entering an office

with proprietary information).

In order to exploit human daily activities for user authentication,

our device-free system should be able to recognize different types

of daily activities and also differentiate each individual user if the

same type of activity is performed. Thus, it is essential to derive

representative wireless measurements to well capture the physio-

logical (e.g., body shape, height, andweight) and behavioral charac-

teristics (e.g., walking patterns, preferences when operating appli-

ances) of each individual. Additionally, recognizing activities and

identifying users require different granularity of abstractions from

physiological and behavioral features. In general, activity recog-

nition requires less feature granularity than human identification

because coarse data representations are sufficient to recognize dif-

ferent types of activities with reasonable accuracy. Therefore, the

designed systemneeds to have the capability to extract different lev-

els of feature representations to perform activity recognition and

further conduct human identification.

Toward this end, we propose to extract the representative fea-

tures based on both amplitude and relative phase of Channel State

Information (CSI) measurements in WiFi signals, which have the

potential to reveal unique characteristics of different users. Fur-

thermore, a three-layer deep neural network (DNN) model is devel-

oped to learn high-level abstractions of human physiological and

behavioral characteristics for both activity recognition and human

identification, which meets the hierarchical nature of our user au-

thentication system involving different granularity levels of activ-

ity/human identification. In particular, the DNN scheme detects

the activity type (i.e., stationaryorwalking) in thefirst layer andob-

tains the activity details (e.g., walking paths, opening a refrigerator)

in the second layer. In the third layer, the model can learn the high-

est level non-linear abstractions from the representative features

obtained from human activities and authenticate the user accord-

ingly. Additionally, we also build one spoofing detection scheme

based on support vector machine (SVM). Extensive experiments in-

volving 11 subjects are conducted in both lab and apartment envi-

ronments for testing accessing restricted areas and operating risky

appliances. The results demonstrate that our device-free system

can perform accurate user authentication through human daily ac-

tivities, and is thus capable to facilitatemanyemerging applications

(e.g., smart homes/offices and smart healthcare) in both corporation

offices and residence areas. Themain contributions of our work are

summarized as follows:
• Our study shows that the existing WiFi signals generated

by indoor IoT devices can be utilized to capture unique

human physiological and behavioral characteristics and

thereby authenticate users from their daily activities (i.e.,

both walking and stationary activities).

• Our proposed device-free system leverages a single pair

of WiFi-enabled devices to extract both amplitude and rel-

ative phase from fine-grained channel state information

(CSI) to facilitate accurate user authentication without the

active participation of the users.

• We develop a deep learning based model to detect the

uniqueness of human daily activities and capture the dis-

tinct WiFi fingerprints of different users. Our system is re-

silient to user spoofing attack by integrating with the SVM

technique.

• Extensive experiments are conducted in both lab and apart-

ment environments over a five-month period, and our sys-

tem can achieve over 94% and 91% authentication accuracy

through walking and stationary activities, respectively.

2 RELATED WORK
As a traditional way for user authentication, password based ap-

proaches [3, 13] require the users to remember either some secure

texts or graphical patterns. Such authentication systems solely rely

on the knowledge of password and thus are easily suffered from

password stolen or shoulder surfing. Recent studies show success

in exploring physiological biometrics such as fingerprints, iris, and

facial information [4, 10, 12] to perform user authentication. These

approaches, however, require dedicated equipments (e.g., finger-

print scanner or iris camera) before deployment.

To overcome the aforementioned weaknesses, the researchers

seek for behavioral features for continuous user authentication.

Some studies attempt to authenticate user by measuring users’ be-

havioral characteristics such as key-press durations, multi-key la-

tencies [17], angle preferences when operating amouse [26]. How-

ever, these approaches require user active participation and can

only work when the user operates the keyboard or mouse. Fur-

thermore, Ren et al. leverage the acceleration readings from mo-

bile devices to uniquely recognize user’s walking gait patterns [16].

Ranja et al. propose to recognize the unique hallmarks [15] through

wearable sensors readings when the users are operating home ap-

pliances. These authentication schemes require users to carry addi-

tional devices which may cause inconvenience for users.

Recently, WiFi based sensing attracts considerable attention

from many researchers due to the prevalence of wireless signals

in indoor environments. Previous studies propose to use WiFi sig-

nals to recognize human activities [22], estimate walking direc-

tion [23] and even monitor people’s breathing rate while sleep-

ing [11]. Furthermore, researchers demonstrate the possibility of

utilizing wireless signals to perform user authentication. Existing

studies [20, 24, 25] explore to capture human walking gait pattern

and identify users in a small group by examining the CSI measure-

ments. Specifically, Zhang et al. [25] extract a set of 10 features

from CSI variations caused by human walking and uniquely iden-

tify each individual. Zeng et al. [24] propose a scheme which lever-

ages WiFi characteristics to identify a person’s steps and walking
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Transmitting Antenna
Receiving Antennas

Figure 1: Relative phase produced by one transmitting an-

tenna and two receiving antennas.

gait and further identify each user through the extracted CSI am-

plitude features. Additionally, Wang et al. [20] correlate movement

speed of different body parts with WiFi spectrogram and perform

gait pattern based user authentication. These approaches are lim-

ited to walking people and they require either the users to walk

through well-designed paths (e.g., clear Line of Sight (LoS) path

between the WiFi devices) or have the WiFi transceivers placed

close to each other, which are not impractical in many scenarios.

Moreover, WFID [7] performs device-free user authentication via

characterizing the uniqueness of subcarrier-amplitude frequency

(SAF) on CSI measurements when the users are standing, march-

ing, and walking. Although activities of standing andmarching are

identified, the proposed SAF feature set does not capture the phys-

iological and behavioral characteristics of users. Different from

previous work, our system examines the WiFi signals and extracts

unique physiological and behavioral characteristics inherited from

people’s daily activities including bothwalking activities (e.g., wak-

ing between rooms) and stationary activities (e.g., operating ap-

pliances) to differentiate each individual person. We exploit the

unique individual characteristics from both amplitude and relative

phase of CSI during people’s daily activities. A deep learning based

model is developed to learn deep representations and perform both

activity recognition and user authentication, which is capable to fa-

cilitate many applications in both corporation offices and residen-

tial areas.

3 SYSTEM DESIGN
In this section, we first discuss some preliminaries of CSI and sys-

tem design challenges, then we present the system overview.

3.1 Preliminaries

The prevalence of WiFi traffics in IoT environments, involving a

multitude of smart devices and appliances (laptop, smart refrigera-

tor, smart microwave oven and smart printer), can be exploited to

capture the environmental changes induced by people’s daily ac-

tivities. Even for the same activity, different users exhibit subtle

differences on the impact of wireless channel due to their unique

physiological (e.g., body shape, height) and behavior characteris-

tics (e.g., body moving). We are thus motivated to utilize the WiFi

CSI measurements in IoT environment to monitor human activity

and perform device-free user authentication.

Specifically, the fine-grained CSI describes how an OFDM sig-

nal propagates over multiple subcarriers between a pair of trans-

mitter and receiver. It presents the combined effect of scattering,

fading, and multi-path, which result in the distortion on the am-

plitude, phase and angle of arrival of the signal. Without loss of

generality, the CSI between a pair of transmitting antenna m and

receiving antenna n at the ith subcarrier is defined as:

Hm↔n
i = |Hm↔n

i |e j∠H
m↔n
i , (1)

(a) Amplitude (walking) (b) Relative phase (walking)

(c) Amplitude (opening cabinet) (d) Relative phase (opening cabinet)

Figure 2: CSI amplitude and relative phase of two users

when walking or opening a cabinet.

where |Hm↔n
i | and ∠Hm↔n

i denote the amplitude and phase re-

sponse, respectively. Previous studies have shown their success in

utilizingCSI amplitude to perform activity recognition and identify

users based on large scale body movements such as walking [20–

22, 24]. However, the problem of authenticating user based on sta-

tionary activities (e.g., opening a cabinet) remains open due to the

subtle movements of users.

To cope with the above challenge, we propose to utilize relative

phase to capture the subtle changes of human physiological and

behavioral characteristics. As the example depicted in Figure 1, the

differenceon signal path lengths,Δd , between two antennas (i.e.,n1
andn2) varies as bodymoving and thereby results in relative phase

shift (e.g.,m ↔ n1 andm ↔ n2). The relative channel response at

the ith subcarrier can be formulated as:

Ĥi = H
m↔n1
i (H

m↔n2
i )∗ = |Ĥi |e

j∠Ĥi , (2)

where ∗denotes the complex conjugate, ∠Ĥi = − 2π
λ
Δd [9] is the rel-

ative phase value, Δd is the length difference of two transmitting

paths, and λ is the signal wavelength. Given that cm-scale λ, rel-

ative phase is capable of capturing subtle movements for different

users. Relative phase can also eliminate the impact of unpredictable

offset on the absolute phase that is always hidden in the hardware

controlmechanism. Relative phase can avoid the significant unsyn-

chronization of raw phase since the ever changing phase offset of

transceivers can be eliminated in relative channel.

Figure 2 shows the extracted CSI amplitude and relative phase

of a subcarrier over a 802.11nWiFi link over time when two users

are walking along the same trajectory (3 rounds each) and open-

ing a cabinet (3 rounds each), respectively in an office. We observe

that both CSI amplitude and relative phase exhibit different vari-

ation trends between these two users, which confirms CSI is able

to capture the unique physiological and behavioral characteristics

of users. Additionally, for stationary activities (e.g., opening a cabi-

net), the differenceon relative phase ismore significant than that on

amplitude, so it indicates the high sensitivity of the relative phase

on capturing small-scale body movements.

3.2 Challenges

In order to authenticate people through people’s daily activities

via WiFi CSI measurements, a number of challenges need to be ad-

dressed.
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Figure 3: System Overview.

Uniqueness of Individual Characteristics. CSI measure-

ments embedded in WiFi signals can be affected by user’s subtle

body movements while performing activities in the environments.

Additionally, human’s physical body (e.g., shape and height) also

plays an important role to the multi-path effect, and signal inter-

ference. To authenticate users, the system needs to extract both

unique physiological and behavior characteristics for each individ-

ual from the wireless signals.

SystemRobustness & Generality.The collectedCSI measure-

ments from real-world environments are usually noisy due to the

continuous environmental changes and radio interference, etc. The

system should be robust to capture distinguishable characteristics

between users from such noisy channel measurements. Moreover,

it is essential to design a general algorithm to extract representative

features that keep andmaintainuser’s physiological and behavioral

characteristics through various daily activities.

RecognizingActivity& Identity Simultaneously. Recogniz-

ing activity and user identity simultaneously is very important in

many smart home/office enabled applications. For instance, the sys-

tem can prohibit a specific user (e.g., child) towatch TVat a specific

time period. However, recognizing activities and identifying users

require different granularity of features extracted from their activ-

ities.

3.3 System Overview

The basic idea of our system is to capture the unique physiological

and behavioral characteristics inherited from human daily activi-

ties for user authentication leveragingWiFI signals. The users have

habitual patterns on their behaviors, so the daily activities usually

present high consistency for each individual [18]. As illustrated in

Figure 3, our system takes as input CSI measurements from WiFi

links between WiFi-enabled IoT devices (e.g., smart appliances),

and then extracts both CSI amplitude and relative phase for each

OFDM subcarrier for signal pre-processing. Unlike previous stud-

ies [20, 24, 25]which only utilizeCSI amplitude, we explore relative

phase to capture representative characteristics through user’s daily

activities. Given the amplitude and relative phase information, a

band-pass filter is first deployed to eliminate the environmental

interferences (e.g., reflected signals from furniture and walls) and

ambient noises. We also propose a subcarrier selection algorithm

to pick out the subcarriers with stable CSI measurements, which

could represent reliable activity characteristics. Before performing

features extraction, we examine the moving variance and related

short time energy (STE) of the pre-processed data to determine the

CSI segments, which capture the location changes for walking ac-

tivities and body movement for stationary activities, respectively.

Next we will present the core components of our system, Physi-

ological and Behavioral Feature Extraction andDeep Learning Based

User Authentication. We perform activity recognition and user au-

thentication based on the physiological and behavioral features ex-

tracted fromCSImeasurements,which characterize bothhumanac-

tivity and identity uniqueness. The system extracts 6 time domain

and 3 frequency domain features to capture both the physiological

and behavioral characteristics of users such as height, shape and be-

havioral preference. Specifically, the time domain features, includ-

ing maximum, minimum, mean, skewness, kurtosis and standard

deviation, aiming to represent the extent of humanmovements and

contour of human body, while the frequency domain features, in-

cluding spectrogram energy, percentile frequency component, and

spectrogram energy difference, are used to depict the fine-grained

behavioral characteristics such as moving speed of torso and leg.

All the above CSI-based features together provide a comprehensive

and detailed representation for both walking and stationary activ-

ities. As far as we know, this is the first WiFi based user authenti-

cation scheme which authenticates users through both stationary

activities and walking activities.

Finally, our system performs activity recognition and human au-

thentication by building a three-layer deep neural network (DNN)

model based on AutoEncoder [5]. Unlike previous authentication

schemes based on high dimension feature sets and linear classifica-

tion models (e.g., SVM), our DNN model learns non-linear physi-

cal and biometric abstractions which are computation efficient and

are robust to small-scale input variations (e.g., the variations of fea-

tures caused by the wearing changes of users). Particularly, we ob-

tain the biometric abstractions with respect to single activity and

authenticate the user based on the corresponding CSI activity seg-

ment. Figure 3 illustrates the functionality of each layer in our deep

learning architecture for people authentication. In particular, the

first level coarsely distinguishes the activity types (i.e., walking or

stationary activity); the second layer exploits deep representations

of the first layer and obtains the activity details such as walking

trajectories and detailed stationary activity types (e.g., turning on a

light, brushing teeth); and the third level obtains even deeper repre-

sentation of the features and finally completes user authentication

process. Additionally, our system is resilient to user spoofing, who

either does not exist in legitimate user profiles or tries to mimic

a legitimate user’s activity, by using a SVM-based model with the

generated DNN abstractions.

4 ACTIVITY SEGMENTATION AND FEATURE

EXTRACTION

In this section, we first present how to perform data segmentation

on the CSI measurements that reflect people’s daily activities, and

then extract effective features that capture unique physiological

and behavioral characteristics of people fromWiFi signals.
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Figure 4: Illustration of activity detection and segmentation

using CSI moving variance and short time energy.

4.1 Activity Detection and Segmentation

To ensure the reliability of the features extracted from the CSI mea-

surements, the data calibration and subcarrier selection techniques

are developed to mitigate the ambient noises and select the subcar-

riers with stable CSI measurements, respectively. The details are

presented in Section 6.

As mentioned in preliminaries 3.1, both walking and station-

ary activities lead to the variations in wireless channel, resulting

in changing CSI measurements. So we apply the short time en-

ergy (STE) upon CSI amplitude’s moving variance to detect hu-

man activities, and then perform corresponding data segmentation.

Moreover, stationary activities (e.g., opening a cabinet) usually in-

volve relative smaller scale body movements than walking activi-

ties, which makes them even harder to be detected. We thus pro-

pose to examine STE which is more sensitive to subtle body move-

ments because it is a summation of squared signals within a sliding

window. We calculate STE within a sliding window as follows:

STE(t) =

N∑

n=1

(

K∑

k=1

vk (t + n))
2
, (3)

where N is the length of the sliding window, vk (t) is the moving

variance of CSI amplitude at the kth subcarrier at time t .

Figure 4 (a) shows both CSI’s moving variance and STE for two

rounds of the same stationary activity (i.e., opening a cabinet). It

is obvious that STE exhibits greater values when the activity oc-

curs. Furthermore, we also found the peaks of the fluctuating part

in STE always locate at the center of the activity duration. We are

thus inspired to utilize a dynamic threshold, which is applicable to

all types of activities, to perform activity detection and correspond-

ing data segmentation. Specifically, the weight w = 0.1 according

to our empirical study is deployed for the dynamic threshold calcu-

lation: τ = w ∗E, whereE is themaximumvalue of STE for different

activities. We then search for the starting and ending points, ts and

te , of an activity by solving the following objective problem:

argmin
ts ,te

ts + te − 2tm

s .t ., STE(ts ), STE(te ) < τ , STE(tm ) > τ ,

ts < tm < te

(4)

where tm is an arbitrary time index in the middle of activity dura-

tion. Figure 4 (b) (c) show the segmented time series of CSI ampli-

tude and relative phase of the 1st subcarrier during two rounds of

one stationary activity. The results demonstrate the efficiency of

our activity detection and segmentation algorithm.

4.2 Physiological and Behavioral Feature

Extraction

To capture the unique physiological and behavioral characteristics

inherited from users’ daily activities, it is essential to extract effec-

tive and reliable features from the CSI measurements. In particular,

both time and frequency domain features based on CSI amplitude

and relative phase information are examined to discriminate differ-

ent users.

Time Domain Feature Extraction. In our system, 6 time do-

main features with respect to CSI amplitude and relative phase, in-

cluding maximum, minimum, mean, skewness, kurtosis and stan-

dard deviation, will be extracted to characterize both human activ-

ity and identity uniqueness. In order to provide finer feature granu-

larity for each individual activity,wefirst partition theCSI segment,

where the activity characteristics are embedded, into l chunks of

equal length, and each of them will extract all 6 time domain fea-

tures as introduced above. We empirically set l as 20 and extract

the 6 feature points in each chunk. Thus, 120 feature points could

be extracted at each subcarrier. Figure 5 and 6 present the extracted

time domain features for the same stationary activity (i.e., opening

a cabinet) performed by two users based on amplitude and relative

phase, respectively. Wecanfind that these features are significantly

different between twousers. It encourages us to leverage these time

domain features to capture human unique characteristics inherited

from their daily activities.

Frequency Domain Feature Extraction. As indicated in pre-

vious work [21], CSI measurements in the frequency domain are

able to reveal the speeds of WiFi path length changes caused by

human movements. Therefore, besides the time domain features,

we also extract the representative features in frequency domain to

capture the users’ behavioral characteristics.

To extract the features in the frequency domain, given a CSI

segment, we first adopt short-time Fourier transform (STFT) to

obtain the two-dimensional spectrogram for the CSI amplitude or

relative phase of each subcarrier. More specifically, we calculate

1000 points FFT within a 100ms sliding window, shifting 50ms each

time. We then use bicubic interpolation [8] to resize the spectro-

gram results into a matrix M(i, j) (i.e., 10-by-10 matrix) of fixed

size, which maintains spectrogram in a consistent feature space

for different activities. Next three frequency domain features on

the top of M(i, j) are extracted: 1) Spectrogram magnitude: each

element in the matrix M(i, j); 2) Percentile frequency components

(PFC): PFC(i,n) =

∑n
j=1 M(i, j )∑10
j=1 M(i, j )

, where n = 1 . . . 10, subjected to

PFC(i,n) � 0.5 and PFC(i,n) � 0.95, indicate the moving speed

of torso and leg [20]. 3) Spectrogram difference between time win-

dows: the element-wise differences between two consecutive rows

inM(i, j), which capture the acceleration or deceleration process of

bodymovement. In total, we extract 210 frequency domain feature

values from the CSI segment with respect to one specific activity.

5 DEEP LEARNING BASED HUMAN

AUTHENTICATION
In this section, we present the proposed deep learning based ap-

proach for both activity recognition and user authentication.
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(a) Max (b) Min (c) Mean (d) Skewness (e) Kurtosis (f) STD

Figure 5: Time domain features of CSI amplitude over 20 chunks of one activity at the 1st subcarrier.

(a) Max (b) Min (c) Mean (d) Skewness (e) Kurtosis (f) STD

Figure 6: Time domain features of CSI relative phase over 20 chunks of one activity at the 1st subcarrier.

Feature Matrix 
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User 1 User 2 User N

SVM-based Spoofer Detection

(Walking Activity)

(Stationary Activity)(Walking Activity)

(Stationary Activity)

Activity Separation

Activity Recognition

User Authentication

Figure 7: Deep learning architecture for user authentication.

5.1 Autoencoders Architecture

To perform activity recognition and further user authentication

leveraging the extracted CSI features in subsection 4.2, we propose

to develop a deep neural network (DNN) to extract high level ab-

stractions from the extractedCSI features. As illustrated in Figure 7,

a three-layer stacked autoencoder [19] is proposed based on deep

neural network model. Given a set of CSI features C , we define

hi (i=1, 2, 3) as the activation functions to encode the input, which

can be either CSI features or modeled abstractions (i.e., Z1 or Z2)

of each layer, into a set of compressed representations, which is

then fed into classification functions (e.g., SVM [2] or softmax func-

tion [1]) in each layer. Specifically, the proposed DNN network

coarsely recognizes the activity type (i.e., stationary or walking) in

the first layer and obtains the activity details (i.e., specific type of

activities) in the second layer. We denote Z1 and Z2 as the outputs

(i.e., high-level, complex abstractions as data representations) from

the first two layers, respectively. The third layer identifies each in-

dividual user with a softmax function. Additionally, a SVM model

with DNN abstractions is integrated to ensure spoofing attack re-

silient in our system.

5.2 Per Layer Abstraction Extraction

Each layer of theDNNconsists of an autoencoder networkof neural

units which learns a set of compressed representations from input

features through unsupervised pre-training. Such compressed rep-

resentations are able to characterize the physiological and behav-

ioral uniqueness for different users. Previouswork has been proved

that such pre-training process is significantly helpful in classifica-

tion tasks [5]. In addition, the autoencoder based DNN networks

can learn abstractionswith different granularitywhich canbe lever-

aged for activity recognitionandhuman identification. Particularly,

the non-linear neural units in the hidden layer of autoencodermap

the input X into a set of abstractions, Z as follows:

Z = σ (wX + b), (5)

where σ () is a logistic sigmoid function defined as σ (z) = 1
1+e−z ,

and w and b represent the weight and bias of the autoencoder, re-

spectively. The autoencoders are trained in an unsupervised man-

ner with the objective to minimizes the error when recovering the

input X from Z . Specifically, the error cost function is defined as

follows:

ERR(X ,X ′) =
1

N

N∑

n=1

(Xn − Xn
′)2 + λ × Ωweiдhts

+β × Ωsparsity ,

(6)

where N is the number of training samples, X ′ is the recovered X

using Z from a decoder function, and Ωweiдhts and Ωsparsity are

the parameters of L2 regulariser and spare regulariser, respectively,

which prevent low neuron outputs of the autoencoder. We use λ

and β to denote the coefficient of L2 regulariser and sparse regu-

lariser.

5.3 Activity Recognition and User

Authentication

Given the three layers of autoencoders, a hierarchical abstraction

learning architecture is constructed by stackingone layer of autoen-

coder on the top of another. Previous work [19] found that higher

level feature abstractions are more stable and robust to small-scale

input variations, which meets the hierarchical requirements of our

system. Additionally, the three layer DNN itself can only derive

compressed representations of physiological and behavioral char-

acteristics, so we still need a softmax function [1] in each layer to

complete the activity recognition and user authentication process

in a hierarchical order. Specifically, we define the softmax function

as follows:

P(Lk |Z ) =
P(Z |Lk )P(Lk )∑K
j=1 P(Z |Lj )P(L j )

, (7)
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(a) Raw CSI Relative Phase (b) Unwrapped Relative Phase

Figure 8: Correcting relative phase to eliminate phase offset

using unwrapping function.

where P(Lk |Z ) denotes the posterior probability of class label Lk
given an abstraction Z , and P(Lk ) represents the prior of the same

class. We use P(Z |Lk ) to denote likelihood of the abstraction Z

given label Lk . In addition, the equation is constrained by 0 <

P(Lk |Z ) ≤ 1 and
∑K
k=1

P(Lk |Z ) = 1. The outputs of each softmax

function characterize the probability distribution over K profiled

classes (e.g., activity type or user identity), and the abstraction Z

will be classified as classk , which satisfiesk = arдmaxk ∈KP(Lk |Z ).

5.4 SVM based Spoofer Detection

Besides three-layer DNN, we also adopt a SVM model [2] to de-

termine whether the activity the user performed matches one of

the legitimate user profiles. Particularly, we propose to utilize one-

class support vector machine with Gaussian kernel for detecting

the user spoofing, who either does not exist in legitimate user pro-

files or tries to mimic a legitimate user’s activity. We first construct

an one-class SVM model for each of the legitimate users based on

the high level abstractions from DNN network. We then derive a

class score Su , which compares the similarity between the DNN

abstractions of each testing sample and the support vectors of the

profile of user u:

Su (Z ) =

Nu∑

i

k(Zu,i ,Z ) + bu , (8)

where Z is a sample abstraction, Zu,i is the ith support vector of

the user u , k() represents the Gaussian kernel function, and bu is

the function bias. Greater value of the class score Su represents

that the testing sample has the less distance to the the support vec-

tors of user u . An empirically set threshold η thus is used to de-

tect possible spoofers. The testing sample would be determined as

spoofer/attacker if the derived class scores (i.e., Su ) are less than η

from all the legitimate user profiles.

6 DATA CALIBRATION & SUBCARRIER

SELECTION

In this section, we introduce how to ensure the reliability of the

extracted CSI amplitude and relative phase from the noisy wireless

signal readings.

6.1 Data Calibration

To ensure reliable feature extraction, we preprocess the raw CSI

measurements with phase unwrapping and a band-pass filtering

techniques, which are effective on eliminating the environmental

interferences (e.g., reflected signals from static objects) and ambi-

ent noises. Specifically, we first eliminate the relative phase error

caused by the phase offset on each subcarrier. As shown in Fig-

ure 8 (a), the time series of raw relative phase at three subcarriers

(a) Before data calibration (b) After data calibration

Figure 9: CSI amplitude spectrogram of at the 1st subcarrier

before and after data calibration.

(i.e., subcarrier 4, 5 and 6) have obvious discontinuities between

consecutive packets when the relative phase value is close to ±π .

To eliminate such discontinuity, a±2π is added to the relative phase

of the later packet if the absolute phase difference of two consecu-

tive packets is greater than or equal to π . Figure 8 (b) shows the

corresponding relative phase streams after phase calibration.

Besides the phase offset, the amplitude and relative phase in CSI

measurements are also easily affected by the low frequency interfer-

ence (i.e., reflected signals from static objects) and high frequency

noise. In order to eliminate the above impacts while preserving the

user physiological and behavioral characteristics in the CSI mea-

surements, a bandpass butterworth filter [14] is adopted in the data

calibration. Previous work [21] found that the frequency range of

most human activities including running in a fast speed exhibit CSI

frequency components less than 300Hz. In our indoor home/office

scenarios, we thus adopt a relative low frequency band-pass but-

terworth filter (i.e., with passing band 5Hz-100Hz) to effectively

remove both low and high frequency components from the spec-

trum. Given the example scenario where a person walks in the

roombetween 2 and 7 sec, Figure 9 (a) shows the spectrogramof the

corresponding time series of CSI amplitude at a subcarrier (i.e., sub-

carrier 1). We can observe that the spectrogram exhibits extremely

high energy level in the low frequency band (i.e., < 10Hz) even the

person remains static. As the spectrogram after band pass filtering

shown in Figure 9 (b), we can observe that the CSI amplitude pat-

tern caused by human walking is still preserved while irrelevant

frequency components are removed.

6.2 Subcarrier Selection

Our preliminary study finds that the CSI measurements of several

subcarriers are more sensitive to ambient noise. To ensure the re-

liability of CSI measurements for later processing, we propose a

new subcarrier selection method to determine the noise resilient

subcarriers from the CSI measurements. The CSI measurements

at neighboring subcarriers are usually highly correlated, however

such correlation could be destroyed by heavy noises on the sub-

carriers. To eliminate the negative effects caused by the unstable

subcarriers, a covariance based scoring function is defined to assess

each subcarrier’s correlation level with its neighboring subcarriers

as follows:

score(i) =

N∑

n=1

i+ k2∑

j=i− k
2

covi, j (t) − |covi, j (t)|

2
, (9)

where N is the number of non-overlapped 1s length time windows

being divided in the short phase, k is the number of its close-by sub-

carriers being compared, and covi, j denotes the covariance value
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(a) Empty room (b) Subject walking in the room

Figure 10: Detecting noisy subcarriers by using a covariance

based scoring function: Subcarrier 7, which has the lowest

score, is not a stable subcarrier that can be used in the sys-

tem.

between the CSI relative phase at the ith and jth subcarriers. Fig-

ure 10 presents an example showing the scores of 4 subcarriers (i.e.,

subcarrier 4, 5, 6 and 7) based on the CSI measurements collected

in a 30s short period. We can observe that the CSI measurements

of subcarrier 7 keep fluctuating in both empty room and human

walking cases, so it implies the instability of the subcarrier 7 is not

caused by human movements. As a result, the subcarrier 7 has the

lowest score, indicating it has the lowest correlation with its ad-

jacent subcarriers. In our system, to remove the noisy subcarriers

while keeping consistent dimension in the feature space, we choose

the top 20 subcarriers with the highest scores to collect CSI mea-

surements.

7 PERFORMANCE EVALUATION

In this section,we evaluate theperformanceof theproposed system

on activity recognition and user authentication in both a university

office and an apartment.

7.1 Experimental Methodology

Devices and Network. We emulate the WiFi network in IoT en-

vironments with two commercial laptops equipped with 802.11n

WiFi NICs (i.e., Intel 5300 NICs). Specifically, we deploy a Dell

E6430 laptop as transmitter and a Lenovo T61 laptop as receiver.

Both of the transmitter and receiver run Ubuntu 14.04 operating

system with the 4.2.0 kernel for measuring CSI over 30 subcar-

rier groups [6]. We extract the CSI amplitude on the link between

the main antenna pair (i.e., 1st antenna in both transmitter and re-

ceiver), and compute the relative phase ofCSI between the two links

from the transmitter’smain antenna to thefirst two antennas on the

receiver. In addition, the packet transmission rate is fixed at 1000

pkts/s to enable high resolution analysis in the frequency domain.

Environments and Activities. The proposed system is evalu-

ated in both a university office and an apartment with the size of

26f t × 14f t and 36f t × 22f t , respectively. Figure 11 shows the ex-

perimental setups involving two laptops to emulate as IoT-enabled

devices (e.g., smart refrigerator, smart TV and smart thermostat)

and generate WiFi traffics.

A total of 8 walking activities and 8 stationary activities (30

rounds for each) are performed by 11 and 5 volunteers in these

two indoor environments, respectively. Due to the functionality

differences of the two environments, we choose different yet still

typical stationary activities in the two environments. The details

of the activities are listed in Table 1, and the locations of stationary

activities and walking trajectories are also shown in Figure 11. In

Figure 11: Experimental setups and the illustration of activ-

ities in an office and an apartment.

Table 1: Detailed daily activities performed.

Code Walking activity Code Stationary activity

A Entrance→Seat a Working (i.e., typing keyboard)

B Seat→Entrance b Turning on the light

C Seat→Light Switch c Opening the cabinet

D Light Switch→Seat d Fetching documents

E Seat→Cabinet e Eating at the table

F Cabinet→Seat f Opening the microwave oven

G Entrance→Kitchen g Opening the refrigerator

H Kitchen→Entrance h Opening the door

total, we collect 3336 activity segments performed by 11 subjects

in the office environment, and 834 activity segments performed by

5 subjects in the apartment. Unless mentioned otherwise, half of

the collected data-set (i.e., 15 rounds of each activity per subject) is

used for training the DNN model, and the rest of data is used for

testing the system performance.

Classification Strategies. Our system first collects CSI mea-

surements through WiFi scanning while people are performing

daily activities. Then, we associate each activity with the corre-

sponding segment of CSI measurements labeled as the activity pro-

files for the legitimate users. Given the activity profiles, we extract

both time and frequency domain features from the CSI measure-

ments for anyunknownactivities, and feed them to theDNNmodel

for gesture recognition and user identification.

Evaluation Metrics. To evaluate our system performance, we

define the following metrics:

• ConfusionMatrix. Each column in the confusion matrix

indicates the ground truth of an identity/activity and each

row represents the classified identity/activity in our sys-

tem. Each entry in the matrix represents the percentage of

correctly classified identify/activity.

• Identification Accuracy. The percentage of the human

identity/activity correctly recognized by our system.

• Spoofer detection accuracy. The percentage of the

spoofing activities being correctly detected by our system.

7.2 User Authentication Performance

We first present the performance of the proposed system on user

identification in both office and apartment environments. As

shown in Figure 12 (a), we observe that, our system achieves over

92% user identification accuracy for 7 out of 11 users and the av-

erage accuracy is 91.2% with a standard deviation of 3.67% in the

office environment. Figure 12 (b) gives the confusionmatrix for the
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(a) Office (b) Apartment

Figure 12: Performance of deep learning based user authen-

tication.

Figure 13: Performance of

spoofer detection.

Figure 14: Impacts of sam-

pling rate.

user identification in the apartment. Our system achieves over 90%

identification accuracy for 4 of the users. The average user identi-

fication accuracy is 92.4% with a standard deviation of 3.49%. We

have comparable high accuracies on user authentication in the two

different environments, and thereby confirm the effectiveness and

reliability of the proposed system on user identification.

7.3 Spoofer Detection Performance

Wenext evaluate our SVMbased spoofer detection algorithm in the

office environment, where 3 of the 11 users are legitimate users and

the other 8 users act as spoofers. Both the spoofer detection and

legitimate user identification accuracy are presented in Figure 13

with varying spoofer detection threshold η (i.e., [−1, 1]). As the fig-

ure indicates, the spoofer detection accuracy grows with the posi-

tive class score. This is because as the threshold increases, the re-

gion decision encircled by the decision boundary becomes smaller

and more CSI samples from spoofer can be excluded. We also find

that the legitimate user detection ratio decays with greater thresh-

old. So we seek for a tradeoff to maintain both high spoofer de-

tection accuracy and high legitimate identification accuracy. Ac-

cording to Figure 13, an appropriate threshold is determined by the

intersection of spoofer detection ratio curve and legitimate user de-

tection ratio curve. Therefore, we can achieve the accuracy as high

as 89.7% for both spoofer and legitimate detection, which validates

the robustness of the proposed system on user authentication un-

der the spoofing attack.

7.4 Activity Recognition Performance

We further examine the activity recognition performance in the

DNN model. Figure 15 depicts the confusion matrix for activity

recognition (i.e., outputs of DNN layer 2) in both office and apart-

ment environments. The average activity recognition accuracies

for both stationary and walking activities are as high as 97.6% and

98.3% in the office and apartment, respectively. Further it is en-

couraging to find that DNN model achieves similar accuracy for

both stationary and walking activities. The slight difference on the

recognition accuracy between the two types of activities is caused

(a) Office (b) Apartment

Figure 15: Performance of deep learning based activity

recognition.

(a) Office (b) Apartment

Figure 16: Comparison of features used in deep learning

based user authentication under different activities.

by the limited resolution of WiFi signals on capturing small scale

body movements for stationary activities. Overall, the proposed

DNNmodel is highly effective on recognizing different types of ac-

tivities.

7.5 Impact of Various Factors

Impact of Sampling Rate. In order to validate that our user au-

thentication scheme can work under various sampling frequencies

of WiFi enabled IoT devices, we evaluate our system under differ-

ent frame rates. We show the average user authentication accuracy

of office and apartment under different sampling rates in Figure 14.

We can observe that our system canmaintain high accuracy across

different frame rates from 200Hz to 1000Hz. Particularly, the au-

thentication accuracy is still over 86% even for the low sampling

rates such as 200Hz and 400Hz. The above observations confirm

that our system can be applied on IoT devices with different sam-

pling capabilities.

Feature Comparison. To further analyze the impact of dif-

ferent features on the system performance, we compare the au-

thentication performance using different kinds of CSI features in

both time and frequency domains: Amplitude, Relative phase and

all of these features (i.e., Combined). We present the comparison

results of user authentication accuracy in Figure 16 for both office

and apartment environments. Figure 16 (a) shows that CSI relative

phase features have relative higher user identification accuracy for

stationary activities (e.g., a,b, c,d) comparing to the amplitude fea-

ture. This is primarily because relative phase exhibits higher sen-

sitivity on capturing small-scale body movements. In addition, we

also find in both Figure 16 (a) and (b) that the combined features

of both CSI amplitude and relative phase achieve the best perfor-

mance, indicating the combining features can provide finest fea-

tures to distinguish individual subject.

Impact of Training Size. The DNN model needs to build CSI

profiles for each activity or each individual before performing activ-

ity recognition and human authentication. It is necessary to study
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(a) User identification (b) Activity recognition

Figure 17: User authentication and activity recognition per-

formance under different training sizes.

the impact of training size on the system performance. Here we

define the training size as the number of training samples for each

activity or for each individual. As shown in both Figure 17 (a) and

(b), our system can achieve consistently high accuracy on user iden-

tification and activity recognition with different training sizes. Es-

pecially, our deep learning model maintains over 90% accuracy on

user identification and activity recognition even with the training

size of 4. The above results show that our system has minimum

requirement on building the CSI profile while ensure remarkable

performance.

8 CONCLUSION

As the proliferation of Internet of things (IoT), the prevalence of

wireless connections among IoT devices provides the opportunity

to authenticate users through examining thewireless signal charac-

teristics inherited from daily activities. In this paper, we propose a

device-free user authentication system by extracting unique phys-

iological and behavioral characteristics embedded in human daily

activities captured by the fine-grained Channel State Information

(CSI). Our system takes one step forward to support the extended

user authentication concept in not only preventing unauthorized

users to access restricted information but also identifying users for

customized services (e.g., prohibiting a kid to operate a hot stove)

in both corporate and home environments. We find that both am-

plitude and relative phase available in CSI readings are impacted

by the environmental changes caused by human activities in dif-

ferent scales. To extract meaningful patterns from noisy CSI mea-

surements, we design data calibration and subcarrier selection al-

gorithms to filter out various noises while preserve human physio-

logical and behavioral characteristics. A deep learning based user

authentication mechanism is developed leveraging the extracted

CSI features in both time and frequency domains to accurately iden-

tify each individual. This is a first authentication system that has

the capability of actuatingdaily activities for humanauthentication

without active user participation nor attaching any devices to users.

We show that the proposed system is resilient to spoofing attacks

when integrating the feature abstractions from the deep learning

model with the SVM classifier.
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