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ON CONSISTENCY AND SPARSITY FOR SLICED INVERSE
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We provide here a framework to analyze the phase transition phe-
nomenon of slice inverse regression (SIR), a supervised dimension reduction
technique introduced by Li [J. Amer: Statist. Assoc. 86 (1991) 316-342]. Un-
der mild conditions, the asymptotic ratio p = lim p/n is the phase transition
parameter and the SIR estimator is consistent if and only if p = 0. When di-
mension p is greater than n, we propose a diagonal thresholding screening
SIR (DT-SIR) algorithm. This method provides us with an estimate of the
eigenspace of var(E[x|y]), the covariance matrix of the conditional expecta-
tion. The desired dimension reduction space is then obtained by multiplying
the inverse of the covariance matrix on the eigenspace. Under certain sparsity
assumptions on both the covariance matrix of predictors and the loadings of
the directions, we prove the consistency of DT-SIR in estimating the dimen-
sion reduction space in high-dimensional data analysis. Extensive numerical
experiments demonstrate superior performances of the proposed method in
comparison to its competitors.

1. Introduction. For a continuous multivariate random variable (y, x) where
x € R” and y € R, a subspace S’ C R? is called an effective dimension reduc-
tion (EDR) space if y L x| Ps/(x) where _L stands for independence. Under mild
conditions [Cook (1996)], the intersection of all the EDR spaces is again an EDR
space, which is denoted as S and called the central space. Many algorithms were
proposed to find such subspace S under the assumption d = dim S <« p. This line
of research is commonly known as sufficient dimension reduction. The Sliced In-
verse Regression [SIR, Li (1991)] is the first, yet the most widely used method in
sufficient dimension reduction, due to its simplicity, computational efficiency and
generality. The asymptotic properties of SIR are of particular interest in the last
two decades. The consistency of SIR has been proved for fixed p in Li (1991),
Hsing and Carroll (1992), Zhu and Ng (1995) and Zhu and Fang (1996). Later,
Zhu, Miao and Peng (2006) have proved the consistency when p = o(,/n), a con-
dition also appearing in two recent work Zhong et al. (2012) and Jiang and Liu
(2014). When p > n, a common strategy pursued by recent researchers is to make
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sparsity assumptions that only a few predictors play a role in explaining and pre-
dicting y and apply various regularization methods. For instance, Li (2007), Li
and Nachtsheim (2006) and Yu et al. (2013) applied LASSO [Tibshirani (1996)],
Dantzig selector [Candes and Tao (2007)] and elastic net [Zou and Hastie (2005)],
respectively, to solve the generalized eigenvalue problems raised by a variety of
SDR algorithms.

However, a piece of jigsaw is missing in the understanding of SIR. If the dimen-
sion p diverges as n increases, when will the SIR break down? A similar question
has been asked for a variety of SDR estimates in Cook, Forzani and Rothman
(2012). In this paper, we prove that, under certain technical assumptions, the SIR
estimator is consistent if and only if p = lim§ = 0. This behavior of SIR in high
dimension, which will be called the phase transition phenomenon, is similar to
that of the principal component analysis (PCA), an unsupervised counterpart of
SIR. This extension is, however, by no means trivial. After all the samples (y;, x;)
are sliced into H bins according to the order statistics of y;, the sliced samples
are neither independent nor identically distributed. In this paper we provide a new
framework to study the phase transition behavior of SIR. The technical tools de-
veloped here can be extended to study the phase transition behavior of other SDR
estimators. The phase transition phenomenon provides theoretical justifications for
imposing certain structural assumptions such as sparsity in high-dimensional set-
tings.

The second part of this paper aims at extending the original SIR to the scenario
with ultra-high dimension [i.e., p = o(exp(ng ))1. Based on equation (3) in Sec-
tion 2, the central space can be estimated in two steps: (i) obtain 1% H, the SIR
estimate of var(E[x|y]) as the top d eigenvectors of A g (i) estimate the pre-

cision matrix of x as ffl, and estimate the central subspace as ffl col(V H),
where col(V g) represents the subspace formed by the column vectors of V. The
phase transition phenomenon indicates that col(V z) is not a consistent estimate of
col(var(E[x|y])) when lim 5 # 0. Thus, we select variables according to the diag-
onal elements of A  and then estimate col(var(E[x| v])) by applying SIR to these
selected variables. We name this procedure as Diagonal Thresholding SIR (DT-
SIR), and have shown that DT-SIR is consistent in estimating the central space un-
der certain regularity conditions. Extensive simulation studies have demonstrated
that DT-SIR performs better than its competitors and is computationally efficient.

The rest of the paper is organized as follows. In Section 2, we briefly de-
scribe the SIR procedure and introduce the notation. In Section 3, we discuss
the phase transition phenomenon of SIR. In Section 4, we propose the DT-SIR
method and show that DT-SIR is consistent in high-dimensional data analysis. In
Section 5, we provide simulation studies to compare DT-SIR with its competitors.
Concluding remarks and discussions are put in Section 6. All the proofs are pre-
sented in Appendices A, B and the Supplementary Material [Lin, Zhao and Liu
(2018)].
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2. Preliminaries and notation.

2.1. Sliced inverse regression. Consider the multiple index model

ey y=/[(Bix.....Bix.€),

where x € R”, € is the noise and f is an unknown link function. Without loss
of generality, we assume that E[x] = 0 € R”. Although the p x d matrix V =
(B, --.,By) is not identifiable, the space spanned by the B’s, which is called the
column space of V and denoted as col(V'), might be. Li (1991) proposed the Sliced
Inverse Regression (SIR) procedure to estimate the central space col(V') without
knowing f(-). SIR can be summarized as follows: given n i.i.d. samples (y;, x;),
i=1,...,n, first divide them into H equal-sized slices according to the order
statistics y(,-).4 Re-express the data as yj, ; and xj, ;, where (A, j) is the double
subscript in which 4 refers to the slice number and j refers to the order number of
a sample in the Ath slice, that is,

Yh,j = Y(cth—1)+j)>» Xh,j = X(c(h—1)+j)-

Here, x () is the concomitant of y(). Let X,,. be the sample mean of the Ath slice,
and X be the overall mean of all the data. Then A = var(E[x| v]) can be estimated
by

- =
) Ag=— E Xp.Xj .
H ’
h=1
Based on the observation that

3) col(A) = X, col(V),

the central space col(V) is estimated as )A:;l col(V g) where 1% g is the matrix
formed by the top d eigenvectors of An. Throughout the paper we assume that
d is fixed and the dth largest eigenvalue A; of A is bounded away from 0 when
n,p— 0.

For SIR to be consistent in estimating the central space, Li (1991) imposed the
following two conditions:

e (A1) Linearity condition: For any § € R?, E[£§*x|BTx, ..., B5x]is alinear com-
bination of Bix, ..., B x.

e (A2) Coverage condition: The dimension of the space spanned by the central
curve equals the dimension of the central space, that is, d’ =d.

4To ease notation and arguments, we assume that n = cH and H = o(log(n) A log(p)) throughout
the paper.
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2.2. Further notation. Let S;, be the hth interval (y,—1.¢, yncl for 2 <h <
H—1,8 =(—00,y1.c] and Sy = (yr—1.¢, 00). Note that these intervals depend
on the order statistics y(;) and are thus random. For any o in the product sample
space, define a random variable §, = §;,(w) = fyeS,,(a)) f(y)dy where f(y) is the
density function of y. For Z C {1, ...,n},J C{l,..., p} and a n X p matrix A,
AT denotes the |Z| x |J| submatrix formed by restricting the rows of A to Z and
columns to 7. In particular, A~ denotes the submatrix formed by restricting the
columns to 7. For any matrix B = AT € RIZIXIJ! et ¢(B) be the embedded
matrix into R”*” by putting O on entries outside Z x 7. Similar notation are
used for vectors. For two positive numbers a and b, let a VV b = max{a, b} and
a Ab=min{a, b}. Let 7(x,t) =x x 1(|x| > t) be the hard thresholding function.
Throughout the paper, C, C1 and C, denote generic absolute constants, though the
actual value may vary from case to case. For a vector x, the kth entry is denoted as
x (k). Let B, and 8, be two vectors with the same dimension, the angle between
these two vectors is denoted as Z(#, B,). For two sequences {a,}, {b,}, a, < by,
stands for a, = O (b},) for some positive € < 1 and a, > b, stands for lim i’l—z =0.

3. Consistency of SIR. To study the consistency of SIR, we impose the fol-
lowing boundedness condition (A3) on the predictors’ covariance matrix in addi-
tion to the tail condition (sub-Gaussian) on their joint distribution. We also need a
condition (A4) for the central curve.

e (A3) Boundedness condition: x is sub-Gaussian, and there exist positive con-
stants C, C> such that

Cl = )\min(zx) =< )Mmax(zx) =< C2,

where Amin (X x) and Apax (X ) are the minimal and maximal eigenvalues of X,
respectively.

e (A4) The central curve m(y) £ E[x|y] has finite fourth moment and is 9-sliced
stable (defined below) with respect to y and m(y).

DEFINITION 1. For any two positive constants y; < 1 < y,, let Ay (¥, ¥2)
be the collection of all the partitions —0o =ag <a) <--- <ag—1 <ag = 0o of
R satisfying that

Y Y

ﬁl =Pai=y<ai+1) = ﬁz
The central curve m(y) = E[x|y] is called ¥-sliced stable with respect to y for
some ¥ > 0 if there exist positive constants y;,i = 1, 2,3 such that for any B in

R? and any partition in Ag (¥, ),

1 H—1
@ Y var(BTmG) [an <y Sann)| < 25 var(Bm(y)
h=0

for sufficiently large H. The central curve is sliced stable if it is ©-sliced stable for
some positive constant .
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REMARK 1. Note that we only need (4) to hold for all unit vectors R” by
rescaling. In particular, we have the following two useful properties of the slice-
stability:

(i) By choosing B* =(0,...,0,1,0,...,0) with 1 at the kth position, we have

H

Y var(m(y, k) | ap <y < ap1)
h=0

<y3H'""var(m(y, k),

where m(y, k) is the kth coordinate of the central curve m(y).
(ii) Since equation (4) holds for all unit vector 8, we have

H

> var(m(y) |ap <y < ap41)
h=0

<y3H"7 |var(m()],.
2

The sliced stable condition is satisfied by a large family of distributions. Here
are some examples:

(i) If y is Gaussian, then y (= E[y|y]) is sliced stable with respect to y. In
fact, let Y ~ N (0, 1), then IE[Y4] < o0 and y4IP(Y >y) — 0as y — oo. We now
prove that Y is %—sliced stable with respect to Y. Let us fix two positive constants
y1 < 1 < y». We want to prove that for any partition —0o =ag < -+ <ag = 00
satisfying £ <P(a; <Y <a;41) < %2, we have

1 Al 1
H ;,X(:) var(Ylap <Y < apy1) < o2

To avoid tedious notation, we only prove it for the partition {a;} where a; is the
J/Hth quantile of Y, thatis, P(Y <a;) = j/H. Itis easy to verify that

(@j1—aj)* ifl1<j<H-2,

var(Yla; <Y <a; <
Ylaj =Y =aj) =\, VA if j=0,H—1.
Thus,
A-2 1 4
1 L »_ 4 )
Y var(Ylay <Y <apy1) < —(a1 —ag1)” < — max{af, ag_,}.
hes H H

Since a‘fP(Y < ar) — 0, we know that a% = o(+/ H). Same argument shows that
a%{_] = o(v/ H). To summarize, we have

1 Al 1
®) H };)Var(mahfyfah—i—l)fm-

As a direct corollary, if m(-) is a function with bounded first derivative, then m(Y)
is %—sliced stable with respect to Y.
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(ii) Let y = B%x + €, where x follows a multivariate normal distribution with
mean 0 and covariance matrix X and € is a normal error. Simple calculation shows
that

_ YXB
~ var(y)’

Thus, E[x|y] is a vector governed by the Gaussian random variable y and is sliced
stable with respect to y according to example (i).

(iii) If y is bounded, then for any function m (-) with continuous first derivative,
m(y) is sliced stable with respect to y because var(m(y)|y € [a, b]) < Cla — b|2.

(iv) If m(y) is sliced stable with respect to y, then for any monotone trans-
form y = g(z), m(g(z)) is sliced stable with respect to z because var(m(g(z))|z €
la, b]) = var(m(y)|y € [g(a), g(b)]) and P(g(a) <Y < g(b)) =P(a <z <b).
Especially, assume that Y = f(B8%x + €) where f(-) is a monotone function, x is
multivariate Gaussian and € is a normal error. Then m(y) = E[x|y] is sliced stable.
In fact, let z = £~ (Y), then n(z) = E[x|z] is sliced stable according to (ii). Thus
m(y) = n(f_l(y)) is sliced stable.

(6) Elx[y]

REMARK 2. Suppose E[m(y)] = 0 and there are n samples m; £ m(y;). Let
my, ; and my, . be defined similarly to xj ; and X, ., respectively. On one hand, we
have the classic consistent estimator % >_im;m} of var(m(y)). On the other hand,

a necessary condition that the slice-based estimate % Ypmy,.m  of var(m(y))
is consistent is the average loss of variance in each slice decreases to zero as H
increases, that is,

Y mt IS mmr = L5 IS, i 2
(7 H;mh,.mh,. nXi:mlm,-—HZh:C;(mh, i) — 0.

The slice-stability ensure the left-hand side converges to zero at a power rate of H.
It would be easily seen that if m is smooth and y is compactly supported then (7)
holds automatically. For general curve m and random variable y, the slice-stability
is a condition on smoothness of the central curve m and the tail distribution of
m(y). This is not surprising because the smoonthness and tail conditions are com-
monly assumed for the consistency of SIR estimate.

The most widely used smoothness and tail condition is the following one pro-
posed by Hsing and Carroll (1992) [later used in Zhu, Miao and Peng (2006), Zhu
and Ng (1995)]. For B > 0 and n > 1, let I1,,(B) be the collection of all the n-
point partitions —B < y(1) < --- < y;) < B of [~ B, B]. First, they assumed that
the central curve m(y) satisfies the following smoothness condition:

n
lim  sup n~ 4> |m(y) —m@yi-)|,=0  VB>0.

nﬁooyenn(B) i=2
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Second, they assumed that for By > 0, there exists a nondecreasing function i (y)
on (B, 00), such that
® m*MP(Y]>y) >0  asy-—> oo,

|m(y) —m(y")|, < l@(y) —ai(y")|  fory,y" € (~00, ~Bo) U (Bo, 00).

By changing the tail condition (8) to a slightly stronger condition E[77( y)4] < 00,
Neykov, Lin and Liu (2015) proved that the modified condition implies the slice-
stability. Now, we are ready to state our main results.

THEOREM 1. Under conditions (A1), (A2), (A3) and (A4), we have

H?p N H2p>

—~ 1
9 Ag —Al»=0p| —
© 1Ak — All> P(Hl,+ ~ -

As a direct consequence of Theorem 1, we observe that if p = lim,_, % =
0, we may choose H = log(n/p) such that the right-hand side of equation (9)

converges to 0. Thus, Theorem 1 implies that A g is a consistent estimate of A if
p=0.

REMARK 3 (More on convergence rate). Note that the convergence rate in (9)
depends on the choice of H. This may seem not very desirable at the first glance.
However, what we are really interested is the convergence rate of col(V g) which
actually does not depend on H. In fact,

(10)  Am—A=An— PoiayA# Peol(n)) + (Peol()) A H Peol(a) — A).
From the proof of Theorem 1, we can easily check that the first term is of conver-

gence rate pl—lfz + pTHz and the second term is of rate %. Since Peo( A)X H Peol(A)
and A share the same column space, if we are only interested in estimating Peoj(A),
then the convergence rate of the second term does not matter provided that H is
a large enough integer, which may depend on ¥ and p 3 but does not depend on n
and p. For such an H, if Ag(y,y,) is nonempty, Theorem 1 and (10) hold for
both categorical and continuous response variable Y.

_ EXAMPLE 1. We consider a toy example to show that the convergence rate of
Ay is different col(A g). Consider the following noiseless toy model:

(11 y=1xx(1)+0*xx(2)+0xe¢,

where x (1), x(2) and € ~ N (0, 1). It is easy to see that A = var(E[x]|y]) = ((1) 8),

and its SIR estimate KH(i, Jj)= % YopXn.()xp.(j), where xp .(1) = yp,. and
xp..(2) ~ N(O, %). To ensure KH is a consistent estimate of A,

(12)  |Ag(1,1)—=1] =0 and |AgG, j)|—0 VG j)#d,1D.
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In order for A g(1,1) to be a consistent estimate of 1, we may need H — o0.
However, if we are only interested in the first eigenvector (the basis of the central
subspace in this toy model) of A, we only need that Ag(1,1)—1is sufficiently
small. In summary, to get a consistent estimate of the central subspace using SIR,
H must be large enough, but finite.

THEOREM 2. Under conditions (A1), (A2), (A3), (A4) and assuming that
p=1im£ =0, we have

O _
1x AH—):xlA||2—>0 asn — oo
with probability converging to one, where %, = % Y xix!.

The proofs of Theorems 1 and 2 are in Appendix B. We define the distance
D(V1, V) of two d-dimensional subspaces V| and V5 as the operator norm (or
Frobenius norm) of the difference between Py, and Py,. Simple linear algebra
shows that if the B,;’s satisfy X8, = A; AB;, then

col(V) = span{Bl, ceey Bd}.

Let V be the matrix formed by the top d generalized eigenvectors of (f;l, An).
Recall that the dth eigenvalue of A is assumed to be bounded away from 0. There-
fore, Theorem 2 implies that D(Py, Py) — 0 when p =0.

We have already shown that the SIR procedure provides us with a consistent
estimate of the sufficient dimension reduction space when p = 0. It is then natural
to ask: is this condition necessary? Our next theorem gives the answer.

THEOREM 3. Under conditions (Al), (A2), (Ad) and assuming that x ~
N(0,1,) for the single index model

y=f(B"x.€),
we have:

(i) When p = lim}ﬁl € (0, 0c0), ||XH — A2, as a function of p, is dominated by
PV pwhen H,n — o0,

(ii) Let ,/é be the principal eigenvector of the SIR estimator An. If p =lim % >
0, then there exists a positive constant c(p) > 0 such that

liminfEZ (B, B) > c(p)

with probability converging to one.

The proof is left in Appendix C in the Supplementary Material [Lin, Zhao and
Liu (2018)]. We illustrate this result via a numerical study of the linear model

(13) y=x"B+e where 87 = (1,0, ...,0),x ~ N(0,I,),e ~N(0, 1).
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FI1G. 1. Numerical approximations of EZ(E, B) for model (13) as a function of dimension p for
p=0.1,0.3,0.7, 1, 2 and 4, respectively (upper left, upper right, middle left, middle right, lower left,
lower right), where B is estimated by SIR.

Figure 1 shows how E/(8, B) is related to the dimension p for fixed ratio p = £

n

(taking values in {0.1,0.3,0.7, 1, 2, 4}), Wllere ﬁ is calculated using SIR with the
slice number H = 10. For each p, EZ(B, B) is calculated based on 100 iterations.
It is seen that this expected angle converges to a positive number when the ratio
p is nonzero. In Figure 2, we have plotted the EZ(B, B) against the ratio p = 5,
varying between 0.01 and 4 with an increment of 0.01. The sample size n is 200
and the slice number H is 10. It is seen that the expected angle decreases to zero
as p approaches zero, and increases when p increases.

Results in this section have shown that there is a phase transition phenomenon of
the SIR procedure, that is, the estimate of the dimension reduction space is consis-
tent if and only if the ratio p = limg = 0. This provides a theoretical justification
of imposing additional structure assumption such as sparsity in high dimension
when p > n.

4. SIR in ultra-high dimension. As we have shown in Section 3, the SIR es-
timator is not consistent when p = lim % # 0. Hence, when p >> n, some structural
assumptions are necessary for getting a consistent estimate of the central space. In
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FI1G. 2.  The relationship of EZ(B, E) and the ratio p/n where E is estimated by SIR.

this paper, we assume that both the loadings of all the directions B;’s and the
covariance matrix X, are sparse. Other structural assumptions will be studied in
future work. For ;’s, we impose the following prevalent sparsity condition:

o (AS) s =|S| K p where S = {i | B;(i) # 0 for some j, 1 < j < d} and [S] is
the number of elements in the set S.

For X,, the following class of covariance matrices has been introduced in Bickel
and Levina (2008) [see also Cai, Zhang and Zhou (2010)]:

U(ep,a, C) = {):x:max E {loijl:li —jl>1} <Cl"*foralll >0,
bi -
1

1
and 0 < €9 < Amin(Tx) < Amax(Tx) < _}
€0

In this paper, to simplify the notation and arguments, we choose a slightly stronger
condition:

e (A6) X, € U(ep, a, C) and max;<;<p r; is bounded where r; is the number of
nonzero elements in the ith row of X .

Let 7 = {k | var(E[x (k)|y]) #0}. If k € T, there exists n € col(A) such that
n(k) # 0. Since we have (3),

Y col(V) =col(A),

there exists a 8 € col(V) such that n = X, 8. Thus if k € T, then k € supp(Z, )
for some B € col(V). In particular, with the above sparsity assumptions (AS) and
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(A6), we have |T| < smax|<j<pri = O(s).> Note that our goal here is to recover
the column space col(V) rather than S. The key for recovering col(V) is to con-
sistently recover the set 7.

At the population level, var(E(x (k))|y) can separate 7 from 7°¢. When there
are only finite samples, we use

(14) var (x (k) = th (k)?

as an estimate of var(E(x(k))|y). These are the diagonal elements of the matrix
A . Note that these quantities depend on the sliced sample means, which are nei-
ther independent nor identically distributed. Thus, the usual concentration inequal-
ities for x2 are no longer applicable. We have thus developed the concentration
inequalities accordingly which is one of the main technical contributions of this
paper, and can be further generalized.

REMARK 4. The link function f(-) is not used explicitly in the definition of
varg (x (k)). This nonparametric characteristic of the method is of particular inter-
est to us and will be further investigated in future researches. Screening statistics
inspired by the sliced inverse regression idea have been proposed in various for-
mats, such as those in Jiang and Liu (2014), Zhu et al. (2011) and Cui, Li and
Zhong (2015).

With the quantities varg (E[x (k)|y])’s, we define the inclusion set Z, () and the
exclusion set £, (7) below, which depend on a thresholding value ¢:

Z,@t)={k|varg(x(k)) >t}
and

Ep(t) = {k | varg (x (k) <t}.
Note that 7, (¢) can be viewed as an estimate of 7 and is thus also denoted by T.
After reducing the dimension to a level such that p/n is sufficiently small, the SIR
estimator K?’? is a consistent estimate of AT T, Let 1’7% be the matrix formed

by the top d eigenvectors of KT’T. We then use f;l col(e(VT)) to estimate the

central space col(V), where f;l is a consistent estimate of X . Estimating the co-
variance matrix and precision matrix in a high-dimensional setting is a challenging
problem by itself and is not a main focus of this paper. We just employ the meth-
ods of Bickel and Levina (2008). In summary, we propose the following Diagonal
Thresholding screening SIR (DT-SIR) algorithm (see Algorithm 1):

SWe could introduce £ = max 1<i<p > then | T| < s&. The arguments below still work, except we
might need s& = o(p).
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Algorithm 1 DT-SIR
1. Calculate vargy (x (k)) according (14) fork =1, 2, .
2. Let T {k | varg (x(k)) > t} for an appropriate ¢;

3. LetA, H 7 be the SIR estimator of the conditional covariance matrix for the data

(y,x~ ?) according to equation (2); L
4. Let V be the matrix formed by the top d eigenvectors of AT T

5. Zx col(e(V )) is the estimate of col(V)

A practical way to choose an appropriate ¢ in step 2 will be presented in Sec-
tion 5. To ensure theoretical properties, we need an assumption on the signal
strength:

e (S1) AC > 0 and w > 0 such that var(E[x (k)|y]) > Cs~® when E[x(k)|y] is
not a constant.

THEOREM 4. Under conditions (A1)—(A6) and (S1), and let t = as™® for
some constant a > 0 such that t < % var(m(y, k)), Yk € T, we have:

(i) T¢ C &y holds with probability at least

(15) 1-C exp( Cz ~+ Cslog(H) +log(p — s))

(i) T CZ, holds with probablltty at least

n
(16) 1—0Cy exp(—Cs g0 + Ce¢log(H) + 10g(s)>,
for some positive constants Cy, ..., Ce.

Th1s theorem has a simple implication. If 7 > log(p) +log(s), we may choose
log(swlog(p)) so that

H2 > log(p) +log(H) + log(s).

Thus, we know 7 = I, with probability converging to one. Next, we have results
for the consistency of DT-SIR.

THEOREM 5. Under the same assumptions and choosing the same t as Theo-
rem 4, if & > log(p) +log(s), we have

le(A (ATT) Apl,—0 asn — oo

with probability converging to one, where T =I(t) and H = log(sa)lonw).
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THEOREM 6. Let X, be the estimator of co-variance matrix from Bickel and
Levina (2008). Under the same assumptions of Theorem 5, we have

ol TT
|2 e(Ay) -

e(Ay AL, >0 asn— o0

with probability converging to one.

The proofs of Theorems 4 to 6 are left in Appendix D in the Supplementary
Material [Lin, Zhao and Liu (2018)].

5. Simulation studies. We consider the following settings in generating the
design matrix x and the response y. In Settings I-III, each row of x is indepen-
dently sampled from N (0, I):

o Setting I y; = Sin(ii1 +Xi2) + exp(ii3 + i) + 0.5 x6;, where & N0, 1);

e Setting IL. y; = ZZ 1 Xij * exp(x;g + x;9) + 0.5 x ¢; where ¢; tid "N, 1);

o Setting IIL y; = Y10 x;j % exp(X70, x;j) + ¢ where ¢ 5" N(0, 1).
In Settings IV to VI, each row of x is independently sampled from N (0, X).

o Setting IV. y; = (x;1 + xi2 + x;3)> /2 + 0.5 % ¢;, where ¢; LLd- N(0,1) and E =
(0ij) is tri-diagonal with 0;; =1, 07 ;41 =041, = p and a, ,+2 =0j42. = p ;

e Setting V. y; = 27 1 Xij * exp(x;g + xj9) + €;, where ¢; L "N, 1),and X =

B ®1,/10 with B = (b;j)1<i<10,1<j<10 given as b;j = pl'~/l;

e Setting VI. Assume the same setting as in Setting V except that X = (03;) is
tri-diagonal with 0j; =1, 0; ;41 =0i+1.; = p and 0} ;42 = 0j42.; = ,02.

e Setting VIIL. Assume the same setting as in Setting V except that ¥ = (oj;) is
given as 0;; = pli=il,

DT-SIR first screens all the predictors according to the statistic varg (x(k)),
which requires a tuning parameter 1. We chose ¢ by using an auxiliary variable
method based on an idea first proposed by Luo, Stefanski and Boos (2006) and ex-
tended by Wu, Boos and Stefanski (2007) and Zhu et al. (2011). In our setting, for
a given sample (y;, x;), we generate z; ~ N (0, L,/) where p’ is sufficiently large
and chosen as p in our simulation studies. It is known that y and z are independent.
The threshold ¢ can be chosen as

= max {varg(z(k))}.
1<k <p
In DT-SIR, when n > 1000, H is chosen as 20; when n < 1000, H is chosen as 10
in the screening step and 20 in the SIR step.
We also consider the following alternative methods in the screening step: Sure
Independent Ranking and Screening (SIRS) in Zhu et al. (2011), SIR for variable

selection via Inverse modeling (SIRI) in Jiang and Liu (2014), and trace pursuit
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in Yu, Dong and Zhu (2016). As a comparison, we also considered two screen-
ing methods that are not based on the sliced regression: Distance correlation in
Székely, Rizzo and Bakirov (2007) and SURE independence in Fan and Lv (2008).
For SIRS, the threshold is chosen according to the auxiliary statistic (2.9) of Zhu
et al. (2011). For SIRI, the predictors are chosen according to 10-fold cross vali-
dation. The threshold values ¢5R and ¢ are chosen as the 10th and 5th quantile
of a weighted y? distribution given in Theorem 3.1 of Yu, Dong and Zhu (2016).
In both SURE and DC screening, the top | yn] predictors where y = 0.01 are kept
for subsequent analyses.

After the screening step, similar to DT-SIR, we then applied the SIR algorithm
(steps 3-5 of DT-SIR) to estimate col(V). These alternative methods are denoted
as SIRS-SIR, SIRI-SIR, SURE-SIR, DC-SIR and TP-SIR, respectively, in the fol-
lowing discussions. Another method that we compared with is the sparse SIR,
abbreviated as SpSIR, proposed in Li (2007). After obtaining an estimator col(V),
we calculated D(Peoi(v), Peol(v)) as a measure of the estimation error. We repli-
cated this step 100 times, and calculated the average distance for the estimation
result from each method and reported these numbers in Tables 1-3. For each set-
ting, the average distance of the optimal method is highlighted using bold fonts.
We further ran a two-sample T-test to test if the actual estimation error of each
method is significantly different from that of the best method for that example at
1% level of significance.

Under all settings, the average distance obtained by DT-SIR is much smaller
than that obtained by SpSIR and SURE-SIR. The p-values for comparing DT-SIR
and SpSIR/SURE-SIR are all significant at the 0.01 level. When p > n, the sparse
SIR completely fails because the average distance of the estimated space to the
true space is ~/2d, indicating that the space estimated by sparse SIR is orthogonal
to the true space spanned by S.

Under settings II-I'V, DT-SIR performs either the best or not significantly worse
than the best method. For all other cases, DT-SIR performs the best except for a
few cases: Setting I when n = 500, p = 1000, setting V when n = 500, p = 6000,
setting VI when n = 500, p = 6000 and setting VII when n = 1000, p = 1000.

When p = 6000, n = 500, both DT-SIR and SIRI-SIR are the winners. Under
Setting III, DT-SIR performs better than SIRI-SIR; under settings V and VI, SIRI-
SIR performs better than DT-SIR; under other settings, these two methods are
comparable.

To graphically show the performance of various methods, we considered set-
ting IV with d = 1. Consider two cases when (n, p) = (2000, 1000) and (2, p) =
(500, 100). We calculated theAestimated directions ,/B\ using various methods and
computed the angle between () and (B). We replicated this step 100 times to cal-
culate the average angles for each method. The results are displayed in Figure 3,
which shows clearly that DT-SIR performed better than its competitors.

Additionally, DT-SIR is computationally efficient. To show this, we reported the
computing time for one replication under Setting II for various pairs of (n, p) in
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TABLE 1
The average distance of the space estimated by each of the T methods tested to the true space
col(V) under various settings with p = 1000. The boldfaced number in each row represents the best
result for that simulation scenario, and the “*” in cells represents that the p-value of the
two-sample T-test comparing the estimation error of the corresponding method with that of the best
method is less than 0.01

n DT-SIR SIRI-SIR SIRS-SIR  SpSIR  SURE-SIR DC-SIR  TP-SIR

500 0.655(*)  0.751(%) 0.492 2(%) 1.39¢%)  0.731(*)  L.18(%)
1000 0.3 0.431(¥) 0.309 2(¥) 1.29(*)  0.632(*)  0.94(*)
2000 0221  0.341(%) 0.226 1.58(+) LO4(%)  0.655(*)  0.784(*)
3000  0.167  0.245(*) 0.149 1.48(*)  0.816(*)  0.641(*) 0.713(%)

500 0383 0.396 0.371 2(%) 1.64(%) 1.08(*)  0.389
1000 0.235 0.227 0.256 2(%) 1.36(*)  0.266(*) 0.318(*)
2000  0.161 0.157 0.189(*)  1.25(%) 1.25(%)  0.387(*)  0.264(%)
3000 0.134 0.129 0.153(*)  0.975(*)  1.12(*)  0.404(*)  0.23(%)

500 1.15 1.48(*) 1.38(%) 2(%) 1.97(%) 1.85(*) 1.13
1000  0.426 0.974(*) 0.596(*) 2(%) 1.94(*) 1.57¢*) 0.429
2000  0.263 0.403(*) 0.29(¥) 1.33(%) 1.89(*) 0.996(*)  0.338(*)
3000  0.214 0.297 0.238(*) 1.06(*) 1.82(%) 0.475(*)  0.299(*)

500  0.263 0.257 0.333 L4L(*)  0335(%)  0.334(*)  0.332(%)
1000 0219  0.447(%) 0.25 L4L(*)  0436(*)  0.459(*)  0.469(*)
2000  0.161 0.4(*) 0.196(*)  042(*)  0.442(*)  0.469(*) 0.452(%)
3000 0134 0.377¢*)  0.177(*)  0297(*)  043(*)  0.458(*) 0.438(%)

It

m

v

500  0.546 0.529 0.562 2(%) 1.62(¥) 1.24(%)  1.09(%)
y 1000 0401 0463(")  0514(%) 2(%) 1.15(*) 0.367  0.615(%)
2000 0.288  0.418(*)  0341(*)  L51(*)  0.926(*)  0.569(*)  0.54(%)
3000 0.249  0.399(%)  0.284(*)  1.24(*)  0.691(*)  0.597(*) 0.511(%)
500  0.568 0.535 0.566 2(%) 1.64(*) 1.24(*)  1.08(%)
yp 1000 0427 0.524(%)  0.548(%) 2(%) 1.22(¥) 039  0.641(%)
2000 0311  0469(*)  0351(%)  L51(*)  0.927(*)  0.598(*) 0.583(%)
3000 0.265  0.456(%)  0307(*)  1.25(%)  0.807(*)  0.622(*)  0.56(%)
500 0.556 0.534 0.585(*) 2(%) 1.66(*) 126(%)  L11(*%)
g 1000 0436(%)  0.528(")  0.545(%) 2(%) 1.22(%) 0.39  0.643(%)

2000 0303  0465(*)  0358(*)  1.51(*)  0.747(*)  0.589(*) 0.579(*)
3000 0258  0.468(*)  0319(*)  1.25(*)  0.698(*)  0.63(*)  0.558(%)

Table 4. All computations were done on a computer with Intel Xeon(R) E5-1620
CPU@3.70G Hz and 16 GB memory. It is clearly seen that DT-SIR performed as
fast as SURE-SIR, and both were much faster than other competitors. Consider
the case when p = 3000, n = 2000. The computation time of DT-SIR is only 30
seconds; while that for DC-SIR is 21 minutes and 38 seconds, and the that for
TP-SIR is 6 minutes and 17 seconds.
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TABLE 2
The average distance of the space estimated by each of the T methods we tested to the true space
col(V) under various settings with n = 2000
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p DTSIR SIRISSIR SIRS-SIR SpSIR SURE-SIR DC-SIR TP-SIR
500 0213 0.312(%) 0.206 L44(%)  0.903(*)  0.629(*)  0.772(*)
[ looo 0221 0341(%) 0.226 1.58(*) LO4C¥)  0.655(%)  0.784(*%)
2000  0.241 0.29 0.214 2(%) L.07(¥)  0.677(*) 0.793(%)
3000 023 0.278 0.218 2(%) L17¢%)  0.683(*) 0.797(%)
500 0.163 0.16 0.19(*)  0.83(%) 1.22(%)  0.369(*)  0.26(%)
g 1000 0.161 0.157 0.189(%)  1.25(%) 1.25(%)  0.387(*)  0.264(%)
2000  0.172 0.159 0.196(*) 2(%) 1.23(%)  0.404(*)  0.259(%)
3000  0.164 0.158 0.199(*) 2(%) 13(%)  0414(*)  0.261(%)
500 0272 0.353 029(*)  0.916(*)  1.84(*)  0.846(%) 0.341(%)
1000 0263 0403) 029  133() 1.89(*)  0.996(*) 0.338(*%)
2000  0.262 0.368 0.285(+) 2(%) 1.92(%)  0.98(*)  0.339(%)
3000  0.269 0.344 0.291(*) 2(%) 1.93(+) 1.09C%)  0.339(*)
500 0.145  0.409(*)  0.182(*)  0.248(*)  0.406(*)  0.433(*) 0.438(%)
v 1000 0.161 0.4(*) 0.196(*)  0.42(*)  0.442(*)  0.469(*) 0.452(*)
2000 0.6  0.395(*)  0.198(*)  141(*)  0472(*)  0.506(*) 0.447(%)
3000 015  0.395(*)  0.216(*)  141(*)  049(*)  0.527(*) 0.447(*)
500 0272 0434(*)  0353(*)  1.09(*)  0.876(*)  0.547(%) 0.539(%)
y 1000 0288 0418() 0341  151(%)  0926(*)  0.569(*) 0.54(")
2000 0289  0.418(*)  0.351(%) 2(%) 0.868(*)  0.596(*)  0.537(%)
3000 03 0.417(%)  0.372(%) 2(%) 0.968(*)  0.605(*)  0.544(*)
500 0307  0.479(*)  0.368(*)  1.I(*)  0.858(*)  0.566(*) 0.583(%)
yp 1000 0311 0469(*)  0351()  L51(%)  0927(%)  0.598(*) 0.583(*)
2000 0309  0.461(%)  0.399(*) 2(%) 1.08C¥)  0.617(*)  0.585(%)
3000  0.31 0.46(%)  0.408(*) 2(%) 1) 0.638(*)  0.587(*)
500 0299 0.482(%)  0.343(*)  1.09(*)  0.818(*)  0.564(*) 0.583(%)
g 1000 0303 0465() 0358  151(%)  0747(*)  0.589(*) 0.579(%)
2000 0309  0.455(*)  0.383(%) 2(%) 0.966(*)  0.622(*)  0.578(%)
3000 0308  0.46(*)  0.357(%) 2(%) 0.858(*)  0.626(*)  0.58(%)

6. Conclusion. When the dimension p diverges to infinity, classical statisti-
cal procedures often fail unless additional structures such as sparsity conditions
are imposed. Understanding boundary conditions of a statistical procedure pro-
vides us theoretical justification and practical guidance for our modeling efforts.
In this paper we provide a new framework to show that p = lim% is the phase
transition parameter for the SIR procedure. Under certain conditions, it is shown
that the SIR estimator is consistent if and only if p = 0. When p > 0, where the
original SIR fails to be consistent, we propose a two-stage method, DT-SIR for
variable screening and selection in ultra-high dimension situations and show that
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TABLE 3
The average distance of the space estimated by each of the T methods tested to the true space
col(V) under various settings with n = 500 and p = 6000

Q. LIN, Z. ZHAO AND J. S. LIU

DT-SIR  SIRI-SIR  SIRS-SIR  SpSIR  SURE-SIR DC-SIR  TP-SIR
I 0.694 0.631 0.606 2(%) 1.43(*) 097(*)  1.19(*)
i 0.446 0.462 0.414 2(*) 1.74(*) 1.08(*) 0.4
10 1.35 1.56(*) 1.56(*) 2(%) 1.99(*) 1.88(*) 1.37
v 0.163 0.122 0.245(%)  1.41(%) 0.27(¥) 0.305(*)  0.195(%)
Vo 0481(%) 0.431 0.486(*) 2(%) 1.62(%) L1(¥)  0.995(%)
VI 0.463(¥) 0.423 0.494(*) 2(%) 1.62(*) L1L(*)  0.999(%)
VII 0.44 0.412 0.477(*) 2(%) 1.61(*) 11(*) 1.03(*)

the method is consistent. We have used simulated examples to demonstrate the ad-
vantages of DT-SIR compared to its competitors. This method is computationally
fast and can be easily implemented for large data sets.

It is natural to ask if similar phase transition phenomena occur for other SDR
algorithms. For simplicity, let us assume that x ~ N (0, I). If we decompose x =
Psx + Psix, then y I Pgix. The SIR procedure accumulates the signal along
direction Psx and averages out the noise along direction Pgix. It is clear that
if limg # 0, the averaging-out idea fails. Thus, we cannot expect that SIR can
produce a consistent estimate of S. This intuitive argument could apply to those
SDR algorithms that inherit the sliced modeling characteristics. However, such a
development relies on the higher moment and is technical challenging.

Directions

Directions

0.0

True Beta

DT-SIR

SIRI SIR
SIRS SIR
Sparse SIR

True Beta
SIRI SIR
SIRS SIR
Sparse SIR
DT-SIR

-0.5 0.0

05 170

-0.5 0.0

0.5

1.0

Fi1G. 3.  Simulated value of EL(B, B) for the various methods. Left panel: (n, p) = (2000, 1000).

Right panel: (n, p) = (500, 1000).
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TABLE 4
Comparison of computing time under setting II

DT-SIR  SIRI-SIR  SIRS-SIR  SpSIR  SURE-SIR  DC-SIR  TP-SIR

n p = 1000
500 1 112" 7" 1" 1 24" 29"
1000 2 22" 20" 1" 1 152" 12"
2000 3 327" 114" 13" 2" 7'38” 2'18”
3000 Y 459" 245" 15" 3" 651" 37"
)4 n = 2000
500 1// 2/48// 35// 2// 1// 3/46// 1/7//
1000 3 327" 114" 13" 2" 7'38” 218"
2000 12" 455" 235" 139" 12" 14247 322"
3000 307 6'0” 410" 519" 30" 2138 617"
APPENDICES

The following two sections provide details about our theoretical derivations.
But some more tedious intermediate steps (organized as Lemmas 6-21) are in the
Supplementary Material, which is available on-line [Lin, Zhao and Liu (2018)].

APPENDIX A: THE KEY LEMMA

The following lemma plays an important role in developing the high-
dimensional theory for sliced inverse regression. Here, keep in mind that H and v
(if they are not constants) grow at very slow rate compared with ¢ and n [e.g., poly—
nomial of log(n)]. Let m(y) = E[x|y], and x = m(y) + €. Notation my, j, mj, .
and €y j, €y ., € are similarly defined as xj j, X;,. and X that were 1ntroduced
before.

LEMMA 1. Assume the conditions (A1), (A2), (A3) and (A4) hold. Let x € R?

be a sub-Gaussian random variable which is upper exponentially bounded by K
(see Definition 4). For any unit vector B € R?, let x(B) = (x, 8) and m(B) =
(m, B) =E[x(B) | y], we have the following:

@A) If var(m(B)) = 0, there exists positive constants C1, Cy and Cz such that
for any b = O(1) and sufficiently large H, we have

b
P(vary (x(B)) > b) < C exp(—Cz% +Cs log(H)>.

(ii) If var(m(B)) # 0, there exists positive constants Cy, Ca and C3 such that,
for any v > 1, we have

vary (x(8) ~ var(m(B) | = 5 var(m ()
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with probability at most
nvar(m(f))

H?v?2

Here, we choose H such that H” > Cyv for some sufficiently large constant Cj.

Ci exp(—Cz +C3 log(H)).

A.l. Proof of Lemma 1(i). If m(B) = 0 [or equivalently var(m(8)) = 0],
since

c—1

1 ol 1 2
én.(B) = ( — ; €ni(B)+ ;eh,cw))

c

1! S 2
=< 2(: ; fh,i(ﬂ)) + z(th,c(ﬂ))
forh=1,...,H—land ey .(B) = % Y i_1€H,i(B), we have
vary (x(B)) — var(m(B))

1 Hi:l 2 | 2
=— €n.(B) + —€u.(B)
H 7 H
2 (HZlf < 2 ) p A )
= E(Xh: (; ;&,Mﬂ)) +en.(B) ) + et Xh: €n,c(B)
221 +2II.
Thus
17 P(vary (x(B)) > b) <P(I > b/4) + Pl > b/4).

Lemma 17(iii) in the Supplementary Material [Lin, Zhao and Liu (2018)] im-
plies that

2
t
P(e(B)lyes, > 1) < CHexp<—F>
for some positive constant C. Since E[x(B)|y] = 0, we have E[x(B)|y € Sy] =0.

From Lemma 9, we know that for 1 <h < H — 1, €;,;(B) can be treated as ¢ — 1
i.i.d. samples from €(B)|ycs,. According to Lemma 17(iv),

1! —b(c—1)
Pl|—— > en; >b/2) <Ciex ( )
(‘c—lg i (B) /> P\ 8L HK? 1 4vBK
Similarly, we have

1 C
P(‘;ZGH,i(ﬂ)

i=1

—bc
>b/2 <(Ciex ( )
/) 1P 8CoHK?+44/bK
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Thus, if b= O(1) and H is sufficiently large, we have
IP’(I b) <C ((H 1 ( —be— D )
> — —Dex
4) =" P\8C,HK? 4K

—bc
P 8C3HK? +4VbK

b
<C exp(—Cz% 1 G log(H)>

for some positive constants C1, Ca and C3.

Since €;(B) are i.i.d. samples from a sub-Gaussian distribution €(f) with mean
0 and upper-exponentially bounded by 2K. Lemma 19 implies that if b = O(1)
and H is sufficiently large, we have

P(II > b/4) < IP(% Z € (B)° > bC/4>

<3(; S - Ele(8)] > be/4 — Ele(§)?])

< P(\; D €i(B)’ - E[G(ﬂ)z]‘ > ch/4 - 41<2)
<c exp<_02 \/ﬁ(cb/;z— 41<2)>

b
<C exp(—Cz% +C3 log(H)>

for some positive constants C1, C> and C3 if H is sufficiently large. We used in
above the fact that E[e(8)2] < 4K?2.
To summarize, if b = O(1) and H is sufficiently large, we have

P(varg (x(B)) > b) < Cy exp(—Cz% + C;3 log(H)>

for some positive absolute constants C, Ca and C3.

A.2. Proof of Lemma 1(ii). Let u, = E[m(y | y € Si)]. Since x is sub-
Gaussian and B is unit vector, we know that var(m(8)) = O(1). If m(B) # 0 [or
equivalently var(m(f)) # 0], we have

i (x(8) ~ var(m )| = 37 1.8 ~ var(m(8))

g

B 2 —~_ .
_ ‘E ;mh,.w = ;mh,.w)eh..(ﬂ)
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U2 g2
+EZ€h.-(ﬂ) — var(m(B))
N

<A1+ A+ Az + Ag,

where

1
= ‘E Y un(B)* — var(m(B))|,
h

(18)

1
== ;zh.m){
2. N2 2\ 12
A4—<E;mh.~(ﬂ)) (ﬁzh:éh,.(ﬂ)> .

Lemma 1(ii) is a direct corollary of the following properties of A;’s.

LEMMA 2. Let the A;’s be defined as in equation (18). There exist positive
constants Cy, Cy and Cs, such that for any v > 1 and H satisfying H” = Nyv for
sufficiently large N1, we have that each of the following events:

(i) ©1={A; < 4v var(m(B))},
(i) O ={A3 < g var(m(B))},
(iii) O3 ={A3 < 7= var(m(B))},
(iv) ©4={A4 < 1 var(m(B))},

occurs with probability at least

cvar(m(p))

19 1-C —C
(19) 1CXP< 22

+ C3 log(H)>.

A.2.1. Proof of Lemma 2.

A.2.1.1. Proofof (i). Recall definitions of the random intervals S, h=1,2,...,
H and random variable 8, = §,(w) = fyesh () f(y)dy. We have

2 L B) — var(m )
h

1
= vartm®) = S onn B | 7 S8’ = Sontn®)’

2 Bi + B».
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Lete = ﬁ where ng = Npv for some sufficiently large constant N, and let

event E (¢) be defined as in Lemma 11 in Section E, thatis, E(¢) = {w | |6, — %| >
€, Vh}. For any w € E(€)¢, we have

=Y 8n(w) var(m(B)ly € Sp(®))
h

1

(20) <|—=+e€ var(m(B)|y € Sh(w))
(5 +e)%

Q1) <+ He)% var(m(B))

(22) < % var(m(B)),

where inequality (20) follows from the fact that §,(w) < % + €, inequality (21)
follows from the sliced stable condition (4) and inequality (22) follows from the
requirement that H” > Nyv, and the fact

By<e Z(ﬂw)z = ish (B" 1u)?
h

(23) Z 81 (B in)’

1_
< 51(BT 2,
_Nth: n(B* in)

where inequality (23) follows from the fact 55 > % — €.
From (22), we observe that

2y,
24 5 21+ 28 :
24) (s 8) < (14372 var(m(8))
Combining with (23), we then have
2 2}’3
o< g (145 ) v

So when E (¢)€ occurs, we have

2y | 2 ( 2y; ))
B B < - 1 .
1+ By < (va + Nav + Niv var(m(p))

Note that N and N, can be chosen sufficiently large so that

4 1
(25) B+ B; < NLUS) var(m(B)) < . var(m(p)).
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Consequently, conditioning on E (¢)¢ where € = if we choose H” > Njv,

1
HNyv+12
then

26) LS (8))? — var(m (ﬂ))‘ < % var(m(8)).

H h

Since var(m(B)) = O(1), H? > Njv and € =
bound follows from Lemma 11, that is,

P(E(e)) < Cy exp(—Hc—-i_1
- 32(Hng + 1)?
cvar(m(B))
Hv?
for some positive constants C, C2 and Cs.

m, the desired probability

+log(H>V/Hc + 1))

<(C exp(—Cz +C3 log(H)>,

REMARK 5. From (26), conditioning on E(€)¢, we obtain the following two
inequalities:

I 4
@7 » Xh:(ﬂh(ﬂ))z < (1 e 3) var(m(8))
and

1 4y, 12
(28) 7 Dl < (1435 varlmesn)

In particular, # 3, (s (B))* and 4 X, |1 (B)| are bounded by Op(1).

A.2.1.2. Proof of (ii). Denote C%IZ?;II my, ;(B) by m;,(B) and my_.(B) by
m'y (B), we have
H

Az<—Z|mh(ﬂ) — un(B)? [+ 5 Z my, .(B)?

2e— 1) 12, | H 12
2
+ . (H Z w(B) ) (th:lmh,c(ﬂ) >

h=1

25 iy
Hc hZIMh

ST 4+I+H0OI+1V.

Before we start proving this part, we need to introduce two events and bound their
probabilities. First, let

1
29) Ey(N3.v) = {n(ﬁ) > @\/var(m(ﬂ))],



DT-SIR 603

where 7(B) = maxi<p<pm{|m),(B) — n(B)|}. According to Lemma 17(i), (iv) and
Bonferroni’s inequality, we have

(30)  P(Ei(N3,v)) <2H exp( —(c = Dvar(m(B)) )

1
(N3v)? 2CHK? + 55 /Var(m (B) K
cvar(m(p))
Hyv?
for some positive constants C1, C2 and C3. Second, let

3D <C; exp(—Cz + C3 log(H))

1
E>(Ny,v) 2 [II > mvar(m(ﬂ))},

then

var(m(B))
e <7( Lo )

<(C; exp(—C2ﬁ<cM> — K2>

Vv

cvar(m(pB))

<(C eXp<—C2 o

+ C3log(H ))

for some positive constant C1, C and Cs. It is easy to see E(Ng, V) C E(Ny, 1)2).
For 1. Conditioning on the event E(¢)¢ N E1(N3, v)¢, combining with (28), we
have

I< —Zn(ﬂ) n(B) +2|1un(B)])

2
sn(ﬂh%ﬂ)zwm
h

() 4l )

1
=3, var(m(p))

if N3 is sufficiently large.
REMARK 6. From above, conditioning on the event E(¢)¢ N E1(N3, V)¢, we
have

1+ 32v
32v

1 H
(32) — Y m(B)* < var(m(B)).
H h=1

For II. Conditioning on E5(N4, v)¢, we have II < %ﬂ()v»
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For III.  'When the event E(¢)° N E{ (N3, v) N E2(Ny, v?)€ occurs, according to
equation (32),

_2e—1) [T+320 1
- ¢ 32v  /Nsv

< % var(m(p)),

11l var(m(B))

if N4 is sufficiently large.
For 1V. 'When the event E(¢) N E1(N3,v)° N Ey(Ng, v)€ occurs, from (26), we
know

2 9 !
V= ; uin(B)* < - var(m(B) < 1 var(m(B)).

To summarize, we know that there exist positive constant C1, C2, C3 and C4
such that

1
Ay < I+ + I+ 1V < o= var(m(B)
v

holds on the event E (¢)¢ N E{ (N3, v)¢ N E2(N4, v2)€, which is with probability at
least

cvar(m(pB))

1-C -C
1eXP< 2 H12

e log<H>)

for some positive constants Cq, C> and C3.
A.2.1.3. Proof of (iii). Similar to the proof of Lemma 1(i), we have

—(c—1)b )
8C2HK? +44/bK,

P(A3 > b) < ClHexp(

for some positive constants Cy, Co and C3. In particular, if we take b =
ﬁ var(m(f)), we know that

1
Az < 160 Va.r(m(ﬂ))
with probability at least

cvar(m(pB))

1-C —C
16Xp( 2 Hu2

e log<H>)

for some positive constant C1, C3 and C3.
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A.2.1.4. Proof of (iv). Let

o
D = % Xh:mh,~(ﬁ)2,

1 _
Dy2Az=—> & .(B)"
15

Consequently,
B(D2DY? > - var(m(®)
(33) 2v+1 var(m())
< IP(|D1| > . Var(m(ﬁ))> —HP(Dz > @1 D6y 1)161))'
Note that

|Dy —var(m(B))| < A2+ Aj.
According to (i) and (ii), the right-hand side of (33) is bounded by

cvar(m(pB))
Hyv?
for some positive constants C1, Ca and C3.

C1 exp(—Cz +C3 log(H)>

APPENDIX B: PROOFS OF THEOREMS IN SECTION 3
B.1. Proof of Theorem 1. We have the decomposition
34 x = Peoiayx + Pcol(A)Lx Lz4w
=Elzlyl +z—Elzlyl twEm+v+w,
where z = Pcoia)x, m =E[z|y], v=2z — E[z]y] and w = PCOI(AJ_)X. Note that
m lies in the central curve, v lies in the space col(A) and w lies in the space
perpendicular to col(A). We introduce

and wy j, Wy, W

(35) my, j, my,.,m, Zh,j>Th, %

similar to the definition of x, ;, X;,. and x. Consequently, we can define A ¢ and
have the following decomposition:

—~ 1 —~
(36) Apy= EZE;,,.YZ,_ =A,+ZW +WZT+ W,
h

where

1 1
Z=—&1....,2g.) and W=—=wj., ..., WH.).

vH VH
We need to bound ||KZ — A2 and |[WWT 5.
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LEMMA 3.

n

H2
37) Iwwrl, < 0p< p).

PROOF. For_any unit vector B L col(A), we have var(m(B)) = 0 and
varg (B'x) = BAy B = BT WWTB. From Lemma 1, we know

H2p
(38) IP’(ﬂTWWf,B > C—) <(C; exp(—Czp + log(H))

n

for some positive constants C; and C,. Then the e-net argument [see, e.g.,
2
Vershynin (2012)] implies that |[WWT|| < OP(y). [l

LEMMA 4.
~ 1
(39) IRe = Al = 0n( 45
As a direct corollary, we have ||Kz|| < O0p(1).

PROOF. From Lemma 1, we have

o c
218" R~ MBI = 5 IALL)

cvar(m(p))

+ C3 10g(H)>.

Note that we only need to verify it for 8 € col(A), which is a d-dimensional space.
Then the e-net argument implies that ||A; — A2 < OP(# . O

Theorem 1 follows from Lemma 4 and Lemma 3. In fact,

1Ag — Al <l1A; — A+ |2V + WET |2+ [WWT],

1 H?p H?p
§0P<ﬁ+ . + " >

B.2. Proof of Theorem 2. Theorem 2 is a direct corollary of Theorem 1 and
Lemma 13. In fact, we have

—1=

1% A — =3 A, < |25 — =3 LIAm 2+ |25 1A E — Al

which — 0if p = lim, 00 £ =0.
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B.3. Proof of Theorem 3. (i) The proof for part (i) is similar to the proof of
Theorem 1 and the standard Gaussian assumption on x simplifies the argument and
improves the results. Since w = P g1 x is normal and independent of y, there exists
a normal random variable € ~ N (0, I) such that w = > 1/2¢ where £ = cov(w).
Using the decomposition (36), we may write

1
(40) 1—1—W=E21/2prH,
where E, g is a p x H matrix with i.i.d. standard normal entries. Corollary 4

implies that
H 2
W, < c(‘/g +,/—) < op(£>.
n n n

A 1
1Azll2 < ||A||2+0P(ﬁ>'

By the Cauchy inequality, we have

Lemma 4 implies

|2W7[3 < 1Rzl W], < op(g)

~ 1 p p)
Ay — A2 <0p| — +~— = ).
A —All2 < P(H1’+n+‘/n

In particular, if H,n — oo and p =lim £ € (0, 00), we know that 1Ay — Al is
dominated by p Vv ,/p as a function of p.

(i1) The proof for part (ii) is similar to the proof of Theorem 2 in Johnstone
and Lu (2009) but is technically more challenging. Let D = ZZ* + WW?" and
B =ZW*® + W2ZT, then

Thus,

Ay =D + B.

Since we are working on single index model with x is standard normal, z = Pgx =
Bz(y) for some scalar function z(y) and w = PBLx are independent normal ran-
dom variables. Let ¥ = var(w), then we can write

W= _L sirg
VHe ’
where E is a p x H matrix with i.i.d. standard normal entries.
Since z = Bz(y), we have Z = ﬁﬂ(ﬂ_.,fz,., ...,ZH..). To ease notation, let

0° = (21,., 22,5 eens ZH_.), then

1 1
D=—|0|°B8" + - P EE"E'/,
H n
1)

1
B=pu" ’ hereu = ——X'2E¢.
Bu' +up where u He
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LetO<a < arctan(%) and
“42) Ny ={x eR?: L(x,B) <« and ||x| =1}

be the set of unit vectors making angle at most « where Z(x, y) is the angle be-
tween the vectors x and y. In order to proceed, we need the following lemma.

LEMMA 5. Let /B and ﬁ_ be the principal eigenvector of S+ = D + B and

S 2D - B, respectively. There exists a positive constant w(«t) such that for any
B € Ny, that is, Z(B, B) < a, we have

~ 1

(43) Z(B.B-)= 3@
with probability converging to one as n — oc.

PROOF. The proof is presented in Lin, Zhao and Liu (2018). [

Note that S+ and S_ have the same distribution (viewed as functions of random
terms E and 0):

S_(E,0)=S4+(—E,0).
Let A, denote the event {L(ﬁ, B) <a}uU {A(E,, B) < a}, then
E[£(B.B)] = E[Z(B. B). A;] +E[£(B, B). Ad]

—~ 1 ~ o~
= E[L(ﬂ’ ﬂ)i A(L;{] + EE[Z(ﬂ’ ﬂ—)’ Aa]

> min{a, %} > 0.

SUPPLEMENTARY MATERIAL

Supplement to “On the consistency and sparsity for sliced inverse regres-
sion for high dimensions” (DOI: 10.1214/17-AOS1561SUPP; .pdf). In the sup-
plement, we prove the rest of the results stated in the paper.

REFERENCES

BICKEL, P. J. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36
2577-2604. MR2485008

Cal, T. T., ZHANG, C.-H. and ZHOU, H. H. (2010). Optimal rates of convergence for covariance
matrix estimation. Ann. Statist. 38 2118-2144. MR2676885

CANDES, E. and TA0, T. (2007). The Dantzig selector: Statistical estimation when p is much larger
than n. Ann. Statist. 35 2313-2351. MR2382644



DT-SIR 609

COOK, R. D. (1996). Graphics for regressions with a binary response. J. Amer. Statist. Assoc. 91
983-992. MR 1424601

CoOK, R. D., FORZANI, L. and ROTHMAN, A. J. (2012). Estimating sufficient reductions of the
predictors in abundant high-dimensional regressions. Ann. Statist. 40 353-384. MR3014310

Cul, H., L1, R. and ZHONG, W. (2015). Model-free feature screening for ultrahigh dimensional
discriminant analysis. J. Amer. Statist. Assoc. 110 630-641. MR3367253

FAN, J. and Ly, J. (2008). Sure independence screening for ultrahigh dimensional feature space.
J. R. Stat. Soc. Ser. B. Stat. Methodol. 70 849-911. MR2530322

HSING, T. and CARROLL, R. J. (1992). An asymptotic theory for sliced inverse regression. Ann.
Statist. 20 1040-1061. MR1165605

JIANG, B. and L1U, J. S. (2014). Variable selection for general index models via sliced inverse
regression. Ann. Statist. 42 1751-1786. MR3262467

JOHNSTONE, 1. M. and LU, A. Y. (2009). On consistency and sparsity for principal components
analysis in high dimensions. J. Amer. Statist. Assoc. 104 682—-693. MR2751448

L1, K.-C. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86 316—
342. MR1137117

L1, L. (2007). Sparse sufficient dimension reduction. Biometrika 94 603-613. MR2410011

L1, L. and NACHTSHEIM, C. J. (2006). Sparse sliced inverse regression. Technometrics 48 503-510.
MR2328619

LIN, Q., ZHAO, Z. and LI1U, J. S. (2018). Supplement to “On consistency and sparsity for sliced
inverse regression in high dimensions.” DOI:10.1214/17-AOS1561SUPP.

Luo, X., STEFANSKI, L. A. and Boos, D. D. (2006). Tuning variable selection procedures by
adding noise. Technometrics 48 165-175. MR2277672

NEYKOV, M., LIN, Q. and LIu, J. S. (2015). Signed support recovery for single index models in
high-dimensions. Ann. Math. Sci. Appl. 1 379-426. DOI:10.4310/AMSA.2016.v1.n2.a5.

SZEKELY, G. J., R1zz0, M. L. and BAKIROV, N. K. (2007). Measuring and testing dependence by
correlation of distances. Ann. Statist. 35 2769-2794. MR2382665

TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 58 267-288. MR1379242

VERSHYNIN, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Com-
pressed Sensing 210-268. Cambridge Univ. Press, Cambridge. MR2963170

Wu, Y., Boos, D. D. and STEFANSKI, L. A. (2007). Controlling variable selection by the addition
of pseudovariables. J. Amer. Statist. Assoc. 102 235-243. MR2345541

Yu, Z., DONG, Y. and ZHU, L.-X. (2016). Trace pursuit: A general framework for model-free
variable selection. J. Amer. Statist. Assoc. 111 813-821. MR3538707

Yu, Z., ZHu, L., PENG, H. and ZHU, L. (2013). Dimension reduction and predictor selection in
semiparametric models. Biometrika 100 641-654. MR3094442

ZHONG, W., ZHANG, T., ZHU, Y. and L1U, J. S. (2012). Correlation pursuit: Forward stepwise vari-
able selection for index models. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 849-870. MR2988909

Znu, L.-X. and FANG, K.-T. (1996). Asymptotics for kernel estimate of sliced inverse regression.
Ann. Statist. 24 1053-1068. MR1401836

ZHu, L., MI1AO, B. and PENG, H. (2006). On sliced inverse regression with high-dimensional co-
variates. J. Amer. Statist. Assoc. 101 630-643. MR2281245

ZHu, L. X. and NG, K. W. (1995). Asymptotics of sliced inverse regression. Statist. Sinica 5 727—
736. MR1347616

Zuu, L.-P, L1, L., L1, R. and ZHU, L.-X. (2011). Model-free feature screening for ultrahigh-
dimensional data. J. Amer. Statist. Assoc. 106 1464—1475. MR2896849

Zou, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Ser. B. Stat. Methodol. 67 301-320. MR2137327



610 Q. LIN, Z. ZHAO AND J. S. LIU

Q. LIN

CENTER FOR STATISTICAL SCIENCE
DEPARTMENT OF INDUSTRIAL ENGINEERING
TSINGHUA UNIVERSITY

BEUJING

CHINA

AND

DEPARTMENT OF STATISTICS
HARVARD UNIVERSITY

1 OXFORD STREET

CAMBRIDGE, MASSACHUSETTS 02138
USA

E-MAIL: qianlin88 @ gmail.com

J. S. Liu

7. ZHAO

DEPARTMENT OF STATISTICAL SCIENCE
TEMPLE UNIVERSITY

342 SPEAKMAN HALL

1801 N. 13TH STREET

PHILADELPHIA, PENNSYLVANIA 19122
USA

E-MAIL: zhaozhg@temple.edu

DEPARTMENT OF STATISTICS
HARVARD UNIVERSITY

1 OXFORD STREET

CAMBRIDGE, MASSACHUSETTS 02138
USA

AND

CENTER FOR STATISTICAL SCIENCE
DEPARTMENT OF INDUSTRIAL ENGINEERING
TSINGHUA UNIVERSITY

BEUING

CHINA

E-MAIL: jliu@stat.harvard.edu



