

1
2 **Rapid Assessment of Damaged Residential Buildings in the Florida Keys after**
3 **Hurricane Irma**

4 Siyuan Xian^{1,*}, Kairui Feng¹, Ning Lin¹, Reza Marsooli¹, Dan Chavas², Jie Chen², Adam
5 Hatzikyriakou¹

6 ¹Department of Civil and Environmental Engineering, Princeton University

7 ²Department of Earth, Atmospheric, and Planetary Sciences, Purdue University

8
9
10 **Abstract**

11 On September 10, 2017, Hurricane Irma made landfall in the Florida Keys and caused significant
12 damage. Informed by hydrodynamic storm surge and wave modeling and post-storm satellite
13 imagery, a rapid damage survey was soon conducted for 1600+ residential buildings in Big Pine
14 Key and Marathon. Damage categorizations and statistical analysis reveal distinct factors
15 governing damage at these two locations. The distance from the coast is significant for the
16 damage in Big Pine Key, as severely damaged buildings were located near narrow waterways
17 connected to the ocean. Building type and size are critical in Marathon, highlighted by the
18 near-complete destruction of trailer communities there. These observations raise issues of
19 affordability and equity that need consideration in damage recovery and rebuilding for resilience.

20
21 **Introduction**

22 Hurricane Irma made landfall near Cudjoe Key (lower Florida Keys) on September 10, 2017, as
23 a Category 3 storm. Irma caused widespread damage to the Florida Keys due to storm surge and
24 waves. Informed by hydrodynamic modeling and post-storm satellite imagery, we carried out a
25 field survey soon after the event (September 21-24) to investigate the damage to the Keys,
26 particularly the Big Pine Key and Marathon areas.

27
28 Post-hurricane damage studies have improved our understanding of coastal vulnerability (e.g.
29 Xian et al., 2015 and Hatzikyriakou et al., 2015 for Hurricane Sandy; Eamon et al., 2007 and van
30 de Lindt et al., 2007 for Hurricane Katrina). Here, we conduct a damage survey and assessment
31 for Hurricane Irma, and we use a statistical regression approach to quantify the contribution of

32 various hazard and vulnerability factors to the damage. Such post-event assessments can provide
33 crucial information for implementing post-storm response measures (Lin et al., 2014; Horner et
34 al., 2011; AL-Kanj et al., 2016) and for developing vulnerability models (e.g., USACE 2015;
35 Hatzikyriakou and Lin 2017). The raw and analyzed data from this study appear on DesignSafe¹,
36 a web-based research platform of the National Science Foundation's (NSF) Natural Hazards
37 Engineering Research Infrastructure (NHERI).

38

39 **Storm Surge and Wave Simulation**

40 To understand the hazard and inform the field survey, we first use the coupled hydrodynamic and
41 wave model ADCIRC+SWAN (Dietrich et al. 2012, Marsooli and Lin 2017) to simulate the
42 storm tide (i.e., water level) and wave height for Hurricane Irma. To simulate Irma's storm tide
43 and wave (Figure 1), we apply the surface wind (at 10-m) and sea-level pressure fields from
44 National Center for Environmental Prediction Final (NCEP FNL) operational global analysis
45 data (0.25° x 0.25° x 6 hours). The model results, e.g., time series in Figure 1, indicate that the
46 model satisfactorily captures the temporal evolution and the peak values of the water levels and
47 wave heights induced by Hurricane Irma. The model results show that the highest water levels,
48 between 2 and 2.5 m, occurred in South/Southwest Florida. However, coastal zones in this region
49 are predominantly uninhabited and covered by wetlands, so little loss of life or property is
50 expected. High water levels are also estimated for the Florida Keys, especially islands located on
51 the right side of the storm track. For example, the peak storm tide in Big Pine Key and Marathon
52 reaches up to 2 m. The model results also show that large waves with a significant wave height
53 of about 14 m reached a few kilometers off the Florida Keys. In contrast, wave heights off the
54 southern and southwestern coasts of Florida are estimated to be small (< 2 m).

55

56 **Damage Survey and Analysis**

¹ <https://www.designsafe-ci.org/#research>

57 NOAA's post-storm satellite imagery² provides an overview of Irma's impact. This imagery was
58 acquired by the NOAA Remote Sensing Division. The approximate ground sample distance
59 (GSD) for each pixel is 50 cm / zoom level 18. The two selected survey areas in Florida Keys,
60 the Big Pine Key and Marathon, suffered the most severe damage, according to the satellite
61 imagery, and experienced high water levels and wave heights, indicated by the hydrodynamic
62 modeling.

63

64 Field surveys can provide detailed information for analyzing damage mechanisms. However,
65 traditional on-site surveys require a significant time and effort, as surveyors must walk through
66 affected areas and photograph damaged properties. Thus, we applied a rapid survey method.
67 Rather than walking, we drove at a speed of 10 mph throughout the affected areas, taking
68 GPS-informed pictures from the rare side windows. Over two days, the team took 3700+ pictures
69 for 1600+ residential buildings comprised of single family and mobile homes (e.g., trailers).

70 Using the collected photos and satellite images, we categorize the damage state for each
71 surveyed residential building. Satellite images are primarily used to assess roof damage. More
72 detailed damage mechanisms are further evaluated from the photos. We adopt FEMA's damage
73 state criteria used in the damage assessment study for Hurricane Sandy³. The categories include:
74 No/very limited damage; Minor damage; Major damage; and Destroyed.

75 We find that the destroyed and severely damaged buildings were caused largely by
76 hydrodynamic forces induced by storm surge/waves. For example, Fig. 2a shows that storm
77 surge/waves completely crashed the lower part of a building in Big Pine Key. Fig. 2b shows
78 debris from damaged trailers floating in the water in a trailer community in Marathon. Although
79 direct observation of the surge and wave heights are not available at the two sites, the observed
80 storm surge damage is consistent with the high surge and wave heights estimated by the

² <https://storms.ngs.noaa.gov/storms/irma/index.html#6/28.139/-81.547>

³ <https://www.arcgis.com/home/item.html?id=307dd522499d4a44a33d7296a5da5ea0>

81 hydrodynamic modeling (Figs. 3a and 3b). The assessed damage state for each building appears
82 in Figs. 3c and 3d. The number of buildings assigned into each category is shown in Table 1. The
83 slightly and moderately damaged buildings (including limited, minor, and major damage states)
84 are 72.7% and 75% of the total surveyed building for the assessed areas in Big Pine Key and
85 Marathon, respectively. The percentages of the destroyed buildings are 13.9% and 16.9%,
86 respectively. In both areas, the destroyed buildings are clustered. The destroyed buildings in Big
87 Pine Key are near the coastline and narrow waterways, a strong indication that the damage was
88 caused mainly by hydrodynamic forces. The completely destroyed buildings in Marathon cluster
89 in the north and middle parts of the study area. The majority of those buildings are mobile
90 homes.

91

92 Statistical analysis confirms these general observations. We use an ordered logistic regression
93 model to correlate the damage state with the following factors: distance from the coastline (m),
94 building type, and building size (m^2). Distance from the coastline is not correlated with building
95 type or size in both locations (< 0.3). The correlation coefficient of building type and size,
96 however, is 0.66 in Big Pine Key and 0.68 in Marathon. Our analysis for Big Pine Key shows
97 that the distance from the coastline is the single significant predictor of damage state (p-value $<$
98 0.001; Table 2a), as the damage is dominated by buildings located near narrow waterways
99 connected to the ocean. For Marathon, although many damaged buildings are near the coast,
100 building type and size are the two significant (although correlated) predictors (p-value < 0.001 ;
101 Table 2b), highlighting the near-complete destruction of trailers (which are often small).
102 Possible measures to reduce flood vulnerability in the study areas include elevating and
103 strengthening the buildings (especially mobile homes) and relocating homeowners living near
104 the coastline (and narrow waterways) further inland. However, potential financial challenges
105 exist, especially for Marathon, where the median annual income is \$50,976 vs. \$63,716 for Big

106 Pine Key⁴. Some local homeowners in a destroyed trailer community in Marathon (indicated by
107 the red rectangle in Fig. 3d) with whom we talked had lived in trailers as their primary homes for
108 decades without flood insurance. Financial constraints may hinder their rebuilding or relocating
109 to somewhere safer. As low-income people living in mobile homes suffered most, natural
110 hazards worsen economic inequality in this case. In contrast, discussion with local residents in
111 Big Pine Key indicated that structures there were mostly secondary homes with two or three
112 stories, and many were designed to withstand hurricane hazards (e.g., key assets raised above the
113 ground floor). These observations raise again issues of affordability and equity (Montgomery and
114 Chakraborty, 2015). Policies relevant to hurricane damage recovery and rebuilding must address
115 these issues.

116 Future studies right following this work would focus on the development of
117 vulnerability/fragility models, which can be used for flood risk management. This development
118 requires more accurate flood hazard estimation based on higher-resolution hydrodynamic and
119 inundation modeling (Hatzikyriakou and Lin 2017). In addition, the damage data can be
120 combined with socio-economic data to better understand the overall impact of Hurricane Irma.

121
122 Acknowledgments
123 This study is supported by NSF grant CMMI-1652448.
124

125 References:
126 Al-Kanj, L., Powell, W. B., & Bouzaiene-Ayari, B. (2016). The Information-Collecting Vehicle Routing
127 Problem: Stochastic Optimization for Emergency Storm Response. *arXiv preprint arXiv:1605.05711*.
128
129 Dietrich, J C, S Tanaka, J J Westerink, C N Dawson, R A Luettich Jr., M Zijlema, L H Holthuijsen, J M
130 Smith, L G Westerink, and H J Westerink. 2012. "Performance of the Unstructured-Mesh,
131 SWAN+ADCIRC Model in Computing Hurricane Waves and Surge." *Journal of Scientific Computing*
132 52(2). Springer US: 468–97. doi:10.1007/s10915-011-9555-6.
133
134 Hatzikyriakou, A., Lin, N., Gong, J., Xian, S., Hu, X., & Kennedy, A. (2015). Component-based
135 vulnerability analysis for residential structures subjected to storm surge impact from Hurricane Sandy.
136 *Natural Hazards Review*, 17(1), 05015005.
137
138 Hatzikyriakou, A., and Lin, N. (2017). Simulating Storm Surge Waves for Structural Vulnerability
139 Estimation and Flood Hazard Mapping. *Natural Hazards* 344 (July). Springer Netherlands: 1–24.
140 doi:10.1007/s11069-017-3001-5.
141

⁴ Data comes from: <https://www.point2homes.com/US/Neighborhood/FL.html>

142 Horner, M. W., & Widener, M. J. (2011). The effects of transportation network failure on people's
 143 accessibility to hurricane disaster relief goods: A modeling approach and application to a Florida case
 144 study. *Natural hazards*, 59(3), 1619-1634.

145

146 Lin, C. C., Siebeneck, L. K., Lindell, M. K., Prater, C. S., Wu, H. C., & Huang, S. K. (2014). Evacuees'
 147 information sources and reentry decision making in the aftermath of Hurricane Ike. *Natural
 148 Hazards*, 70(1), 865-882.

149

150 Marsooli, R., and N. Lin (2017). Numerical Modeling of Storm Tides and Waves Induced by Historical
 151 Tropical Cyclones along the East and Gulf Coasts of the United States. *Journal of Geophysical Research: Oceans*, Submitted.

152

153

154 Montgomery, M. C., & Chakraborty, J. (2015). Assessing the environmental justice consequences of
 155 flood risk: a case study in Miami, Florida. *Environmental Research Letters*, 10(9), 095010.

156

157 USACE. (2015). North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk. Physical Depth Damage Function Summary Report. United States Army Corps of Engineers.

158

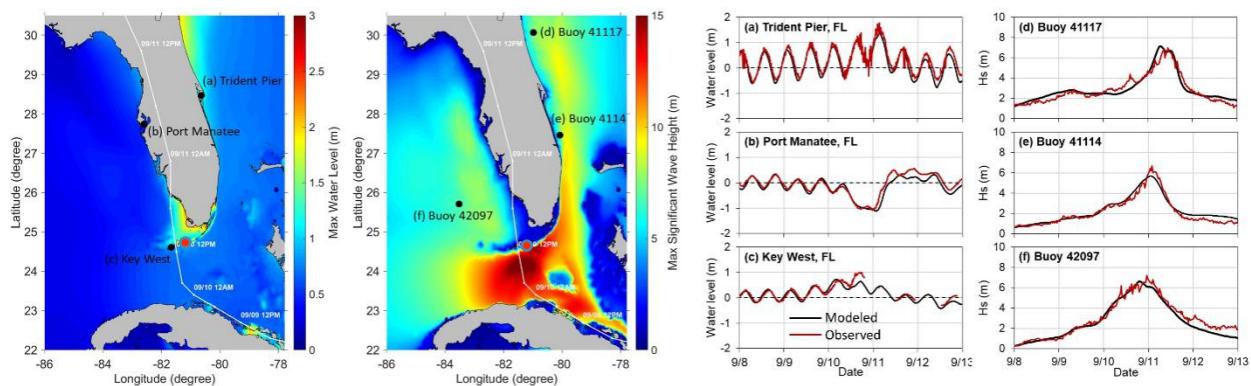
159

160 Xian, S., Lin, N., & Hatzikyriakou, A. (2015). Storm surge damage to residential areas: a quantitative
 161 analysis for Hurricane Sandy in comparison with FEMA flood map. *Natural Hazards*, 79(3), 1867-1888.

162

163 Xian, S., Lin, N., & Kunreuther, H. (2017). Optimal house elevation for reducing flood-related
 164 losses. *Journal of Hydrology*, 548, 63-74.

165

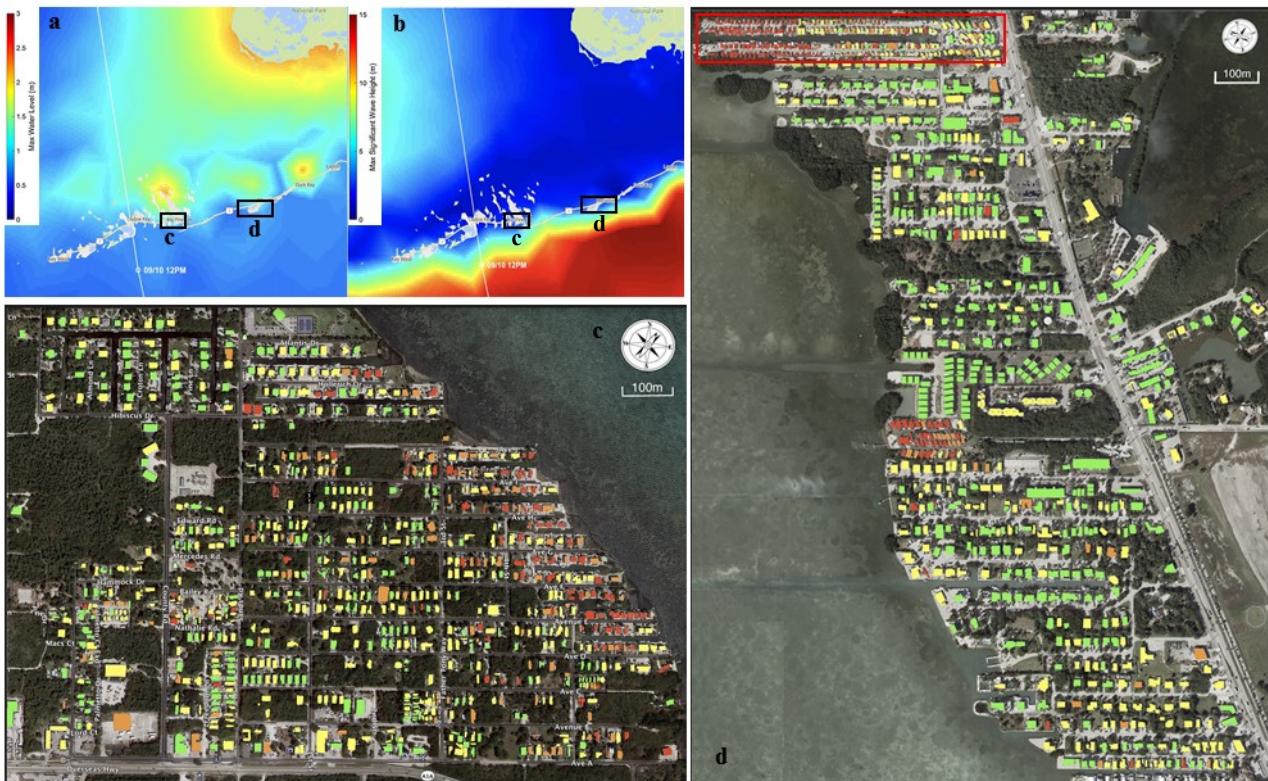

166

167

168 Figures & Tables:

169

170


171 Figure 1. Hydrodynamic modeling of water level and wave height for Hurricane Irma. Left two
 172 panels show spatial distribution of modeled maximum water level and significant wave height,
 173 respectively. White curve represents storm track. Black points show locations of available tidal
 174 gauge and buoy stations. Red point indicates approximate location of study area. Right two
 175 panels compare observed and modeled time series of water level and significant wave height (H_s),
 176 respectively.

177

182
183
184
185
186

Figure 2. Photos of damage in (a) Big Pine Key: storm surge damage besides waterway (left side of building) and (b) Marathon: trailer community with house debris filling waterway

187
188
189
190
191
192
193
194
195
196
197
198
199
200

Figure 3. Spatial distribution of estimated hazards and damage states in study areas. (a) and (b) show simulated maximum total water level and significant wave height, respectively; (c) and (d) show assessed damage state (none: green; minor: yellow; major: orange; destroyed: red) for residential buildings in Big Pine Key and Marathon, respectively.

201 Table 1 The number of buildings assigned into each damage state category

	Marathon	Big Pine Key
No damage (green)	336	253
Minor damage (yellow)	273	362
Major damage (orange)	65	113
Destroyed (red)	137	118

202
203
204
205
206
207Table 2 Ordered logistic regression models that correlate damage state with vulnerability factors
(a) for 846 assessed buildings in Big Pine Key (219 trailers and 627 single family); (b) for 811 buildings in Marathon (263 trailers and 548 single family).

(a) Factors in damage state	Coef.	Std. Err.	z	p-value	95% conf. interval
House Type	0.0233	1.987	0.12	0.906	(-0.366 0.413)
House Size (square meters)	-0.00081	0.00059	-1.36	0.174	(-0.0198 0.000358)
Distance to Coast (meters)	0.00718	0.00069	10.42	0.000	(0.00583 0.00853)

(b) Factors in damage state	Coef.	Std. Err.	z	p-value	95% conf. interval
House Type	-1.64	0.207	-7.92	0.000	(-2.05 -1.236)
House Size (square meters)	-0.04961	0.001	-4.88	0.000	(-0.069 -0.0029)
Distance to Coast (meters)	-0.0002145	0.00058	-0.37	0.713	(-0.0136 0.00093)

208
209