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Abstract— In this paper, differential games with incomplete
information, or Bayesian games, are formulated for a set of
continuous-time dynamical systems linked together by a
communication graph. These new Bayesian graphical games for
dynamical systems represent the situation where the agents are
uncertain about their actual payoff and must collect additional
information to improve their estimation of the real setting of
their environment. Furthermore, the agents play their best
response strategies with respect to the policies of their
neighbors. A tight relationship between the beliefs of an agent
and his distributed best response policy is obtained. Conditions
for the so-called Bayes-Nash equilibrium are provided. A
distributed belief update algorithm is developed that does not
require the full knowledge of graph topology.

I. INTRODUCTION

Game theory has become one of the most useful tools in
multiagent systems analysis due to their rigorous
mathematical representation of optimal decision making [1].
Differential games have been studied with increasing interest
to encompass the need of the players to consider the
evolution of their payoff functions along time rather than
static, immediate costs per action [2]-[6]. It is proven in [2]
that if the agents use the solutions of the Hamilton-Jacobi-
Isaacs (HIJI) equations in their feedback control policies, then
Nash equilibrium is achieved in the game and no agent can
unilaterally change his confrol policy without negatively
affecting his performance.

A downside of these standard differential games
solutions is the assumption that all agents are fully aware of
all the aspects of the game being played. In complex
practical applications, the agents operate in fast-evolving and
uncertain environments. A more general case has been
described with the study of graphical games [6]-[10]. in
which the agents are taken as nodes in a communication
graph, such that each agent can only observe the state of a
subset of all other agents, regarded as his neighbors. In
graphical games the agents mmst only use their partial
knowledge of the game to achieve desirable outcomes in
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cooperative and adversarial networks. The objectives of
every player in the game, however, are still assumed to be
known by every agent.

Bayesian games [1]. [11]-[14]. or games with incomplete
information, describe the situation on which the agents
participate in an unspecified game. The true intentions of the
other players may be unknown, and each agent must adjust
his objectives accordingly. The initial information of each
agent about the game, and the personal experience gained
during his interaction with other agents, form the basis for
the epistemic analysis of the dynamical systems. Each agent
must employ the evidence that his environment provides to
update his beliefs about the game. Thus, the aim is to
develop belief assurance protocols, distributed control
protocols and distributed learning mechanisms to induce
optimal behaviors with respect to a cost function. Different
learning algorithms for static agents in Bayesian games have
been studied [15]-[18], but not for differential graphical
games per knowledge of the authors.

The main contributions of this paper are the following. A
novel description of Bayesian games for continuous-time
dynamical systems, which requires an adequate definition of
the expected cost that is to be minimized by each agent is
proposed. This leads to the definition of the Bayes-Nash
equilibrium for dynamical systems, which is obtained by
solving a set of HII equations that include the epistemic
beliefs of the agents as a parameter. We call these partial
differential equations the Bayes-Hamilton-Jacobi-Isaacs
(BHII) equations. We reveal for the first time the tight
relationship between the beliefs of an agent and his
distributed best response control policy. The beliefs of the
agents are constantly updated throughout the game using the
Bayesian rule to incorporate new evidence to the individual
current estimates of the game.

The paper is structured as follows. Section 2 presents the
formal mathematical definitions of Bayesian games and
graphical games. Section 3 presents the formulation of
Bayesian games for dynamical systems in a graph topology:
the best response strategies for the minimization of the
expected costs of every agent are obtained. Section 4 is
focused on the Bayesian algorithm for the belief updates.
Finally, a simulation of the proposed control scheme is
presented in Section 5.

II. PRELIMINARIES

This section states the formal definition of Bayesian
games and graphical games, which will be used extensively
in this paper for the formulation and analysis of Bayesian
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A. Bayesian gamnes

Many practical applications of game-theoretic models
require considering players with incomplete knowledge
about their environment. The number of players, the set of
possible actions and the cost paid for each action are aspects
of the games that can be unknown to the agents. The
category of games that considers incomplete information
environments is regarded as Bayesian games [1], [11].

The information that is unknown by the agents in a
Bayesian game can be often formulated as an uncertainty
about the payoff corresponding to each possible action [1].
Thus, the players are presented with a set of possible games,
one of which is being played. Being aware of their lack of
knowledge, the agents must define a probability distribution
over the set of all possible games they may be engaged on.
We call these probabilities the beliefs of an agent.

Each agent has two types of knowledge. First, a common
prior is assumed to be known by all the agents, and is taken
as the starting point for them to make rational inferences
about the game. In repeated games, the common prior is
updated individually based on the information collected by
the agent. Second. the agents start with some personal
information, only known by themselves, and regarded as
their epistemic type. The goals of an agent during the game
depend on his current type and the types of the other agents.

For each of the NV agents, define the epistemic type space
that represents the private information available to the agent.
The epistemic type space for agent i is defined as
®;={6.....6"), where &%, k=1....M;, represent the
different possible epistemic types for agent i. When there is
no risk of ambiguity, we ease our notation representing the
current type of agent i as 6.

Formally, a Bayesian game for N players is defined as a
tuple (¥.4.0.P.J) . where N is the set of agents in the game,
A=A x---x Ay, with 4; the set of possible actions of agent i,
©=0,x-x0y with ©;, the type space of player i,
P:©—[0.1] expresses the probability of finding every agent
iintype @ .k=I,...,M; and the payoff function of the agents
are J=(Ji....Jn).

B. Differential games on graphs

Graphical games capture the dynamics of a multiagent
system with limited sensing capabilities; that is, every player
in the game can only interact with a subset of the other
players, regarded as his neighbors. Consider a set of N agents
connected by a communication graph G=(¥.E). The edge
weights of the graph are represented as ay, with a; > 0 if
(v;.%) € E and ay = 0 otherwise. By assumption, there are no
self-loops in the graph, i.e., ay = 0 for all players i. The
weighted in-degree of node i is defined as d; = Zjil a; .

Consider a canonical leader-follower synchronization

game. Each node of the graph G represents a player of the
game, consisting on a system with linear dynamics as

i =Ax; +Bu;, i=1....N, (1)

where x;(r)elR" is the vector of state variables and u; e R™

is the control input vector of agent i. Consider an extra node,
regarded as the leader node, with state dynamics

X0 = Axp. 2)
The leader is connected to the other nodes by means of the
pinning gains g; > 0. This paper studies the general objective
of achieving synchronization with the leader node.

The local synchronization error for agent 7 is defined as

N
5f=zag(xi—xj)+gi(xi—xu)- 3)
J=1

Using the expressions (1) - (2), the local error dynamics are

N
5.1: = A@ + (d, + g,-)Bu,— — ZHUB“J (4)
Jj=1

Each agent i expresses his objective in the game by
defining a performance index as

Jf(ai'ra—i:ui:u—f)=I:?}(5i55—i:ui:u—f)dt= (5)

where 7(5:.8.u.u) 1s selected as a positive definite scalar
function of the variables expected to be minimized by agent
i, with &_; and u_; the local errors and control inputs of the
neighbors of agent i, respectively. For synchronization
games, » can be selected as

N N
5:(0, 0., u;,U) = Y 50,] Q56 +u] Rt + > agul Ryu;,  (6)
J=1 Jj=1
where §; =[d—T 5}-“]T, 0;=0f>0 and R;=RI>0.1It is
also presented in a simplified form,

N
;0. u;.u_;) = 5I'TQI'5E + “iT Ryu; + Z aij“?&'j“ s (7)
=i
which is widely employed in the differential graphical games
literature [6]. [9].
The best response of agent i for fixed neighbor policies
u; is defined as the confrol policy u; such that the
inequality J;(u;.u_;) < J;(u;.u_;) holds for all policies w;.
Nash equilibrium is achieved if every agent plays his best
response with respect to all his neighbors, that is,
‘)ri(a:u;ru:i)g‘fi'(a:uhu:f)e i:],“.,N. (8)

It is proven in [6] that the best response of agent i with
cost function defined by (5) and (7) is given by

uj = —%(d,- + g)RIBIVY(5), ©)

where the functions ¥;(5;) are the solutions of a set of the
Hamilton-Jacobi-Isaacs (HII) equations,
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] N
K(S.u;.u_) + VVT [Aé,- +(d; + g;)Buj — ZGU'B“}J =0. (10)
=

III. BAYESIAN GRAPHICAL GAMES FOR DYNAMIC SYSTEMS

This section presents our main results on the formulation
of Bayesian games for dynamical systems connected by a
communication graph and the analysis of the conditions to
achieve Bayes-Nash equilibrium in the game.

A. Bayesian graphical game formulation

Consider a system of N agents with linear dynamics (1),
distributed on a communication graph G, with leader state
dynamics (2) and local synchronization errors (3). The
desired objective of an agent depend on his current type and
those of his neighbors. This condition can be expressed by
defining the performance index of agent i as

(1

where @ refers to the set of current types of all the agents in
the game, 8 =6 x---x8y. as defined in Section 2-A, and each
function #° is defined for that particular combination of
types. We define a new category of game as follows.

V{CRTIES S ORI

Definition 1. A Bayesian graphical game for dynamical
systems is defined as a tuple (N.X.U.©,P.J) where N is the
set of agents in the game, X =Xjx---x Xy is a set of states
with X; the set of reachable states of agent i,
U=U;x---xUy with U; the set of admissible controllers for
agent i and ©@ =0, x---xOy with ©; the type space of player
i. The common prior over types P:© —[0.1] describes the
probability of finding every agent i in type &Fe®;,
k=1....M;, at the beginning of the game. The performance
indices J=(J.....Jx), with J;: X xU x® — [k , are the costs
of every agent for the use of a given control policy in a state
value and a particular combination of types.

Define the set A; = X]x---x X}, where X7 is the set of
possible states of the jth neighbor of agent i; that is, A,
represents the set of states that agent i can observe from the
graph topology.

It is assumed that the sets N, X, U, P and J are of

common prior for all the agents before the game starts.
However, the set of states A; and the actual type &, are

known only by agent i. The objective of every agent in the
game is now to use their (limited) knowledge about &; and
@ to determine the control policies #; (.6) . such that every

agent expects to minimize the cost he pays during the game
according to the cost functions (11).

To fulfill this objective, a different cost index
formulation is required to allow the agents to determine their
optimal policies according to their current beliefs. This
requirement is addressed by defining the expected cost of
agent i.

Definition 2. Given a Bayesian game (N.X.U.©.P.J).
where the agents play with policies »; and the type of agent 7
is 6;, the ex interim expected cost is

E}-f(ai'ruf:u—fe Gi) = Z p(g | 51'1 Gi)‘)rig(aftuiru—i)e
6@

(12)

where p(6|5.6) is the probability of having global type @ .
given the information that agent i possesses, and the
summation index @#ec® indicates that all possible
combination of types in the game must be considered.

B. Best response policy and Baves-Nash equilibrium
The best response of an agent in a Bayesian game for
given fixed neighbor strategies u_; . is defined as the control

policy that minimizes the expected cost (12). Formally, agent
i’s best response to control policies u_; is given by

u; = argmin EJ;(&.ui, 1, 0)

L

(13)

Now, it is said that a Bayes-Nash equilibrium is reached
in the game if each agent plays a best response to the
strategies of the other players during a Bayesian game. The
Bayes-Nash equilibrium is the most important solution
concept in Bayesian graphical games for dynamical systems.
Definition 3 formalizes this idea.

Definition 3. A Bayes-Nash equilibrium is a set of
control policies u=u x--xuy that satisfies »; =2, as in
(13), for all agents i, such that

EJi (8.1 155) < EJy(8;.143.10L5) (14)
for any control policy u; .
Following an analogous procedure to single-agent

optimal control, define the value function of agent i, given
the types of all agents 4, as

VE(Sizu) = [ r8 (G us)dr, (15)

with r? as defined in (11). The expected value function for a
control policy u; is defined as

Eﬂ(airui:u—fe 6) = Z p(g | t}';f:gf)rlig(aﬁufru—i)'
8@

(16)

Function (16) can be used to define the expected
Hamiltonian of agent i as

EHf(afrueg) = Z p(g | 5!-6!) x
=c

an
[?}e(gi.__u) +VpeT (Aé,— +(d; + g;)Bu; — ZL“F’B”J )]

The expected Hamiltonian (17) is now employed to
determine the best response confrol policy of agent i, by
computing its derivative with respect to «; and equating it to
zero. This procedure yields the optimal policy
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-1
u:=—%(d,-+g,-){z p(GI@,&)R}?]

fe®

x> p(016,.6)B'VV?
fe@

(18)

As in the deterministic multiplayer nonzero-sum games
[2]. the functions ¥?(5,) are the solutions of a set of coupled

partial differential equations which, for the setting of
Bayesian games, we refer to as Bayes-Hamilton-Jacobi-
Isaacs (BHIT) equations, and are given by

> p@] 5i=9f)|:?}e(5f.-“) +VyT
fe@ (19)
x(Aé,- +(d; + g;)Bu; — Zjila,-jBuj ]] =0

Remark 1. The optimal control policy (18) establishes for
the first time, the relation between belief and distributed
control in multi-agent systems with unawareness. Each agent
should compute his best response by observing only his
immediate neighbors. This is distributed computation with
bounded rationality imposed by the communication network.

The next lemma shows that the Hamiltonian function for
general policies u;, u; can be expressed as a quadratic form
of the optimal policies »; and u’; defined in (18).

Lemma 1. Given the expected Hamiltonian function (17)
for agent i and the optimal control policy (18). then

EH,—(5,-,R,—,R_,-) = EH,—((S,—,R?,H_,-)
+ 3 p(616.6)w —u) R —ui) 20
Heb

Proof. The proof is similar to the proof of Lemma 10.1-1
in [2]. performed by completing the squares in (17) to obtain

EHf(ai'rurg) = Z p(g | a‘I-GI') x
6@

N
*' *
{5,? 0f6; +ul Riu; + " agu) Riu; +u;” REu;

j=1
—u;TREu; +(d; + g)VV,7 Bu; —(d; + )YV Bu;

N
+ VT {A(S,— +(d; + g/)Bu; — Y a;Bu; H

J=1
and conducting algebraic operations to obtain (20). o
The following theorem shows that Bayes-Nash

equilibrium is achieved by means of control policies (18).
The proof is performed using quadratic cost functions as in
(7). but it can easily be extended to other functions as (6).

Theorem 1. Bayes-Nash Equilibrium. Consider a
multiagent system on a communication graph, with agents’
dynamics (1) and target node dynamics (2). Let V;(5).
i=1....N, be the solutions of the BHII equations (19).
Define the control policy #; as in (18). Then, control inputs
u; make the dynamics (4) asymptotically stable for all
agents. Moreover, all agents are in Bayes-Nash equilibrium
as defined in Definition 2, and the corresponding expected
costs of the game are

EJ; =V (5,(0)).

Proof. (Stability) Take the expected value function (16)
as a Lyapunov function candidate. Its derivative, taking
p(6)9,,6;) constant in a time interval (see Section 4), is given
by

EV;=Y p(0|6.6W¢ =Y p6|6.6)VVTS;.
de@ =2

As 7? satisfies Equation (19), then

N
EV;=-Y p(@| @,9;)(539;‘"5; +ul R+ aﬁ“fR.?“fJ =0
80 J=1

and the dynamics (4) are stable.

(Bayes-Nash equilibrium) Notice that ¥f(5(w0))=0
because of the stability of the system. Now, the expected cost
of the game for agent 7 is expressed as

N
EJ; =3 p(@|é;, &)J: {@IQEG@ +uf Réu; + Z%‘“fﬂf%}df

60 j=1
+ Y p(616.8)  Vedt+ Y. p(6]6,.6)V(5(0)
G0 g0

= EH; (3. u; . u-) + Y, p(6 6.6V (5(0)).
fe®

By Lemma 1, this expression becomes

EJ; = H(S.u; ,u—)+ Y, p(816,.6)(us —u;)T Ry — ;)
2=c)

+ > p(8|5.6)VE(5:(0)
g0
for all »; and u_;. Assume all the neighbors of agent i are
using their best response strategies u’;. Then, as the BHII
equations (19) holds, we have

EJ; =Y p(0]6.6)] (s —ui )T Ra(u; —117) + V2 (5:(0)) |
=2
We conclude that »; minimizes the expected cost of
agent 7 and the value of the game is EV?(5(0)) - o

The probabilities p(@|45;.6,) in the control policies (18)
have an initial value given by the common prior of the
agents, expressed by P in Definition 1. However, as the
system dynamics (1) - (2) evolve through time, all agents are
able to collect new evidence that can be used to update their
estimates of the probabilities of the types €. This belief
update scheme is studied in the next section.

IV. BAYESIAN BELIEF UPDATES

Let every agent in the game to revise his beliefs every T
units of time. Then, using his knowledge about his type 6.
the previous states of his neighbors x_;(r). and the current
states of the neighbors x;(r+7). agent i can perform his
belief update at time 7/+7 using the Bayesian rule as
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PO xi(t+T).x4(D).6) =
Pt +T) | x4().0)p6 | xi(t).6) (21)
PO(t+D) [ x4(0.6)

where p(6|x(r).6) is agent i’s belief at time ¢ about the
types 8. p(x;(t+T)|x_;().6) is the likelihood of the
neighbors reaching the states x_;(r+7) T time units after
being in states x_;() given that the global type is &, and
pO(t+T)|x4(r).6) is the overall probability of the
neighbors reaching x_;(r+7) from x_;(¢) regardless of every

other agent’s type.
Remark 2. Notice that p(8|5(2).6,)=p(@|x_(1).6)

because, in the game here defined, an agent cannot use his
own state as evidence for the global type 6.

The term p(@|x_;(£).6) in (21) expresses the joint
probability of the types of each individual agent, that is,
p@|xi().6)=p(B.....00 | x4(¢).6) . In some applications,
the Bayesian graphical game is defined such that the types of
the agents do not depend on each other. Thus, the knowledge
of an agent about one type does not affect his belief in the
others. In this case we can write the expression

P(61.6>.....0y | x4(D) = (6 | x:() p(6 | x:(D)) - p(On | x-:(2)) -

Following a similar procedure, the likelihood function
pO(t+T)|x4(2).6) can be expressed in terms of the
individual positions of agent i’s neighbors as the probability
POt +T) [ x4(6).0) = p(x(t + T).....xy (t+T) | x:(5).6) ,
where x(f) is the state of the jth neighbor of 7. Notice that

x;(t+T) is dependent of x;(r) and of x_;(r) by means of the
control input u;, for all agents i. However, the current state
value of agent i, x;(z+7T), is independent of the current state
value of his neighbors, x(z+ 7). for there has been no time
for the wvalues x;(r+7) to affect the policy u;.
Independence of the state variables at time #+7T allows
writing p(x;(t+T) | x4(5).0) = l:[v p(x;(t+T) | x4(1).6) .
JEN;
Similarly, the denominator of (21) can be expressed as the
product p(x_(t+T)|x().6) = [ ] p(x;(t+T) | x=:().6) -
<N,

Using these expressions, the belief update (21) can be
written as

PO x(t+T),x4(8).6) =
P (E+T) | x().O)pE; | x: @) 6 | x4(¢
I aenimoe  ALPG O
where the set of factors [ p(6 | x_;(t)) consists on the types
keN,
of the non-neighbors of agent i.

(22)

V. SIMULATION RESULTS
The following simulation is performed to show the
behavior of the agents during a Bayesian graphical game.
The solution of the BHII equations is given and every agent

Figure 1. Graph topology employed in simulation.

uses his optimal policy comresponding to the actual
combination of types @, if he knows it.

Consider a multiagent system with 5 agents and one
leader, connected in a directed graph as shown in Fig. 1. All
agents are taken with single integrator dynamics, as

In this game, only agent 1 has two possible types, and all
other agents start with a prior knowledge of the probabilities
of each type. Let agent 1 have type 1 40% of the cases. and
type 2 60% of the cases.

The cost functions of the agents are taken in the form (6),
considering the same weighting matrices for all agents; that
is, of=03. R}=R}. O}=0% and R} =R} for all
i, j.k.1e{1.2.3.4.5) . For type 4 . the matrices are taken as

1, 1
a_| 100 10
< 12
100 10

R} =10 and R} =-20 for i+, where / is the identity
matrix. The solutions of the corresponding HJI equations are

w3

for all agents. For the cost functions of type ;. define

—4I 81

o =[ a1 —41]

R% =1 and R? =-2 for i+ j. This yields the solutions

e :[2 0}
0 2
for all agents.

With the exception of agent 1. all players update their
beliefs about the type @ every 0.1 seconds, using a Bayesian
belief update as described in Section 4. During this
simulation, agent 1 is in type 1.
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State 1
o w

Fipure 2. Trajectories for both states of the five apents.

The state dynamics of the agents are shown in Fig. 2. In
Fig. 3, the evolution of the beliefs of every agent is
displayed. Note that all beliefs approach probability one for
type &, and all agents end up playing the same game.

VI. CONCLUSION

Multiagent systems analysis was performed for
dynamical agents engaged on interactions with uncertain
objectives. We reveal for the first time the tight relationship
between the beliefs of an agent and his distributed best
response control policy. The Bayes-Nash equilibrium were
proved for the best response control policy to achieve under
general conditions. The proposed Bayesian belief update
scheme works appropriately provided that the information
available to the agents is not excessively restricted. A more
practical method to compute the likelihood function required
for the Bayesian update is under development by the authors.
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