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Abstract— In this paper, differential games with incomplete 
information, or Bayesian games, are formulated for a set of 
continuous-time dynamical systems linked together by a 
communication graph. These new Bayesian graphical games for 
dynamical systems represent the situation where the agents are 
uncertain about their actual payoff and must collect additional 
information to improve their estimation of the real setting of 
their environment. Furthermore, the agents play their best 
response strategies with respect to the policies of their 
neighbors. A tight relationship between the beliefs of an agent 
and his distributed best response policy is obtained. Conditions 
for the so-called Bayes-Nash equilibrium are provided. A 
distributed belief update algorithm is developed that does not 
require the full knowledge of graph topology. 

I. INTRODUCTION 

Game theory has become one of the most useful tools in 
multiagent systems analysis due to their rigorous 
mathematical representation of optimal decision making [1]. 
Differential games have been studied with increasing interest 
to encompass the need of the players to consider the 
evolution of their payoff functions along time rather than 
static, immediate costs per action [2]-[6]. It is proven in [2] 
that if the agents use the solutions of the Hamilton-Jacobi-
Isaacs (HJI) equations in their feedback control policies, then 
Nash equilibrium is achieved in the game and no agent can 
unilaterally change his control policy without negatively 
affecting his performance. 

A downside of these standard differential games 
solutions is the assumption that all agents are fully aware of 
all the aspects of the game being played. In complex 
practical applications, the agents operate in fast-evolving and 
uncertain environments. A more general case has been 
described with the study of graphical games [6]-[10], in 
which the agents are taken as nodes in a communication 
graph, such that each agent can only observe the state of a 
subset of all other agents, regarded as his neighbors. In 
graphical games the agents must only use their partial 
knowledge of the game to achieve desirable outcomes in 
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cooperative and adversarial networks. The objectives of 
every player in the game, however, are still assumed to be 
known by every agent. 

Bayesian games [1], [11]-[14], or games with incomplete 
information, describe the situation on which the agents 
participate in an unspecified game. The true intentions of the 
other players may be unknown, and each agent must adjust 
his objectives accordingly. The initial information of each 
agent about the game, and the personal experience gained 
during his interaction with other agents, form the basis for 
the epistemic analysis of the dynamical systems. Each agent 
must employ the evidence that his environment provides to 
update his beliefs about the game. Thus, the aim is to 
develop belief assurance protocols, distributed control 
protocols and distributed learning mechanisms to induce 
optimal behaviors with respect to a cost function. Different 
learning algorithms for static agents in Bayesian games have 
been studied [15]-[18], but not for differential graphical 
games per knowledge of the authors. 

The main contributions of this paper are the following. A 
novel description of Bayesian games for continuous-time 
dynamical systems, which requires an adequate definition of 
the expected cost that is to be minimized by each agent is 
proposed. This leads to the definition of the Bayes-Nash 
equilibrium for dynamical systems, which is obtained by 
solving a set of HJI equations that include the epistemic 
beliefs of the agents as a parameter. We call these partial 
differential equations the Bayes-Hamilton-Jacobi-Isaacs 
(BHJI) equations. We reveal for the first time the tight 
relationship between the beliefs of an agent and his 
distributed best response control policy. The beliefs of the 
agents are constantly updated throughout the game using the 
Bayesian rule to incorporate new evidence to the individual 
current estimates of the game. 

The paper is structured as follows. Section 2 presents the 
formal mathematical definitions of Bayesian games and 
graphical games. Section 3 presents the formulation of 
Bayesian games for dynamical systems in a graph topology; 
the best response strategies for the minimization of the 
expected costs of every agent are obtained. Section 4 is 
focused on the Bayesian algorithm for the belief updates. 
Finally, a simulation of the proposed control scheme is 
presented in Section 5. 

II. PRELIMINARIES 

This section states the formal definition of Bayesian 
games and graphical games, which will be used extensively 
in this paper for the formulation and analysis of Bayesian 
graphical games for dynamical systems. 
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A. Bayesian games 

Many practical applications of game-theoretic models 
require considering players with incomplete knowledge 
about their environment. The number of players, the set of 
possible actions and the cost paid for each action are aspects 
of the games that can be unknown to the agents. The 
category of games that considers incomplete information 
environments is regarded as Bayesian games [1], [11]. 

The information that is unknown by the agents in a 
Bayesian game can be often formulated as an uncertainty 
about the payoff corresponding to each possible action [1]. 
Thus, the players are presented with a set of possible games, 
one of which is being played. Being aware of their lack of 
knowledge, the agents must define a probability distribution 
over the set of all possible games they may be engaged on. 
We call these probabilities the beliefs of an agent. 

Each agent has two types of knowledge. First, a common 
prior is assumed to be known by all the agents, and is taken 
as the starting point for them to make rational inferences 
about the game. In repeated games, the common prior is 
updated individually based on the information collected by 
the agent. Second, the agents start with some personal 
information, only known by themselves, and regarded as 
their epistemic type. The goals of an agent during the game 
depend on his current type and the types of the other agents. 

For each of the N agents, define the epistemic type space 
that represents the private information available to the agent. 
The epistemic type space for agent i 

1{, , }iMi i i 

is defined as 
k
i, where 1, , ik M, , represent the 

different possible epistemic types for agent i. When there is 
no risk of ambiguity, we ease our notation representing the 

icurrent type of agent  ias . 

Formally, a Bayesian game for N  players is defined as a 
(,,,,)NA PJtuple , where N 

1 NA A A  

is the set of agents in the game, 

, with Ai the  set of possible actions of agent i

1 N 

, 

 iwith  the type space of player i

: [0,1]P

, 

 expresses the probability of finding every agent 

i k
iin type , k=1,…,Mi, and the payoff function of the agents 

1(, , )NJ J Jare . 

B. Differential games on graphs 

Graphical games capture the dynamics of a multiagent 
system with limited sensing capabilities; that is, every player 
in the game can only interact with a subset of the other 
players, regarded as his neighbors. Consider a set of N agents 

(,)G VEconnected by a communication graph . The edge 

weights of the graph are represented as aij, with aij 
(,)j ivv E

> 0 if 
 and aij = 0 otherwise. By assumption, there are no 

self-loops in the graph, i.e., aii = 0 for all players i. The 

weighted in-degree of node i 
1

N
i ijj
d a


is defined as . 

Consider a canonical leader-follower synchronization 
game. Each node of the graph G represents a player of the 
game, consisting on a system with linear dynamics as 

, 1, ,,i i ix Ax Bu i N    

() n
ixtwhere  m

iuis the vector of state variables and  

is the control input vector of agent i. Consider an extra node, 
regarded as the leader node, with state dynamics 

0 0.x Ax  

The leader is connected to the other nodes by means of the 
0igpinning gains . This paper studies the general objective 

of achieving synchronization with the leader node. 

The local synchronization error for agent i is defined as 

0
1

( ) ( ).
N

i ij i j i i
j

a x x gx x


     

Using the expressions (1) - (2), the local error dynamics are 

1

( ) .
N

i i i i i ij j
j

A d g Bu aBu 


     

Each agent i expresses his objective in the game by 
defining a performance index as 

0
(, ,, ) (, ,, ),i i i i i i i i i iJ uu r uu dt 


     

(, ,, )i i i i ir uu where  is selected as a positive definite scalar 

function of the variables expected to be minimized by agent 
i i, with  iuand  the local errors and control inputs of the 

neighbors of agent i, respectively. For synchronization 

irgames,  can be selected as 

1 1

(, ,, ) ,
N N

T T T
i i i i i ij ij ij ij i ii i ij j ij j

j j

r uu a Q uRu auRu   
 

    

TT T
ij i j    where 0T

ij ijQ Q ,  0T
ii iiR R and . It is 

also presented in a simplified form, 

1

(,, ) ,
N

T T T
i i i i i i i i ii i ij j ij j

j

r uu Q uRu auRu  


    

which is widely employed in the differential graphical games 
literature [6], [9]. 

The best response of agent i 

iu

for fixed neighbor policies 
 *

iuis defined as the control policy  such that the 

inequality *(, ) (, )i i i i i iJuu Juu   iuholds for all policies . 

Nash equilibrium is achieved if every agent plays his best 
response with respect to all his neighbors, that is, 

* * *(, , ) (,, ), 1, ,.i i i i i iJ uu J uu i N     

It is proven in [6] that the best response of agent i with 
cost function defined by (5) and (7) is given by 

* 11
( ) (),
2

T
i i i ii i iu d g R B V    

()i iVwhere the functions  are the solutions of a set of the 

Hamilton-Jacobi-Isaacs (HJI) equations, 
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* *

1

(,, ) ( ) 0.
N

T
i i i i i i i i ij j

j

r uu V A d g Bu aBu 



 
     

 
 

III. BAYESIAN GRAPHICAL GAMES FOR DYNAMIC SYSTEMS 

This section presents our main results on the formulation 
of Bayesian games for dynamical systems connected by a 
communication graph and the analysis of the conditions to 
achieve Bayes-Nash equilibrium in the game. 

A. Bayesian graphical game formulation 

Consider a system of N agents with linear dynamics (1), 
distributed on a communication graph G, with leader state 
dynamics (2) and local synchronization errors (3). The 
desired objective of an agent depend on his current type and 
those of his neighbors. This condition can be expressed by 
defining the performance index of agent i as 

0
(,, ) (,, ),i i i i i ii iJ uu r uu dt  


   

where  refers to the set of current types of all the agents in 
the game, 1 N     , as defined in Section 2-A, and each 

ir
function  is defined for that particular combination of 

types. We define a new category of game as follows. 

Definition 1. A Bayesian graphical game for dynamical 
(, ,,,,)NXU PJsystems is defined as a tuple  where N is the 

1 NX X X  set of agents in the game,  is a set of states 

iXwith  the set of reachable states of agent i

1 NU U U  

, 

 iUwith  the set of admissible controllers for 

agent i 1 N and  iwith  the type space of player 

i : [0,1]P. The common prior over types  describes the 

probability of finding every agent i k
iiin type 

1, , ik M

, 

, at the beginning of the game. The performance 

1(, , )NJ J Jindices :iJ X U , with , are the costs 

of every agent for the use of a given control policy in a state 
value and a particular combination of types. 

1
i i

i NX X  Define the set i
jX, where  is the set of 

possible states of the jth neighbor of agent i i; that is,  

represents the set of states that agent i can observe from the 
graph topology. 

It is assumed that the sets N, X, U, P and J are of 
common prior for all the agents before the game starts. 

iHowever, the set of states  iand the actual type  are 

known only by agent i. The objective of every agent in the 
game is now to use their (limited) iknowledge about  



and 

 *(,)i iuto determine the control policies , such that every 

agent expects to minimize the cost he pays during the game 
according to the cost functions (11). 

To fulfill this objective, a different cost index 
formulation is required to allow the agents to determine their 
optimal policies according to their current beliefs. This 
requirement is addressed by defining the expected cost of 
agent i. 

Definition 2. Given a (, ,,,,)NXU PJBayesian game , 

iuwhere the agents play with policies  and the type of agent i 

iis , the ex interim expected cost is 

(,, ,) (| ,) (,, ),i i i i i i i i i iiEJ uu p J uu



    



  

where (| ,)i ip  is the probability of having global type , 

given the information that agent i possesses, and the 
summation index  indicates that all possible 

combination of types in the game must be considered. 

B. Best response policy and Bayes-Nash equilibrium 

The best response of an agent in a Bayesian game for 

iugiven fixed neighbor strategies , is defined as the control 

policy that minimizes the expected cost (12). Formally, agent 
i iu’s best response to control policies  is given by 

* argmin (,, ,)
i

i i i i i
u

u EJ uu   

Now, it is said that a Bayes-Nash equilibrium is reached 
in the game if each agent plays a best response to the 
strategies of the other players during a Bayesian game. The 
Bayes-Nash equilibrium is the most important solution 
concept in Bayesian graphical games for dynamical systems. 
Definition 3 formalizes this idea. 

Definition 3. A Bayes-Nash equilibrium is a set of 

1 Nu u u  control policies  that satisfies *
i iu u , as in 

(13), for all agents i, such that 

* * *(,, ) (,, )i i i i i i i iEJ uu EJ uu    

f iuor any control policy . 

Following an analogous procedure to single-agent 
optimal control, define the value function of agent i, given 

the types of all agents , as 

(,, ) (,, ) ,i i i i i ii it
V uu r uu d   


   

ir
with  as defined in (11). The expected value function for a 

iucontrol policy  is defined as 

(,, ,) (| ,) (,, ).i i i i i i i i iiEV uu p V uu



    



  

Function (16) can be used to define the expected 
Hamiltonian of agent i as 

 1

(,,) (| ,)

(,) ( ) .

i i i i

NT
i i i i i ij ji i j

EH u p

r u V A d g Bu aBu



 

  

 





 

      




 

The expected Hamiltonian (17) is now employed to 
determine the best response control policy of agent i, by 

iucomputing its derivative with respect to  and equating it to 

zero. This procedure yields the optimal policy 
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1

* 1
( ) (| ,)
2

(| ,)

i i i i i ii

T
i i i

u d g p R

p B V



















 
   

 

 




  

As in the deterministic multiplayer nonzero-sum games 
[2] ()iiV

, the functions  are the solutions of a set of coupled 

partial differential equations which, for the setting of 
Bayesian games, we refer to as Bayes-Hamilton-Jacobi-
Isaacs (BHJI) equations, and are given by 

 1

(| ,) (,)

( ) 0

T
i i ii i

N
i i i i ij jj

p r u V

A d g Bu aBu

 



 







 

    




  

Remark 1. The optimal control policy (18) establishes for 
the first time, the relation between belief and distributed 
control in multi-agent systems with unawareness. Each agent 
should compute his best response by observing only his 
immediate neighbors. This is distributed computation with 
bounded rationality imposed by the communication network. 

The next lemma shows that the Hamiltonian function for 

iugeneral policies iu,  can be expressed as a quadratic form 
*
iuof the optimal policies  *

iuand  defined in (18). 

Lemma 1. Given the expected Hamiltonian function (17) 
for agent i and the optimal control policy (18), then 

*

* *

(,, ) (, , )

(| ,)( ) ( )

i i i i i i i i

T
i i i i i iii

EH uu EH uu

p u u R u u



 



 





   

Proof. The proof is similar to the proof of Lemma 10.1-1 
in [2], performed by completing the squares in (17) to obtain 

* *

1

* * * *

1

(,,) (| ,)

( ) ( )

( )

i i i i

N
T T T T
i i i i ij j j i ii ii ij ii

j

T T T
i i i i i i i iii i i

N
T

i i i i ij ji
j

EH u p

Q uRu auRu u Ru

u Ru d g V Bu d g V Bu

V A d g Bu aBu



   

  



  

 









 


  



      

 
       







  

and conducting algebraic operations to obtain (20).     

The following theorem shows that Bayes-Nash 
equilibrium is achieved by means of control policies (18). 
The proof is performed using quadratic cost functions as in 
(7), but it can easily be extended to other functions as (6). 

Theorem 1. Bayes-Nash Equilibrium. Consider a 
multiagent system on a communication graph, with agents’ 
dynamics (1) and target node dynamics (2). Let Vi*θ(δi)
1, ,i N

, 
, be the solutions of the BHJI equations (19). 

*
iuDefine the control policy  as in (18)

*
iu

. Then, control inputs 

 make the dynamics (4) asymptotically stable for all 

agents. Moreover, all agents are in Bayes-Nash equilibrium 
as defined in Definition 2, and the corresponding expected 
costs of the game are 

* *((0)).i iiEJ V   

Proof. (Stability) Take the expected value function (16) 
as a Lyapunov function candidate. Its derivative, taking 
p(θ|δi,θi) constant in a time interval (see Section 4), is given 
by 

(| ,) (| ,) .T
i i i i i ii iEV p V p V 

 

  
 

     

As iV
  satisfies Equation (19), then 

1

(| ,) 0
N

T T T
i i i i i i i ij j ji ii ij

j

EV p Q uRu auRu  



  
 

 
     

 
  

and the dynamics (4) are stable. 

(Bayes-Nash equilibrium) Notice (()) 0iiV
 that  

because of the stability of the system. Now, the expected cost 
of the game for agent i is expressed as 

0
1

0

*

(| ,)

(| ,) (| ,) ((0))

(, , ) (| ,) ((0)).

N
T T T

i i i i i i i ij j ji ii ij
j

i i i i ii i

i i i i i i ii

EJ p Q uRu auRu dt

p Vdt p V

EH uu p V

  



 

 





  

  

  



 



 





 
    

 

 

 

 

 



 

By Lemma 1, this expression becomes 

* * *(, , ) (| ,)( ) ( )

(| ,) ((0))

T
i i i i i i i i ii i i

i i ii

EJ H uu p u u Ru u

p V







 

 







   






  

iufor all  iuand . Assume all the neighbors of agent i are 
*
iuusing their best response strategies . Then, as the BHJI 

equations (19) holds, we have 

* *(| ,)( ) ( ) ((0))T
i i i i i ii i i iiEJ p u u Ru u V



 


       

*
iuWe conclude that  minimizes the expected cost of 

agent i and the ((0))iiEV
value of the game is .      

(| ,)i ipThe probabilities  in the control policies (18) 

have an initial value given by the common prior of the 
agents, expressed by P in Definition 1. However, as the 
system dynamics (1) - (2) evolve through time, all agents are 
able to collect new evidence that can be used to update their 

estimates of the probabilities of the types . This belief 
update scheme is studied in the next section. 

IV. BAYESIAN BELIEF UPDATES 

Let every agent in the game to revise his beliefs every T 
units of time. Then, iusing his knowledge about his type , 

the previous states ()ix tof his neighbors , and the current 

states ( )ix t T of the neighbors , agent i can perform his 

belief update at time t+T using the Bayesian rule as 
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Figure 1.  Graph topology employed in simulation. 
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  

 

 




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(| (),)i ip x t where  is agent i’s belief at time t about the 

types ( ( )| (),)i ipx t T x t ,  is the likelihood of the 

neighbors reaching the state ( )ix t T s  T  time units after 

()ix tbeing in states  given that the global type is 

( ( )| (),)i i ipx t T x t 

, and 

 is the overall probability of the 

neighbors ( )ix t T reaching  ()ix tfrom  regardless of every 

other agent’s type. 

Remark 2 (| (),) (| (),)i i i ip t p x t   . Notice that  

because, in the game here defined, an agent cannot use his 
own state as evidence for the global type . 

The term (| (),)i ip x t   in (21) expresses the joint 

probability of the types of each individual agent

1(| (),) (, , | (),)i i N i ip x t p x t     

, that is, 
. In some applications, 

the Bayesian graphical game is defined such that the types of 
the agents do not depend on each other. Thus, the knowledge 
of an agent about one type does not affect his belief in the 
others. In this case we can write the expression

1 2 1 2(, , , | ()) ( | ())( | ()) ( | ())N i i i N ip x t p x t p x t p x t       

 
. 

Following a similar procedure, the likelihood function
( ( )| (),)i ipx t T x t 

 
 can be expressed in terms of the 

individual positions of agent i’s neighbors as the probability

1( ( )| (),) (( ), , ( )| (),)
i

i i
i i iNpx t T x t pxt T x t T x t      

 
, 

()ijxtwhere  is the state of the jth neighbor of i. Notice that

( )ixt T

 

 ()ixtis dependent of  ()ix tand of  by means of the 

iucontrol input , for all agents i. However, the current state 

value of agent i ( )ixt T, , is independent of the current state 

( )ix t T value of his neighbors, , for there has been no time 

( )ix t T for the values  iuto affect the policy . 

t TIndependence of the state variables at time  allows 

writing ( ( )| (),) ( ( )| (),)
i

i i j i

j N

px t T x t pxt T x t   



   . 

Similarly, the denominator of (21) can be expressed as the 
product ( ( )| (),) ( ( )| (),)

i

i i i j i i

j N

px t T x t pxt T x t   



   . 

Using these expressions, the belief update (21) can be 
written as 

(| ( ), (),)

( ( )| (),)( | ())
( | ()),

( ( )| (),)
i i

i i i

j i j i
k i

j i ij N k N

p x t Tx t

pxt T x t p x t
p x t

pxt T x t

 

 




 

 


 

 





 

 

where the set of factors ( | ())
i

k i

k N

p x t 


  consists on the types 

of the non-neighbors of agent i. 

V. SIMULATION RESULTS 

The following simulation is performed to show the 
behavior of the agents during a Bayesian graphical game. 
The solution of the BHJI equations is given and every agent 

uses his optimal policy corresponding to the actual 
combination of types , if he knows it. 

Consider a multiagent system with 5 agents and one 
leader, connected in a directed graph as shown in Fig. 1. All 
agents are taken with single integrator dynamics, as 

,1 ,1

,2 ,2

i i
i

i i

x u
x

x u

   
    
   

  

In this game, only agent 1 has two possible types, and all 
other agents start with a prior knowledge of the probabilities 
of each type. Let agent 1 have type 1 40% of the cases, and 
type 2 60% of the cases. 

The cost functions of the agents are taken in the form (6), 
considering the same weighting matrices for all agents; that 

1 1
ij klQ Q is, 1 1

ij klR R , 2 2
ij klQ Q ,  2 2

ij klR R and  

,,, {1,2,3,4,5}ijkl

for all 

1. For type , the matrices are taken as 

1

1 1

10 10
,

1 2

10 10

ij

I I

Q

I I



 
 

 
   

 

1 10iiR




 1 20ijR
and  i jfor , where I is the identity 

matrix. The solutions of the corresponding HJI equations are 

2
1 0

0 1
iP
  
 
 

  

for all agents. For the cost functions of 2type , define 

2
4 4

,
4 8

ij

I I
Q

I I
  
  

 

2 1iiR
 



 2 2ijR
 and  i jfor . This yields the solutions 

2
2 0

0 2
iP
  
 
 

  

for all agents. 
With the exception of agent 1, all players update their 

beliefs about the type  every 0.1 seconds, using a Bayesian 
belief update as described in Section 4. During this 
simulation, agent 1 is in type 1. 
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Figure 2.  Trajectories for both states of the five agents. 

 

 

Figure 3.  Convergence of the beliefs of the five agents about type 1. 

 The state dynamics of the agents are shown in Fig. 2. In 
Fig. 3, the evolution of the beliefs of every agent is 
displayed. Note that all beliefs approach probability one for 

1type , and all agents end up playing the same game. 

VI. CONCLUSION 

Multiagent systems analysis was performed for 
dynamical agents engaged on interactions with uncertain 
objectives. We reveal for the first time the tight relationship 
between the beliefs of an agent and his distributed best 
response control policy. The Bayes-Nash equilibrium were 
proved for the best response control policy to achieve under 
general conditions. The proposed Bayesian belief update 
scheme works appropriately provided that the information 
available to the agents is not excessively restricted. A more 
practical method to compute the likelihood function required 
for the Bayesian update is under development by the authors. 

ACKNOWLEDGMENT 

Author V. G. Lopez thanks the Mexican Council of 
Science and Technology (Conacyt) for its support. 

REFERENCES 

[1] Y. Shoham and K. Leyton-Brown, Multiagent systems. Algorithmic, 
Game-Theoretic and Logical Foundations. New York, NY: 
Cambridge University Press, 2008. 

[2] F. L. Lewis, D. Vrabie and V. L. Syrmos, Optimal Control, 2nd ed.
 New Jersey: John Wiley & Sons, inc., 2012. 

[3] H. Li, D. Liu and D. Wang, “Integral reinforcement learning for linear 
continuous-time zero-sum games with completely unknown 
dynamics,” IEEE Transactions on Automation Science and 
Engineering, vol. 11, No. 3, pp. 706-714, 2014. 

[4] P. Kumar and J. Van Schuppen, “On Nash equilibrium solutions in 
stochastic dynamic games,” IEEE Transactions on Automatic 
Control, vol. 25, No. 6, pp. 1146-1149, 1980. 

[5] W. Lin, Z. Qu and M. A. Simaan, “Nash strategies for pursuit-evasion 
differential games involving limited observations,” IEEE 
Transactions on Aerospace and Electronic Systems, vol. 51, No. 2, 
pp. 1347-1356, 2015. 

[6] K. G. Vamvoudakis, F. L. Lewis and G. R. Hudas, “Multiagent 
differential graphical games: Online adaptive learning solution for 
synchronization with optimality,” Automatica, vol. 48, pp. 1598-
1611, 2012. 

[7] Z. Li, Z. Duan, G. Chen and L. Huang, “Consensus of multiagent 
systems and synchronization of complex networks: A unified 
viewpoint,” IEEE Trans. Circuits and Systems, vol. 57, No. 1, pp. 
213–224, 2010. 

[8] R. Olfati-Saber, J. A. Fax and R. M. Murray, “Consensus and 
cooperation in networked multi-agent systems,” Proceedings of the 
IEEE, vol. 95, No. 1, pp. 215–233, 2007. 

[9] M. I. Abouheaf and M. S.  Mahmoud, “Online policy iteration 
solution for dynamic graphical games,” presented at the 13th  
International Multi-Conference on Systems, Signals & Devices, 
Leipzig, Germany, 2016, pp. 787–797. 

[10] R. Kamalapurkar, J. R. Klotz, P. Walters and W. E. Dixon, “Model-
based reinforcement learning in differential graphical games,” IEEE 
Trans. Control of Network Systems, to be published. 

[11] J. C. Harsanyi, “Games with incomplete information played by 
Bayesian players, I-III,” Management Science Theory, vol. 14, No. 3, 
pp. 159–182, 1967. 

[12] E. Einy, O. Haimanko, D. Moreno and B. Shitovitz, “On the existence 
of Bayesian Cournot equilibrium,” Games and Economic Behavior, 
vol. 68, pp. 77-94, 2010. 

[13] G. Carmona and K. Podczeck, “Ex-post stability of Bayes-Nash 
equilibria of large games,” Games and Economic Behavior, vol. 74, 
pp. 418-430, 2012. 

[14] E. Cartwright and M. Wooders, “On purification of equilibrium in 
Bayesian games and expost Nash equilibrium,” International Journal 
of Game Theory, vol. 38, pp. 127-136, 2009. 

[15]  A. Jadbabaie, P. Molavi, A. Sandroni and A. Tahbaz-Salehi, “Non-
Bayesian social learning,” Games and Economic Behavior, vol. 76, 
pp. 210-225, 2012. 

[16] Q. Zhu, H. Tebine and T. Basar, “Heterogeneus learning in zero-sum 
stochastic games with incomplete information,” presented at the 49th  
IEEE Conference on Decision and Control, Atlanta, USA, 2010. 

[17] P. S. Sastry, V.V. Phansalkar and M. A. L. Thathachar, 
“Decentralized learning of Nash equilibria in multi-person stochastic 
games with incomplete information,” IEEE Transactions on Systems, 
Man and Cybernetycs, vol. 24, No. 5, pp. 769-777, 1994. 

[18] P. M. Djuric and Y. Wang, “Distributed Bayesian learning in 
multiagent systems: Improving our understanding of its capabilities 
and limitations,” IEEE Signal Processing Magazine, vol. 29, No. 2, 
pp. 65-76, 2012. 

[19] M. Caramia and P. Dell’Olmo, “Multi-objective optimization,” in 
Multi-objective Management in Freight Logistics. Increasing 
capacity, service level and safety with optimization algorithms.
 London: Springer-Verlag, 2008. 

[20] R. Song, W. Xiao and H. Zhang, “Multi-objective optimal control for 
a class of unknown nonlinear systems based on finite-approximation-
error ADP algorithm,” Neurocomputing, vol. 119, pp. 212–221, 2013. 

4942


