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Abstract—Unmanned Aircraft Systems (UASs) have gained
great popularity in land monitoring, 3-D mapping, search and
rescue, among others. Existing studies on UAS path planning
in these missions consider only a single region to be examined.
However, it is frequently encountered that multiple regions need
to be considered while performing a real life mission. How to
design the optimal path for the UAS to cover multiple regions is
then critical. From a strategical point of view, such a problem
can be considered as a variant of the traveling salesman problem
(TSP) combined and enhanced with the coverage path planning
(CPP) problem. Although TSP and CPP have been studied
extensively, its combination, which here is given the name TSP-
CPP, hasn’t received any attention. In this paper, a preliminary
study on how to formulate and solve this problem is conducted.
Two novel approaches including a grid-based approach and a
dynamic programming based approach are introduced to find the
(near) optimal solution. Both numerical analysis and simulation
studies are conducted to prove and illustrate the optimality and
efficiency of the proposed TSP-CPP approaches.

Index Terms—Autonomous systems; Optimization algorithms

I. INTRODUCTION

N recent years, Unmanned Aircraft Systems (UASs) have

been widely applied for land monitoring [1], 3-dimensional
mapping [2], surveillance [3], search and rescue [4], among
others. In these examples, UASs are used to collect relevant
sensory information, or to find targets within a region. To
conduct these missions, path planning for UASs is one of
the most critical problems to tackle, which is concerned with
generating the optimal path that minimizes the cost required
to complete the task.

Diverse research has targeted solutions to the path planning
problems for a single UAS. For instance, the authors in [5],
[6] investigate the shortest path planning problem, aiming at
finding the optimal path to a target while avoiding obstacles.
When multiple targets are to be visited, UAS path planning
can be formulated as a traveling salesman problem (TSP) [7],
or more generally a vehicle routing problem (VRP) [8]. The
TSP is the simplest and most famous VRP, which seeks an
optimal path to visit all targets exactly once. Evolving from
TSP, many variants of VRP have been proposed, such as the
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VRP with time windows [9], capacitated VRP (CVRP) [10],
and clustered CVRP [11], etc. In cases when a UAS is assigned
to survey a region, the coverage path planning (CPP) problem
[12], [13] is formulated, which aims at finding the optimal
path, so that the vehicle covers a region completely. Most CPP
methods achieve full coverage by first decomposing the region
into a set of sub-regions and then applying the exhaustive
search or other coverage algorithms such as depth-first search
[14].

Path planning for multiple UASs has also been studied.
For instance, papers [15], [16] investigate cooperative path
planning for multiple UASs to jointly reach a target with
minimal cost. The generalization of the TSP to allow multiple
salesmen, known as the MTSP, is studied in [17], [18]. VRP
for multiple vehicles has also been investigated, such as the
heterogeneous fleet VRP [19] and the polygon visiting MTSP
(PVMTSP) [20]. In most of these TSP/VRP studies, each
target is described by a single location. The PVMTSP model
considers polygon regions, but only requires the vehicle to
reach the boundary of each region in order to consider such a
region a visited one. CPP for a team of UASs has also been
studied in [21], [22].

Although UAS path planning has been studied extensively,
existing approaches either focus on visiting a set of targets,
which can be solved by the shortest path planning [5], [6],
TSP or VRP methods [8], or they consider covering a single
region, which can be solved by CPP methods [12]. However,
scenarios where UASs need to cover multiple regions are quite
common. For instance, in post-disaster management, UASs
need to assess the damage for multiple disaster-affected areas.
In search and rescue missions, targets may be located in
multiple spatially distributed regions. A possible solution may
consider dispatching one UAS to each region, or randomly
selecting the path to cover each region. Unfortunately, under
this naive solution, the system can be highly inefficient and
cost-expensive. In order to reduce the cost and to enable a
broader use of UASs, systematic investigations on this new
research topic are crucial.

This paper considers the path planning problem for a
single multirotor UAS with sufficient power to cover multiple
spatially distributed rectangular regions, as a preliminary study
of the proposed new research topic. This problem can be
considered as a variant of TSP combined and enhanced with
CPP, which aims to determine the optimal path to fully cover
all regions exactly once. The combination of TSP and CPP,
both of which are NP-hard, introduces significant challenges.



In particular, the optimization of inter-regional paths among
regions and the optimization of intra-regional paths within
each region are nested and cannot be considered separately,
making the integrated TSP and CPP (TSP-CPP) problem much
more complicated than TSP and CPP. In addition, with points
extended to regions, it is also needed to determine the optimal
locations for the UAS to enter and exit each region, which
impacts the selection of both intra- and inter-regional paths
and thus further increases the complexity.

To address the new TSP-CPP problem formulated in Sec-
tion II, two novel approaches are developed. A simple grid-
based approach is first introduced in Section III-A, which
finds a (near) optimal solution by converting the TSP-CPP
to a basic TSP. To break the curse of dimensionality with
respect to the size of the regions, a dynamic programming
(DP) based approach is further developed in Section III-B,
which explores the selection of entrance and exit locations
in each region, and the optimization of intra- and inter-
regional paths. Both approaches are proved to be able to
find optimal solutions under minor assumptions. Complexity
analysis (Section III-C), illustrative examples (Section IV-A)
and comparative simulation studies with a Hopfield neural
network (NN)-based approach (Section IV-B) demonstrate the
efficiency and optimality of the proposed approaches.

II. PROBLEM FORMULATION

Consider the scenario where a single multirotor UAS that
can turn with an arbitrary radius of curvature is assigned
to survey N number of non-overlapping spatially distributed
rectangular regions. The UAS is assumed to have sufficient
power to complete the mission, and to fly at a constant
altitude with a constant speed. Therefore, the problem can be
formulated in a 2-dimensional space.

For convenience, the regions are labeled with numbers
1,...,N, and the depot with number 0. Therefore, Ny =
N —{0} ={1,2,..., N} represents the set of target regions
where NV = {0,1,2,..., N}. Region ¢ is characterized by
four vertices {v;1, V2, Vi3, 4} and the depot is described by
its location vg. The sensor carried by the UAS is assumed to
have a field-of-view or a range of r x r, where r is a positive
constant. To describe the path, let S; = (84, )ni_, represent an
ordered sequence of n; locations in region 7 € N, such that
the UAS covers region ¢ completely if and only if it moves
through all locations in .S; in order. To capture the order of
the regions to be visited, a decision variable x;; is introduced,
where x;; = 1 if the UAS moves from region (or depot) i to
region (or depot) j, and xz;; = 0 otherwise.

The TSP-CPP problem can then be formulated as finding
the location sets S;, Vi € N and values of x;;, Vi,j € N,
such that the path starts and ends at the depot, each region
is completely covered exactly once by the UAS, and the total
cost z given below is minimized.
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Fig. 1. A candidate path sequence.

where d(a,b) is the travel cost from location @ to location
b, which is represented here as the Euclidean distance. The
first two terms in equation (1) calculate the total travel costs
for inter-regional and intra-regional movements. The last two
terms calculate the costs for traveling from the depot to the
first region in the path and from the last region back to the
depot. To ensure the validity of the selected path, the following
two constraints are enforced

Soowy o= 1, VieNy (2)
JEN, i#j
Soomii— > mu =0, VieN (3)
JEN, i#£j JEN, i#j

The constraint in equation (2) ensures that each region is
only visited once, except for the depot. The constraint in
equation (3) maintains the continuity of the path. A candidate
path sequence is shown in Figure 1 for illustration.

Note that when the size of each region is smaller than or
equal to the UAS’ sensor range, the TSP-CPP problem is
reduced to a TSP, where each region can be simply described
by its central location. When there is only one region and the
size of the region is larger than the UAS’ sensor range, the
TSP-CPP problem is reduced to a CPP problem.

III. SOLUTIONS TO THE INTEGRATED TSP-CPP

This section provides solutions to the TSP-CPP problem
formulated in Section II. Two approaches are developed: 1) a
grid-based approach, and 2) a DP-based approach.

A. Grid-based Approach

The proposed grid-based approach decomposes each region
into a collection of grid cells, and then transforms the TSP-
CPP problem into a TSP. In particular, each region ¢ is decom-
posed into a set of uniform grid cells of size [U}fﬁ X [}IITT’
where w; = ||via — v;1|| and h; = ||v;4 — vi1]| are the width
and height of region i, respectively, and || - || represents the
Lo-norm operator. The total number of cells in region ¢ is
M, = [%H%] As Wlf;r] < r and [hhﬁ < r, the size
of each cell is smaller than or equal to the sensor range
of the UAS. With each cell regarded as a region, the TSP-
CPP problem can be formulated as visiting M = Zi\il M;
number of regions, where each region can be fully covered by
the sensor range of the UAS. This TSP-CPP problem is thus
reduced to a TSP. The problem formulation in equations (1)-
(3) still apply if considering each cell as a region. Traditional
approaches, such as DP [23], can then be applied to find the
optimal path. Theorem 1 shows the optimality of the grid-
based approach.

Theorem 1. (Optimality of the Grid-based Approach). Con-
sider the TSP-CPP problem formulated in equations (1)-(3).
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Fig. 2. Example of the four corner points {c;1, ci2, ci3,cia} in region i.

The path found by the grid-based approach is optimal if
ﬁ = fhhw =r, Vi € Ny and each grid cell is regarded
as a region.

Proof. If ﬁ = [h’:i,] = r, the size of each cell equals
the sensor range of the UAS, which means that the shortest
paths to move through the centers of all cells in a region are
also the shortest paths to fully cover this region. Therefore,
when applying the TSP method that finds the minimum-total-
length path passing over all targets, the grid-based approach
generates the optimal solution. O

B. DP-based Approach

DP has been widely used to solve the TSP [23]. However,
the same procedures cannot be directly applied to tackle the
TSP-CPP problem, which requires the optimization for both
inter- and intra-regional paths and the selection of entrance
and exit locations in each region. This section first discusses
the search for optimal intra-regional paths, and then provides
the algorithm to solve the TSP-CPP problem using DP.

Note that the starting and ending points of intra-regional
paths determine the lengths of inter-regional paths. Therefore,
to find the optimal intra-regional path for a region, we need to
take its preceding and succeeding regions into the considera-
tion. In this study, the optimization of intra-regional paths is
simplified by making the UAS to follow zigzag paths, and by
limiting the starting and ending points of intra-regional paths
to the corner points c¢;, defined as

Vit + § (Nhi + 1) if g =1
Vg — 5 (Mps — Nyg) if g =2
Vi3 — 3 (nhz + nm’) if ¢g=3
Vig + 5 (M —nwi) if g =4

where i € Ny, ¢ € A = {1,2,3,4}, np; = 2% and
Nyi = % An illustration of the corner points is shown
in Figure 2. Two example zigzag paths starting from corner
point c¢;4 are shown in Figure 3. Lemma 1 shows that such
zigzag paths can fully cover a region with the shortest length.

Lemma 1. (Shortest Coverage Distance). Consider a UAS
with a sensor range of v X r. To fully cover a rectangular
region of size w X h, the shortest distance the UAS needs to

travel is min{[“](h—7) + (w—7), [2](w—7r)+ (h—7)}.
Proof. When —%—
roof. en o7 -

prove that the shortest coverage distance is “* —r. This result
can be accomplished by decomposing the region into % (or

= r (or when % = r), it is easy to
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Fig. 3. Two zigzag paths starting from corner point c;4. Shaded area marked
by dark yellow indicates the area already covered. The area that will be
covered when the UAS completes the path is marked by light yellow.

into %) number of sub-regions of size r x h (or size r x w), and
by making the UAS to follow a zigzag path like the one shown
in Figure 3(a) (or Figure 3(b)), which leads to the smallest
overlap of covered area. Note that both zigzag paths shown

in Figure 3 have the shortest length as both [u}?r] = r and

iy = 7 hold.

In cases when ﬁ # r and % # r, the region is
decomposed vertically (or horizontally) into two sub-regions
of sizes 7([%] —1) x h and 7(** — [%] + 1) x h (or of sizes
r([2]—1)xw and r(2—[27+1) xw) respectively, as shown in
Figure 4(a) (or Figure 4(b)). Therefore, the above analysis can
be applied to find the shortest coverage distance for the large
sub-region, which is ([%]—1)h—7 (or ([2]—1)w —r). The
shortest coverage distance for the small sub-region can also be
easily obtained, which is h —r (or w — r). The shortest travel
distance to move from the large sub-region to the small one is
then calculated, which is w —7([2] —1) (or h—r([2] —1)),
as illustrated by the red path in Figure 4(a) (or Figure 4(b)).
Summing up the three distance values leads to the length of
the complete zigzag path, which is [%](h —r) + (w —r) (or
[2](w—7)~+(h—r)). Therefore, the shortest coverage distance
for the whole region is min{[2](h—7) + (w—7), [2](w -
r)+ (h—1)}
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Fig. 4. Candidates of the shortest zigzag paths to cover regions with % #*

r and % # r, where each region is decomposed vertically into two sub-

regions marked by different colors.

The previous analyses allow finding the shortest zigzag path,
given the starting point. Here, let f(c;q) = S; be the function
that finds the shortest zigzag path to cover region ¢, given c;q,
q € A, as the starting point, where .S; includes all turning
points along the path, and s;; = ¢;4. Note that s;,,, is also a
corner point as shown in Figure 4.



The use of DP to solve the TSP-CPP problem is now
introduced. Let T" C Ny be a subset of target regions, and
define D(T,i,¢;q), ¢ € T and ¢ € A, as the length of the
shortest path that fully covers each region in 7' exactly once,
starting at the depot and ending at corner point c;, in region
i. The calculation of D(T,4,c;,) can be broken down into
smaller sub-problems. In particular, suppose k € T is the
region visited prior to region ¢, and let ¢y, [ € A, be the
location where the UAS exits region k. Now, D(T,1,c¢;q)
equals the sum of D(T — {i}, k,cg) and the length of the
shortest path from cg; to ¢;q, which can be found by applying
function f(c;q). As k could be any region in 7' — {i} and ¢y,
could be any of the four corner points in region k, D(T, i, ¢;4)
is solved by considering all k € T — {i} and all [ € A for
each k. The mathematical formulation of D(T, 1, ¢;q) is given
by

D(T,i,ciq) )
g(vo, cig) it T = {i}
_ ) ifigT
ker;u_r}l} D(T — {i}, k, cr) + g(cri, cig) otherwise
leA

where g¢(a,c;q) calculates the length of the shortest path
from location a to c¢;q, which can be derived from the
function f(ciq). In particular, g(a,ciq) = d(a,Sin,;) +
an;ll d(simasi(m+1)) and S; = {si1, 82, Sin,} =
f(ciq). The pseudo-code of the proposed DP-based approach
is provided in Algorithm 1, where table P keeps track of the
locations to be visited along the path. Theorem 2 shows the
optimality of the DP-based approach.

Theorem 2. (Optimality of the DP-based Approach). Con-
sider the TSP-CPP problem formulated in equations (1)-(3).
The path found by the DP-based approach in Algorithm 1 is
optimal if the UAS can only enter or exit a region from the
corner points, and follows zigzag paths like the ones shown
in Figure 3 within each region.

Proof. Theorem 2 can be proved by induction [23] using
equation (5). As D(T, 1, c¢;q) calculated in each recursion step
is the length of the shortest path that ends at ¢;, in region ¢
and fully covers each region in 7' exactly once, Line 18 in
Algorithm 1 finds the shortest path to cover all regions. [

C. Complexity Analysis

This section analyzes the complexity of the proposed ap-
proaches, directly addressing their computational efficiency.

1) Complexity of the Grid-based Approach: It is known
that the complexity of the basic TSP problem solved by DP
is O(n? - 2"), where n is the total number of targets to be
visited [23]. As the grid-based approach converts the TSP-
CPP problem into a basic TSP with n = M = SN M, =
SN w1 R, its complexity is O(M?2M), where M grows
with the increase of the region size or the number of regions.

2) Complexity of the DP-based Approach: Consider the
calculation of D(T,i,¢;q) in Algorithm 1. For each T' C N,
i €T, and ¢ € A, D(T,i,c¢;q) can be calculated by consid-
ering |A||T| < 4N number of sub-problems, where f(c;q)

Algorithm 1: DP-based Approach for TSP-CPP

Input: Depot v, vertices of the regions in Ny, and
sensor range r X r of the UAS.
Output: A shortest path that covers all regions in N
starting and ending at depot vy, and its length.

1 foreach i € A do

2 foreach ¢ € A do

3 Si < flcig);

4 D({i},i,ciq) <

d(v()v Szm) + Zzz;ll d(SiWH Si(m-‘rl));

5 P({’L},%Clq) — (Si,’l}o);

6 foreacht =2,..., N do

7 | foreach T'C N, where |T| =t do

8 foreach i € T do

9 foreach ¢ € A do

10 foreach k € T — {i} do

11 foreach [ € A do

12 Sz < f(Ciq);

13 g(Ckis Cig) < d(Ckis Sin;) +
Zzl;ll d(sim,7 5i(m+1));

14 dist <
D(T — {i}, k,crr) + g(cuis cig)s

15 if dist < D(T,1i,¢;q) then

16 D(T,i,¢iq) < dist;

17 L P(T,i,ciq) — (Sivckl);

18 return min = D(Ny,4,¢;q) + d(vo, ¢iq) and the
i€Np,gEA

shortest path by backtracking over arcs in table P.

in each sub-problem is computed by comparing two possible
zigzag paths. As there are a total number of 4 Y~ | i) =
N - 2N*+1 possible combinations of (7,7, c;,), the complex-
ity of the DP-based approach for the TSP-CPP problem is
O(N -2N+1.8N) = O(N?-2%), indicating that the DP-based
approach is scalable to the region size, but suffers from the
curse of dimensionality with respect to the number of regions.

IV. SIMULATION STUDIES

This section presents a series of simulation studies to
illustrate the optimality and efficiency of the proposed TSP-
CPP approaches, which are implemented using Matlab.

A. Optimality Study

Theorems 1 and 2 have proved that both grid-based and
DP-based approaches can find optimal solutions under minor
assumptions. In this study, two experiments were designed to
illustrate the capability of these approaches in finding optimal
solutions when their underlying assumptions are satisfied, and
also when these assumptions are violated. The grid-based
approach uses DP to find the optimal path after cellular
decomposition.

The first experiment considers three square regions dis-
tributed around the depot with w; = h; = 4, Vi € Ny, where



No = {1,2,3}. The sensor range of the UAS is set to r = 2.
Therefore, %5~ = # = r holds, and the grid-based
approach finds the optimal path shown in Figure 5(a), which
has the shortest length of 54.3908. As the corner points of
each region coincide with the centers of the grid cells defined
in the grid-based approach, the DP-based approach also finds
the same optimal path shown in Figure 5(a). To illustrate the
performance of the grid-based approach when its underlying
assumption is violated, the sensor range is increased to r = 3,
and thus Ww}ﬂ [h?ﬁ # r. Under this setting, the DP-
based approach finds the optimal path of length 49.0141 shown
in Figure 5(b), while the grid-based approach generates a sub-
optimal path, which is the same as the one shown in Figure
5(a).
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Fig. 5. Optimal path (blue lines) found by the DP-based approach when a)
r = 2 and when b) » = 3. In both cases, the grid-based approach generates
the same path shown in a). Shaded grey areas and the red triangle represent
regions and the depot respectively.

As corner points may not be the optimal locations to enter or
exit the regions, the DP-based approach may find sub-optimal
solutions. To illustrate this situation, the second experiment
was designed taking into account three regions as shown in
Figure 6, where the size of the largest region is 6 x 4 and the
size of the other two regions is 2 x 2. The sensor range is set
to r=2 As it = “Lh/ﬂ r holds for all i € Ny where

= {1, 2, 3}, the grid-based approach finds the optimal path
of length 34.7660 as shown in Figure 6(a). The DP-based
approach finds a sub-optimal path of length 35.0461 as shown
in Figure 6(b), which is very close to the optimal solution.

2 2
0 0
2 2
> 4 > 4
6 6
8 8
1% 0 5 10 05 0 5 10
X X
(a) (®)
Fig. 6. Optimal path found by a) the grid-based approach, and b) the

suboptimal path found by the DP-based approach.

B. Efficiency Study

Two experiments were designed to investigate the efficiency
of the proposed TSP-CPP approaches. For comparison, the
Hopfield NN [24], which has been frequently used to solve
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Fig. 7. Comparison of the a) execution time and b) total cost z generated
by the grid-based, the DP-based and Hopfield NN-based approaches with the
increase of the number of regions.

TSP with low computational cost, was also implemented and
combined with cellular decomposition to find sub-optimal
TSP-CPP solutions efficiently. The parameters in the Hopfield
NN were configured using the approach introduced in [24].
Each experiment was repeated for 10 times to reduce uncer-
tainty, and the averaged results are presented.

In the first experiment, the efficiency was evaluated under
a varying number of regions. Specifically, a collection of
uniform regions of size 2 x 4 is considered, and the sensor
range is set to » = 2. As shown in Figure 7(a), the execution
time of both the DP-based and grid-based approaches grows
exponentially with the increase of the number of regions,
indicating that both approaches suffer from the curse of
dimensionality with regards to the number of regions. The
Hopfield NN-based approach is the most efficient, but its
accuracy decreases fast with the increase of the number of
regions (see Figure 7(b)) as it can easily get stuck at local
minima [24].
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Fig. 8. Comparison of the a) execution time and b) total cost z generated
by the grid-based, the DP-based and Hopfield NN-based approaches with the
increase of the height of the regions.

In the second experiment, the efficiency of the three ap-
proaches is compared under varying region sizes. In particular,
two regions are considered, and the width of each region is
fixed to w; = 2, ¢ € {1,2}. The height of each region is
then increased simultaneously. As shown in Figure 8(a), the
execution time of the DP-based approach remains stable with
the increase of the region size, indicating the good scalability
to the size of the regions. The grid-based approach suffers
from the curse of dimensionality with regards to the region
size. The Hopfield NN-based approach is less efficient than
the DP-based approach and has low accuracy especially when
the region size is large.
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Fig. 9. Optimal path found by the DP-based approach for 10 randomly sized
and distributed regions.

C. Large-scale Example

A last experiment was designed to show the capability
of the DP-based approach in solving problems of relatively
large scale. In this experiment, 10 regions having a width
and a height uniformly distributed over the range of [2, 8] and
[2, 6], respectively, are created and randomly distributed in a
2-dimensional area. The sensor range is set to r = 2. The
optimal path found by the DP-based approach is shown in
Figure 9, which is obtained in around 5.7 minutes. The grid-
based approach decomposes these regions into total number
of M = 96 cells, and thus requires O(962 - 298) time to find
the optimal solution, which is time-prohibitive. Of note, it is
suggested to use DP for a TSP of up to 17 targets [23].

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new UAS path planning problem, called the
TSP-CPP, is mathematically formulated. Two approaches are
then developed to solve this problem, both of which are proved
to be able to find the optimal path under minor assumptions.
The complexity analysis demonstrates the scalablity of the
DP-based approach with respect to the size of the regions.
Simulation results illustrate the optimality and efficiency of the
proposed TSP-CPP approaches in different scenarios. Future
work will investigate more complicated scenarios, such as
the existence of obstacles, arbitrarily shaped regions and path
planning for fixed-wings with minimum turn radius constraint.
Intelligent optimization algorithms, such as reinforcement
learning [25], [26] and recurrent neural network [27], [28], to
improve the efficiency of the proposed TSP-CPP approaches,
and the extension of these results to multi-UAS path planning
problems will also be considered.
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