
Fast Fréchet Distance between Curves with Long Edges
Joachim Gudmundsson

University of Sydney

Sydney, Australia

joachim.gundmundsson@sydney.edu.au

Majid Mirzanezhad

Tulane University

New Orleans, Louisiana, U.S.

mmirzane@tulane.edu

Ali Mohades

Amirkabir University of Technology

Tehran, Iran

mohades@aut.ac.ir

Carola Wenk

Tulane University

New Orleans, Louisiana, U.S.

cwenk@tulane.edu

ABSTRACT

Computing Fréchet distance between two curves takes roughly

quadratic time. The only strongly subquadratic time algorithm has

been proposed in [7] for c-packed curves. In this paper, we show

that for curves with long edges the Fréchet distance computations

become easier. Let P and Q be two polygonal curves in Rd with n
andm vertices, respectively. We prove three main results for the

case when all edges of both curves are long compared to the Fréchet

distance between them: (1) a linear-time algorithm for deciding

the Fréchet distance between two curves, (2) an algorithm that

computes the Fréchet distance in O ((n +m) log(n +m)) time, and

(3) a linear-time

√
d -approximation algorithm for approximating

the Fréchet distance between two curves.

CCS CONCEPTS

• Theory of computation→Randomness, geometry and dis-

crete structures; Computational Geometry;

KEYWORDS

Computational Geometry, polygonal curve, Fréchet distance , ap-

proximation algorithm

ACM Reference Format:

Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk.

2018. Fast Fréchet Distance between Curves with Long Edges. In IWISC

2018: 3rd International Workshop on Interactive and Spatial Computing, April

12–13, 2018, Richardson, TX, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3191801.3191811

1 INTRODUCTION

Inspired by understanding behavioral ecology of groups of migra-

tion flyways derived from seagull movement data, we study the

problem of similarity between trajectories with long edges. In a

particular application, one might be interested in detecting groups

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

IWISC 2018, April 12–13, 2018, Richardson, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5439-4/18/04. . . $15.00

https://doi.org/10.1145/3191801.3191811

Figure 1: There are four typical flyways for seagulls to fly

across the U.S. Computing the distance between different

movements data results in classifying them into the suitable

flyway [1].

of different migration patterns over a long-distance flying birds

from some part of a country to another part.

Different flyways are relatively straight, see Fig. 1, and the tra-

jectory data of individual birds usually consists of only one GPS

sample per day in order to conserve battery power. Infrequent sam-

pling and the straight flyways therefore result in curves with long

edges, and it is desirable to compare the routes of different animals.

This typical behavior of movements leads us to consider the prob-

lem of computing the distance between similar trajectories having

relatively long edges. Measuring the similarity between two polyg-

onal curves is an important problem that has applications in many

areas, e.g., in morphing [8], movement analysis [9], handwriting

recognition [11] and protein structure alignment [10]. One of the

most popular similarity measures is the Fréchet distance, which

has received considerable attention in recent years.

1.1 Background

Alt and Godau [3] were the first to describe a O (n2
logn)-time al-

gorithm to compute the Fréchet distance between two polygonal

curves with total complexity n. A first lower bound of Ω(n logn)
was given by Buchin et al. [5]. Then Bringmann [4] showed that,

assuming the Strong Exponential Time Hypothesis, the Fréchet

https://doi.org/10.1145/3191801.3191811
https://doi.org/10.1145/3191801.3191811
https://doi.org/10.1145/3191801.3191811

IWISC 2018, April 12–13, 2018, Richardson, TX, USA Gudmundsson et al.

distance cannot be computed in strongly subquadratic time, i.e., in

time O (n2−ϕ) for any ϕ > 0. For the discrete Fréchet distance Agar-

wal et al. [2] achieved a subquadratic running time ofO (n2 log logn
logn).

This result was later extended by Buchin et al. [6] to the contin-

uous setting where they showed that the decision version can be

solved inO (n2 (log logn)3/2/
√

logn) expected time. Using this, they

computed the exact Fréchet distance in O (n2
√

logn(log logn)3/2)
expected time. For some special cases, such as c-packed curves,

a (1 + ε)-approximation can be computed in O (cn/ε + cn logn)
time [7].

1.2 Our Results

Let P andQ be two polygonal curves in Rd and ∆ > 0. In this paper

we consider the decision, optimization and approximation problems

for the Fréchet distance between P and Q , all for the case where all

edges of both curves are relatively long. In Section 3 we present

a greedy linear-time algorithm for deciding whether the Fréchet

distance is at most ∆, as long as all edges in P are at least 2∆ long

and edges inQ are at least (1+
√
d)∆ long.We also give an algorithm

for computing the Fréchet distance in O ((n +m) log(n +m)) time.

In Section 4 we give a linear-time algorithm to approximate the

Fréchet distance up to a factor of

√
d .

Our results provide a first formal treatment confirming the com-

mon intuition that for very small values of ∆ (relatively smaller

than the shortest edge length of either curves) it should be possi-

ble to solve the Fréchet decision problem significantly faster than

quadratic time.

2 PRELIMINARIES

Let P = ⟨p1, . . . ,pn⟩ be a polygonal curve with n vertices. We

treat a curve as a continuous map P : [1,n] → Rd . In this map,

P (i) = pi for an integer i , and the i-th edge is linearly parametrized

as P (i + λ) = (1 − λ)pi + λpi+1, for integer i and 0 < λ < 1. A

re-parametrization σ : [0, 1] → [1,n] of a curve P is any contin-

uous, non-decreasing function such that σ (0) = 1 and σ (1) = n.
P[σ (a),σ (b)] denotes the subcurve of P in between P (σ (a)) and
P (σ (b)) for any 0 ≤ a < b ≤ 1. Now consider two polygonal curves

P = ⟨p1,p2, · · · ,pn⟩ and Q = ⟨q1,q2, · · · ,qm⟩. Let lP denote the

length of the shortest edge in P , and lQ the length of the shortest

edge inQ . For two points x ,y ∈ Rd and a line segmentQ ⊆ Rd , let
∥x ,y∥ denote the Euclidean distance between the points, and let

∥x ,Q ∥ = minq∈Q ∥x ,q∥ denote the minimum distance from x to

any point on Q. A monotone matching between P and Q is a pair

of re-parameterizations (σ ,θ). The Fréchet distance between two

curves is defined as δF (P ,Q) = inf (σ ,θ) maxt ∥P (σ (t)),Q (θ (t))∥,
where (σ ,θ) is a monotone matching. Throughout the paper we

use the following notations: Let B (p,∆) = {x ∈ Rd | ∥p,x ∥ ≤ ∆}
be the ball with radius ∆ that is centered at a point p.

Consider an edge Q = Q[1, 2]. P is Q-monotone if for each edge

P[i, i + 1] the smallest angle described by vectors P[i, i + 1] and

Q[1, 2] does not exceed π/2. We call the set of points in Rd within

distance ∆ from Q = Q[1, 2] the cylinder C (Q,∆). Let q′
1
be the

parameter where Q (q′
1
) is the intersection of Q with the boundary

ofB (q1,∆). Similarly defineq′
2
w.r.t.Q andB (q2,∆).α is a parameter

where P (α) is the first point along P that meets B (q2,∆). LetH1 and

q1
q2

H2H1

q′2

q′1

Q
x

y
ba

pn
p1

p2

Figure 2: The blue arrows indicate orthogonal matching be-

tween P and Q .
H2 be a pair of hyperplanes that are perpendicular to Q and pass

through q′
1
and q′

2
, respectively. Let x be the largest parameter such

that P (x) intersectsH1 and, let y be the smallest parameter such

that P (y) intersectsH2. Similarly, let a be the smallest parameter

such that P (a) exits B (q1,∆) and let b be the largest parameter such

that P (b) enters B (q2,∆), see Fig. 2.

3 A GREEDY OPTIMIZATION ALGORITHM

In this section, we give a linear time algorithm for deciding whether

the Fréchet distance between two polygonal curves P and Q in Rd

with relatively long edges is at most ∆. To this end, we first prove

several structural properties for the case that each edge in P and Q

is longer than 2∆ and (1 +
√
d)∆, respectively in Section 3.1. Next,

by exploiting the decision algorithm we give an exact algorithm

computing Fréchet distance between P and Q in O ((n +m) log(n +
m)) time .

3.1 Structural Properties

In this section we first define two complementary notions of Longest

Prefix and Orthogonal Matching, which are the basis of our greedy

algorithm. These notions provide us some properties that will allow

us to develop a greedy algorithm that constructs a valid reparame-

terization by repeatedly computing a maximally reachable prefix

on one of the curves which is provided in Section 3.2.

Definition 3.1 (Longest ∆-Prefix). Let P = P[1,n] be a polygonal

curve, Q be a line segment, and ∆ > 0. Define γ = max{ t | 1 ≤ t ≤
n and δF (P[1, t],Q) = ∆}. We call P[1,γ] the longest ∆-prefix of P
with respect to Q .

Definition 3.2 (Orthogonal Matching). Let P = P[1,n] be a polyg-

onal curve,Q = Q[1, 2] be a line segment, ∆ > 0. We say that P and

Q admit an orthogonal matching if and only if:

(1) δF (P[1,x],Q[1,q′
1
]) ≤ ∆ (2) δF (P[x ,y],Q[q′

1
,q′

2
]) ≤ ∆ and (3)

δF (P[y,n],Q[q′
2
, 2]) ≤ ∆; see Fig. 2.

See Fig. 4, to realize the higher level idea of the definitions above

and their application which makes the free space more simpler than

general case. In fact these two notions are useful as long as both

curves have long edges compared to ∆. Lemma 3.4 and Lemma 3.5

will show that for any arbitrary matching in free space we can

greedily find extreme matchings by computing longest ∆-prefixes
using pieceswise orthogonal matching only if curves have with long

edges. We start with an important lemma that demonstrates the

necessity of the orthogonal matching between curve P and segment

Q in order to satisfy δF (P ,Q) ≤ ∆.

Fast Fréchet Distance between Curves with Long Edges IWISC 2018, April 12–13, 2018, Richardson, TX, USA

Lemma 3.3 (Monotonicity). Let Q = Q[1, 2] be a segment and

∆ > 0. Let P[1,n] be a polygonal curve s.t. for any edge e ∈ P[2,n −
1], ∥e ∥ > 2∆. Then δF (P ,Q) ≤ ∆ if and only if P and Q admit an

orthogonal matching.

Proof. By Definition 3.2, if an orthogonal matching exists be-

tween P and Q then obviously δF (P ,Q) ≤ ∆. For the opposite

side, let µ = (σ ,θ) be an arbitrary monotone matching realizing

δF (P ,Q) ≤ ∆. Let x be the last intersection point between P and

H1 and, let y be the first intersection point between P and H2.

Also let a be the first point along P that leaves B (q1,∆) and b be

last points that enters B (q2,∆), respectively. Note that every edge

on P[2,n − 1] is longer than 2∆ which means P[2,n − 1] has to

be monotone w.r.t. the line supporting Q . Otherwise cosnider a

violating edge e = P[i, i + i] for 1 < i < n − 1 that is not mono-

tone w.r.t. Q . Since ∥pi ,pi+1∥ > 2∆, thus B (pi ,∆) ∩ B (pi+1,∆) = ∅
and the interval Ii = B (pi ,∆) ∩ Q encounters before the inter-

val Ii+1 = B (pi ,∆) ∩ Q along Q . This violates the monotonicity

of (σ ,θ). Hereby, P[2,n − 1] is monotone w.r.t. the line support-

ing Q . Clearly, δF (P[1,a],q1) ≤ ∆ and δF (P[b,n],q2) ≤ ∆. Also
δF (P[a,x],Q[1,q′

1
]) ≤ ∆ and δF (P[y,b],Q[q′

2
, 2]) ≤ ∆ hold by or-

thogonally projecting each point onto the subsegments of Q (see

Fig. 2). Combining the latter results yields δF (P[1,x],Q[1,q′
1
]) ≤ ∆

and δF (P[y,n],Q[q′
2
, 2]) ≤ ∆. At the end, δF (P[x ,y],Q) ≤ ∆ since

P[x ,y] can be matched to Q orthogonally and this completes the

proof. □

In fact Lemma 3.3 shows that for a curve with long edges, the

Fréchet distance to a line segment is determined by geometric

monotonicity between the curve and the segment. The lemma below

will be required in Lemma 3.5 to use the lower bound on length of

edges on Q which is (1 +
√
d)∆.

Lemma 3.4 ((
√
d∆)-Ball). Let ∆ > 0 and let P be a polygonal

curve in Rd with long edges such that lP > 2∆. Let Q = Q[1, 2] be a

line segment of length greater than (1 +
√
d)∆. Assume that P[1,γ]

is the longest ∆-prefix of P w.r.t.Q , and α is the first point along P on

the boundary of B (q2,∆). Then P[α ,γ] is contained in B (q2,
√
d∆).

Proof. By assumption ∥q1,q2∥ > (1 +
√
d)∆ ≥ 2∆, hence

we know that B (q1,∆) ∩ B (q2,∆) = ∅, thus α exists. Notice that

P[α ,γ] ∈ C (Q,∆). As we defined H2, it splits C (Q,∆) into two

parts, the part that contains q1 and the part that contains q2. By

Lemma 3.3, P[2,p] is Q-monotone, where P (p) is the last vertex
before P (γ). Thus P[α ,γ] must lie on the q2 side ofH2. Therefore

the maximum possible distance between q2 and a point in P[α ,γ]

is

√
d∆. □

In another crucial lemma below, we show that if δF (P ,Q) ≤ ∆,
then two curves P and Q admit a piecewise orthogonal matching,

which can be obtained by computing longest ∆-prefixes of P w.r.t.

each segment of Q .

Lemma 3.5 (Piecewise Orthogonal Matching Exists). Let

∆ > 0, and let P andQ be two polygonal curves in Rd with long edges

such that lP > 2∆ and lQ > (1+
√
d)∆. If δF (P ,Q) ≤ ∆, then P[1,γ]

as the longest ∆-prefix of P w.r.t.Q[1, 2] exists, δF (P[1,γ],Q[1, 2]) ≤
∆ and δF (P[γ ,n],Q[2,m]) ≤ ∆.

P

Q

p1

q1

P (σ(t2))

Q(θ(t2)) = q2

P (σ(tγ)) = P (γ)

Q(θ(tγ))

P (σ(t3))

Q(θ(t3)) = q3

Figure 3: The Fréchet matching has to match P (γ) to some

point on Q[2, 3].

Proof. Let (σ ,θ) be any Fréchet matching realizing δF (P ,Q) ≤
∆. There exists some t ∈ [0, 1] such thatQ (θ (t)) = q2, thusγ ≥ σ (t)
and this implies γ exists. Since P[1,γ] is the longest ∆-prefix along
P w.r.t. Q[1, 2] it follows by definition that δF (P[1,γ],Q[1, 2]) ≤ ∆.
In the remainder of this proof we construct a matching to prove

that δF (P[γ ,n],Q[2,m]) ≤ ∆.
Let tγ ∈ [0, 1] be the largest value such that P (σ (tγ)) = P (γ).

Let t2 ∈ [0, 1] be the largest value such that Q (θ (t2)) = q2. By

Lemma 3.4, P[σ (t2),γ] ∈ B (q2,
√
d∆). Now let t3 ∈ [0, 1] be the

smallest value such that Q (θ (t3)) = q3. We have ∥q2,q3∥ > (1 +
√
d)∆, therefore B (q2,

√
d∆) ∩ B (q3,∆) = ∅ and thus q3 cannot be

matched to any point in P[σ (t2),γ]. Correspondingly, σ (t2) ≤ γ =
σ (tγ) < σ (t3), and follows θ (t2) ≤ θ (tγ) < θ (t3).

Now we construct a new Piecewise orthogonal matching (σ̄ , ¯θ)
realizing δF (P[γ ,n],Q[2,m]) ≤ ∆ as: σ̄ (t) = σ (t) and ¯θ (t) = θ (t)
for all tγ ≤ t ≤ 1. On the other hand, since ∥P (γ),q2∥ ≤ ∆ and

∥P (γ),Q (θ (t))∥ ≤ ∆, we know that Q[2,θ (tγ)] ∈ B (γ ,∆). Hence,

σ̄ (t) = γ and
¯θ (t) =

tγ −t
tγ ·2+

t
tγ ·θ (tγ) for all t2 ≤ t ≤ tγ (see Fig. 3).

Therefore, we have δF (P[γ ,n],Q[2,m]) ≤ ∆, which completes the

proof. □

In fact, Lemma 3.5 implies that if P and Q have long edges then

the free space and the reachable space are simpler than in the

general case, because due the horizontal and vertical line segments

of reachable space connecting to an arbitrary matching, holes are

not possible (See Fig. 4).

3.2 The Decider

Now we present a linear time algorithm using the properties pro-

vided in Section 3.1. The pseudocode of our Decider is presented in

Algorithm 1. The input to this Decider is a set of polygonal curves

P andQ , and ∆ > 0. The algorithm assumes that P andQ have long

edges. In each iteration the function LongestDeltaPrefix returns

γ for subcurve P[γi ,pn], as defined in Definition 3.1, w.r.t.Q[i, i+1],

if it exists. If anyγ = null then “No” is returned. Otherwise, the next
edge of Q is processed. This continues iteratively until all edges

have been processed, or until no γ exists.

From Lemma 3.3 follows that P and Q admit an orthogonal

matching if and only if two conditions holds: (1) P[γi−1,γi] ∈
C (Q[i − 1, i],∆) and (2) P[γi−1,γi] is monotone w.r.t. directed line

supporting Q[i − 1, i]. Now Lemma 3.3 can be used to implement

the LongestDeltaPrefix procedure as follows: Determine the

first edge on P[γi−1,n] which violates the two conditions above

w.r.t.Q[i−1, i]. If the violation occurs before reaching B (qi ,∆), then

IWISC 2018, April 12–13, 2018, Richardson, TX, USA Gudmundsson et al.

Q

P
γ2α2

q′

q2

(b)

∆

γ2γ3

α2

α3

P

Q

∆

(a)

q1

q2

q3

Figure 4: λ2 is the longest ∆-prefix on P w.r.t.Q[1, 2] realizing

the green (bottommost) xy-monotone envelope in the free

space. (a) If δF (P ,Q) ≤ ∆, then piecewise orthogonal match-
ing between subpaths (P[p1,γ2], P[γ2,γ3], · · ·) and correspond-
ing Q ’s edges (Q[1, 2],Q[2, 3], · · ·), respectively exists. (b) As

shown in Lemma 3.5, finding γ2 allows us to keep track of

any arbitrary matching (brown path) by following the pink

vertical line-segment connected between γ2 and the brown

matching.

Algorithm 1: Decide whether δF (P ,Q) ≤ ∆

1 Decider(P[1,n],Q[1,m],∆)

2 if lP ≤ 2∆ or lQ ≤ (1+
√
d)∆ then return “I don’t know.”

3 s ← 1

4 for i ← 2 tom do

5 γ ← LongestDeltaPrefix(P[s,n],Q[i − 1, i],∆)

6 if γ = null then return “No”

7 s ← γ

8 if γ < n then return “No”

9 return “Yes”

obviously γi = null . Otherwise we intersect the first violating edge

e along P[γi−1,n] with the boundary of B (qi ,∆) to find γ . Clearly,
the whole process takes O (n) time.

Now we prove the correctness of our decision algorithm:

Theorem 3.6 (Correctness). Let ∆ > 0, and let P and Q be

two polygonal curves in Rd with long edges such that lP > 2∆ and

lQ > (1 +
√
d)∆. Then Decider(P ,Q,∆) returns “Yes” if and only if

δF (P ,Q) ≤ ∆.

Proof. Let γi be the value of γ computed in the i-th iteration

of the for loop in line 6 of the algorithm. If the algorithm returns

“Yes” then the sequence {(qi ,γi)} with i = 1, · · · ,m with γ1 = 1 and

γm = n describes a monotone matching that realizes δF (P ,Q) ≤ ∆.
If δF (P ,Q) ≤ ∆, then we use Lemma 3.5 to prove by induction

on i that the algorithm returns “Yes”, i.e., all longest ∆-prefixes
⟨P[1,γ2], P[γ2,γ3], · · · , P[γm−1,γm]⟩ of P w.r.t. corresponding seg-

ments ofQ exist. For i = 2, following Lemma 3.5,γ2 exists and can be

found by the algorithm. For any i > 2, the algorithm has determined

γ2, · · · ,γi−1 already and by Lemma 3.5, δF (P[γi−1,n],Q[i−1,m]) ≤
∆. Another application of Lemma 3.5 yields thatδF (P[γi−1,γi],Q[i−
1, i]) ≤ ∆ and δF (P[γi ,n],Q[i,m]) ≤ ∆ since γi essentially exists.

In the case that i =m − 1 it remains to prove that γi+1 = γm = n.
Assume γm < n. Since P[γm−1,γm] is the longest ∆-prefix, there
is no other point γ ′m ∈ (γm ,n] such that δF (P[γm−1,γ

′
m],Q[m −

1,m]) ≤ ∆. Consequently, δF (P[γm−1,γ
′
m],Q[m − 1,m]) > ∆ and

follows δF (P[γm−1,n],Q[m−1,m]) > ∆. By applying modus tollen

rule of Lemma 3.5 on P[γm−1,n] andQ[m−1,m], δF (P ,Q) > ∆ and

that would be a contradiction. Therefore γm = n and the algorithm

returns “Yes” as claimed. □

As a result we have the following theorem:

Theorem 3.7 (Decider). Let ∆ > 0, and let P and Q be two

polygonal curves in Rd with long edges such that lP > 2∆ and lQ >

(1+
√
d)∆. Let n be the number of vertices in P , andm be the number

of vertices in Q . Then there exists a greedy decider, Algorithm 1, that

can determine δF (P ,Q) ≤ ∆ in O (n +m) time.

Proof. Following Theorem 3.6, all P (γi)s over P are matched to

the qi s over Q . This means the algorithm greedily finds the next

γi+1 w.r.t. each edge of Q and ∆. We havem − 1 edges and the total

time for greedily finding the longest ∆-prefixes takes O (n), this
implies Algorithm 1 runs in O (n +m) time. □

3.3 The Optimization Algorithm

The main idea of our algorithm is that we compute critical values

of the Fréchet distance between two curves and we show that the

number of these values is linear. We then perform binary search

on these critical values to find the optimal value acquired by the

decision algorithm. The following observation allows us to compute

critical values efficiently:

Observation 3.8 (Superpath). Let ∆ > 0 and ∆∗ > 0 be two real

numbers. In addition, letγi = LongestDeltaPrefix(P[γi−1,n],Q[i−
1, i],∆) and let αi be the smallest parameter where P (αi) ∈ P[γi−1,n]

meets B (qi ,∆). Similarly, define γ ∗i and α∗i w.r.t. ∆∗. If ∆∗ ≤ ∆, then
αi ≤ α∗i ≤ γ ∗i ≤ γi .

In fact, Observation 3.8 concludes that the path P[αi−1,γi] is
the longest superpath for P[α∗i−1

,γ ∗i] when ∆ = min(lP /2, lQ /(1 +√
d)) and ∆∗ = δF (P ,Q). Now, given a segment Q[i − 1, i] and ∆,

our optimization algorithm simply works as follows: (1) It runs

Algorithm 1 with ∆ = min(lP /2, lQ /(1 +
√
d)), and only proceeds

if Decider(P ,Q,∆) returns ’Yes’.

Fast Fréchet Distance between Curves with Long Edges IWISC 2018, April 12–13, 2018, Richardson, TX, USA

q1 q2

γ∗2

γ2

α2

∆ ∆∗

H2 H∗
2

H1

H∗
1

v
p1

Figure 5: δF (P ,Q) = ∆∗ ≤ ∆ and as cylinder C (Q,∆∗) is un-

known we are not sure whether v lies inside B (q2,∆
∗) or not.

We are aware of two possibilities for v’s point to point dis-
tance, that is either the orthogonal one onto Q or the dis-

tance to q2. Vertices betweenH1 andH2 must have orthogo-

nal distances.

This gives us all γi = LongestDeltaPrefix(P[γi−1,n],Q[i −
1, i],∆). (2) For every v ∈ P[αi−1,γi], if v lies between Hi−1,Hi
it stores the (orthogonal) distance ∥v,Q[i − 1, i]∥ in the set Ci .
Otherwise it stores the two distances ∥v,Q[i − 1, i]∥ and (∥v,qi−1∥

or ∥v,qi ∥) in Ci . In the end we compute C := ∪mi=2
Ci . The call to

Algorithm 1 ensures that P and Q satisfy the constraint lP > 2∆

and lQ > (1+
√
d)∆. Consequently, lP > 2∆x and lQ > (1+

√
d)∆x

for any critical value ∆x ≤ ∆. Notice that since all γi exist, we
know that γ ∗i = LongestDeltaPrefix(P[γ ∗i−1

,n],Q[i − 1, i],∆∗)
exist as well for all i = 1, · · · ,m. Nevertheless we do not know γ ∗i
for all i = 1, · · · ,m beforehand. But according to Observation 3.8,

we know that whatever value ∆∗ would be, the widest range we

need to look for critical values between P[γ ∗i−1
,γ ∗i] and Q[i − 1, i]

is P[αi−1,γi].
An orthogonal matching (Definition 3.2) matches points in such

a way that there are two types of point to point distances: Some

of these distances are obtained by a simple projection of points

from P to Q , and some match points from P to the endpoints of

Q[i − 1, i]. These two types of distances are sufficient to acquire

all possibilities for ∆∗ since the matching changes when C (Q,∆)
shrinks to C (Q,∆∗). (See Fig. 5 for more illustration). Note that

there is no need for the values greater than ∆ since ∆∗ ≤ ∆. Once
we have computed C we perform binary search to find the optimal

value.

For each edge of Q we find these distances between P[αi−1,γi]
and Q[i − 1, i] until we meet qm . Once we have allm many sets of

critical values, sorting them allows us to perform a binary search

on them to find the optimal value ∆∗ in which Decider(P ,Q,∆∗)
returns ’Yes’ but ’No’ for the values below ∆∗. We can summarize

this section with the following theorem:

Theorem 3.9 (Optimization). Let P and Q be two polygonal

curves in Rd with n andm vertices, respectively.

If δF (P ,Q) < min{lP /(2), lQ /(1 +
√
d)}, then δF (P ,Q) can be com-

puted in O ((n +m) log(n +m)) time.

Proof. Let P[γi−1,γi] have ni vertices and assume we know∑m
i=2

ni = O (n +m). When processing Q[i, i + 1], P[αi ,γi] is being

revisited again. Hence, |Ci | ≤ 2ni (see Fig. 5). By assumption above,

Ci+1 ≤ 2ni + ni+1, therefore C = ∪
m
i=2

Ci ≤
∑m
i=2

(4ni + ni+1) <
5(n +m) = O (n +m). Sorting C and performing binary search on

it takes O ((n +m) log(n +m)) time. □

4 AN APPROXIMATION ALGORITHM

In this section, we present an algorithm approximating the Fréchet

distance between two curves with long edges, respectively. We

present

√
d-approximation algorithm running in linear time. Similar

to Section 3, we introduce a variant notion of Definition 3.1 called

minimum prefix:

Definition 4.1 (Minimum Prefix). Let P be a polygonal curve and

Q be a segment. Define γ ′ = max{ t | argmin
1≤t ≤n δF (P[1, t],Q)}.

We call P[1,γ ′] the minimum prefix of P with respect to Q .

The approximation algorithm is presented in Algorithm 2.

First, for an initial threshold ∆0 less than but sufficiently close to

min{lP /(2
√
d), lQ /(2d)}, it runs Decider (P ,Q,∆0). It only contin-

ues if “Yes” gets returned. This ensures that P andQ have long edges,

with lP > 2

√
d∆ > 2∆ and lQ > 2d∆ > (1 +

√
d)∆. Then, similar

to the decision algorithm, the approximation algorithm greedily

searches for longest ∆-prefixes for each segment of Q . However, it

updates the current value of ∆ in each step, by computing the min-

imum prefix and its associated Fréchet distance to the portion of Q
considered so far. For a line segment Q , the function MinimumPre-

fix(P[1,n],Q) returns (γ ,∆) such that P[1,γ] is theminimum prefix

of P[1,n] with respect to Q , and ∆ = δF (P[1,γ],Q).

Algorithm 2: Compute δF (P ,Q)

1 ApproximationAlgorithm(P[1,n],Q[1,m])

2 ∆0 ← min(lP /2
√
d, lQ /2d)

3 if Decider(P ,Q,∆0)= “No” then return “I don’t know.”

4 (γ2,∆2) ← MinimumPrefix(P[1,n],Q[1, 2])

5 ∆← ∆2

6 s ← γ2

7 for i ← 3 tom do

8 (γi ,∆i) ← MinimumPrefix(P[s,n],Q[i − 1, i])

9 ∆← max(∆,∆i)

10 s ← γi

11 if γm = n then

12 return ∆

13 else

14 ∆← max(∆,δF (P[γm ,n],qm)

15 return ∆

When ∆ is increased, the longest ∆-prefix can only get longer,

as summarized below.

Observation 4.2. Let P = P[1,n] and Q = Q[1,m] be two polyg-

onal curves and let ∆ > 0.

For anyx ,y ∈ P , letγ = LongestDeltaPrefix(P[x ,n],Q[i−1, i],∆))
andγ ′ = LongestDeltaPrefix(P[y,n],Q[i−1, i],∆′). Then ∆ < ∆′

if and only if γ < γ ′.

IWISC 2018, April 12–13, 2018, Richardson, TX, USA Gudmundsson et al.

Now we are ready to prove the correctness of Algorithm 2:

Lemma 4.3 (The Approximation). Let P = P[1,n] and Q =
Q[1,m] be two polygonal curves and let ∆∗ = δF (P ,Q). If ∆∗ <

min{lP /(2
√
d), lQ /(2d)} then ApproximationAlgorithm(P ,Q) re-

turns

√
d∆∗. Otherwise it returns “I don’t know.”.

Proof. From the algorithm:∆i = δF (P[γi−1,γi],Q[i−1, i]). Now

suppose δF (P ,Q) = ∆∗. We prove by induction on i that∆i ≤
√
d∆∗.

For i = 2, ∆2 is being minimized and obviously ∆2 ≤ ∆∗ <
√
d∆∗.

For any i > 2, there are two possible cases: If ∆i ≤ ∆∗, then

trivially ∆i <
√
d∆∗. In the remainder of the proof we consider

the case that ∆i > ∆∗. We know from the proof of Theorem 3.6

that all γ ∗i = LongestDeltaPrefix(P[γ ∗i−1
,n],Q[i − 1, i],∆∗) for

all i = 1, 2, · · ·m exist. And by inductive hypothesis we know that

max(∆2, · · · ,∆i−1) ≤
√
d∆∗.

In order to show that ∆i ≤
√
d∆∗, consider an optimal match-

ing (σ ,θ) realizing ∆∗. For the sake of contradiction we assume

∆i >
√
d∆∗. By Observation 4.2, it follows from ∆∗ < ∆i that

γ ∗i < γi . We now distinguish two subcases. (2a) If γi−1 < γ ∗i−1
,

then by Lemma 3.4 we have δF (P[γi−1,γ
∗
i−1

],qi−1) ≤
√
d∆∗. Also

δF (P[γ ∗i−1
,γ ∗i],Q[i−1, i]) ≤ ∆∗, hence δF (P[γi−1,γ

∗
i],Q[i−1, i]) ≤

√
d∆∗ and (∆i ,γi) = (

√
d∆∗,γ ∗i)would be returned byMinimumPre-

fix, which contradicts ∆i >
√
d∆∗ (see Fig. 6.a). (2b) Now for the

case that γ ∗i−1
< γi−1, consider the same matching as above realiz-

ing δF (P ,Q) = ∆∗. There exists a t ∈ [0, 1] such that γi−1 = σ (t).
Clearly Q (θ (t)) ∈ Q[i − 1, i] because B (qi−1,∆i−1) ∩ B (qi ,∆

∗) = ∅

since ∥qi−1,qi ∥ > 2d and ∆i−1 ≤
√
d∆∗. This implies γi−1 < γ ∗i .

Hence, γ ∗i−1
< γi−1 < γ

∗
i and correspondingly qi−1 ≤ Q (θ (t)) ≤ qi .

By induction we know ∆i−1 = ∥qi−1, P (γi−1)∥ ≤
√
d∆∗, thus

Q[i − 1,θ (t)] ⊆ B (P (γi−1),
√
d∆∗) which implies δF (P (γi−1),Q[i −

1,θ (t)]) ≤
√
d∆∗.

Combining the latter inequalitywithδF (P[γi−1,γ
∗
i],Q[θ (t), i]) ≤

∆∗ from the optimal matching, implies that (∆i ,γi) = (
√
d∆∗,γ ∗i)

must be returned by MinimumPrefix, which is again a contradic-

tion. At the end, if γm < n = γ ∗m , then Lemma 3.4 again implies

δF (P[γm ,n],qm) ≤
√
d∆∗ as claimed (see Fig. 6.b). □

The MinimumPrefix Procedure: We implement MinimumPre-

fix(P[1,n],Q) for a line segment Q = Q[1, 2] as follows: For every

i ∈ {1, . . . ,n − 1} let ci be the distance associated with a min-

imum prefix ending on the segment P[i, i + 1]. Formally, ci =
mint ∈[i,i+1]

δF (P[1, t],Q). Algorithm 3 computes all the ci in a

dynamic programming fashion. The minimum of the ci is the de-
sired ∆, and the LongestDeltaPrefix computes the corresponding

γ . The following lemma shows the correctness of Algorithm 3:

Lemma 4.4 (Correctness). Let Q = Q[1, 2] be a line segment

and let P = P[1,n′] be a Q-monotone curve.

If δF (P ,Q) < min{lP /(2
√
d), lQ /(2d)}, then the distance returned

by MinimumPrefix(P ,Q) is min1≤t ≤n′ δF (P[1, t],Q).

Proof. According to the algorithm,

ci = max{∥p1,q1∥,
i−1

max

j=1

∥pj+1,Q ∥, ∥P[i, i + 1],q2∥}.

Since Q is a segment and P is Q-monotone, the following follows

for any i ≤ t ≤ i + 1 using simple projections of points from P onto

qi−1 qi

(a)

P (γi)
P (γ∗

i)P (γ∗
i−1)P (γi−1)

qi−1 qi

P (γ∗
i−1)

P (γ∗
i) P (γi)P (γi−1)

(b)

Q(θ(t))

Figure 6: Illustration of the proof of Lemma 4.3 for the case

∆i > ∆∗. (a) γi−1 < γ
∗
i−1

(b) γi−1 > γ
∗
i−1

.

Algorithm 3: Compute MinimumPrefix(P[1,n],Q[1, 2])

1 MinimumPrefix(P[1,n],Q[1, 2])
2 c ← ||p1,q1 | |

3 ∆′ ← min{lP /2, lQ /(2
√
d)}

4 γ ′ ← LongestDeltaPrefix(P[1,n],Q,∆′)

5 for i ← 1 to ⌊γ ′⌋ do
6 ci ← max{c, | |P[i, i + 1],q2 | |}

7 c ← max{c, | |pi+1,Q | |}

8 ∆ = min
⌊γ ′⌋
i=1

ci
9 return (∆, LongestDeltaPrefix(P[1,n],Q,∆))

Q :

δF (P[1, t],Q) = max{∥p1,q1∥,
i−1

max

j=1

∥pj+1,Q ∥, ∥P (t),q2∥}

By taking the minimum on both sides: mini≤t ≤i+1 δF (P[1, t],Q) =
max{∥p1,q1∥, max

i−1

j=1
∥pj+1,Q ∥,mini≤t ≤i+1 ∥P (t),q2∥} = ci .

It suffices to run the for-loop untiln′ = ⌊γ ′⌋, since by assumption

we only compute the minimum ∆-prefix P[1,γ] if its distance is

at most ∆′, and from Observation 4.2 follows γ < γ ′. Therefore,

∆ = min
⌊γ ′⌋
i=1

ci = min
n′
i=1

ci = min1≤t ≤n′ δF (P[1, t],Q). □

Theorem 4.5 (Runtime). Let P and Q be two polygonal curves in

Rd with n andm vertices, respectively.

If δF (P ,Q) < min{lP /(2
√
d), lQ /(2d)}, then Algorithm 2 approxi-

mates the Fréchet distance between P and Q inO (n +m) time within

an approximation factor of

√
d .

Proof. Let ∆∗ = δF (P ,Q). The algorithm only proceeds past

line 3 if ∆∗ ≤ ∆0 = min{lP /(2
√
d), lQ /(2d)}.

Fast Fréchet Distance between Curves with Long Edges IWISC 2018, April 12–13, 2018, Richardson, TX, USA

Now, as ∆′ =
√
d∆0, γ

′
1
= 1, and for all j = 2, · · · ,m, let

γ ′j = LongestDeltaPrefix(P[γ ′j−1
,n],Q[j −1, j],∆′). Note that by

definition of ∆′, both curves have long edges, i.e., lP > 2∆′ and lQ >

(1+
√
d)∆′. For each segmentQ[i−1, i] with i > 1, theMinimumPre-

fix procedure first computes γ ′i (see line 4 in Algorithm 3), and

finally returns γi as the endpoint of the MinimumPrefix subcurve

w.r.t. Q[i − 1, i]. From the proof of Lemma 4.3 we know that ∆i ≤√
d∆∗ ≤

√
d∆0 = ∆′ for all i . Thus, Observation 4.2 implies that

γi ≤ γ ′i . Also note that γi > γi−1 since P (γi−1) ∈ B (qi−1,∆i−1) and
P (γi) ∈ B (qi ,∆i), and moreover B (qi−1,∆i−1) ∩ B (qi ,∆i) = ∅ be-

cause ∥qi ,qi−1∥ > 2d∆0 ≥ 2d∆∗ > 2(
√
d∆∗) ≥ 2(max(∆i ,∆i−1)).

Hence γi−1 < γi ≤ γ ′i .
The for-loop in Algorithm 3 has ni iterations, where ni is the

number of integers in the interval [γi−1,γ
′
i], and

∑m
i=2

ni = n. For
the segment Q[i, i + 1], MinimumPrefix starts with γi to find γi+1

where γi+1 ≤ γ ′i+1
. Overall, MinimumPrefix processes the portion

[γi ,γ
′
i] twice, and computing the minimum of the ci takes linear

time, thus MinimumPrefix takes at most O (ni) time. Therefore,

Algorithm 2 takes O (n +m) time. □

5 DISCUSSION AND FUTUREWORK

In this paper we provided a linear time decision algorithm, an

O ((n +m) log(n +m)) time optimization algorithm, and a linear

time

√
d-approximation algorithm between curves that have long

edges. Our algorithms are simple greedy algorithms that run in any

constant dimension. One interesting problem would be to develop

a trade-off between the length of edges and the runtime, and in

general prove hardness in terms of the edge lengths.

Acknowledgements: The authors would like to acknowledge the

generous support of the Australian Research Council’s Discovery

Projects funding scheme (DP150101134) and the National Science

Foundation under grant CCF-1637576. We particularly, thank an

anonymous reviewer for insightful comments that helped us to

improve the algorithm in Section 3.

REFERENCES

[1] 2016. North America Migration Flyways. (sep 2016). https://www.nps.gov/pais/

learn/nature/birds.htm

[2] P.K. Agarwal, R.B. Avraham, H. Kaplan, and M. Sharir. 2014. Computing the

Discrete Fréchet Distance in Subquadratic Time. SIAM J. Comput. 43 (2014),

429–449.

[3] H. Alt and M. Godau. 1995. Computing the Fréchet Distance between two Polyg-

onal Curves. International Journal of Computational Geometry and Applications

5, 1–2 (1995), 75–91.

[4] K. Bringmann. 2014. Why Walking the Dog Takes Time: Fréchet Distance Has

no Strongly Subquadtatic Algorithms unless SETH Fails. In Proceedings of the

55th IEEE Symposium on Foundations of Computer Science (FOCS). 226–236.

[5] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. 2007. How difficult Is

It to Walk you Dog?. In 32nd European Workshop on Computational Geometry.

170–173.

[6] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. 2014. Four Soviets Walk

the Dog - with an Application to Alt’s Conjecture. In Proceeding of the 25th

ACM-SIAM Symposium on Discrete Algorithms. 1399–1413.

[7] A. Driemel, S. Har-Peled, and C.Wenk. 2012. Approximating the Fréchet Distance

for Realistic Curves in Near Linear Time. Discrete & Computational Geometry 48

(2012), 94–127.

[8] A. Efrat, L.J. Guibas, S. Har-Peled, J.S.B Mitchell, and T.M. Murali. 2002. New Sim-

ilarity Meaures between Polylines with Applicatons yo Morphing and Polygon

Sweeping. Discrete & Computational Geometry 28, 4 (2002), 535–569.

[9] J. Gudmundsson, P. Laube, and T. Wolle. 2007. Movement Pattern in Spatio

Temporal Data (1st ed.). Springer-Verlag.

[10] M. Jiang, Y. Xu, and B. Zhu. 2008. Protein Structure–Structure Alignment with

Discrete Fréchet Distance. Journal of Bioinformatics and Computational Biology

6, 1 (2008), 51– 64.

[11] R. Sriraghavendra, K. Karthik, and C. Bhattacharyya. 2007. Fréchet Distance

based Approach for Searching Online Handwrittien Documents. In In Proceeding

of 9th International Conference on Document Analysis and Recognition. 461–465.

https://www.nps.gov/pais/learn/nature/birds.htm
https://www.nps.gov/pais/learn/nature/birds.htm

	Abstract
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 PRELIMINARIES
	3 A Greedy Optimization Algorithm
	3.1 Structural Properties
	3.2 The Decider
	3.3 The Optimization Algorithm

	4 An Approximation Algorithm
	5 Discussion and Future Work
	References

