Fast Fréchet Distance between Curves with Long Edges

Joachim Gudmundsson
University of Sydney
Sydney, Australia
joachim.gundmundsson@sydney.edu.au

Ali Mohades
Amirkabir University of Technology
Tehran, Iran
mohades@aut.ac.ir

ABSTRACT

Computing Fréchet distance between two curves takes roughly
quadratic time. The only strongly subquadratic time algorithm has
been proposed in [7] for c-packed curves. In this paper, we show
that for curves with long edges the Fréchet distance computations
become easier. Let P and Q be two polygonal curves in R9 with n
and m vertices, respectively. We prove three main results for the
case when all edges of both curves are long compared to the Fréchet
distance between them: (1) a linear-time algorithm for deciding
the Fréchet distance between two curves, (2) an algorithm that
computes the Fréchet distance in O((n + m) log(n + m)) time, and
(3) a linear-time Vd -approximation algorithm for approximating
the Fréchet distance between two curves.

CCS CONCEPTS

» Theory of computation — Randomness, geometry and dis-
crete structures; Computational Geometry;

KEYWORDS

Computational Geometry, polygonal curve, Fréchet distance , ap-
proximation algorithm

ACM Reference Format:

Joachim Gudmundsson, Majid Mirzanezhad, Ali Mohades, and Carola Wenk.
2018. Fast Fréchet Distance between Curves with Long Edges. In IWISC
2018: 3rd International Workshop on Interactive and Spatial Computing, April
12-13, 2018, Richardson, TX, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3191801.3191811

1 INTRODUCTION

Inspired by understanding behavioral ecology of groups of migra-
tion flyways derived from seagull movement data, we study the
problem of similarity between trajectories with long edges. In a
particular application, one might be interested in detecting groups

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IWISC 2018, April 1213, 2018, Richardson, TX, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5439-4/18/04. .. $15.00
https://doi.org/10.1145/3191801.3191811

Majid Mirzanezhad
Tulane University
New Orleans, Louisiana, U.S.
mmirzane@tulane.edu

Carola Wenk
Tulane University
New Orleans, Louisiana, U.S.
cwenk@tulane.edu

North American Migration Flyways
(with Principal Routes)

Figure 1: There are four typical flyways for seagulls to fly
across the U.S. Computing the distance between different
movements data results in classifying them into the suitable
flyway [1].

of different migration patterns over a long-distance flying birds
from some part of a country to another part.

Different flyways are relatively straight, see Fig. 1, and the tra-
jectory data of individual birds usually consists of only one GPS
sample per day in order to conserve battery power. Infrequent sam-
pling and the straight flyways therefore result in curves with long
edges, and it is desirable to compare the routes of different animals.
This typical behavior of movements leads us to consider the prob-
lem of computing the distance between similar trajectories having
relatively long edges. Measuring the similarity between two polyg-
onal curves is an important problem that has applications in many
areas, e.g., in morphing [8], movement analysis [9], handwriting
recognition [11] and protein structure alignment [10]. One of the
most popular similarity measures is the Fréchet distance, which
has received considerable attention in recent years.

1.1 Background

Alt and Godau [3] were the first to describe a O(n? log n)-time al-
gorithm to compute the Fréchet distance between two polygonal
curves with total complexity n. A first lower bound of Q(nlogn)
was given by Buchin et al. [5]. Then Bringmann [4] showed that,
assuming the Strong Exponential Time Hypothesis, the Fréchet

https://doi.org/10.1145/3191801.3191811
https://doi.org/10.1145/3191801.3191811
https://doi.org/10.1145/3191801.3191811

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

distance cannot be computed in strongly subquadratic time, i.e., in
time O(n2_¢) for any ¢ > 0. For the discrete Fréchet distance Agar-
2loglogn)
logn /-
This result was later extended by Buchin et al. [6] to the contin-
uous setting where they showed that the decision version can be
solved in O(n2(loglog n)3/2/+flog n) expected time. Using this, they
computed the exact Fréchet distance in O(n?+/log n(log log n)3/2)
expected time. For some special cases, such as c-packed curves,
a (1 + ¢)-approximation can be computed in O(cn/e + cnlogn)
time [7].

wal et al. [2] achieved a subquadratic running time of O(n

1.2 Our Results

Let P and Q be two polygonal curves in R? and A > 0.In this paper
we consider the decision, optimization and approximation problems
for the Fréchet distance between P and Q, all for the case where all
edges of both curves are relatively long. In Section 3 we present
a greedy linear-time algorithm for deciding whether the Fréchet
distance is at most A, as long as all edges in P are at least 2A long
and edges in Q are at least (1+ Vd)A long. We also give an algorithm
for computing the Fréchet distance in O((n + m) log(n + m)) time.
In Section 4 we give a linear-time algorithm to approximate the
Fréchet distance up to a factor of Vd.

Our results provide a first formal treatment confirming the com-
mon intuition that for very small values of A (relatively smaller
than the shortest edge length of either curves) it should be possi-
ble to solve the Fréchet decision problem significantly faster than
quadratic time.

2 PRELIMINARIES

Let P = {p1,..
treat a curve as a continuous map P : [1,n] — R4, In this map,
P(i) = p; for an integer i, and the i-th edge is linearly parametrized
as P(i + 1) = (1 — A)pi + Api+1, for integer iand 0 < 1 < 1. A
re-parametrization o : [0,1] — [1,n] of a curve P is any contin-
uous, non-decreasing function such that ¢(0) = 1 and o(1) = n.
P[o(a), o(b)] denotes the subcurve of P in between P(c(a)) and
P(o(b)) forany 0 < a < b < 1. Now consider two polygonal curves
P = (p1,p2,--- ,pn)and Q = {q1,92,** ,qm). Let Ip denote the
length of the shortest edge in P, and g the length of the shortest
edge in Q. For two points x,y € R? and a line segment O C RY, let
|Ix, y|| denote the Euclidean distance between the points, and let
llxx, Qll = mingeg Ilx, qll denote the minimum distance from x to
any point on Q. A monotone matching between P and Q is a pair
of re-parameterizations (o, 0). The Fréchet distance between two
curves is defined as 6r(P, Q) = inf(, gy max; |[P(c(t)), Q(O())Il,
where (o, 0) is a monotone matching. Throughout the paper we
use the following notations: Let B(p, A) = {x € RY | [Ilp, x|l < A}
be the ball with radius A that is centered at a point p.

Consider an edge Q = Q[1, 2]. P is Q-monotone if for each edge
P[i, i + 1] the smallest angle described by vectors P[i, i + 1] and
Q[1, 2] does not exceed /2. We call the set of points in R9 within
distance A from Q = Q[1, 2] the cylinder C(Q, A). Let g] be the
parameter where Q(q}) is the intersection of Q with the boundary
of B(q1, A). Similarly define g5 w.rt. Q and B(gz, A). a is a parameter
where P(«) is the first point along P that meets B(gz, A). Let H; and

.,pn) be a polygonal curve with n vertices. We

Gudmundsson et al.

H| Ha

\\fﬁ

Figure 2: The blue arrows indicate orthogonal matching be-
tween P and Q.

H> be a pair of hyperplanes that are perpendicular to Q and pass
through ¢ and g7, respectively. Let x be the largest parameter such
that P(x) intersects H; and, let y be the smallest parameter such
that P(y) intersects Ho. Similarly, let a be the smallest parameter
such that P(a) exits B(q1, A) and let b be the largest parameter such
that P(b) enters B(qz, A), see Fig. 2.

3 A GREEDY OPTIMIZATION ALGORITHM

In this section, we give a linear time algorithm for deciding whether
the Fréchet distance between two polygonal curves P and Q in R4
with relatively long edges is at most A. To this end, we first prove
several structural properties for the case that each edge in P and Q
is longer than 2A and (1 + Vd)A, respectively in Section 3.1. Next,
by exploiting the decision algorithm we give an exact algorithm
computing Fréchet distance between P and Q in O((n + m) log(n +
m)) time .

3.1 Structural Properties

In this section we first define two complementary notions of Longest
Prefix and Orthogonal Matching, which are the basis of our greedy
algorithm. These notions provide us some properties that will allow
us to develop a greedy algorithm that constructs a valid reparame-
terization by repeatedly computing a maximally reachable prefix
on one of the curves which is provided in Section 3.2.

Definition 3.1 (Longest A-Prefix). Let P = P[1, n] be a polygonal
curve, Q be a line segment, and A > 0. Define y = max{t |1 <t <
n and Sp(P[1,t],Q) = A}. We call P[1, y] the longest A-prefix of P
with respect to Q.

Definition 3.2 (Orthogonal Matching). Let P = P[1, n] be a polyg-
onal curve, Q = Q[1, 2] be a line segment, A > 0. We say that P and
Q admit an orthogonal matching if and only if:

(1) 8¢ (P[1,x1, O[1,¢]]) < A (2) ¢ (P[x,y1. Olq} ¢}) < A and (3)
dr(Ply,n], Qlg;.2]) < A; see Fig. 2.

See Fig. 4, to realize the higher level idea of the definitions above
and their application which makes the free space more simpler than
general case. In fact these two notions are useful as long as both
curves have long edges compared to A. Lemma 3.4 and Lemma 3.5
will show that for any arbitrary matching in free space we can
greedily find extreme matchings by computing longest A-prefixes
using pieceswise orthogonal matching only if curves have with long
edges. We start with an important lemma that demonstrates the
necessity of the orthogonal matching between curve P and segment
Q in order to satisty dp(P, Q) < A.

Fast Fréchet Distance between Curves with Long Edges

LEMMA 3.3 (MoNoTONICITY). Let Q = Q[1,2] be a segment and
A > 0. Let P[1, n] be a polygonal curve s.t. for any edge e € P[2,n —
1], llell > 2A. Then 6p(P,Q) < A if and only if P and Q admit an
orthogonal matching.

ProoF. By Definition 3.2, if an orthogonal matching exists be-
tween P and Q then obviously dr(P,Q) < A. For the opposite
side, let 4 = (o,) be an arbitrary monotone matching realizing
Or(P,Q) < A. Let x be the last intersection point between P and
H; and, let y be the first intersection point between P and Hs.
Also let a be the first point along P that leaves B(qi, A) and b be
last points that enters B(gz, A), respectively. Note that every edge
on P[2,n — 1] is longer than 2A which means P[2,n — 1] has to
be monotone w.r.t. the line supporting Q. Otherwise cosnider a
violating edge e = P[i,i + i] for 1 < i < n — 1 that is not mono-
tone w.r.t. Q. Since ||p;, pi+1ll > 24, thus B(p;, A) N B(pi+1,A) =0
and the interval I; = B(p;, A) N Q encounters before the inter-
val Ij41 = B(pi,A) N Q along Q. This violates the monotonicity
of (0, 0). Hereby, P[2,n — 1] is monotone w.r.t. the line support-
ing Q. Clearly, 6r(P[1,a],q1) < A and Sp(P[b,n],q2) < A. Also
Sr(Pla,x],Q[1,q;]) < A and §p(P[y, b], Qlg}, 2]) < A hold by or-
thogonally projecting each point onto the subsegments of Q (see
Fig. 2). Combining the latter results yields 6 (P[1,x], Q[1,47]) < A
and 0r(P[y, n], Olgy,2]) < A. At the end, 6r(P[x,y], Q) < A since
P[x,y] can be matched to Q orthogonally and this completes the
proof. O

In fact Lemma 3.3 shows that for a curve with long edges, the
Fréchet distance to a line segment is determined by geometric
monotonicity between the curve and the segment. The lemma below
will be required in Lemma 3.5 to use the lower bound on length of

edges on Q which is (1 + Vd)A.

LEMMA 3.4 ((VdA)-BaLL). Let A > 0 and let P be a polygonal
curve in R? with long edges such that Ip > 2. Let Q = Q[1,2] be a
line segment of length greater than (1 + Vd)A. Assume that P[1,]
is the longest A-prefix of P w.r.t. Q, and « is the first point along P on
the boundary of B(qa, A). Then Pla, y] is contained in B(qz, VdA).

Proor. By assumption ||q1,q21l > (1 + \/E)A > 2A, hence
we know that B(q1,A) N B(qz,A) = 0, thus « exists. Notice that
Pla,y] € C(Q,A). As we defined Ho, it splits C(Q, A) into two
parts, the part that contains q; and the part that contains g2. By
Lemma 3.3, P[2,p] is Q-monotone, where P(p) is the last vertex
before P(y). Thus P[a, y] must lie on the g side of Hs. Therefore
the maximum possible distance between g2 and a point in P[a, y]

is VdA. o

In another crucial lemma below, we show that if 5 (P, Q) < A,
then two curves P and Q admit a piecewise orthogonal matching,
which can be obtained by computing longest A-prefixes of P w.r.t.
each segment of Q.

LEMmMA 3.5 (PIECEWISE ORTHOGONAL MATCHING EXISTS). Let
A > 0, and let P and Q be two polygonal curves in R4 with long edges
such thatlp > 2A andlg > (1+ Vd)A. IfSp(P,Q) < A, then P[1,y]
as the longest A-prefix of P w.r.t. Q[1, 2] exists, 6p (P[1, y], Q[1,2]) <
A and 6p(P[y,n], Q[2,m]) < A.

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

P(o(t2)) Plo(ty)) = P(v)

P(o(ts))

O Qe —a QOL) Qb)) =

Figure 3: The Fréchet matching has to match P(y) to some
point on Q[2,3].

Proor. Let (o, 0) be any Fréchet matching realizing 5p (P, Q) <
A. There exists some t € [0, 1] such that Q(0(t)) = q2,thusy > o(¢)
and this implies y exists. Since P[1, y] is the longest A-prefix along
P w.rt. Q[1, 2] it follows by definition that 6r(P[1,y], QO[1,2]) < A.
In the remainder of this proof we construct a matching to prove
that 5p(P[y, n], Q[2,m]) < A.

Let tj, € [0, 1] be the largest value such that P(o(ty)) = P(y).
Let t; € [0, 1] be the largest value such that Q(0(t2)) = g2. By
Lemma 3.4, P[o(t2),y] € B(qz, VdA). Now let t3 € [0,1] be the
smallest value such that Q(0(t3)) = g3. We have [|q2, g3l > (1 +
Vd)A, therefore B(q2, VdA) N B(g3,A) = 0 and thus g3 cannot be
matched to any point in P[o (), y]. Correspondingly, o(2) <y =
a(ty) < o(t3), and follows 8(t2) < 0(ty) < 0(t3).

Now we construct a new Piecewise orthogonal matching (&, §)
realizing 8 (P[y,n], Q[2,m]) < A as: 6(t) = o(t) and O(t) = O(t)
for all t, <t < 1. On the other hand, since ||P(y), gzl < A and
IP(y), Q(O()]l < A, we know that Q[2,6(t,)] € B(y,A). Hence,
5(t) = y and 6(t) = th;’ 24 4-0(t) forall t2 < t < ty (secFig.3).
Therefore, we have 5r(P[y, n], Q[2, m]) < A, which completes the
proof. O

In fact, Lemma 3.5 implies that if P and Q have long edges then
the free space and the reachable space are simpler than in the
general case, because due the horizontal and vertical line segments
of reachable space connecting to an arbitrary matching, holes are
not possible (See Fig. 4).

3.2 The Decider

Now we present a linear time algorithm using the properties pro-
vided in Section 3.1. The pseudocode of our DECIDER is presented in
Algorithm 1. The input to this DECIDER is a set of polygonal curves
P and Q, and A > 0. The algorithm assumes that P and Q have long
edges. In each iteration the function LONGESTDELTAPREFIX returns
y for subcurve P[y;, pn], as defined in Definition 3.1, w.r.t. Q[i, i+ 1],
ifit exists. If any y = null then “No” is returned. Otherwise, the next
edge of Q is processed. This continues iteratively until all edges
have been processed, or until no y exists.

From Lemma 3.3 follows that P and Q admit an orthogonal
matching if and only if two conditions holds: (1) P[y;-1,yi] €
C(Q[i — 1,i],A) and (2) P[yi-1, yi] is monotone w.r.t. directed line
supporting Q[i — 1, i]. Now Lemma 3.3 can be used to implement
the LoNGESTDELTAPREFIX procedure as follows: Determine the
first edge on P[y;—1,n] which violates the two conditions above
w.r.t. Q[i—1, i]. If the violation occurs before reaching B(g;, A), then

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

I

=]
S
o |E——
©

Figure 4: 1 is the longest A-prefix on P w.r.t. Q[1, 2] realizing
the green (bottommost) xy-monotone envelope in the free
space. (a) If 5p(P, Q) < A, then piecewise orthogonal match-
ing between subpaths (P[p1, y2], P[y2, y3], - - -) and correspond-
ing Q’s edges (Q[1,2],0Q[2,3],- - -), respectively exists. (b) As
shown in Lemma 3.5, finding y, allows us to keep track of
any arbitrary matching (brown path) by following the pink
vertical line-segment connected between y; and the brown
matching.

Algorithm 1: Decide whether §p(P,Q) < A

1 Decider(P[1,n],Q[1,m],A)

2 if [p <2Aorlp < (1+ Vd)A then return “I don’t know.”
3 s«1

4 fori <« 2tomdo

5 y < LongestDeltaPrefix(P[s,n], Qi — 1,i], A)

6 if y = null then return “No”

7 sy

8 if y < n then return “No”

9 | return “Yes”

obviously y; = null. Otherwise we intersect the first violating edge
e along P[y;_1,n] with the boundary of B(g;, A) to find y. Clearly,
the whole process takes O(n) time.

Now we prove the correctness of our decision algorithm:

THEOREM 3.6 (CORRECTNESS). Let A > 0, and let P and Q be
two polygonal curves in R? with long edges such that Ip > 2A and

Gudmundsson et al.

lo>(@+ Vd)A. Then DecIDER(P, Q, A) returns “Yes” if and only if
Sr(P,Q) < A.

Proor. Let y; be the value of y computed in the i-th iteration
of the for loop in line 6 of the algorithm. If the algorithm returns
“Yes” then the sequence {(g;, y;)} withi =1,--- ,m withy; = 1 and
Ym = n describes a monotone matching that realizes g (P, Q) < A.

If §p(P, Q) < A, then we use Lemma 3.5 to prove by induction
on i that the algorithm returns “Yes”, i.e., all longest A-prefixes
(P[1,y2], Ply2,y3l,- - - » P[ym—-1,¥Ym]) of P w.r.t. corresponding seg-
ments of Q exist. For i = 2, following Lemma 3.5, y3 exists and can be
found by the algorithm. For any i > 2, the algorithm has determined
Y2, - ,Yi—1 already and by Lemma 3.5, §p (P[yi-1, n], Q[i—1,m]) <
A. Another application of Lemma 3.5 yields that 6 (P[y;-1, yi], Q[i—
1,i]) < A and §g(P[yi, n], Q[i,m]) < A since y; essentially exists.

In the case that i = m — 1 it remains to prove that y;41 = ym = n.
Assume yp, < n. Since P[ym—1,ym] is the longest A-prefix, there
is no other point y;, € (ym,n] such that 6p(P[ym-1.y5,]. Q[m —
1,m]) < A. Consequently, 5p(P[ym-1,], Q[m — 1,m]) > A and
follows 8r (P[ym-1,n], Q[m—1,m]) > A. By applying modus tollen
rule of Lemma 3.5 on P[ym—1,n] and Q[m—1,m], p(P,Q) > A and
that would be a contradiction. Therefore y;;, = n and the algorithm
returns “Yes” as claimed. O

As a result we have the following theorem:

THEOREM 3.7 (DECIDER). Let A > 0, and let P and Q be two
polygonal curves in R¢ with long edges such that lp > 2A and lp >
(1+ Vd)A. Let n be the number of vertices in P, and m be the number
of vertices in Q. Then there exists a greedy decider, Algorithm 1, that
can determine Op (P, Q) < A in O(n + m) time.

Proor. Following Theorem 3.6, all P(y;)s over P are matched to
the g;s over Q. This means the algorithm greedily finds the next
vi+1 w.r.t. each edge of Q and A. We have m — 1 edges and the total
time for greedily finding the longest A-prefixes takes O(n), this
implies Algorithm 1 runs in O(n + m) time. m]

3.3 The Optimization Algorithm

The main idea of our algorithm is that we compute critical values
of the Fréchet distance between two curves and we show that the
number of these values is linear. We then perform binary search
on these critical values to find the optimal value acquired by the
decision algorithm. The following observation allows us to compute
critical values efficiently:

OBSERVATION 3.8 (SUPERPATH). Let A > 0 and A* > 0 be two real
numbers. In addition, let y; = LONGESTDELTAPREFIX(P[yi-1,n], Q[i—
1,i], A) and let a; be the smallest parameter where P(a;) € P[yi-1,n]
meets B(qi, A). Similarly, definey; and af wr.t. A*. If A* < A, then
ai <o <y <y

In fact, Observation 3.8 concludes that the path P[a;—1,y;] is
the longest superpath for P[a}_,,y;] when A = min(lp/2,lo/(1 +
\/3)) and A* = §p(P, Q). Now, given a segment Q[i — 1,i] and A,
our optimization algorithm simply works as follows: (1) It runs
Algorithm 1 with A = min(lp/2,lo/(1 + Vd)), and only proceeds
if DECIDER(P, Q, A) returns ’Yes’.

Fast Fréchet Distance between Curves with Long Edges

\Hl /HZ\ ¥
H* I H*o
I I
I
: I I ‘
I
A
7 T LY N
7 e A N
/ /(N \\\ Se-au o7 o \\
/1 \ ~l ; N
,/ S PN vy ,/ Q2 ;J‘}:\~‘ - \ \
N | -
| | (11.-‘:-}--1-/-----:-’- [\.--%qQQI |
\ \ /I 4 \ | 1y
\ A N AL AT N 1%
\ o _ 7N | BN _a Y2
N P2 N N I
> o LN 7
~ _ 7 | I~ .-
\,,:,,‘,,L ,,,,,,,,, —2==-"

Figure 5: §p(P,Q) = A* < A and as cylinder C(Q, A*) is un-
known we are not sure whether v lies inside B(gz, A*) or not.
We are aware of two possibilities for v’s point to point dis-
tance, that is either the orthogonal one onto Q or the dis-
tance to q;. Vertices between H; and H, must have orthogo-
nal distances.

This gives us all y; = LoNGESTDELTAPREFIX(P[y -1, 1], Q[i —
1,i],A). (2) For every v € Plaj_1,yi), if v lies between H;_1, H;
it stores the (orthogonal) distance |lv, Q[i — 1,i]|| in the set C;.
Otherwise it stores the two distances ||v, Q[i — 1, i]|| and (||v, gi—1 |
or ||, g;l) in C;. In the end we compute C := U2, C;. The call to
Algorithm 1 ensures that P and Q satisfy the constraint Ip > 2A
and lg > (1+ Vd)A. Consequently, Ip > 2Ax and lp > (1 + Vd)Ax
for any critical value Ax < A. Notice that since all y; exist, we
know that y; = LOoNGESTDELTAPREFIX(P[y}_,n], Q[i — 1,i], A*)
exist as well forall i = 1, - - - , m. Nevertheless we do not know yi"‘
foralli=1,---,mbeforehand. But according to Observation 3.8,
we know that whatever value A* would be, the widest range we
need to look for critical values between P[y; ;,y;] and Q[i - 1,1]
is Plai-1,vi]-

An orthogonal matching (Definition 3.2) matches points in such
a way that there are two types of point to point distances: Some
of these distances are obtained by a simple projection of points
from P to Q, and some match points from P to the endpoints of
Qli — 1,i]. These two types of distances are sufficient to acquire
all possibilities for A* since the matching changes when C(Q, A)
shrinks to C(Q, A*). (See Fig. 5 for more illustration). Note that
there is no need for the values greater than A since A* < A. Once
we have computed C we perform binary search to find the optimal
value.

For each edge of Q we find these distances between P[a;_1, yi]
and Q[i — 1, i] until we meet qp,. Once we have all m many sets of
critical values, sorting them allows us to perform a binary search
on them to find the optimal value A* in which DECIDER(P, Q, A*)
returns "Yes’ but 'No’ for the values below A*. We can summarize
this section with the following theorem:

THEOREM 3.9 (OPTIMIZATION). Let P and Q be two polygonal
curves in R with n and m vertices, respectively.
If 6p(P, Q) < min{lp/(2),1o/(1 + Vd)}, then 5p(P, Q) can be com-
puted in O((n + m) log(n + m)) time.

Proor. Let P[yi-1,yi] have n; vertices and assume we know
2, ni = O(n+ m). When processing Q[i, i + 1], P[a;, y;] is being

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

revisited again. Hence, |C;| < 2n; (see Fig. 5). By assumption above,
Ci+1 < 2n; + nj4q, therefore C = UT,C; < 377, (4n; + njyq) <
5(n + m) = O(n + m). Sorting C and performing binary search on
it takes O((n + m) log(n + m)) time. O

4 AN APPROXIMATION ALGORITHM

In this section, we present an algorithm approximating the Fréchet
distance between two curves with long edges, respectively. We
present Vd -approximation algorithm running in linear time. Similar
to Section 3, we introduce a variant notion of Definition 3.1 called
minimum prefix:

Definition 4.1 (Minimum Prefix). Let P be a polygonal curve and
Q be a segment. Define y” = max({ t | argmin, ., ., 6r(P[1,¢],0)}.
We call P[1,y’] the minimum prefix of P with respect to Q.

The approximation algorithm is presented in Algorithm 2.
First, for an initial threshold A less than but sufficiently close to
min{lp/(2Vd), lg/(2d)}, it runs DECIDER (P, O, Ag). It only contin-
ues if “Yes” gets returned. This ensures that P and Q have long edges,
with Ip > 2VdA > 2A and lo >2dAN > (1+ Vd)A. Then, similar
to the decision algorithm, the approximation algorithm greedily
searches for longest A-prefixes for each segment of Q. However, it
updates the current value of A in each step, by computing the min-
imum prefix and its associated Fréchet distance to the portion of Q
considered so far. For a line segment Q, the function MINIMUMPRE-
FIX(P[1, n], Q) returns (y, A) such that P[1, y] is the minimum prefix
of P[1, n] with respect to Q, and A = ép(P[1,y], Q).

Algorithm 2: Compute §p (P, Q)

1 ApproximationAlgorithm(P[1,n], Q[1, m])

2 | Ao « min(lp/2Vd, lp/2d)

3 if Decider (P, Q,A¢)= “No” then return ‘I don’t know.”
4 (y2, A2) < MinimumPrefix(P[1,n], Q[1,2])

5 A — Ay

6 sy

7 fori « 3tomdo

8 (yi,Ai) <« MinimumPrefix(P[s,n], Qi — 1,i])
9 A «— max(A, A;)

10 s yi

11 if y;m = n then

12 ‘ return A

13 else

14 A — max(A, S (Plym,nl, qm)

15 L return A

When A is increased, the longest A-prefix can only get longer,
as summarized below.

OBSERVATION 4.2. Let P = P[1,n] and Q = Q[1, m] be two polyg-
onal curves and let A > 0.
Foranyx,y € P, lety = LONGESTDELTAPREFIX(P[x, n], Q[i—1,i], A))
andy’ = LONGESTDELTAPREFIX(P[y, n], Q[i—1,i], A”). Then A < A’

ifand only ify <y’.

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

Now we are ready to prove the correctness of Algorithm 2:

LEMMA 4.3 (THE APPROXIMATION). Let P = P[1,n] and Q =
Q[1,m] be two polygonal curves and let A* = Sp(P,Q). If A* <
min{lp/(2Vd), lo/(2d)} then APPROXIMATIONALGORITHM(P, Q) re-
turns VAA*. Otherwise it returns “I don’t know.”

ProoF. From the algorithm: A; = §g(P[yi-1,yi], Qli—1, i]). Now
suppose 8¢ (P, Q) = A*. We prove by induction on i that A; < VAA*.
For i = 2, Ay is being minimized and obviously Ay < A* < VdA*.
For any i > 2, there are two possible cases: If A; < A*, then
trivially A; < VdA*. In the remainder of the proof we consider
the case that A; > A*. We know from the proof of Theorem 3.6
that all y; = LoNGESTDELTAPREFIX(P[y]_;,n], O[i — 1,i], A*) for
alli =1,2,:--mexist. And by inductive hypothesis we know that
max(Ag, -+ ,Aj_1) < \/EA*‘

In order to show that A; < \/EA*, consider an optimal match-
ing (o, 0) realizing A*. For the sake of contradiction we assume
A; > VdA*. By Observation 4.2, it follows from A* < A; that
¥/ < yi. We now distinguish two subcases. (2a) I y;—1 < y_,,
then by Lemma 3.4 we have 6r(P[yi-1,y;,].qi-1) < VdA*. Also
Sp(Ply;_1-v{1,Qli=1,i]) < A", hence 6p(P[yi-1,y;1.Qli-1,i]) <
VdA* and (A;, Yi) = (VdA*, y;) would be returned by MINIMUMPRE-
F1x, which contradicts A; > VdA* (see Fig. 6.a). (2b) Now for the
case that y/ | < yi—1, consider the same matching as above realiz-
ing 8p(P, Q) = A*. There exists a t € [0, 1] such that y;_; = o(¢).
Clearly Q(6(t)) € Q[i — 1, i] because B(qi-1,Ai-1) N B(qi, A*) =0
since ||gi—1,qill > 2d and A;—; < VdA*. This implies y;—1 < y;‘.
Hence, yj_; < yi-1 < y; and correspondingly g;—1 < Q(0(t)) < g;.
By induction we know A;—1 = ||qi-1,P(yi-1)ll < VdA*, thus
Qli —1,6(t)] € B(P(yi-1), VdA*) which implies S (P(yi-1), Qi —
1,0(1)]) < VdA*.

Combining the latter inequality with 6 (P[yi-1,y;], Q[0(t),i]) <
A* from the optimal matching, implies that (A;, y;) = (VAA*, i)
must be returned by MINIMUMPREFIX, which is again a contradic-
tion. At the end, if y,, < n = y;;,, then Lemma 3.4 again implies

8F(P[ym»n), qm) < VAA* as claimed (see Fig. 6.b). |

The MiNIMUMPREFIX Procedure: We implement MINIMUMPRE-
FIX(P[1, n], Q) for a line segment Q = Q[1, 2] as follows: For every
i € {1,...,n — 1} let ¢; be the distance associated with a min-
imum prefix ending on the segment P[i,i + 1]. Formally, ¢; =
min; e ;1] 6 (P[1, t], Q). Algorithm 3 computes all the ¢; in a
dynamic programming fashion. The minimum of the ¢; is the de-
sired A, and the LONGESTDELTAPREFIX computes the corresponding
y- The following lemma shows the correctness of Algorithm 3:

LEMMA 4.4 (CORRECTNESS). Let Q = Q[1,2] be a line segment
and let P = P[1,n’] be a Q-monotone curve.

Ifor(P,Q) < min{lp/(2Vd), lo/(2d)}, then the distance returned
by MiNntMUMPREFIX(P, Q) is minj < < Op (P[1,], Q).

PRrROOF. According to the algorithm,
- N
¢ = max{||p1,q1||,r]ilglx lIpj+1 Qll IIP[i, i + 1], g1}

Since Q is a segment and P is Q-monotone, the following follows
for any i < t < i+ 1 using simple projections of points from P onto

Gudmundsson et al.

P(vi)

Figure 6: Illustration of the proof of Lemma 4.3 for the case
Ai > A*. (a) Yi-1 < Y;—l (b) Yi-1 >)/;ﬁ_l.

Algorithm 3: Compute MINIMUMPREFIX(P[1, n], Q[1, 2])

1 MiNntMUuMPREFIX(P[1, n], Q[1, 2])

2 ¢ < llp1, qll
5 | A’ < min{lp/2,1p/(2Vd)}
4 y’ < LoNGesTDELTAPREFIX(P[1,1],Q, A’)

5 fori < 1to|y’]| do
6 ci « max{c, ||P[i,i + 1], g2/}
¢ « max{c, ||pi+1, Qll}

8 A= miniLZ;J ci
9 | return (A, LONGESTDELTAPREFIX(P[1,n], Q, A))
Q:

i—1
O (P[1,11,Q) = max{lps, gall ax llpj+1, Qll IP(), @211}

By taking the minimum on both sides: min; <;<;j+1 6 (P[1,£],Q) =
max{||p1, g1, man—j lpj+1, Qll, min; <z <ij+1 IP(2), g2} = c.

It suffices to run the for-loop untiln” = | y’], since by assumption
we only compute the minimum A-prefix P[1, y] if its distance is
at most A’, and from Observation 4.2 follows y < y’. Therefore,

Ly] 1 ¢ =ming<; < SF(P[1, 1], Q). m|

A=min;’ "¢; = min;’;
THEOREM 4.5 (RUNTIME). Let P and Q be two polygonal curves in
RY with n and m vertices, respectively.
Ifép(P,Q) < min{lp/(2Vd), lo/(2d)}, then Algorithm 2 approxi-
mates the Fréchet distance between P and Q in O(n + m) time within
an approximation factor of\/a.

Proor. Let A* = §p(P, Q). The algorithm only proceeds past
line 3 if A* < Ag = min{lp/(2Vd), lo/(2d)}.

Fast Fréchet Distance between Curves with Long Edges

Now, as A’ = VdAo, yl’ = 1,and for all j = 2,---,m, let
yj’ = LONGESTDELTAPREFIX(P[}/]L], n)], Q[j—1,j], A’). Note that by
definition of A”, both curves have long edges, i.e., [p > 2A” and Iy >

(1+Vd)A’. For each segment Q[i—1, {] with i > 1, the MINIMUMPRE-
F1x procedure first computes y/ (see line 4 in Algorithm 3), and
finally returns y; as the endpoint of the MINIMUMPREFIX subcurve
w.r.t. Q[i — 1, i]. From the proof of Lemma 4.3 we know that A; <
VdA* < VdAg = A’ for all i. Thus, Observation 4.2 implies that
¥i < y{. Also note that y; > y;—1 since P(yi—1) € B(qi-1,A;-1) and
P(yi) € B(qi,A;), and moreover B(qi—1,Ai—1) N B(qi,A;) = 0 be-
cause ||qi, gi_1ll > 2dAg > 2dA* > 2(VdA*) > 2(max(A;, Aj_1)).
Hence yj—1 <y;i <y{.

The for-loop in Algorithm 3 has n; iterations, where n; is the
number of integers in the interval [y;—1,y;], and 3, n; = n. For
the segment Q[i, i + 1], MINIMUMPREFIX starts with y; to find y;41
where yi41 < y/, ;. Overall, MINIMUMPREFIX processes the portion
[yi,» v{] twice, and computing the minimum of the c; takes linear
time, thus MINIMUMPREFIX takes at most O(n;) time. Therefore,
Algorithm 2 takes O(n + m) time.)

5 DISCUSSION AND FUTURE WORK

In this paper we provided a linear time decision algorithm, an
O((n + m)log(n + m)) time optimization algorithm, and a linear
time Vd-approximation algorithm between curves that have long
edges. Our algorithms are simple greedy algorithms that run in any
constant dimension. One interesting problem would be to develop
a trade-off between the length of edges and the runtime, and in
general prove hardness in terms of the edge lengths.

Acknowledgements: The authors would like to acknowledge the
generous support of the Australian Research Council’s Discovery
Projects funding scheme (DP150101134) and the National Science
Foundation under grant CCF-1637576. We particularly, thank an
anonymous reviewer for insightful comments that helped us to
improve the algorithm in Section 3.

REFERENCES

[1] 2016. North America Migration Flyways. (sep 2016). https://www.nps.gov/pais/
learn/nature/birds.htm

[2] P.K. Agarwal, R.B. Avraham, H. Kaplan, and M. Sharir. 2014. Computing the
Discrete Fréchet Distance in Subquadratic Time. SIAM J. Comput. 43 (2014),
429-449.

[3] H. Alt and M. Godau. 1995. Computing the Fréchet Distance between two Polyg-
onal Curves. International Journal of Computational Geometry and Applications
5,1-2 (1995), 75-91.

[4] K.Bringmann. 2014. Why Walking the Dog Takes Time: Fréchet Distance Has
no Strongly Subquadtatic Algorithms unless SETH Fails. In Proceedings of the
55th IEEE Symposium on Foundations of Computer Science (FOCS). 226-236.

[5] K.Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. 2007. How difficult Is
It to Walk you Dog?. In 32nd European Workshop on Computational Geometry.
170-173.

[6] K.Buchin, M. Buchin, W. Meulemans, and W. Mulzer. 2014. Four Soviets Walk
the Dog - with an Application to Alt’s Conjecture. In Proceeding of the 25th
ACM-SIAM Symposium on Discrete Algorithms. 1399-1413.

[7] A.Driemel, S. Har-Peled, and C. Wenk. 2012. Approximating the Fréchet Distance
for Realistic Curves in Near Linear Time. Discrete & Computational Geometry 48
(2012), 94-127.

[8] A.Efrat, LJ. Guibas, S. Har-Peled,].S.B Mitchell, and T.M. Murali. 2002. New Sim-
ilarity Meaures between Polylines with Applicatons yo Morphing and Polygon
Sweeping. Discrete & Computational Geometry 28, 4 (2002), 535-569.

[9] J. Gudmundsson, P. Laube, and T. Wolle. 2007. Movement Pattern in Spatio
Temporal Data (1st ed.). Springer-Verlag.

[10] M. Jiang, Y. Xu, and B. Zhu. 2008. Protein Structure-Structure Alignment with
Discrete Fréchet Distance. Journal of Bioinformatics and Computational Biology

IWISC 2018, April 12-13, 2018, Richardson, TX, USA

6,1 (2008), 51— 64.

[11] R. Sriraghavendra, K. Karthik, and C. Bhattacharyya. 2007. Fréchet Distance
based Approach for Searching Online Handwrittien Documents. In In Proceeding
of 9th International Conference on Document Analysis and Recognition. 461-465.

https://www.nps.gov/pais/learn/nature/birds.htm
https://www.nps.gov/pais/learn/nature/birds.htm

	Abstract
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 PRELIMINARIES
	3 A Greedy Optimization Algorithm
	3.1 Structural Properties
	3.2 The Decider
	3.3 The Optimization Algorithm

	4 An Approximation Algorithm
	5 Discussion and Future Work
	References

