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Abstract

Gene expression varies across cells in a population or a tissue.
This heterogeneity has come into sharp focus in recent years
through developments in new imaging and sequencing tech-
nologies. However, our ability to measure variation has
outpaced our ability to interpret it. Much of the variability may
arise from random effects occurring in the processes of gene
expression (transcription, RNA processing and decay, trans-
lation). The molecular basis of these effects is largely unknown.
Likewise, a functional role of this variability in growth, differen-
tiation and disease has only been elucidated in a few cases. In
this review, we highlight recent experimental and theoretical
advances for measuring and analyzing stochastic variation.
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Introduction

Gene expression is the link that connects environmental
stimuli to the phenotypic responses of an organism. Early
experiments aimed at identifying the key cellular factors
and genetic elements that regulated expression were
m vitro and population based. Recent advances in
sequencing and fluorescence microscopy now allow sci-
entists to probe gene expression at the basic unit of in-
formation flow — the single cell. From a systems biology
viewpoint, the methods of single-cell imaging and single-
cell RNA sequencing (scRNA-seq) hold tremendous
promise for providing an essential link between stimulus

and response with the ability to directly visualize and
quantify the production of RNA transcripts.

However, gene expression at the single-cell level is
heterogeneous and stochastic — it varies across cells in a
population and within a given cell over time. This
phenomenon adds a perplexing challenge not only in
being able to predict the expression behavior of a gene
given known environmental inputs, but also the
converse: to infer the state of the environment from a
given gene’s behavior. The field of single-cell gene
expression is not a straightforward survey of how infor-
mation gets transmitted from environment to gene
product but rather grapples with a fundamentally phil-
osophical question that often goes unappreciated: how
do we get from randomness to order? At this point in
time, the field appears directed towards the following
questions: How does an organism coordinate a response
within its body when the expression behavior of its in-
dividual cells is so stochastic’ How much of gene
expression heterogeneity is stable and represents a true
biological subpopulation with different phenotypic
properties? How does nuclear architecture contribute to
gene regulation and variability? How do we generate a
quantitative understanding of transcription and gene
networks with computational modeling? In this review,
we highlight recent literature which is at the forefront of
addressing these questions.

Current developments in single-cell

imaging and sequencing

The first methods to probe single-cell gene expression
at the mRNA level were based on imaging, by labeling
RNA transcripts in fixed cells via single molecule RNA
FISH [1] (smFISH) and in living cells using the MS2-
PP7 system [2—4]. Within a decade, imaging was
followed by RNA sequencing (scRNA-seq), which
allowed for in-depth gene expression profiling of indi-
vidual cells [5,6]. For the sake of brevity we refer readers
to recent reviews [7,8] for an up-to-date history of the
methodologies. In this section (Figure 1) we outline the
current advantages and limitations of live-cell imaging,
smFISH, and scRNA-seq, and the recent work done to
extend the capabilities of each technique.

Live-cell imaging with the MS2-PP7 stem loop system
remains the most direct method for truly capturing the
history of a gene’s expression behavior, as it follows
transcription activity of a living cell in real time. One
primary limitation of the system is that it is low-
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Single cell gene expression analysis methods. An evaluation of the current features and limitations of single cell gene expression methods, with recent

advances noted.

throughput: of the three techniques, it is the most
laborious and takes months to design and integrate
constructs into the desired model system [9]. This
time-intensive aspect has hindered the ability to make
an extensive survey and classification of real-time tran-
scription across genes. The method is inherently limited
by having only two orthogonal stem loop sequences
(PP7 and MS2), which allows for at most two elements
to be labeled within a single cell. However recent
studies have used dual color labeling to their advantage
to explore different phenomenon, such as splicing ki-
netics [10,11], sense and antisense transcription from a
single promoter on a yeast gene [12], two genes regu-
lated by a common enhancer [13], and translation of
individual RNAs [14].

Due to the difficulty of genetic manipulation in higher
order eukaryotes, most studies on transcription kinetics
are conducted with exogenous genes. However, homol-
ogous recombination has been successfully used to
integrate stem loops into the endogenous loci of bacteria
and yeast, and was recently used to integrate MS2 loops
in mouse embryonic stem cells [15], and to visualize
endogenous transcription dynamics of the pluripotency
factors Nanog and Oct4 [16]. Within the next few years
we expect advances in CRISPR/Cas9 gene editing to
greatly aid in making endogenous integrations possible.

The second imaging-based technique, smFISH, has
advantages to complement the limitations of live-cell
imaging. The fluorescent oligo probes can be designed
and commercially synthesized for virtually any endoge-
nous gene. And because the sample is fixed, high

throughput imaging can be used to routinely collect data
on tens of thousands of cells for a given time point.
Initially, smFISH was limited by the number of spec-
trally separable colors that could be used within a single
cell. Earlier methods were able to visualize 10—30 RNA
within a single cell through spectral separation [17],
sequential labeling [18] or combinatorial labeling [19].
A recent technique (MERFISH) that uses sequential
labeling increased the number of mRNA to 100—1000
[20], and a high-throughput version has also been
recently published [21]. Progress has also been made in
detecting small variations in nucleic acid sequence
[22,23]. Although smFISH is only a single time point
measurement, advances in labeling and imaging are
making the method increasingly high-throughpurt,
allowing a significant number of genes and cells to be
analyzed in a single experiment.

The main advantage of the final technique, scRNA-seq,
is its breadth and depth: it produces extensive gene
expression profiles that quantify the variation in abun-
dance and sequence of all the transcripts in a cell.
scRNA-seq has historically dealt with problems of bias in
the type and quantity of transcripts it identifies, and
several recent protocols (CEL-Seq [24], MARS-Seq
[25], Cyto-Seq [26], and Drop-Seq [27]), have sought
to overcome these issues. Solutions include i vitro
transcription, which uses linear instead of exponential
amplification, the use of barcodes to relate each tran-
script sequence to a unique molecular identifier, and
spike-in RNA to normalize the output signal to the
relative transcript abundance in each cell, to reduce
technical variation. The advantage is that one can
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quantify the transcriptome in depth, and quantify
the variation or heterogeneity of all the expressed genes
of a given cell. The primary limitation of traditional
scRNA-seq is that it does not inherently contain spatial
information, nor does it allow one to follow the tran-
scriptome over time in a single cell. Recently, the pro-
tocol ‘FISSEQ’ [28] combined spatial information of
transcripts from smFISH with sequencing of the indi-
vidual transcriptomes of those cells. Sequencing
methods that incorporate spatial information of the
transcript, or imaging methods that incorporate
sequencing, will be essential contributions to ultimately
achieving a “4D” transcriptome atlas of gene regulation.

Heterogeneity across cells

Variation can be due to genetic or non-genetic causes. [t
can be fixed or time-dependent, programmed or random.
A significant component of non-genetic heterogeneity is
due to the discontinuous nature of transcription. Genes
are transcribed in “bursts” and this phenomenon has
recently been observed in mouse liver tissue with
smFISH [29], Drosophila with live-cell imaging [30],
mouse embryonic stem cells with scRNA-seq [31],
zebrafish embryos with smFISH [32], and human brain
tumors [33] and melanoma [34] with single-cell gPCR.

The prevailing view of considering heterogeneity as
‘extrinsic’ or ‘intrinsic’, was first developed from
experimental data using two-color reporter assays in
bacteria [35], and later in yeast [36]. Extrinsic factors
are those that influence many genes, for example the
concentration of RNA polymerase in a cell. Intrinsic
noise arises from stochastic fluctuations inherent in
biochemical reactions between molecules at low copy
number. This dichotomy of heterogeneity continues to
be examined. Recently, Fu and Pachter [37] revisited
previous data from Elowitz and colleagues [35] and
highlighted the importance of experimentally deter-
mining whether the two fluorescent reporters have the
same distribution of mean and variance in fluorescence
intensity, and to normalize them if not, as this is a major
assumption of the model. Also recently, Sherman and
colleagues [38] proposed that extrinsic and intrinsic
variability are not exclusively orthogonal to each other.
The authors examined extrinsic variability with the
yeast heat shock protein SSA1, and with modeling
showed how intrinsic variability can be dependent on
external factors. The terms ‘extrinsic’ and ‘intrinsic’ are
subjectively defined. Considering that upstream
extrinsic factors may also have a timescale of fluctuation
(for example due to bursting), one person’s extrinsic
noise could be another person’s intrinsic noise.

How stable is heterogeneity, and what are its
functional consequences?

Whether the ‘noisiness’ of gene expression has a func-
tional purpose or evolutionary advantage is still an open

question. Examinations of ‘bet-hedging’ have largely
been confined to bacteria (for a recent review see Ref.
[39]), but could such transient heterogeneity confer any
advantages in eukaryotes? A recent paper by Shaffer and
colleagues [40] provides a compelling single-cell view-
point of how transient switching of phenotype profiles of
patient-derived melanoma cells leads to stable popula-
tions resistant to the drug vemurafenib. Using a variation
on the classic Luria-Delbruck experiment [41], they
observed that before application of the drug, cells tran-
sition between ‘non-resistant’ and ‘pre-resistant states’,
as observed by their transient expression of resistance
markers. The pre-resistant state was not heritable, and it
was only with addition of vemurafenib that cellular
reprogramming and a stable resistance phenotype
emerged. This intriguing example of transient hetero-
geneity in mammalian cells may be seen as a manifesta-
tion of “dynamical instability” [42], a model from the
field of network theory based on Boolean logic to explain
the mechanisms underlying gene expression variability
observed in some cancer types. Supporting evidence for
the dynamical instability hypothesis has been observed at
the population level in anti-profile’ studies, which shows
that many cancer subtypes exhibit a high degree of gene
expression variability across individuals [43,44]. Hyper-
variability of gene expression is a reproducible signature
of cancer tissue types. It would be interesting to deter-
mine whether at the single cell level, transient gene
expression heterogeneity is an illustration of dynamical
instability of gene networks, and whether this is related
to hypervariability in cancer or observed more generally.

Another open question about heterogeneity is whether
stochastic transcription ultimately gets transmitted
through the nucleus. A few recent studies propose that
stochastic expression is in fact buffered, and limits the
variation in cytoplasmic mRINA that is ultimately available
for translation. One study attributes this buffering to
microRNAs [45], and two other studies provide examples
of buffering by the nuclear pore complex [46,47]. Halpern
and colleagues used whole genome RNA-seq and smFISH
in various mouse cell types and found that mRNA was
retained in the nuclear pore. The authors found a differ-
ence in retention times: immediate early genes tended to
have the shortest retention time, and protein coding
genes the longest. Their interpretation was that mature
processed RNA was retained in the nuclear pore and that
fast induction time was due to their release from the pore,
not the mRNA synthesis rate itself. The transient nature
of heterogeneity and its potential buffering are interesting
observations, and it remains to be seen whether they are
observed more generally in higher eukaryotes.

Nuclear architecture and the role of cis
elements in gene regulation

Our understanding of nuclear architecture and the role
of enhancers has increased profoundly over the past few
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years. We refer readers to recent reviews on promoter—
enhancer interaction [48] and the role of nuclear ar-
chitecture on gene expression [49], and here focus on
new research examining the role of nuclear topology in
gene regulation. Hi-C, a population based assay to
determine long range chromosome interactions, led to
the identification of topologically associated domains
(TADs) [50,51] and associations with the proteins
CTCF and cohesin to act as insulators of chromosome
‘neighborhoods’, where enhancers interact with the
promoters of genes within a neighborhood. Within
TADs, transcriptionally active genes are shown to share
spatial co-regulation [52,53], and disruption of these
topological boundaries have consequences for disease.
For example, recent studies looking at the role of nuclear
topology and cancer show that gene duplication (a
common feature of cancer) is mis-regulated if it occurs
at the boundary of a neighborhood rather than within it.
A model of ‘enhancer hijacking’ has been proposed [54],
which occurs when a boundary is disrupted and an
enhancer is able to interact with the promoters of on-
cogenes and promote their expression. Manipulation of
TAD boundaries with CRISPR was recently shown to
cause oncogene activation of gliomas [55] and leukemia
[56].

Recently, Bartman and colleagues [57] manipulated
enhancer-promoter contacts at the locus control region
in mouse erythrocytes and human primary erythroid
cells. Their observations used smFISH to evaluate how
transcription burst features of the beta- and gamma-
globin genes were affected when they minimized con-
tacts (via deletion) or increased contacts with forced
looping. They saw that enhancer contacts increase burst
frequency, supporting the idea that enhancers increase
the probability of transcription, similar to what was
shown for reporter genes [58]. Importantly, they also
found that active transcription of one allele lowered the
probability of activity of the other allele, giving evidence
to support a model of promoter—enhancer interaction
where the enhancer alternates between contacts of the
promoters it regulates. Enhancer manipulation has also
been carried out with live-cell imaging in Drosophila
[13]. In this study, enhancers and insulators were placed
between two reporter genes in developing embryos,
resulting in modulations of burst frequency. Here, the
authors concluded that one enhancer could activate two
genes at once, in contrast to the model from the globin
locus. More generally, disruption of boundary elements
or mutation of CTCF results in increases in gene
expression noise [59]. Thus, the interaction between
enhancer and promoter as reflected in chromosome to-
pology is a prime determinant of metazoan expression
heterogeneity.  Single-cell imaging coupled with
manipulation of ¢s nuclear architecture will continue to
provide rich insight into the physical factors governing
gene regulation.

Modeling the transcription process and
gene networks

Finally, one of the goals of studying single-cell gene
expression is to reconcile the complexity of biology with
the desire to find universal principles that govern living
behavior. In pursuit of that understanding, researchers
have drawn upon methodology from information theory
[60,61]— the study of how information is received,
processed, and transmitted within a system. In gene
regulation, it is increasingly clear that the gene receives
information not just in #7ans (i.e. chemical modifications,
binding of activating and inhibitory transcription fac-
tors) but in ¢s as well, as noted in the previous section.
Thus, the question we now ask from a theoretical
standpoint is, how can a cell decode the complex
collection of incoming signals to produce an effective
response? The earliest “Telegraph’ model for describing
how information is processed through gene expression
dynamics [62] was based on a single active and inactive
state. The model proved to fit expression data in some
instances [36,63,64], but there are increasing examples
which illustrate that two states are insufficient to
represent the data [65—68]. Recently, Rieckh and col-
leagues [69] identified instances in which a multi-state
promoter model performs better than a simple two-state
model; however, they advocate the two-state model as
the simplest theoretical baseline to start from, as it is
possible to overfit the data with too many states. Many
cis and trans factors have the potential to affect promoter
states on different timescales (Figure 2), and theoretical
models coupled with experimental data will continue to
help elucidate these key factors.

Information theory has also recently been used in
studies that manipulate #z7ans factors of gene regulation.
Hansen and O’Shea [70] controlled the frequency and
duration of the yeast transcription factor Msn’s nuclear
localization. The authors observed the effect of modu-
lating Msn2 nuclear localization on the burst frequency
and amplitude of two target genes and determined that
transcriptional bursts from natural Msn2 target pro-
moters encode 1.0—1.3 bits of information about the
signal identity and intensity. Another group recently
used opto-genetic stimulation to manipulate Ras in
NIH3T3 cells and determined its effect on the tran-
scriptome profile of immediate early genes [71]. Along
with manipulating «s elements in the nucleus, as
described in the previous section, experimental systems
that allow researchers to directly control and manipulate
the localization of 77ans elements, such as transcription
factors, will be important for achieving a systems biology
viewpoint of precisely how information is transmitted to
a gene.

A new development in scRNA-seq methodology is the
use of principal component analysis (PCA) for stem cell
lineage tracing. Several groups [72—74] use scRNA-seq
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expression data from a population of stem cells that have
been induced to differentiate, and use PCA for ‘pseudo-
temporal ordering’- a timeline of gene expression
changes gathered from the single-timepoint gene
expression profiles of many cells. In sequencing, an
assumption of pseudo-temporal ordering is that every
cell represents a time-point along the same continuum
of differentiation. We can see a similar assumption in
imaging, where it is assumed that the observed distri-
bution of bursting comes from the same underlying ki-
netics present in every cell. Both methods assume that
modeling will obtain parameters that are reflective of a
‘mean’ process. But what if it is not? LLlamosi and col-
leagues [75] propose that the idea of fitting parameters
to a ‘mean cell’ is faulty, and instead suggest that the
goal should be to arrive at a distribution of models. This
study highlights a major assumption of all three single-
cell methods that is gene expression is ergodic—
observing a single cell over many timepoints yields the
same information as measuring the population of cells at
a single timepoint. Recent work has shown the fallacies
of the ergodic assumption for dynamical models in
which time averages are commonly replaced by popu-
lation averages [76]. As a result, we believe the
assumption of ergodicity in gene expression should be
studied carefully.

Another aspect of gene expression to which mathe-
matical modeling has begun to contribute is the

clucidation of gene networks from single-cell expression
data. Datasets that obtain measurements of gene
expression profiles from single cells are becoming
increasingly prevalent, and there is potentially much
information to be gained from pairwise correlations of
genes. But what can co-expression tell us about con-
nectivity? Simply looking for correlation in mRINA as a
sign of connectivity proves challenging at the single-cell
level because transcription is stochastic and dynamic—
timescales of the birth and decay rates of mRNA affects
how much will be present at any given point in time
(Figure 3). This difficulty has been seen in single-cell
imaging and scRNA-seq, where a clear functional
response at the population level yields poor or no cor-
relation when examining the RNA of pairs of involved
genes within single cells [77,78]. These observations
necessitate the following questions for the field: Under
what conditions can we expect to see correlations in
expression between two interacting genes? And when is
co-expression more reflective of a direct interaction
rather than an indirect one?

These questions have previously been examined using
principles from information theory. Ku and colleagues
[79] used microarray datasets to determine whether co-
expression of gene pairs was indicative of transcriptional
regulatory interactions (TRIs, when Gene A codes for a
transcription factor that regulates Gene B) or co-
regulation (when two genes A and B are regulated by a
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Figure 3
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common upstream factor). They found that co-expression
was indicative of co-regulation in Escherichia coli, but more
indicative of TRIs in §. cerevisiae. Additional such studies
would be useful to the field of single-cell gene expression,
as they provide a framework for us to ask what co-
expression indicates in higher eukaryotes, and whether
these conclusions are observable in single cells. Will
population-based network models need to be modified to
describe the observed stochastic nature of expression at
the single-cell level? Do gene networks change with
transient heterogeneity, or when ¢zs nuclear architecture is
altered? Development of single cell assays and their ap-
plications have outpaced theoretical work to examine the
data for its underlying principles. We see a need for more
studies to be done in this area in the future.

Conclusions and future outlook

The field of single-cell gene expression has the potential
to generate a comprehensive and quantitative view of
gene regulation. Developments in gene editing, ad-
vances in high-throughput/multiplexed assays for single
cells, and increased understanding of nuclear architec-
ture are making significant contributions towards our
ability to manipulate and understand the dynamic as-
pects of gene regulation. In this review, we have high-
lighted recent literature that advances the capabilities
of three frequently-used techniques: scRNA-seq,
smFISH, and live-cell imaging. Heterogeneity is still a

phenomenon to grapple with — both experimentally and
theoretically — but as it continues to be identified in
more systems, observations of its dynamic properties are
leading to hypotheses about its functionality and con-
sequences. Models of heterogeneity continue to be
revisited, and studies that manipulate nuclear archi-
tecture reveal the magnitude of its role in regulating
gene expression. Population-based assays hold great
utility for elucidating gene networks, and we hope
single-cell data will begin to provide useful insight in
this area as well. Current work and future developments
in the field will contribute to a more thorough temporal
and spatial understanding of gene regulation at the
single-cell level, and ultimately to our ability to relate an
environmental stimulus to the response of an organism.
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