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Abstract—Rapid advances in material science and mobile
technology bring the new generation of wearable
electrocardiogram (ECG) sensing systems. In particular, sensing
textiles have been widely used in cardiac monitoring due to its
high flexibility and reusability. Unlike conventional gel
electrodes, sensing textiles are non-adhesive, which provide
comfortable and stress-free experience. However, the quality of
textile-based ECG sensing is more sensitive to external factors
(such as sensor placement and contact pressure). There is an
urgent need to investigate how the quality of ECG sensing is
influenced by these factors and improve the design of wearable
textiles. In the literature, little has been reported on the
sensitivity analysis of textile-based ECG sensing. In this study,
we experimentally investigate the sensitivity of textile-based
ECG sensing to four factors, i.e., contact pressure, textile
placement, user’s activity, and muscle activity. Specifically, ECG
signals are collected using sensing textiles under these four
factors. Then, heart rate and ECG morphology are
characterized from the obtained ECG signals and compared
with true signals (obtained from standard gel electrodes).
Experimental results show that the quality of textile-based ECG
sensing is not sensitive to the contact pressure as long as it is
=6N. When the patient is walking, nevertheless, the sensing
quality can be strongly influenced by the textile placement.
Furthermore, textiles placed on areas with fewer muscles
achieve better signal quality. This study shows strong potentials
of textile materials for the design of wearable ECG systems to
empower smart and connected cardiac health.
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I. INTRODUCTION

Recent advances in sensing and communication prompt the
rapid growth of the Internet of Things (IoT). In the past few
years, [oT technology has been increasingly adopted in various
areas, including manufacturing, healthcare, transportation, and
agriculture. In particular, IoT has been used in healthcare to
monitor patients’ conditions and improve treatment outcomes.
For example, IoT devices are used by cardiologists for the
continuous monitoring of patients’ conditions. Patients’
electrocardiogram (ECG) signals are collected by wearable
sensors, which are transmitted seamlessly to the IoT cloud.
Cardiologists are able to access the patient’s data anywhere
and anytime, and provide timely feedback to high-risk events.
Prior research has shown that loT-based cardiac monitoring
provides a great opportunity to reduce the mortality, especially
for patients with acute cardiac diseases [1].

Our previous studies [2-4] have developed an IoT
technology that specific to cardiac care, namely, the Internet
of Hearts. Advanced algorithms and analytical methods have
been developed to effectively handle the big data from a large
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number of patients and extract vital signs to assist in the
process of medical decision making. However, collecting
patients’ data in a more reliable way remains a significant
challenge in the IoT-based monitoring. Traditional portable
ECG monitors adopt disposable Ag-AgCl electrodes that
require wet gel to attach to patients’ body surface. In this way,
they are effective only for a short period and not well-suited
for 24/7 monitoring in the context of IoT.
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Fig. 1. (a) Sensing textiles used in this study; (b) 1-lead ECG.

With the rapid development of new materials and
microelectronics, sensing textiles (see Fig. 1) have been
increasingly used in the cardiac monitoring. Unlike gel
electrodes, sensing textiles provide more comfortable
experience and enable 24/7 continuous monitoring of cardiac
conditions. For example, Gonzales et al. [S] integrated silver
woven conductive fabric into a T-shirt to monitor ECG signals.
Patients are able to wear the T-shirt on a 24-hour basis to detect
heart abnormalities during daily life. Hitoe [6] is a shirt-based
monitoring system. Wearable systems show a greater level of
flexibility to collect, analyze ECG signals, and provide users
with timely feedbacks on their cardiac conditions.

However, wearable monitoring is different from in-
hospital monitoring, and the quality of textile-based ECG
sensing can be significantly influenced by multiple factors.
Skin-textile contact, textile placement, user’s activity, and
muscle activity can alter or even blur critical information in
ECG. For example, when the ECG quality is low, the evidence
of ischemia cannot be extracted [7]. This, in turn, will
influence the diagnosis and impact the value of wearable ECG
sensing systems. Limited work has been done to characterize
how these uncertainty factors will impact the quality of textile-
based ECG sensing. There is an urgent need to design and
analyze experiments that help investigate how the quality of
textile-based ECG sensing is influenced by these factors,
thereby improving the design of wearable sensing systems.

In this paper, we perform the sensitivity analysis of textile-
based ECG sensing. First, we study how the contact pressure
between the sensing textile and skin surface impacts the signal
quality. After determining the optimal pressure, we vary the
location of sensing textiles under two user’s activities:
standing and walking. Further, the effect of muscle activity on
the quality of ECG signals is investigated. The remainder of
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this paper is organized as follows: Section II presents the
research methodology. Section III shows the experimental
results. Section IV concludes this investigation.

II. RESEARCH METHODOLOGY

This paper focuses on how the wvariations of four
experimental factors (i.e., contact pressure, textile placement,
user’s activity, and muscle activity) influence the quality of
textile-collected ECG signals. Specifically, wearable textiles
from Textronics (see Fig. 1a) and sensor from BlTalino are
used in our experiments. Experiments under each of four
scenarios are repeated on 30 participants. Averaged results are
reported in this study. Percentage error and normal-to-normal
interval are used to characterize the variation from the
benchmark signal (i.e., Gel-based ECG).

Sensing textile measures ECG signals by electrical
conduction with user’s skin. As such, the quality of ECG
signals depends to a great extent on the skin-textile
impedance. In physics, the skin-textile impedance Rc is
defined as:

R. = KA™1p~1/2 (1)

where K is the resistivity constant, 4 is the area of skin-textile
contact, and P is the contact perimeter of the sensing textile
[8]. Notably, the contact area is closely related to the contact
pressure. In other words, a larger contact pressure will achieve
a larger contact area (and hence better contact) between textile
and skin. Thus, there is a need to investigate what contact
pressure is required to achieve the optimal sensing quality.

Existing wearable ECG devices are oftentimes restricted to
be placed on users’ wrists and chest. They don’t specifically
consider the optimal placement. Therefore, the sensitivity of
ECG sensing with respect to textile locations remains unsure.
In this study, we measure the ECG signals from 5 equally
separated locations under different user’s activities and
muscle activities.

Sensing textiles record cardiac electric potential that
projected on the body surface. Thus, user’s activity is also a
factor that can impact the quality of ECG signals. In this
study, we investigate how the quality of ECG sensing will be
impacted by two kinds of activities, i.e., standing and
walking. During walking, the user’s body movements will
introduce noisy components that will contaminate the ECG
quality. To ensure a fair comparison, ECG signals are
recorded under the same walking pace.

Textiles are more elastic than traditional gel electrodes.
That is, textiles are easy to deform under muscle activities.
When the muscle contracts, electromyography (EMG) signals
are produced that resemble as noises to the ECG. Also, muscle
activity results in the change of contact surface area (the
parameter 4 in Eq. (1)). When holding hand gripper, Flexor
carpi radialis muscles (located around L2) contract. Hence,
we only conduct experiments regarding muscle activities
from the L1, L2, and L3.

In this study, ECG signals obtained from sensing textiles
are compared with standard ECGs (obtained using gel
electrodes). The small differences between them give good
measures on the quality of textile sensing. Therefore, we
introduce two performance metrics:

1) percentage error of heart rate (Eq. (2)):

HRrextile—HRGel
HRgel

Percent err = X 100% 2)
2) normal-to-normal interval of the signal morphology: as
shown in Fig. 2, normal-to-normal interval denotes the

interval between the successive real R peaks [9].
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Fig. 2. Normal-to-normal (NN) intervals used to characterize ECG quality.
Red dots are real R points and the green dot is a misdetection (false R point).
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Fig. 3. The cause-and-effect diagram of experimental design.
III. EXPERIMENTAL RESULTS

Fig. 3 shows the design of experiments with four factors:

1) Contact Pressure: Five pressure levels (2N, 4N, 6N, 8N,
and 10N) are applied on the textile to vary the condition
of skin-textile contact. The contact pressure is measured
using digital hanging scales.

2) Textile Placement: Five locations (L1 to L5) are selected
to place sensing textiles. As shown in Fig. 4a, the
locations are separated by the same distance. L1 is close
to the wrist and L5 is close to the chest.

3) Users' Activity: Standing and walking are also considered
when recording the ECG signal using sensing textiles.
When walking, the variability of ECG sensing comes
from the upper body movements.

4) Muscle Activity: We record the ECG signals using
sensing textiles when muscle contracts and rests. To
simulate muscle activity, users hold hand gripper (see
Fig. 4b) and maintains 50N force.
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Fig. 4. (a) Five locations of the sensing textiles; (b) hand gripper used to
evaluate the effects of muscle activity.
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A. Percentage Error of Heart Rate
TABLE 1. PERCENTAGE ERROR OF HEART RATE FOR FIVE PRESSURES

placed at L2, the highest percentage error is obtained when
muscle is contracting due to the activity of flexor carpi radialis
muscle. Furthermore, ANOVA is applied to evaluate the

— — N8N 108 difference between textile placement when muscle is
Percent. Err. (%) 10.8 8.60 SO 3.78 3.66 X R X i
Standard deviation 381 234 194 216 173 contracting. As shown in Table 5, the p value is 0.001, which
Max Error (%) 24.1 152 129 12.67 104 indicates a significant difference. In addition, results from
Min Error (%) 1.22 116 1.05 0 0 Scheffe test indicate that the differences exist between L1 and
TABLE 2. ANOVA FOR CONTACT PRESSURES L2,and L2 and L3.
Source SS DF MS T P TABLE 5. ANOVA FOR MUSCLE ACTIVITY
Between Group 865 4.00 216 215 <0.001 Source Ss DF MS Ftat P
Within Group 1460 145 10.1 Between Group | 398.9 2 199.5  6.89  0.001
Total 2325 149 Within Group 2516 87 28.92
Total 2915 89

Table 1 shows the percentage error of heart rate
measurement under five levels of contact pressures compared
with gel electrodes. Notably, sensing textiles are able to
obtain accurate heart rate (< 5% error) when the pressure is
>6N. Further, the analysis of variance (ANOVA) is
performed to investigate the difference on the five pressure
levels. As shown in Table 2, a small p-value indicates there is
a significant difference between pressure levels on the heart
rate accuracy. In addition, Scheffe’s test [ 10] shows that there
is no difference between 6N and 8N, 6N and 10N, and 8N and
10N, but differences are found between 2N and 4N, 2N and
6N, and 4N and 6N. This result shows that applying pressure
= 6N to sensing textiles helps acquire high accuracy on heart
rate measurement and increasing pressure does not result in
higher accuracy.

TABLE 3. PERCENTAGE ERROR OF HEART RATE FOR TWO ACTIVITIES

L1 L2 L3 L4 L5
P Eon. (% Stnd | 279268 297 275 233
ercent. Err. (%) wap | 7.70 6.24 9.30 4.15 5.14
Standard Stand | 1.94 1.60 1.44 140 223
deviation Walk | 320 243 291 1.23 1.60
Stand | 899 933 8.07 845 8.6

0,
MaxError (%) | o | 132 961 1965 841 114
Stand | 1.05 0 0 0 0

- o
Min Error (%) | wyae | 109 102 2107 101 100

Table 3 shows the percentage error of heart rate at five
locations on arms while the user is standing or walking. It is
noteworthy that when the user is standing, textiles obtain
accurate heart rate and the percentage error does not vary
significantly with different locations. Walking, however,
results in larger errors when sensing textiles are placed at
lower arms (i.e., errors in L1~L3 are larger than L4 and L5)
and joints (i.e., error in L3 is larger than L1 and L2). Further,
ANOVA results suggest that the difference between five
locations of textile placement for walking is more significant
than that of standing.

TABLE 4. PERCENTAGE ERROR OF HEART RATE FOR MUSCLE ACTIVITIES

L1 L2 L3
Contract Rest Contract Rest Contract Rest
Percent. Err. (%) 5.25 2.79 835 2.68 466 297
Standard deviation| 3.85 1.94 458 1.60 251 1.44
Max Error (%) 20.25 8.99 17.0  9.33 23.88 8.07
Min Error (%) 2.15 1.05 1.83 0 2.75 0

Table 4. shows the percentage error in heart rate when
muscle contracts and rests. Notably, when sensing textiles are

B. ECG Morphology
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Fig. 5. Collected ECG (at the location of L1) under different pressure levels:
(a) standard ECG (obtained from gel electrodes), (b) 2N, (c) 4N, (d) 6N, (e)
8N, (f) 10N.

As shown in Fig. 5, ECG signals collected under contact
pressures of 6N, 8N, and 10N are more close to the standard
ECG (obtained from gel electrodes). Red dots are detected R
peaks using the Pan Tompkins algorithm. Notably, some
noise-induced waves with large amplitudes are detected as
false R peaks. This mainly happens when the contact pressure
is low (see Fig. 5b and c).

TABLE 6. NN INTERVAL STATISTICS FOR VARYING CONTACT PRESSURES

2N 4N 6N 8N 10N Gel
Max NN | 887 878 791 816 782 784
Min NN | 289 212 732 715 725 722
Std NN 215 205 21.0 21.0 23.0 23.0
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Fig. 6. Collected ECG at five locations: (a) L1, (b) L2, (c) L3, (d) L4, (e) LS,
while the user is standing still.

Furthermore, normal-to-normal interval statistics (i.e.,
maximum NN, minimum NN, and standard deviation of NN)
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are extracted and compared with those of standard ECG. As
shown in Table 6, minimum normal-to-normal intervals under
2N and 4N are significantly smaller than that of standard
ECG. This is because under small contact pressures, noises
with high amplitudes can be recognized as R peaks. Also, the
standard deviation of normal-to-normal interval under small
contact pressures (2N and 4N) is larger. When the contact
pressure is = 6N, the obtained signal has similar morphology
as standard ECG signals.

To evaluate the influence of user’s activity on the signal
morphology, ECG is firstly measured when the user is
standing still and we vary the location of sensing textiles. As
shown in Fig. 6, ECG measured at different locations show
similar morphology to standard ECG (see Fig. 5a) when the
user is standing still. Second, ECG signals are measured when
the user is walking. As shown in Fig. 7, ECG signals obtained
from L1, L2, and L3 are contaminated by strong noises, which
generate false R peaks. Although ECG measured at L5 has
correct normal-to-normal interval, it contains large baseline
wandering due to the movement of upper arms and shoulders.
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Fig. 7. Collected ECG at five locations: (a) L1, (b) L2, (c) L3, (d) L4, (e) LS,
when the user is walking.

As shown in Table 7, normal-to-normal interval statistics
extracted from textile-based sensing are similar to those from
standard ECG when the user is standing. When the user is
walking, ECG signals obtained at L1, L3, and L5 show more
differences compared with standard ECG. This is because
textile-based sensing is more sensitive to the body movement,
especially when textiles are placed near the joints.

TABLE 7. NN INTERVAL STATISTICS UNDER DIFFERENT USERS’
ACTIVITIES: STANDING AND WALKING

L1/Gel  12/Gel _ 13/Gel _ L4/Gel _ L5/Gel
Stand | 771/771  737/737  667/667 795/797  756/756
MaxNN | wwalk | 615/600  643/666  803/328  710/699  610/607
. Stand| 587/587 519/518  548/548  516/514  653/652
Min NN ol | 301/541  486/526  206/501  466/584  422/533
sany |SaNd[ 184/184 240040 280280 386/386 145/145
Walk| 149/17.5 49.5/10.0 255/16.5 78.5/11.0 106/13.0

When muscle contracts, EMG signals will be introduced as
noises for the ECG sensing. As shown in Fig. 8a and 8b,
heavier noises are obtained at L1 and L2 due to flexor carpi
radialis muscle. Correspondingly, minimum normal-to-
normal intervals obtained at L1 and L2 show a bigger
difference between muscle contraction and rest, compared
with the smaller difference obtained at L3 (see Table 8).
Notably, the contraction of flexor carpi radialis muscle (L1

and L2) not only generates EMG signals, but also deforms the
skin-textile contact surface. As a result, the contact area
changes, which impacts the quality of ECG sensing.
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Fig. 8. ECG under muscle activity at: (a) L1, (b) L2, (c) L3.
TABLE 8. NN INTERVAL STATISTICS FOR MUSCLE ACTIVITIES

L1 L2 L3
Contract Rest Contract Rest Contract Rest
Max NN 695 771 782 737 644 667
Min NN 493 587 422 519 543 548
Std NN 78 18.4 128 24 19 28

1V. CONCLUSION

The rapid growth of material science, mobile technology
promotes the increasing popularity of sensing textiles and the
Internet of Health Things. However, the quality of textile-
based ECG sensing is sensitive to uncertain factors. Limited
work has been done on the sensitivity analysis of textile-based
ECG sensing. Results of this study have strong potentials to
serve as references for the design and development of new
generation of wearable ECG monitoring systems. This, in
turn, will realize the full potential of wearable ECG
monitoring for smart and connected healthcare.
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