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Abstract— Myocardial infarctions (MIs) pose a significant
risk to human health. Accurate identification and characteri-
zation of MI’s are essential for the effective medical treatment.
Traditional methods such as the standard 12-lead ECG identify
MIs with the electrocardiogram (ECG) recorded on the body
surface, which consider little about anatomical details of the
human body. These methods are limited in the ability to map
back the actual electrical activities of the heart and further
characterize MIs. Inverse ECG (iECG) methods were proposed
to trace the distribution of electric potentials on the heart
surface and characterize MIs. However, these methods do
not account for the spatiotemporal behaviors of the potential
distributions, because the electric potentials are distributed in
the complex geometry and varying dynamically over time. In
this paper, a novel iECG model with spatiotemporal regu-
larization is developed to image and characterize MIs. We
solve the iECG problem with the method of spatiotemporal
regularization and reconstruct electric potentials on the heart
surface. Furthermore, we group the estimated heart potentials
into healthy and infarct clusters with a wavelet-clustering
method. Experimental results show that the proposed method
effectively solves the iECG problem and better characterizes
MIs compared with existing methods.

I. INTRODUCTION

Myocardial infarction (MI), known as heart attack, poses

a significant risk to human health. Precise identification

and characterization of MIs are urgently needed to conduct

the effective medical treatment for MIs and improve life

quality. Traditional methods such as the standard 12-lead

ECG method, usually record the electrocardiogram (ECG)

on the body surface and directly analyze the ECG signal to

identify heart abnormalities. In these methods, the obtained

information about cardiac electrical activities is limited and

with low resolution. Additional leads are added later in the

body surface potential mapping (BSPM) to fix this limitation.

BSPM is with higher resolution than the standard 12-lead

ECG and provides a comprehensive imaging of the dynamic

electrical activity on the heart surface for the decision-

making of cardiac diseases. However, BSPM accounts little

for anatomical details of the human body and is limited in

the ability to map back the actual electrical activities of the

heart and further characterize the MIs.

Cardiac electrical activity is closely associated with heart

electric potentials. Inverse ECG (iECG) methods are devel-

oped to identify and characterize MIs, which images the
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heart potential distribution from body potential distribution

[1]. The electric potentials vary dynamically over time and

are distributed on the complex human-geometry. However,

very little has been done to cope with the spatiotemporal

behaviors of electric potentials. This limitation leads to a

high relative error between the estimated and true potential

distributions on the heart surface. Thus the implementation of

iECG models in the pathological decision-making is delayed.

In this paper, a spatiotemporal inverse model is proposed

to reconstruct the potential distribution on the heart surface

and characterize the location and extent of MIs. First, a trans-

fer matrix is developed to model the relationship between

potential distributions on the body and heart surfaces. This

transfer matrix is derived from the integration of physics-

based principles with the boundary element method. Second,

we solve the iECG problem and estimate the heart poten-

tial distribution with a novel spatiotemporal regularization

method. Finally, the estimated heart potentials are grouped

into healthy and infarct clusters with a wavelet-clustering

method, and are further used to characterize the location and

extent of MIs. Experimental results demonstrate that an ef-

fective solution to the iECG problem and better performance

in the characterization of MI are achieved by the proposed

model compared with existing iECG methods.

This paper is organized as follows: Section II presents the

research methodology. Section III describes the experimental

design and results. Section IV concludes this paper.

II. RESEARCH METHODOLOGY

In order to build an effective inverse ECG model, there

are several challenges remained to be addressed. First,

the complex geometry of the human body makes it dif-

ficult to establish a clear relationship between the heart

potentials φH and body potentials φB and further calcu-

late the transfer matrix RBH . Second, φH and φB are

with high-dimensionality and RBH is rank deficient (i.e.,

rank(RBH) < min{dim(φH , φB)}), which results in an

ill-conditioned ECG problem. Third, φH and φB are dy-

namically distributed in the complex torso-heart geometry.

In order to address the approximation errors in RBH and

improve the model robustness to measurement noise, both

the temporal and spatial correlations should be accounted

for in the inverse model.

As shown in Fig. 1, we propose a novel spatiotemporal

inverse ECG (ST-iECG) model to characterize MIs, whose
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Fig. 1. Flowchart of research methodology.

objective function is formulated as

min
φH(t)

J =

T∑
t=1

{‖φB(t)−RBHφH(t)‖2 + λ2
s‖ΔsφH(t)‖2

+λ2
t

t+w
2∑

τ=t−w
2

‖φH(t)− φH(τ)‖2} (1)

First, we propose to solve the transfer matrix RBH using

the boundary element method (BEM) [2] integrated with

divergence theorem and Green’s second identity. Second,

we solve the iECG problem and estimate the heart potential

distribution using a new spatiotemporal regularization model

[3]. Third, the estimated electrical potentials from step two

are grouped into infarct and healthy clusters by a multi-

resolution wavelet-clustering method.

A. Derivation of Transfer Matrix RBH

The human torso is modeled as a volume conductor

[4] bounded by body surface SB and heart surface SH ,

and the heart works as a bioelectric source. In the present

investigation, BEM is utilized to derive RBH integrated

with divergence theorem and Green’s second identity. In this

method, SB and SH are discretized into triangle meshes.

Then, an approximate solution to the integrals derived from

the Laplacian equation is obtained. This results in the transfer

matrix RBH expressed as RBH = (MBHM−1
HHAHH −

ABH)−1 × (ABB − MBHM−1
HHAHB), where the coeffi-

cient matrices M ’s and A’s are dependent entirely on the

geometry of human body [4].

However, RBH is rank-deficient and with a large condition

number [1]. The resulted iECG problem is ill-conditioned,

i.e., a small measurement noise will result in a big difference

in the final solution of the ECG model. Thus, achieving a

stable solution of φH call for the integration of these physics-

based models with new statistical regularization methods.

B. Spatiotemporal Regularization

The spatial regularity λ2
s‖ΔsφH(t)‖2 and the temporal

regularity λ2
t

∑t+w
2

τ=t−w
2
‖φH(t)− φH(τ)‖2 are added in the

ST-iECG model to take both spatial and temporal correlations

into account [3]. λs and λt are the spatial and temporal

regularization parameters determined by the L-curve method

[5]. Matrix Δs is the spatial Laplacian on irregular triangle

meshes and parameter w denotes a time window.

We propose to estimate φH using the dipole multiplicative

update (DMU) method [3], for the reason that it is difficult to

solve for φH analytically while both the spatial and temporal

correlations are involved. DMU method splits the electric

potential φH into its positive part φ+ and negative part φ−,

where φ+ and φ− are defined as φ+ = max{0,φH} and

φ− = max{0,−φH}. Thus, we can write φH as φH =
φ+ − φ−, and obtain the updating rules for φ+ and φ− in

the algorithm shown in Table I.

TABLE I
THE PROPOSED DIPOLE MULTIPLICATIVE UPDATE ALGORITHM

1: Set constants λs, λt and w .
2: Initialize {φ+} and {φ−} as positive random matrices.
3: Repeat
4: for t = 1, . . . , T do

(φ
+
t )i ←

(Aφ
−
t )i + Bi +

√
((Aφ

−
t )i + Bi)

2 + 4(A+φ
+
t )i(A

−φ
+
t )i

(2A+φ
+
t )i

(φ
+
t )i

(φ
−
t )i ←

(Aφ
+
t )i − Bi +

√
((Aφ

+
t )i − Bi)

2 + 4(A+φ
−
t )i(A

−φ
−
t )i

(2A+φ
−
t )i

(φ
−
t )i

5: end for
6: until convergence

C. Wavelet Clustering of ECG Time Series

The heart electric potentials φH are dynamically varying

and denoted as {φH(t)}Tt=1. We propose a clustering method

with multi-resolution wavelet to analyze φH and avoid

the high dimensionality, high correlation and unavoidable

uncertainties of the ECG time series, and further group φH

into healthy and infarct clusters.

In the wavelet transformation, φH is described in terms of

the running averages Aj(k) to approximate the original time

sequence, and running difference Dj(k) to characterize the

details of φH , where j = 1, 2, ... denotes the decomposition

level and k = 1, 2, ... represents the position. Aj(k) and

Dj(k) are defined as Aj(k) =
√

1
T

∑T
t=1 φ(t)Vj,k(t) and

Dj(k) =
√

1
T

∑T
t=1 φ(t)Wj,k(t), where Vj,k(t) and Wj,k(t)

are the Haar scaling and characteristic functions, respectively.

Thus at level j of decomposition, φH is expressed as

φH(t) =

√
1

T

∑
k

Aj(k)Vj,k(t)

+

√
1

T

T−1∑
j′=j

2j−1∑
k

Dj(k)Wj,k(t) (2)
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Aj’s and Dj’s are then grouped with the method of

hierarchical clustering (HC). HC creates a hierarchical de-

composition of φH , as shown in the dendrogram of Fig. 3(a),

from which we can obtain the subsets of input data forming

different clusters. Each Aj’s and Dj’s are grouped into two

clusters, including healthy and infarct ones. The clustering

results are trained to select the optimal Aj∗ or Dj∗ that best

represents φH , so that the clustering results regarding Aj∗

or Dj∗ provide the reference of healthy and MI signals.

Left Ventricle 

Right Ventricle 

Basal 

Mid-Cavity 

Apical 

Fig. 2. 17-segment model of the left ventricle.

D. Performance Metrics

Gadolinium-enhanced transaxial MRI (GE-MRI) provides

images for evaluating the proposed ST-iECG model. The

extent, centroid and location of MIs are represented by the

17-segment model [6] as shown in Fig. 2.

The proposed ST-iECG model is evaluated with three

performance metrics: (1) Percentage discrepancy between

the extents of infarction (EPD) as estimated and as given

by GE-MRI investigation; (2) Overlap percentage between

infarct segments (SO) as estimated and as given by the

reference images; (3) Distance from the centroid (CED) of

the infarct area as given by GE-MRI images to that as

estimated. The three metrics of the proposed ST-iECG model

are benchmarked with the results provided by the existing

iECG model [1].

III. EXPERIMENTAL DESIGN AND RESULTS

A. Wavelet Clustering of ECG Time Series

Four cases including two training cases and two test ones

are involved in the experiment. The dataset of BSPMs and

the torso-heart geometry is downloaded from the PhysioNet

[1] [7]. BSPMs are collected from four patients with one-

year MIs, which contain ECG signals for 1000ms at 352

locations on the body surface. And the actual MI segments

are shown in GE-MRI images.

The ST-iECG model with λs=0.06, λt = 0.005 and

w = 2 is implemented to solve the iECG problem. The

estimated potential distribution φH is decomposed by Haar

Fig. 3. (a) Hierarchical clustering of case 1. (Note: it just shows the
potential signals at a fraction of nodes on the heart mesh because of the
space limit.) (b) Clustering results of potential signals in the QRS interval
in case 1.

Fig. 4. (a) Averaged potential sig-
nals of the healthy and infarct clus-
ters in case 1; (b) Color-coded heart
surface with inferior view (top) and
anterosuperior view (bottom).

Fig. 5. (a) Averaged potential sig-
nals of the healthy and infarct clus-
ters in case 2; (b) Color-coded heart
surface with inferior view (top) and
anterosuperior view (bottom).

wavelet and characterized with running averages Aj’s and

running difference Dj’s (j = 1, 2, 3, 4, 5, 6). Both Aj and

Dj are classified into healthy and infarct clusters using HC

as shown in Fig. 3(a). A1 which denotes approximation at

level j = 1 is selected to represent φH , by analyzing the

clustering results and comparing with reference results given

by GE-MRI images. A1 is then grouped into healthy and MI

clusters. Clustering results of the first case regarding the QRS

interval in φH are shown in Fig. 3(b).

B. Experimental Results in Training Case 1 and Case 2

ST-iECG model provides averaged potential signals of the

healthy and infarct clusters as shown in Fig. 4(a) and Fig.

5(a). In training case 1, the blue cluster consists of a large

portion of positive signals, while signals in red one contain a

majority of negative signals. The color-coded heart surfaces

derived from these two clusters in case 1 are shown in Fig.

4(b). As shown in Fig. 5(a), the blue cluster consists of fewer

negative potentials compared with the red one in case 2.

Also, the blue and red areas on the heart surface in Fig. 5(b)

represent the corresponding two clusters.

In addition, both color-coded surfaces of case 1 and 2

are projected into 17-segment models in Fig. 6(a) and Fig.

7(a). The true infarct segments in red color provided by GE-

MRI images as shown in Fig. 6(b) and Fig. 7(b) for case 1

and case 2, respectively. Comparing segments of two clusters

provided by ST-iECG model and GE-MRI images, the red

cluster is identified as the MI segments, while the blue one

is specified as the healthy cluster.

The extent, infarct segments, and the centroid of MIs

in both training cases are summarized in TABLE II. The

proposed ST-iECG model yields 29% and 21% of infarct

extent in case 1 and 2, respectively. The estimated extents
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TABLE II
RESULTS FROM THE PROPOSED ST-IECG INVERSE MODEL, FROM EXITING IECG MODEL [1] AND GE-MRI IMAGES.

Characteristic Method Case 1 Case 2 Case 3 Case 4

Extent
GE-MRI 31% 30% 52% 14%
iECG 25% 35% 35% 40%
ST-iECG 29% 21% 48% 29%

Infarct
Segments

GE-MRI 1,2,3,8,9,13,14,15 3,4,9,10 3,4,5,9,10,11,12,15,16 1,9,10,11,15,17
iECG 2,3,8,9,14 3,4,5,9,10,11 3,4,5,10,11 3,4,5,6,9,10,11
ST-iECG 1,2,3,8,9,13,15,16 3,5,9,10 1,3,5,9,10,11,12,16 1,4,5,7,9,15,17

Centroid
GE-MRI 8 3 or 9 or 4 or 10 10 or 11 15
iECG 9 10 4 4
ST-iECG 8 10 10 or 11 15

Fig. 6. (a) Estimated MIs (i.e., red
segments) by the ST-iECG model
of case 1; (b) Reference MIs (i.e.,
segments colored in red) provided
by the GE-MRI image of case 1.

Fig. 7. (a) Estimated MIs (i.e., red
segments) by the ST-iECG model
of case 2; (b) Reference MIs (i.e.,
segments colored in red) provided
by the GE-MRI image of case 2.

TABLE III
COMPARISON OF PERFORMANCE METRICS IN THE PROPOSED ST-IECG

MODEL AND THE EXISTING IECG MODEL [1]

Metric Method Case 3 Case 4

EPD
iECG 17% 26%
ST-iECG 4% 15%

SO
iECG 0.556 0.3
ST-iECG 0.7 0.444

CED
iECG 1 2
ST-iECG 0 0

are close to the actual results from GE-MRI images. Infarct

segments are estimated accurately except segment 14 in case

1 and segment 4 in case 2. In addition, estimated centroids

match real centroids provided by GR-MRI images in both

case 1 and case 2.

C. Experimental Results in Test Case 3 and Case 4

As shown in the experimental results in training cases, the

cluster with a large portion of negative signals is defined as

an infarct cluster, while the one with more positive signals is

identified a healthy cluster. The comparison of performance

metrics between ST-iECG and iECG [1] of both test cases is

summarized in Table III: (1) EPD–ST-iECG model contains

a lower EPD of 4% in case 3 and 15% in case 4 than

iECG model which are 17% and 26% for case 3 and case 4,

respectively. This suggests the extent of estimated MIs of the

proposed ST-iECG model is closer to actual result as shown

in Table II; (2) SO–estimation made by ST-iECG overlaps

more with actual infarction than iECG, which is indicated

by higher SO of ST-iECG compared with iECG shown in

Table III; (3) CED–distance from the centers given by GE-

MRI images to estimated centers by ST-iECG model is zero,

while the centers given by iECG are 1 and 2 segments away

from the actual centers in test case1 and case 2, respectively.

According to these experimental results of the test cases, the

proposed ST-iECG model yields a better performance than

the existing iECG model.

IV. CONCLUSIONS

In this paper, we propose a novel ST-iECG model to

reconstruct the distribution of electric potentials on the heart

surface and further identify the location and extent of MIs.

The ST-iECG model is implemented to characterize MIs in

four cases and is benchmarked with existing iECG methods.

Experimental results show that the cluster with a large

portion of positive signals is healthy, while the one with

a majority of negative signals is identified as the infarct

cluster. In addition, the proposed ST-iECG model achieves a

better performance of MI characterization than existing iECG

methods. Our ST-iECG model demonstrates a promising

potential to characterize the location, extent, and centroid

of MIs and provide a valuable support for clinical decision-

making in the MI diagnosis and treatment.
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