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Abstract— Myocardial infarctions (MIs) pose a significant
risk to human health. Accurate identification and characteri-
zation of MI’s are essential for the effective medical treatment.
Traditional methods such as the standard 12-lead ECG identify
Mls with the electrocardiogram (ECG) recorded on the body
surface, which consider little about anatomical details of the
human body. These methods are limited in the ability to map
back the actual electrical activities of the heart and further
characterize Mls. Inverse ECG (iIECG) methods were proposed
to trace the distribution of electric potentials on the heart
surface and characterize MIs. However, these methods do
not account for the spatiotemporal behaviors of the potential
distributions, because the electric potentials are distributed in
the complex geometry and varying dynamically over time. In
this paper, a novel iECG model with spatiotemporal regu-
larization is developed to image and characterize MIs. We
solve the iECG problem with the method of spatiotemporal
regularization and reconstruct electric potentials on the heart
surface. Furthermore, we group the estimated heart potentials
into healthy and infarct clusters with a wavelet-clustering
method. Experimental results show that the proposed method
effectively solves the iECG problem and better characterizes
MIs compared with existing methods.

I. INTRODUCTION

Myocardial infarction (MI), known as heart attack, poses
a significant risk to human health. Precise identification
and characterization of Mls are urgently needed to conduct
the effective medical treatment for MIs and improve life
quality. Traditional methods such as the standard 12-lead
ECG method, usually record the electrocardiogram (ECG)
on the body surface and directly analyze the ECG signal to
identify heart abnormalities. In these methods, the obtained
information about cardiac electrical activities is limited and
with low resolution. Additional leads are added later in the
body surface potential mapping (BSPM) to fix this limitation.
BSPM is with higher resolution than the standard 12-lead
ECG and provides a comprehensive imaging of the dynamic
electrical activity on the heart surface for the decision-
making of cardiac diseases. However, BSPM accounts little
for anatomical details of the human body and is limited in
the ability to map back the actual electrical activities of the
heart and further characterize the MlIs.

Cardiac electrical activity is closely associated with heart
electric potentials. Inverse ECG (iIECG) methods are devel-
oped to identify and characterize MIs, which images the
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heart potential distribution from body potential distribution
[1]. The electric potentials vary dynamically over time and
are distributed on the complex human-geometry. However,
very little has been done to cope with the spatiotemporal
behaviors of electric potentials. This limitation leads to a
high relative error between the estimated and true potential
distributions on the heart surface. Thus the implementation of
iECG models in the pathological decision-making is delayed.

In this paper, a spatiotemporal inverse model is proposed
to reconstruct the potential distribution on the heart surface
and characterize the location and extent of MISs. First, a trans-
fer matrix is developed to model the relationship between
potential distributions on the body and heart surfaces. This
transfer matrix is derived from the integration of physics-
based principles with the boundary element method. Second,
we solve the iIECG problem and estimate the heart poten-
tial distribution with a novel spatiotemporal regularization
method. Finally, the estimated heart potentials are grouped
into healthy and infarct clusters with a wavelet-clustering
method, and are further used to characterize the location and
extent of MIs. Experimental results demonstrate that an ef-
fective solution to the iECG problem and better performance
in the characterization of MI are achieved by the proposed
model compared with existing iECG methods.

This paper is organized as follows: Section II presents the
research methodology. Section III describes the experimental
design and results. Section IV concludes this paper.

II. RESEARCH METHODOLOGY

In order to build an effective inverse ECG model, there
are several challenges remained to be addressed. First,
the complex geometry of the human body makes it dif-
ficult to establish a clear relationship between the heart
potentials ¢z and body potentials ¢p and further calcu-
late the transfer matrix Rppy. Second, ¢y and ¢p are
with high-dimensionality and Rpy is rank deficient (i.e.,
rank(Rpp) < min{dim(¢y,¢p)}), which results in an
ill-conditioned ECG problem. Third, ¢ and ¢p are dy-
namically distributed in the complex torso-heart geometry.
In order to address the approximation errors in Rpy and
improve the model robustness to measurement noise, both
the temporal and spatial correlations should be accounted
for in the inverse model.

As shown in Fig. 1, we propose a novel spatiotemporal
inverse ECG (ST-IECG) model to characterize MIs, whose

120



Spatiotemporal
Regularization

BSPM
[

iECG model
S5~ Rndn

MI
Characterization

20 O 8 100

]
tms)
‘Wavelet Transformation

Hierarchical Clustering

Fig. 1. Flowchart of research methodology.
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First, we propose to solve the transfer matrix Rpy using
the boundary element method (BEM) [2] integrated with
divergence theorem and Green’s second identity. Second,
we solve the iECG problem and estimate the heart potential
distribution using a new spatiotemporal regularization model
[3]. Third, the estimated electrical potentials from step two
are grouped into infarct and healthy clusters by a multi-
resolution wavelet-clustering method.

A. Derivation of Transfer Matrix Rppy

The human torso is modeled as a volume conductor
[4] bounded by body surface Sp and heart surface Sy,
and the heart works as a bioelectric source. In the present
investigation, BEM is utilized to derive Rpj integrated
with divergence theorem and Green’s second identity. In this
method, Sp and Sy are discretized into triangle meshes.
Then, an approximate solution to the integrals derived from
the Laplacian equation is obtained. This results in the transfer
matrix Rpy expressed as Rpy = (MBHM]_{;IAHH —
ABH)_l X (ABB — MBHMQLAHB% where the coeffi-
cient matrices M’s and A’s are dependent entirely on the
geometry of human body [4].

However, Ry is rank-deficient and with a large condition
number [1]. The resulted iECG problem is ill-conditioned,
i.e., a small measurement noise will result in a big difference
in the final solution of the ECG model. Thus, achieving a
stable solution of ¢ call for the integration of these physics-
based models with new statistical regularization methods.
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B. Spatiotemporal Regularization

The spatial regularity \2||Ag¢py(¢)||? and the temporal
regularity \? Ziif_ﬁ |y (t) — @y (7)||? are added in the
ST-iECG model to take both spatial and temporal correlations
into account [3]. A\s and \; are the spatial and temporal
regularization parameters determined by the L-curve method
[5]. Matrix Ay is the spatial Laplacian on irregular triangle
meshes and parameter w denotes a time window.

We propose to estimate ¢ using the dipole multiplicative
update (DMU) method [3], for the reason that it is difficult to
solve for ¢y analytically while both the spatial and temporal
correlations are involved. DMU method splits the electric
potential ¢ into its positive part ¢ and negative part ¢,
where ¢ and ¢~ are defined as ¢ = max{0, ¢} and
¢~ = max{0,—¢y}. Thus, we can write ¢ as ¢y =
¢ — ¢, and obtain the updating rules for ¢ and ¢~ in
the algorithm shown in Table I.

TABLE I
THE PROPOSED DIPOLE MULTIPLICATIVE UPDATE ALGORITHM
1: Set constants g, A\¢ and w .
2: Initialize {¢"} and {¢~} as positive random matrices.
3: Repeat
4. fort=1,...,7T do
4 (Ad7)i + B+ (Ad7 ) + B2 +a(AT o) (A= e ); o
(@) « + (@)
(zatel);
_ (Ap); — By +1/((Ad); — B2 +a(Ate ) (A=) ) _
(Py )i < — [C MDY
cAate;);
5: end for
6: until convergence

C. Wavelet Clustering of ECG Time Series

The heart electric potentials ¢;; are dynamically varying
and denoted as {¢x (t)}_,. We propose a clustering method
with multi-resolution wavelet to analyze ¢ and avoid
the high dimensionality, high correlation and unavoidable
uncertainties of the ECG time series, and further group ¢
into healthy and infarct clusters.

In the wavelet transformation, ¢ ; is described in terms of
the running averages A, (k) to approximate the original time
sequence, and running difference D, (k) to characterize the
details of ¢, where j = 1,2, ... denotes the decomposition
level and k£ = 1,2, ... represents the position. A;(k) and

D;(k) are defined as A;(k) \/;23;1 é(t)V;x(t) and

D;(k) = /4 S ()W (1), where V; (1) and W ()
are the Haar scaling and characteristic functions, respectively.
Thus at level 5 of decomposition, ¢ is expressed as

ou(t) = \/Ez Aj(k)Vjk(t)
k
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A;’s and D;’s are then grouped with the method of
hierarchical clustering (HC). HC creates a hierarchical de-
composition of ¢, as shown in the dendrogram of Fig. 3(a),
from which we can obtain the subsets of input data forming
different clusters. Each A;’s and D;’s are grouped into two
clusters, including healthy and infarct ones. The clustering
results are trained to select the optimal A;- or D;- that best
represents ¢y, so that the clustering results regarding A ;-
or D« provide the reference of healthy and MI signals.
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Fig. 2. 17-segment model of the left ventricle.

D. Performance Metrics

Gadolinium-enhanced transaxial MRI (GE-MRI) provides
images for evaluating the proposed ST-IECG model. The
extent, centroid and location of MIs are represented by the
17-segment model [6] as shown in Fig. 2.

The proposed ST-iIECG model is evaluated with three
performance metrics: (1) Percentage discrepancy between
the extents of infarction (EPD) as estimated and as given
by GE-MRI investigation; (2) Overlap percentage between
infarct segments (SO) as estimated and as given by the
reference images; (3) Distance from the centroid (CED) of
the infarct area as given by GE-MRI images to that as
estimated. The three metrics of the proposed ST-IECG model
are benchmarked with the results provided by the existing
iECG model [1].

III. EXPERIMENTAL DESIGN AND RESULTS
A. Wavelet Clustering of ECG Time Series

Four cases including two training cases and two test ones
are involved in the experiment. The dataset of BSPMs and
the torso-heart geometry is downloaded from the PhysioNet
[1] [7]. BSPMs are collected from four patients with one-
year MIs, which contain ECG signals for 1000ms at 352
locations on the body surface. And the actual MI segments
are shown in GE-MRI images.

The ST-iIECG model with A,=0.06, A\; = 0.005 and
w = 2 is implemented to solve the iECG problem. The
estimated potential distribution ¢ is decomposed by Haar
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Fig. 3. (a) Hierarchical clustering of case 1. (Note: it just shows the
potential signals at a fraction of nodes on the heart mesh because of the
space limit.) (b) Clustering results of potential signals in the QRS interval

in case 1.
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Fig. 4. (a) Averaged potential sig-
nals of the healthy and infarct clus-
ters in case 1; (b) Color-coded heart
surface with inferior view (top) and
anterosuperior view (bottom).
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Fig. 5. (a) Averaged potential sig-
nals of the healthy and infarct clus-
ters in case 2; (b) Color-coded heart
surface with inferior view (top) and
anterosuperior view (bottom).

wavelet and characterized with running averages A;’s and
running difference D;’s (j = 1,2,3,4,5,6). Both A; and
D; are classified into healthy and infarct clusters using HC
as shown in Fig. 3(a). A; which denotes approximation at
level j = 1 is selected to represent ¢y, by analyzing the
clustering results and comparing with reference results given
by GE-MRI images. A; is then grouped into healthy and MI
clusters. Clustering results of the first case regarding the QRS
interval in ¢ are shown in Fig. 3(b).

B. Experimental Results in Training Case 1 and Case 2

ST-iIECG model provides averaged potential signals of the
healthy and infarct clusters as shown in Fig. 4(a) and Fig.
5(a). In training case 1, the blue cluster consists of a large
portion of positive signals, while signals in red one contain a
majority of negative signals. The color-coded heart surfaces
derived from these two clusters in case 1 are shown in Fig.
4(b). As shown in Fig. 5(a), the blue cluster consists of fewer
negative potentials compared with the red one in case 2.
Also, the blue and red areas on the heart surface in Fig. 5(b)
represent the corresponding two clusters.

In addition, both color-coded surfaces of case 1 and 2
are projected into 17-segment models in Fig. 6(a) and Fig.
7(a). The true infarct segments in red color provided by GE-
MRI images as shown in Fig. 6(b) and Fig. 7(b) for case 1
and case 2, respectively. Comparing segments of two clusters
provided by ST-IECG model and GE-MRI images, the red
cluster is identified as the MI segments, while the blue one
is specified as the healthy cluster.

The extent, infarct segments, and the centroid of MIs
in both training cases are summarized in TABLE II. The
proposed ST-IECG model yields 29% and 21% of infarct
extent in case 1 and 2, respectively. The estimated extents
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TABLE 11
RESULTS FROM THE PROPOSED ST-TECG INVERSE MODEL, FROM EXITING IECG MODEL [1] AND GE-MRI IMAGES.

Characteristic | Method Case 1 Case 2 Case 3 Case 4
GE-MRI 31% 30% 52% 14%
Extent iECG 25% 35% 35% 40%
ST-iECG 29% 21% 48% 29%
Infarct GE-MRI | 1,23.8,9.13,14,15 3,4,9,10 3,4,5,9,10,11,12,15,16  1,9,10,11,15,17
Segments iECG 2,3,8,9,14 3,4,5,9,10,11 3,4,5,10,11 3,4,5,6,9,10,11
i ST-ECG | 1,2,3,8,9,13,15,16 3,5,9,10 1,3,5,9,10,11,12,16 1,4,5,7,9,15,17
GE-MRI 8 3or9or4orl0 10 or 11 15
Centroid iIECG 9 10 4 4
ST-iECG 8 10 10 or 11 15
(@) (b) (@) ‘. . .
'.\ L A ,ﬁ\ According to these experimental results of the test cases, the
@o\ ag ’cgg\ proposed ST-IECG model yields a better performance than
=) =) <y the existing iECG model.
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Fig. 6. (a) Estimated MIs (i.e., red
segments) by the ST-IECG model
of case 1; (b) Reference MlIs (i.e.,
segments colored in red) provided
by the GE-MRI image of case 1.

Fig. 7. (a) Estimated MIs (i.e., red
segments) by the ST-IECG model
of case 2; (b) Reference MIs (i.e.,
segments colored in red) provided
by the GE-MRI image of case 2.

TABLE III
COMPARISON OF PERFORMANCE METRICS IN THE PROPOSED ST-IECG
MODEL AND THE EXISTING IECG MODEL [1]

Metric Method Case 3 Case 4
iECG 17% 26%
EPD ST-ECG 4% 15%
SO iECG 0.556 0.3
ST-ECG 0.7 0.444
iECG 1 2
CED ST-ECG 0

are close to the actual results from GE-MRI images. Infarct
segments are estimated accurately except segment 14 in case
1 and segment 4 in case 2. In addition, estimated centroids
match real centroids provided by GR-MRI images in both
case 1 and case 2.

C. Experimental Results in Test Case 3 and Case 4

As shown in the experimental results in training cases, the
cluster with a large portion of negative signals is defined as
an infarct cluster, while the one with more positive signals is
identified a healthy cluster. The comparison of performance
metrics between ST-IECG and iECG [1] of both test cases is
summarized in Table III: (1) EPD-ST-IECG model contains
a lower EPD of 4% in case 3 and 15% in case 4 than
iECG model which are 17% and 26% for case 3 and case 4,
respectively. This suggests the extent of estimated MIs of the
proposed ST-IECG model is closer to actual result as shown
in Table II; (2) SO-estimation made by ST-IECG overlaps
more with actual infarction than iECG, which is indicated
by higher SO of ST-IECG compared with iECG shown in
Table III; (3) CED—distance from the centers given by GE-
MRI images to estimated centers by ST-IECG model is zero,
while the centers given by iECG are 1 and 2 segments away
from the actual centers in test casel and case 2, respectively.
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IV. CONCLUSIONS

In this paper, we propose a novel ST-IECG model to
reconstruct the distribution of electric potentials on the heart
surface and further identify the location and extent of MlIs.
The ST-IECG model is implemented to characterize MIs in
four cases and is benchmarked with existing iECG methods.
Experimental results show that the cluster with a large
portion of positive signals is healthy, while the one with
a majority of negative signals is identified as the infarct
cluster. In addition, the proposed ST-IECG model achieves a
better performance of MI characterization than existing iIECG
methods. Our ST-IECG model demonstrates a promising
potential to characterize the location, extent, and centroid
of MIs and provide a valuable support for clinical decision-
making in the MI diagnosis and treatment.
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