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Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear

densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations,

translationally invariant nonlocal densities must be available.

Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM

calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal

one-body densities have not been considered so far. A major reason for this is that the procedure for removing the

center-of-mass component from NCSM wave functions up to now has only been developed for local densities.

Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained

from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state

densities of 4He, 6Li, 12C, and 16O. The nonlocality is studied as a function of angular momentum components

in momentum as well as coordinate space.

Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases

as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing

angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by

the shell structure of the nucleus, and cannot be described with simple functional forms.

DOI: 10.1103/PhysRevC.97.024325

I. INTRODUCTION AND MOTIVATION

Recent developments of the nucleon-nucleon (NN ) or three-
nucleon (3N ) interactions, derived from chiral effective field
theory, have yielded major progress [1–3]. These, coupled
with the utilization of massively parallel computing resources
(e.g., see [4–7]), have placed ab initio large-scale simulations
at the frontier of nuclear structure and reaction explorations.
Among other successful many-body theories, the ab initio no-
core shell-model (NCSM) approach, which has considerably
advanced our understanding and capability of achieving first-
principles descriptions of low-lying states in light nuclear
systems [8–12], has over the last decade taken center stage
in the development of microscopic tools for studying the
structure of atomic nuclei. The NCSM concept combined
with a symmetry-adapted (SA) basis in the ab initio SA-
NCSM [13] has further expanded the reach to the structure
of intermediate-mass nuclei [14]. The NCSM framework has
been successfully extended to reactions of light nuclei at low
energies (see, e.g., [15–18]) by combining the NCSM with
resonating group methods. While this approach treats the
many-body scattering problem completely microscopically,
reactions involving heavier nuclei or reactions at higher en-
ergies are usually treated by reducing the many-body degrees
of freedom to a more manageable few-body problem and thus
introducing effective interactions between relevant clusters.
Those effective interactions may either be phenomenologically
described by fitting, e.g., scattering data, or one may attempt
to extract them from structure calculations combined with

the continuum. A path along this line has recently been
proposed [19] based on the coupled-cluster approach to nuclear
structure.

Microscopic folding models for those effective interactions

also have a long tradition. However, their main disadvantages

is that they were usually constructed for closed shell nuclei

using relatively simple models for the nuclear structure input

(see, e.g., [20–22]). In order to open the path to account

for the full microscopic structure of the clusters and employ

first-principles wave functions, as those derived in the ab

initio NCSM, it is an important first step to construct a

one-body density, which is both nonlocal and translationally

invariant, starting from one-body density matrix (OBDM)

elements obtained from NCSM calculations. The need for

nonlocal densities has been recognized in reaction theory,

e.g., in treating the antisymmetrization between two localized

clusters that accounts for particle exchange [23], as well

as in folding calculations of microscopic optical potentials

[20,22].

In this work we present a “proof-of-principle” study that

focuses on obtaining translationally invariant (t i) nonlocal

one-body densities and discuss their properties. We concentrate

on the deformed oblate 12C nucleus and the open-shell 6Li. As

examples for closed shell nuclei we consider 4He and 16O.

The NCSM calculations employed here are carried out with

the J -matrix inverse scattering potential, JISP16 [24,25]. In

Sec. II we first define the nonlocal density, and then show

how to remove the center-of-mass (c.m.) contribution to arrive
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at a translationally invariant nonlocal density. In Sec. III, we

illustrate the off-shell structure of the t i nonlocal density

for 4He, 6Li, 12C, and 16O in momentum space as well as

for 6Li and 12C in coordinate space. We also investigate

the dependence of the nonlocality on the model space, and

finally provide some more details of the nonlocal structure.

We summarize in Sec. IV.

II. FORMAL CONSIDERATIONS

A. Space-fixed nonlocal densities

1. Space-fixed nonlocal one-body density in coordinate space

As a starting point we first derive a space-fixed (sf ) nonlocal

one-body density, ρsf (�r,�r ′), between an initial A-body wave

function |�〉 and a final A-body wave function |� ′〉,

ρsf (�r,�r ′) = 〈� ′|
A

∑

i=1

δ3(�ri − �r)δ3(�r ′
i − �r ′)|�〉. (1)

The many-body wave function |�〉 is expanded in a basis of Slater determinants of single-particle harmonic oscillator (HO)

states. Since we use sf single-particle coordinates, the wave functions and implicitly the calculated OBDM will include the c.m.

that needs to be removed later. In this paper OBDM elements are calculated within the NCSM, using the JISP16 NN interaction

[24,25]. The NCSM uses a finite set of single-particle HO states, characterized by two basis parameters, the HO energy h̄ω and

the many-body basis space cutoff Nmax, where Nmax is defined as the maximum number of oscillator quanta above the valence

shell for that nucleus.

Expanding the delta functions from Eq. (1) in terms of spherical harmonics, labeling the A-nucleon many-body eigenstates

by the total angular momentum J , its projection M , and all additional quantum numbers collectively by λ, we obtain

ρsf (�r,�r ′) = 〈Aλ′J ′M ′|
A

∑

i=1

δ(ri − r)

r2

δ(r ′
i − r ′)

r ′2
∑

lm

∑

l′m′
Ym

l (r̂i)Y
∗m
l (r̂)Y ∗m′

l′ (r̂ ′)Ym′
l′ (r̂ ′

i )|AλJM〉. (2)

Here r̂ represents the angular part of vector �r . After coupling the spherical harmonics to bipolar harmonics,

Y
l1l2
lm (r̂ ,r̂ ′) =

∑

m1,m2

〈l1m1l2m2|lm〉Ym1

l1
(r̂)Y

m2

l2
(r̂ ′),

(3)

Y
m1

l1
(r̂)Y

m2

l2
(r̂ ′) =

l1+l2
∑

l=|l1−l2|

l
∑

m=−l

〈l1m1l2m2|lm〉Y l1l2
lm (r̂ ,r̂ ′),

and using the Wigner-Eckart theorem, the nonlocal density becomes

ρsf (�r,�r ′) =
∑

ll′

l+l′
∑

K=|l−l′|
(−1)J

′−M ′
(

J ′ K J

−M ′ k M

)

Y∗ll′
Kk (r̂ ,r̂ ′)

〈

Aλ′J ′M ′
∥

∥

∥

∥

∥

A
∑

i=1

δ(ri − r)

r2

δ(r ′
i − r ′)

r ′2 Y ll′
K (r̂i,r̂

′
i )

∥

∥

∥

∥

∥

AλJM

〉

. (4)

We can immediately make a simplification since in M-scheme calculations M ′ = M . Thus, the condition −M ′ + k + M = 0 in

the 3j symbol forces k to be zero.

To further evaluate the nonlocal density, we rewrite Eq. (4) in second quantization form using α and β as final and initial single-

particle HO states, denoted by the single-particle quantum numbers (n,l,j,tz). Then (a†
α ãβ)(K), where anljmtz = (−1)j−mãnlj−mtz ,

represents the single-particle transition operator of rank K . Using the general expression of the matrix elements of a one-body

operator TK = ∑

i TK,i of rank K [26],

〈ψf ; Jf ||TK ||ψi ; Ji〉 = 1

K̂

∑

αβ

〈α||TK,1||β〉〈ψf ; Jf ||(a†
α ãβ)(K)||ψi ; Ji〉, (5)

with K̂ =
√

2K + 1 and TK,1 being a single-particle operator, we obtain for the nonlocal density

ρsf (�r,�r ′) =
∑

ll′

l+l′
∑

K=|l−l′|
(−1)J

′−M

(

J ′ K J

−M 0 M

)

Y∗ll′
K0 (r̂ ,r̂ ′)

1

K̂

∑

αβ

〈

α

∥

∥

∥

∥

δ(r1 − r)

r2

δ(r ′
1 − r ′)

r ′2 Y ll′
K (r̂1,r̂

′
1)

∥

∥

∥

∥

β

〉

×〈Aλ′J ′||(a†
α ãβ)(K)||AλJ 〉. (6)

In Eq. (6), 〈Aλ′J ′||(a†
α ãβ)(K)||AλJ 〉 are reduced one-body density matrix (OBDM) elements. They are calculated using NCSM

eigenstates |AλJM〉 and |Aλ′J ′M ′〉, and are input to our calculations. Replacing α and β by (n′,l′α,j ′) and (n,lβ ,j ), respectively,

the reduced single-particle matrix element can be obtained using the HO single-particle wave functions. Note that, for simplicity,

the isospin projections are dropped from the labels, for which (tz)α = (tz)β , with only protons entering into calculations of charge
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densities, while calculations of matter densities involve a summation over both protons and neutrons. We can thus separate and

define the K-tensor dependence by

ρll′K (r,r ′) ≡
∑

njn′j ′
ĵ ĵ ′(−1)l

′+l+j+ 1
2
+K

{

l′ l K

j j ′ 1
2

}

Rn′l′(r
′)Rnl(r)〈Aλ′J ′||(a†

n′l′j ′ ãnlj )(K)||AλJ 〉, (7)

where Rnl(r) is the radial component of the single-particle

harmonic oscillator wave function (defined in Appendix A).

Using Eq. (7), the matrix elements ofρsf (�r,�r ′) can be expressed

as a sum over all tensors ρll′K (r,r ′),

ρsf (�r,�r ′) =
∑

Kll′

(−1)J
′−M

(

J ′ K J

−M 0 M

)

×Y∗l′l
K0 (r̂ ,r̂ ′)ρll′K (r,r ′), (8)

separating out the radial and angular components of the

nonlocal density.

2. Space-fixed nonlocal one-body density matrix

in momentum space

In order to remove the c.m. contribution, we need a momen-

tum space representation of the nonlocal density, ρsf ( �p, �p′). We

obtain it by applying a Fourier transformation to ρsf (�r,�r ′),

ρsf ( �p, �p′) = 1

(2π )3

∫ ∫

ρsf (�r,�r ′)ei �p·�re−i �p′· �r ′
d3r d3r ′, (9)

where a normalization factor
√

1
(2π)3 is included for each

integral, and

e−i �p·�r = 4π
∑

Cc

Y c
C(r̂)Y ∗c

C (p̂)(−i)CjC(pr). (10)

Using ρsf (�r,�r ′) from Eqs. (8) and (7), and the orthonormality

of the spherical harmonics,
∫

Y c
C(r̂)Y ∗m

l (r̂)dr̂ = δlCδmc, leads

to

ρsf ( �p, �p′) =
∑

Kll′
(−1)J

′−M

(

J ′ K J

−M 0 M

)

×Y∗l′l
K0 (p̂,p̂′)ρll′K (p,p′), (11)

where the radial and angular part of the ρll′K (p,p′) is given by

ρll′K (p,p′) =
∑

njn′j ′
ĵ ĵ ′(−1)

l−l′
2 (−1)j+ 1

2
+l+l′+K

{

l′ l K

j j ′ 1
2

}

×Rn′l′ (p
′)Rnl(p)〈Aλ′J ′||(a†

n′l′j ′ ãnlj )(K)||AλJ 〉.
(12)

This expression is used to calculate the densities from NCSM

calculations of OBDM directly in momentum space. For

completeness, the derivation of the local density directly in

momentum space is given in Appendix A.

B. Translationally invariant nonlocal densities

In order to analyze the charge and mass distribution inside

the nucleus and employ the nonlocal density, e.g., in reaction

calculations, it needs to be translationally invariant. In NCSM

calculations in a HO basis with Nmax truncation, as well

as in the SA-NCSM, the wave function in single-particle

coordinates exactly factorizes in a c.m. wave function and a

t i wave function,

|�JM〉 = |�t iJM〉 ⊗ |φc.m.0s〉, (13)

which can be used to remove the c.m. contribution from the

nonlocal density. If we want to extend the scheme for removing

the c.m. contribution developed for local densities [27–31]

to the nonlocal case, we need to carefully consider in which

variables we want to work. While in Sec. II A the nonlocal

density is calculated as a function of the independent momenta

�p and �p′, it is more convenient to proceed with the independent

momenta

�q = �p′ − �p, �K = 1
2
( �p′ + �p). (14)

The corresponding set of coordinate space variables is given

by

�ζ = 1
2
(�r + �r ′), �Z = �r ′ − �r, (15)

where the displacement �Z is translationally invariant, and �ζ is

the average position.1 Thus the c.m. contribution must only be

associated with �ζ ,

ζ = ζrel + ζc.m.. (16)

Because of the exact factorization of the c.m. wave function

and the t i wave function, the sf density can be expressed as

a convolution of the t i density distribution ρt i with the c.m.

density distribution ρc.m. via

ρsf (�ζ , �Z) =
∫

ρt i(�ζ − �ζc.m., �Z) ρ(�ζc.m.,0) d3ζc.m.. (17)

Based on the set of variables from Eqs. (14) and (15), we

use a Fourier transformation of the operator defined in Eq. (1)

and the coordinates defined in Eq. (14),

ρsf (�q, �K)

= 1

(2π )3
〈� ′J ′M|

A
∑

i=1

e−i �q·(�ζrel,i+�ζc.m.)e−i �K· �Zi |�JM〉

= 1

(2π )3
〈� ′J ′M|e−i �q·�ζc.m.

∑

i

e−i �q·�ζrel,ie−i �K· �Zi |�JM〉.

(18)

In the above derivation we employed for the c.m. coordinate
�Rc.m. = 1

A

∑

i �ri and defined �ζc.m. = 1
2
( �Rc.m. + �R′

c.m.). Using

1The variable �ζ can be identified with the spatial variable.
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Eq. (13) we can separate the c.m. contribution from the intrinsic

part of the nonlocal density:

ρsf (�q, �K) = 〈φc.m.0s|e−i �q·�ζc.m. |φc.m.0s〉

× 1

(2π )3
〈� ′

t iJ
′M|

∑

i

e−i �q·�ζrel,ie−i �K· �Zi |�t iJM〉.

(19)

We now can define the t i matrix elements for the nonlocal

density as

ρt i(�q, �K) ≡ 1

(2π )3
〈� ′

t iJ
′M|

∑

i

e−i �q·�ζrel,ie−i �K· �Zi |�t iJM〉.

(20)

Thus, if we know the space-fixed nonlocal density as a function

of the momenta �q and �K and calculate the c.m. contribution in

the |0s〉 state, we obtain the translationally invariant density.

Let us first consider the calculation of ρsf (�q, �K). In order

to transform the sf nonlocal density to the coordinates �q
and �K, the harmonic oscillator lengths must be transformed

to b�q and b �K. This transformation is explicitly given in

Appendix B. Then we need to express the product

Rnl(p)Rn′l′ (p
′)Y(p̂,p̂′) from Eq. (11) as a function of �q and

�K. To do so, we use Talmi-Moshinsky transformations from

|nln′l′ : K〉 to |nK,lK,nq ,lq : K〉. Those Talmi-Moshinsky

brackets only depend on the transformation parameter d,

defined in Appendix B, the multipole K , and the harmonic

oscillator quantum numbers (n,l,n′,l′). They do not depend

on M and require the energy conservation 2n′ + l′ + 2n + l =
2nK + lK + 2nq + lq . Thus the radial and angular components

of the wave functions transform as

Rn′l′ (p
′)Rnl(p)Y l′l

KM (p̂,p̂′) =
∑

nq ,nK,lq ,lK

〈nKlK,nq lq : K|n′l′,nl : K〉d=1RnKlK (K)Rnq lq (q)Y
lK lq
KM (q̂,K̂). (21)

With this, the sf nonlocal density as a function of �q and �K becomes

ρsf (�q, �K) =
∑

K

∑

nq lqnK lK

∑

nln′l′jj ′

〈

nq lqnKlK : K|n′l′nl : K
〉

d=1
(−1)J

′−M

(

J ′ K J

−M 0 M

)

Y
lq lK
K0 (q̂,K̂)

× (−1)
l−l′

2 (−1)j+ 1
2
+l+l′+K ĵ ĵ ′

{

l′ l K

j j ′ 1
2

}

Rnq lq (q)RnKlK (K)〈Aλ′J ′||(a†
n′l′j ′ ãnlj )K ||AλJ 〉

=
∑

K

∑

lq lK

(−1)J
′−M

(

J ′ K J

−M 0 M

)

Y
lq lK
K0 (q̂,K̂)ρlq lKK (q,K), (22)

where the K-tensor component that depends on q and K is given by

ρlq lKK (q,K) ≡
∑

nqnK

∑

nln′l′jj ′
〈nq lqnKlK : K|n′l′nl : K〉d=1(−1)

l−l′
2 (−1)j+ 1

2
+l+l′+K ĵ ĵ ′

{

l′ l K

j j ′ 1
2

}

×Rnq lq (q)RnKlK (K)〈Aλ′J ′||(a†
n′l′j ′ ãnlj )K ||AλJ 〉. (23)

Next, we calculate the contribution of the c.m. as

〈φc.m.0s|e−i �q·�ζc.m. |φc.m.0s〉 = e− 1
4A

b2q2

, (24)

where A is the number of nucleons and b the harmonic oscil-

lator length. The explicit calculation is given in Appendix C.

Collecting the information from Eqs. (22) and (24), the t i

nonlocal density can be calculated as

ρ(�q, �K) = e
1

4A
b2q2

ρsf (�q, �K), (25)

where we dropped the subscript t i. Since the c.m. contribution

is a simple analytic function of q2, the numerical effort in

computing the t i nonlocal density is the computation of the sf

nonlocal density as a function of �q and �K in Eq. (21). This is an

important advantage of the current method, and avoids the need

for transforming NCSM’s OBDM elements to relative (Jacobi)

coordinates. Subsequently, we can obtain the t i nonlocal

density in coordinate space by a Fourier transformation of

Eq. (25). The t i local density can be computed from Eq. (25)

by integrating the nonlocal density over �K,

ρK=0(q) =
∫

dKK2ρ000(q,K). (26)

Note that this local density in momentum space is also referred

to as the elastic form factor (see, e.g., Ref. [31]), and can also

be obtained as the Fourier transform of the local probability

density in coordinate space. We use this as numerical check; in

particular, the value at q = 0 should correspond to the number

of nucleons.

III. RESULTS AND DISCUSSION

A. Nonlocal densities in momentum space

The nonlocal densities shown in this work are based on ab

initio NCSM or SA-NCSM calculations of OBDM elements
that employ the JISP16 NN interaction [25]. Before elabo-
rating on the nonlocal structure of the translationally invariant
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density, we first establish that its construction is consistent with
a translationally invariant local density directly constructed
in momentum space as outlined in Appendix A. In Fig. 1
we show the K = 0 component of the local proton density
of 12C as a function of the momentum transfer q, which is
constructed as outlined in Appendix A. We also confirmed that
this is numerically equivalent to the local density construction
presented in Ref. [30]. The solid line represents the Fourier
transform of the density to momentum space, the form factor,
which is normalized at q = 0 to the number of protons.
The solid triangles represent the same quantity obtained by
integrating the nonlocal density over the nonlocal variable K
according to Eq. (26). The integrated values agree with the
directly constructed ones at least within six significant figures.
For comparison, we also include a local density obtained
from a more traditional Hartree-Fock-Bogolyubov mean-field
calculation which utilizes the density-dependent finite-range
Gogny D1S nucleon-nucleon interaction [32,33]. Based on
this density, elastic proton scattering off 12C was successfully
calculated in [34]. However, a slight mismatch in the diffraction
minima of the differential cross section could indicate that the
slower fall-off of the NCSM local density may be preferable.

Next, we want to study nonlocal one-body densities of four
different nuclei, the open shell nuclei 6Li and 12C, and the
closed shell nuclei 4He and 16O. It is well known that 12C
consisting of six protons and six neutrons is deformed in its
body-fixed frame, 6Li consisting of three protons and three
neutrons can be sometimes viewed as consisting of a 4He core
and an additional neutron-proton pair in the p-shell, while 4He
and 16O are closed shell nuclei. In a shell-model framework,

0 1 2 3 4 5

q [fm
-1

]

0

1

2

3

4

5

6

ρ
K

=
0
(q

)

Constructed Local Density
HFB Density
Con
HFB

Integrated Non-Local Density

FIG. 1. The translationally invariant local one-body density ob-

tained from a NCSM calculation (Nmax = 10, h̄ω = 20 MeV) based

on the JISP16 NN interaction for the proton distribution of 12C as

function of the momentum transfer q. The solid line (red) shows

the direct construction in momentum space, while the solid triangles

(black) give the local density obtained by integrating the nonlocal

density over the momentum K. As comparison a local density

obtained from a HFB mean field calculation based on the Gogny

interaction [33] is shown by the filled solid (blue) circles.

the protons and neutrons in 4He occupy predominantly the s

shell, while in 16O they occupy predominantly the s and p

FIG. 2. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Nmax =
10, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 12C as function of the momenta q and K. Panel (a) depicts

the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.
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FIG. 3. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Nmax =
8, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 16O as function of the momenta q and K. Panel (a) depicts

the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.

FIG. 4. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Nmax =
14, h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 4He as function of the momenta q and K. Panel (a) depicts

the contribution of lq = 0, (b) of lq = 2, (c) of lq = 4, and (d) of lq = 6.
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FIG. 5. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Nmax =
10,h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 12C as function of the local coordinate ζ and the nonlocal

coordinate Z. Panel (a) depicts the contribution of lζ = 0, (b) of lζ = 2, (c) of lζ = 4, and (d) of lζ = 6.

FIG. 6. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Nmax =
14,h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the local coordinate ζ and the nonlocal

coordinate Z. Panel (a) depicts the contribution of lζ = 0, (b) of lζ = 2, (c) of lζ = 4, and (d) of lζ = 6.
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FIG. 7. The K = 0 component of the translationally invariant nonlocal one-body density ρlq lK (q,K) obtained from a NCSM calculation

(h̄ω = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the momenta q and K and the size of the

model space. The first column contains angular momentum slices obtained with Nmax = 6, the second with Nmax = 10, the third with Nmax = 12,

and the fourth with Nmax = 14. The rows represent different angular momentum slices lq = lK from 0 to 6.

shells. Thus we want to explore if nonlocal properties reflect
some of the common perceptions about those nuclei. Since
we make a multipole expansion of the nonlocal density, it is
convenient to concentrate on a specific multipole. Here we
chose the K = 0 multipole, since this component determines
the density of the 0+ ground states for the even-even nuclei un-
der consideration and dominates in the 1+ ground state in 6Li.
First, we want to consider the K = 0 multipole [see Eq. (23)
for notation] of the nonlocal one-body density in momentum
space, ρlq lK(K=0)(q,K). We show proton densities in physically
relevant variables, the momentum transfer q = | �p′ − �p| and

K = 1
2
| �p′ + �p|. Note that the variable �K, being the conjugate

coordinate to the nonlocal coordinate �Z, only appears when
nonlocal densities are considered. The converged nonlocal
densities ρlq lK(K=0)(q,K) for the proton distributions of 12C,
16O, and 4He are displayed as functions of q andK in Figs. 2, 3,
and 4, respectively, while the corresponding nonlocal density
of 6Li is given in the last column of Fig. 7. To illustrate the
contributions of different angular momenta, we show slices of
constant values of lq = lK. The constraints given in Eq. (21) in-
dicate that, for K = 0, once lq is fixed, lK takes the same value.

We also need to point out that the contributions of odd values
of lq cancel out exactly for K = 0 as a result of the symmetry
properties of the Talmi-Moshinsky brackets [35,36]. The van-
ishing contribution for odd lq is validated numerically as well.

A common observations for all four nuclei is that the

contribution of lq = 0 dominates. We further point out that,

when integrating ρlq lK(K=0)(q,K) over K to obtain the local

density, the constraints for lq determine that only lq = 0

contributes to the local density, as given, e.g., for 12C in Fig. 1.

Thus, all higher values of lq are genuinely nonlocal contribu-

tions for K = 0. For both 6Li and 4He, the maximum of the

lq = 0 slice is located at q = 0 and K = 0, and the functions

fall off smoothly to zero in q as well K. This is different

for 12C and 16O, for which the maximum value is located

around K ∼ 1 fm−1 and q = 0, and which, in addition, exhibit

a minimum around q ∼ 2 fm−1 for K = 0.

Figures 2–4 as well as Figs. 7–9 are plotted in a way that

ρlq lK (q = 2K,K) is shown along the diagonal. For the closed

shell nucleus 4He (Fig. 4), for which the protons are assumed to

dominantly occupy the s shell, the maximum of the nonlocality

for lq � 2 follows the diagonal line and moves to higher values
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of q the larger lq becomes. For 6Li (Fig. 7, fourth column),

which can still be considered as dominated by particles in the s

shell, the maximum of ρlq lK (q,K) moves slightly away from the

“diagonal” and the off-shell structure can be roughly located

between ρlq lK (q = 4K,K) and ρlq lK (q = K,K), while for 12C

(Fig. 2) and 16O (Fig. 3) the entire nonlocality is located in

this “wedge.” Furthermore the density changes sign along the

line q = 2K. This pattern, together with the different lq = 0

behavior, appears to be a signature for nonlocal densities in

p-shell dominated nuclei.

B. Nonlocal densities in coordinate space

Once we obtain the t i nonlocal density in momentum space,

we can numerically Fourier transform them to coordinate

space. The conjugate coordinate to the momentum transfer q

is the local coordinate ζ = 1
2
|�r ′ + �r|, and to K the nonlocal

coordinate Z = |�r ′ − �r|. The angular momenta related to ζ

and Z are denoted as lζ and lZ . In Fig. 5 we show angular

momentum slices of nonlocal proton densities in coordinate

space for K = 0 as a function of ζ and Z for 12C, and in

Fig. 6 for 6Li. Here we choose the local coordinate ζ as one

of the axes, so that one can directly read off the local densities

of 12C and 6Li along the line Z = 0. Hence, Fig. 5 shows

that the local density of 12C has its maximum at ζ ∼ 1 fm

and is suppressed at ζ = 0 fm, suggesting that the density is

pushed away from the center; indeed, if one plots this density

in a body-fixed frame, it will have a deformed torus-like shape

with a suppressed density in the center. However, the present

densities are not calculated in a body-fixed frame, and Fig. 5

does not reveal any features that can be associated with the

nuclear deformation. On the other hand, we can say that when

we compare the lq = 0 contributions in momentum space of
12C and 16O, the local density of 16O also has a maximum that

is pushed away from the origin, which is a consequence of the

p shell being filled up.

The range of the ζ and Z axes are chosen such that

the diagonal of the plot shows ρlζ lZ (ζ,Z = 2ζ ). Both figures

show similar behavior for lζ � 2 as the corresponding q-K
figure. In Fig. 5 for lζ � 2, the nonlocal density changes

sign along ρlζ lZ (ζ,Z = 2ζ ), and the maxima and minima are

roughly located in the area given by the lines ζ = 4Z and

ζ = Z, indicating a possible p-shell dominance of the nonlocal

density. For 6Li the situation is slightly different: for lζ = 2 the

FIG. 8. The K = 0 component of the translationally invariant nonlocal one-body density ρlq lK (q,K) obtained from a NCSM calculation

(Nmax = 12) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the momenta q and K and the oscillator

parameter h̄ω. The first column contains angular momentum slices obtained with h̄ω = 15 MeV, the second with h̄ω = 20 MeV, and the third

with h̄ω = 25 MeV. The rows represent different angular momentum slices lq = lK from 0 to 6.
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maximum still follows the diagonal, and only for lζ � 4 does

a p-shell dominance develop. This may indicate that the lower

lζ are still s-shell dominated, while the p-shell proton mainly

gives the lζ = 6 contribution.

A further study of NCSM calculations with different NN

interactions will have to be carried out to investigate if the

observed nonlocal structures persist and are essentially an indi-

cation of the shell structure of the nucleus under consideration.

C. Dependence of the nonlocal density on the model space

The calculations presented in the previous subsections are

carried out with one-body density matrix elements from NCSM

and SA-NCSM calculations that are close to convergence with

respect to the ground state binding energies and low-lying

excited states, as far as the model space is concerned. For
6Li those studies are carried out in Ref. [30,31,37], together

with model-dependence studies with respect to the root-mean-

square point-proton radius and the quadrupole moment. The

calculations for 12C are discussed in Ref. [37] and those for 16O

in Refs. [38,39]. The t i density should become independent of

the basis parameters h̄ω and Nmax as Nmax increases. However,

it is impractical to carry out a convergence study of the nonlocal

density itself, and instead we illustrate how some of the features

of the nonlocal density depend on the model space.

First, we consider the K = 0 component of the nonlocal

proton density for a fixed h̄ω = 20 MeV as a function of

the Nmax truncation. In Fig. 7 we display slices of ρlq lK (q,K)

for 6Li for fixed lq = lK for Nmax = 6, 10, 12, and 14. For

lq = 0 we observe that the density maximum at q = 0,K = 0

increases as a function of Nmax. This is consistent with the

fact that the tail of the wave function in coordinate space

(and hence radii) become better described as Nmax increases.

However, the general distribution remains the same. The

angular momentum slices lq = 2 and lq = 4 clearly show how

the nonlocal structure builds up as Nmax increases, but again

the general distribution remains the same. Even going from

Nmax = 12 to Nmax = 14, there is a very slight increase of the

maxima of ρlq lK . The slice for lq = 6 for Nmax = 6 exhibits a

very different nonlocal structure in comparison to the higher

Nmax values, which can be understood as an effect of the

model-space truncation. We observe changes in the nonlocal

FIG. 9. The K = 0 component of the translationally invariant nonlocal one-body density ρlζ lZ (ζ,Z) obtained from a NCSM calculation

(Nmax = 12) based on the JISP16 NN interaction for the proton distribution of 6Li as function of the local coordinate ζ , the nonlocal coordinate

Z, and the oscillator parameter h̄ω. The first column contains angular momentum slices obtained with h̄ω = 15 MeV, the second with h̄ω =
20 MeV, and the third with h̄ω = 25 MeV. The rows represent different angular momentum slices lζ = lZ from 0 to 6.
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structure for lq = 6 even when going from Nmax = 12 to

Nmax = 14. However, the absolute values of this contribution is

so small that calculations of observables based on this nonlocal

density are unlikely to be affected by the lq = 6 (or higher)

contributions. In general, the figure shows that the Nmax = 6

model space is not sufficient to describe nonlocal correlations,

but the nonlocal structure looks reasonably well converged at

Nmax = 14, similarly to the results calculated earlier for the

binding energy and other observables [30].

Next we keep Nmax fixed (Nmax = 12) and study the

nonlocal structure as a function of the oscillator parameter

h̄ω, where we choose the values 15, 20, and 25 MeV. It

is well known that, for a given Nmax, the basis truncation

introduces effective infrared (IR) cutoff and ultraviolet (UV)

cutoffs that also depend on the h̄ω value: namely, very low h̄ω

values (a small momentum UV cutoff) cut out high momenta

that may affect short-range correlations, while very large h̄ω

values (small spatial IR cutoff) affect the wave function tail

[40–43]. Note that increasing Nmax increases both the IR and

UV cutoffs, removing both cutoffs in the infinite model space

limit. Exploring the h̄ω dependence, in comparison to the large

Nmax limit of Fig. 7 which improves both cutoffs, can provide

some indication if the nonlocality is sensitive to these cutoffs.

The corresponding functions ρlq lK (q,K) for lq = lK = 0, 2, 4,

and 6 are shown in Fig. 8 and ρlζ lZ (ζ,Z) in Fig. 9 for the

proton density of 6Li. The study of Ref. [30] has already shown

that, for the local density ρ(r) of 6Li, a smaller value of h̄ω

leads to a better description of the asymptotic tail of the wave

function and a spatially expanded density, but the density in the

nucleus interior becomes low, whereas for larger values of h̄ω

the situation is reversed. Indeed, the larger h̄ω value yields a

significantly lower maxima for the density in momentum space

(Fig. 8), whereas the smaller h̄ω value gives very pronounced

maxima as function of q and K. As already mentioned above,

this is the result of the poor convergence of the tail of the wave

function in coordinate space for large values of h̄ω. On the

other hand, low h̄ω values lack a good description of the high

momentum behavior. Furthermore, for low h̄ω the maxima are

moved toward low q momentum transfers, and for high lq a

particle is mainly transferred from (or to) low p momentum

(diagonal line, as discussed above).

Considering the coordinate space density, ρlζ lZ (ζ,Z), in

Fig. 9, we find that for small h̄ω values, the nonlocal structures

are well developed at larger values of ζ and lζ , while for lζ = 0

the maximum at ζ = Z = 0 is less developed. Again, this

is consistent with the findings in Ref. [30]. In contrast, for

h̄ω = 25 MeV, we notice that more features are resolved in

the nonlocal structure, especially for higher lζ , a direct result

of improving the UV cutoff. Overall, we conclude that the

nonlocality of the density seems to be more sensitive to the IR

cutoff, that is, to the description of the tail of the wave function

in coordinate space, except for high lq , where the nonlocal

contribution, while being very small, becomes also sensitive

to the UV cutoff.

D. Study of the nonlocality of the density

To study the nonlocal behavior in a more quantitative

fashion, we plot the K = 0, lq = 0 component of ρlq lK (q,K)
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FIG. 10. The K = 0, lq = 0 component of the translationally in-

variant nonlocal one-body density obtained from a NCSM calculation

based on the JISP16 NN interaction for the proton distribution of 12C

[panel (a)] and 4He (panel (b)) as a function of the nonlocal momentum

K at fixed momenta q as indicated in the legend. The distributions are

normalized by the factors indicated in the legend.

for fixed values of q as a function of K for 12C [Fig. 10(a)]

and 4He [Fig. 10(b)]. As soon as we take K-slices of 12C at

higher values of q, the form of the nonlocality changes, dips

for q = 1 fm−1 for small K, and becomes negative for even

larger q. Since the magnitude of ρK=0,lq=0(q,K) changes by

orders of magnitude when moving along q, we normalize the

slices by a factor N given by

N = ρ(q = 0,K = 0)

ρ(q,K = 0)
. (27)

We also note that ρK=0,lq=0(q,K) falls off quickly as a function

of K, independent of the value of q, and becomes essentially

zero for K � 2 fm−1. Comparing with Fig. 3, the nonlocal

density of 16O exhibits the same behavior. Panel (b) of Fig. 10

shows similar slices of the K = 0 component of ρlq lK (q,K)

for 4He. Here we find that the nonlocal density is positive

for all values of q and falls off like a Gaussian. However,

there is no uniform Gaussian bell shape for all q, since for

the larger q values the Gaussian width increases. It appears

that there is no simple parametrization of this behavior as a

function of q. Similarly to 12C, the nonlocality of the 4He

density is essentially zero for K > 2 fm−1, though it has larger

high-momentum components compared to 12C. This can be

understood from realizing that smaller radii in coordinate space

translate to larger high-momentum components.

Finally, we show in Fig. 11(a) a “form factor” ρK=0(K), for

K = 0, as a function of K, where ρlq lK (q,K) is integrated over

q. It is worthwhile noting that for 4He and 6Li this function

is positive, while it starts as negative values for 12C and 16O

before turning positive. This, together with the observations

of Sec. III A, may allow one to conclude that if a nucleus is

dominated by s-shell nucleons, the value of ρK=0(K = 0) is

positive, and when p-shell nucleons dominate, ρK=0(K = 0)

is negative.
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FIG. 11. The K = 0 component of the translationally invariant

one-body density obtained from NCSM calculations based on the

JISP16 NN interaction for the proton distributions of 4He, 6Li, 12C,

and 16O as a function of the nonlocal momentumKwhen integrated of

the local momentum q [panel (a)]. Panel (b) depicts the local densities

for the same nuclei as function of the momentum transfer q when

integrated over the nonlocal momentum K.

In addition, we show in Fig. 11(b) the conventional proton

form factors (local densities in momentum space) for the

same nuclei, which are normalized to the proton number at

q = 0. Only the charge distributions of the heavier nuclei have

a zero crossing visible in the figure; the one for 6Li turns

negative at ∼6 fm−1 while it stays completely positive for
4He. Generally, the proton form factor provides information

about the spatial charge distribution of the nucleus. The

information given by ρK=0(K) gives a consistent picture;

namely, after the s-shell is filled, additional protons fill up the

p shell.

IV. CONCLUSIONS AND OUTLOOK

In this work we explored features of translationally invariant

nonlocal one-body densities obtained from ab initio NCSM

and SA-NCSM calculations using the JISP16 NN interaction

[25] for several light nuclei. In order to do this, we first defined

the nonlocal one-body density in a space-fixed coordinate

system in such a way that it directly relates to the OBDM

elements which a NSCM calculation provides, and constructed

space-fixed nonlocal one-body densities for 4He, 6Li, 12C,

and 16O in momentum and position space. As examples for

our study, we chose 4He and 16O representing closed shell

nuclei, together with 6Li and 12C representing open shell

nuclei.

To remove the c.m. part of the wave functions calculated

in the NCSM using a harmonic oscillator basis, we first

needed to transform the space-fixed nonlocal densities from

conventionally used linearly independent variables �p and �p′

to another linearly independent set �q and �K which is more

appropriate for our task. Their conjugate coordinate variables
�ζ and �Z are such that the c.m. contribution is only contained in
�ζ . With this, we can successfully extend a scheme developed

for removing c.m. contributions from local one-body densities

[27–31] to nonlocal one-body densities.

We studied the nonlocal structure of the one-body densities

as a function of the angular momentum lq in momentum

as well as coordinate space. For all four nuclei the largest

contribution to the nonlocal density comes from the lq = 0 part,

for which the nonlocality is restricted to about 2 fm. The higher

angular momenta, though at least two orders of magnitude

smaller, contribute exclusively to the nonlocal structure. Thus

nuclear properties or reactions that are dominated by these

angular momentum contributions will show sensitivity to the

nonlocality. In addition, we found that the nonlocal structure of

the neutron and proton one-body densities does not show any

significant difference for the N = Z nuclei we investigated.

We also found that the structure of the nonlocality reflects

the shell structure of the nuclei we considered. Once the p

shell becomes dominant, the nonlocality exhibits a specific

pattern not visible in the s-shell dominated 4He. Finally, we

investigated if there may be some systematic behavior in the

nonlocal structure of the one-body densities which might be

captured in some analytic form. While this might be possible

for the nonlocal structure of 4He, it does not look promising

for the other nuclei we investigated.

We note that the current results are presented for the JISP16

NN interaction, and we have found that, e.g., using chiral

potentials such as the NNLOopt [44] for 6Li does not intro-

duce significant changes into the density outcomes presented

here. A further study that adopts different NN interactions

will have to be carried out to investigate if the observed

nonlocal structures persist and are essentially an indication

of the nuclear shell structure. We have also studied the role

of nonlocality in densities calculated from the SA-NCSM

using selected model spaces, which yields results that are

essentially the same as compared to those obtained in the

corresponding complete model spaces. This will allow one

to study nonlocal density features in heavier nuclear systems.

The outcomes of these studies will be the focus of a following

publication.

Summarizing, this work shows how the c.m. contribution

can be removed from ab initio nonlocal one-body densities

using NCSM wave functions, in a way similar to that known

for local ones. This will open the path for those densities

to be employed, for example, in calculations of nuclear

reactions.
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APPENDIX A: DERIVATION OF THE SPACE-FIXED

LOCAL ONE-BODY DENSITY CONSTRUCTED

IN MOMENTUM SPACE

To apply the procedure for removing the c.m. contribution

from the local density as suggested in Refs. [30,31,43], the

space-fixed local density constructed in coordinate space needs

to be Fourier transformed to momentum space. A numerical

Fourier transform as suggested in [30] will introduce numer-

ical errors specifically at large momenta due to the highly

oscillatory nature of the transformation. Therefore, it is highly

desirable to derive a scheme in which the space-fixed local

density is constructed directly in momentum space. For this,

we need the HO wave functions, Rnl(p), in momentum space:

Rnl(p) = (−1)n

[

2(b2)l+3/2
(n + 1)


(n + l + 3
2
)

]
1
2

ple− 1
2
p2b2

L
l+ 1

2
n (p2b2), (A1)

with harmonic oscillator length b =
√

h̄2c2

mc2 h̄�
. The corresponding coordinate space HO wave functions are given as

Rnl(r) =
√

2

π

∫

dp p2Rnl(p)jl(rp) =
[

2
(n + 1)

(b2)l+3/2

(

n + l + 3
2

)

]
1
2

r le
− 1

2
r2

b2 L
l+ 1

2
n

(

r2

b2

)

. (A2)

Here a normalization coefficient

√

2
π

is included. The function L
l+ 1

2
n ( r2

b2 ) represents the associated Laguerre polynomials. Note

the difference in phase of (−1)n in Rnl(p) and Rnl(r).

Combining this with the multipole expansion of the space-fixed nonlocal one-body density in Eqs. (6) and (7), we arrive at

ρ
(K)
sf (�r,�r ′) =

∑

nljn′l′j ′

l+l′
∑

K=|l−l′|
(−1)J

′−M ′
(

J ′ K J

−M ′ 0 M

)

∑

m,m′

〈lml′m′|K0〉Y ∗m
l (r̂)Y ∗m′

l′ (r̂ ′)

× ĵ ĵ ′ (−1)l
′+l+j+ 1

2
+K

{

l′ l K

j j ′ 1
2

}

√

2

π

∫

dp p2Rnl(p)jl(rp)

√

2

π

∫

dp′p′2Rn′l′(p
′)jl(r

′p′)

×〈Aλ′J ′||(a†
n′l′j ′ ãnlj )(K)||AλJ 〉. (A3)

Setting �r = �r ′, reducing the spherical harmonics, and simplifying the resulting Clebsch-Gordan coefficients by combining them

with the 6j symbol leads to

ρ
(K)
sf (�r) =

∑

nljn′l′j ′

l+l′
∑

K=|l−l′|
(−1)J

′−M ′
(

J ′ K J

−M ′ 0 M

)(

j ′ j K
1
2

− 1
2

0

)

1√
4π

ĵ ĵ ′ (−1)j+ 3
2
+KY ∗0

K (r̂)

×
√

2

π

∫

dpp2Rnl(p)jl(rp)

√

2

π

∫

dp′p′2Rn′l′ (p
′)jl(rp

′)〈Aλ′J ′||(a†
n′l′j ′ ãnlj )(K)||AλJ 〉. (A4)

Rearranging the integrals and performing the Fourier transformation leads to

ρ
(K)
sf (�q) =

∑

nljn′l′j ′

l+l′
∑

K=|l−l′|
(−1)J

′−M ′
(

J ′ K J

−M ′ 0 M

)(

j ′ j K
1
2

− 1
2

0

)

1√
4π

ĵ ĵ ′ (−1)j+ 3
2
+K (i)K

×Y ∗0
K (r̂)〈Aλ′J ′||(a†

n′l′j ′ ãnlj )(K)||AλJ 〉8
∫

dp p2Rnl(p)

∫

dp′p′2Rn′l′ (p
′)

∫

drr2jK (qr)jl(rp)jl′(r
′p′). (A5)

For the special case of K = 0, the integral over r can be evaluated analytically, noting that l = l′ and j = j ′:
∫

drr2j0(qr)jl(rp)jl′(rp
′) = π

4

β(�)

pp′q
Pl(�). (A6)
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Here Pl(�) are Legendre polynomials, and the argument � is

defined as

� = p2 + p′2 − q2

2pp′ . (A7)

The function β(�) is given as

β(�) = 1 for −1 < � < 1,

β(�) = 1/2 for � = ±1,

β(�) = 0 otherwise.

(A8)

The function β(�) allows us to constrain the integral over p′

in Eq. (A4) to the values

p′
� q + p and p′

� |q − p|. (A9)

This leads to the final expression for the momentum space

local density, which can be calculated directly in mo-

mentum space from given OBDM elements from NCSM

calculations:

ρ
(0)
sf (q) =

∑

nn′lj

(−1)J
′−M ′

(

J ′ 0 J

−M ′ 0 M

)(

j j 0
1
2

− 1
2

0

)

×√
πĵ ĵ (−1)j+ 3

2 Y ∗0
0 (r̂)〈Aλ′J ′||(a†

n′lj ãnlj )(0)||AλJ 〉

×
∫ ∞

0

dp p2Rnl(p)

∫ p+q

|p−q|
dp′p′2Rn′l(p

′)
1

pp′q
Pl(�).

(A10)

APPENDIX B: DERIVATION OF HARMONIC

OSCILLATOR LENGTHS FOR THE TRANSFORMATION

TO q AND K

For transforming the momenta of ρ( �p, �p′) in Eq. (11)

to momenta �q and �K we need to know how the harmonic

oscillator lengths transform. Defining bK and bq , we can infer

that a dimensionless coordinate transformation must hold in

the same fashion as the coordinate transformation defined

in Eq. (14),

bK �K = bK

2b
b �p′ + bK

2b
b �p,

bq �q = bq

b
b �p′ − bq

b
b �p. (B1)

The transformation can be written as
(

bK �K
bq �q

)

=

⎡

⎣

√

d
1+d

√

1
1+d

√

1
1+d

−
√

d
1+d

⎤

⎦

(

b �p′

b �p
)

, (B2)

with d as a yet undetermined parameter. A comparison with

Eq. (B1) leads to

bK

2b
=

√

d

1 + d
=

√

1

1 + d
,

(B3)
bq

b
=

√

1

1 + d
=

√

d

1 + d
,

which is then solved as

d = 1 and bK =
√

2b,

d = 1 and bq = b√
2
.

(B4)

This transformation of the harmonic oscillator lengths is the

same for the conjugate variables �ζ and �Z,

d = 1 and bZ =
√

2b,

d = 1 and bζ = b√
2
.

(B5)

The values ofd enter the Talmi-Moshinsky brackets in Eq. (21),

and bq and bK the radial oscillator functions.

APPENDIX C: DERIVATION OF THE CENTER-OF-MASS

CONTRIBUTION

As indicated in Eq. (16), the variable ζ can be separated

into a component representing the relative motion and one for

the c.m. motion. The displacement Z is already translation-

ally invariant. According to Eq. (13) the c.m. component of

(SA-)NCSM eigenstates is exactly factorized and, by construc-

tion, is in the |0s〉 state. Thus we need to compute Eq. (24):

〈φc.m.0s|e−i �q·�ζc.m. |φc.m.0s〉 =
∫ ∫

d3Rc.m.d
3R′

c.m.Rnl(Rc.m.)Rn′l′ (R
′
c.m.)Y

ll′
K0(R̂c.m.,R̂c.m.

′
) e−i �q·�ζc.m.

=
∫ ∫

d3ζc.m.d
3Zc.m.

∑

nq ,nK ,lq ,lK

〈nKlK,nq lq : K|n′l′,nl : K〉d=1Rnζ lζ (ζc.m.)RnZ lZ (Zc.m. = 0)

×Y
lζ lZ
K0 (̂ζc.m.,Ẑc.m.) e−i �q·�ζc.m.

=
∫

d3ζc.m.R00(ζc.m.)R00(0)
1

4π
e−i �q·�ζc.m. . (C1)

We note that

〈nK = 0lK = 0,nq = 0lq = 0 : K = 0|n′ = 0l′ = 0,n = 0l = 0 : K = 0〉d=1 = 1. (C2)

Furthermore, if n = l = n′ = l′ = 0, then nq = lq = nK = lK = 0 as well.
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Evaluating the radial wave function using Eq. (A2) with the corresponding harmonic oscillator lengths, we obtain

R00(ζc.m.) =
[

22

(

b2
ζc.m.

)3/2√
π

]
1
2

e
− 1

2

ζ2
c.m.

b2
ζc.m. , R00(Zc.m. = 0) =

[

22

(

b2
Zc.m.

)3/2√
π

]
1
2

, (C3)

where b2
ζc.m.

= b2
ζ

A
and b2

Zc.m.
= b2

Z

A
.

Inserting Eq. (C3) into Eq. (C1) leads to

〈φc.m.0s|e−i �q·�ζc.m. |φc.m.0s〉 =
(

1

π

)3/2
1

(bζc.m.
)3/2

1

(bZc.m.
)3/2

∫

d3ζc.m. e
− 1

2

ζ2
c.m.

b2
ζc.m.

−i �q·�ζc.m.

. (C4)

Completing the square in the integral leads to

〈φc.m.0s|e−i �q·�ζc.m. |φc.m.0s〉 =
(

2bζc.m.

bZc.m.

)3/2

e− 1
2
b2

ζc.m.
q2 = e− 1

4A
b2q2

, (C5)

where we used the relations for bζ and bZ from Eq. (B5) to arrive at the final expression for the c.m. contribution.

[1] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001 (2003).

[2] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

[3] E. Epelbaum, H.-W. Hammer, and U.-G. Meissner, Rev. Mod.

Phys. 81, 1773 (2009).

[4] D. Langr, I. Simecek, P. Tvrdik, T. Dytrych, and J. P. Draayer, in

Proceedings of the Federated Conference on Computer Science

and Information Systems (FEDCSIS), 2012 (IEEE, Piscataway,

NJ, 2012), p. 545.

[5] M. Shao, H. Aktulga, C. Yang, E. Ng, P. Maris, and J. Vary,

Comput. Phys. Commun. 222, 1 (2018).

[6] H. M. Aktulga, C. Yang, E. G. Ng, P. Maris, and J. P. Vary,

Concurrency Comput. Pract. Exp. 26, 2631 (2014).

[7] M. Jung, E. H. Wilson, III, W. Choi, J. Shalf, H. M. Aktulga,

C. Yang, E. Saule, U. V. Catalyurek, and M. Kandemir, in Pro-

ceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’13 (ACM,

New York, 2013), pp. 75:1–75:11.

[8] P. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84,

5728 (2000).

[9] P. Navratil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62, 054311

(2000).

[10] R. Roth and P. Navratil, Phys. Rev. Lett. 99, 092501 (2007).

[11] B. Barrett, P. Navrátil, and J. Vary, Prog. Part. Nucl. Phys. 69,

131 (2013).

[12] C. Stumpf, J. Braun, and R. Roth, Phys. Rev. C 93, 021301

(2016).

[13] T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary,

E. Saule, U. Catalyurek, M. Sosonkina, D. Langr, and M. A.

Caprio, Phys. Rev. Lett. 111, 252501 (2013).

[14] K. D. Launey, T. Dytrych, and J. P. Draayer, Prog. Part. Nucl.

Phys. 89, 101 (2016).

[15] P. Navratil, R. Roth, and S. Quaglioni, Phys. Rev. C 82, 034609

(2010).

[16] S. Quaglioni and P. Navratil, Phys. Rev. Lett. 101, 092501

(2008).

[17] S. Quaglioni and P. Navratil, Phys. Rev. C 79, 044606 (2009).

[18] J. Dohet-Eraly, P. Navrátil, S. Quaglioni, W. Horiuchi, and G.

Hupin, in Proceedings, 21st International Conference on Few-

Body Problems in Physics (FB21), Chicago, May 18–22, 2015

[EPJ Web Conf. 113, 06002 (2016)].

[19] J. Rotureau, P. Danielewicz, G. Hagen, F. M. Nunes, and T.

Papenbrock, Phys. Rev. C 95, 024315 (2017).

[20] H. F. Arellano, F. A. Brieva, and W. G. Love, Phys. Rev. C 42,

652 (1990).

[21] R. Crespo, R. C. Johnson, and J. A. Tostevin, Phys. Rev. C 46,

279 (1992).

[22] C. Elster, S. P. Weppner, and C. R. Chinn, Phys. Rev. C 56, 2080

(1997).

[23] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys. G:

Nucl. Part. 36, 083101 (2009).

[24] A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary, and T. A.

Weber, Phys. Rev. C 70, 044005 (2004).

[25] A. M. Shirokov, J. P. Vary, A. I. Mazur, S. A. Zaytsev, and T. A.

Weber, Phys. Lett. B 621, 96 (2005).

[26] J. Suhonen, From Nucleons to Nucleus: Concepts of Microscopic

Nuclear Theory (Springer, Berlin, 2007).

[27] P. Rocheford and J. Draayer, Ann. Phys. (N.Y.) 214, 341 (1991).

[28] B. Mihaila and J. H. Heisenberg, Phys. Rev. C 60, 054303 (1999).

[29] P. Navratil, Phys. Rev. C 70, 014317 (2004).

[30] C. Cockrell, J. P. Vary, and P. Maris, Phys. Rev. C 86, 034325

(2012).

[31] T. Dytrych, A. C. Hayes, K. D. Launey, J. P. Draayer, P. Maris,

J. P. Vary, D. Langr, and T. Oberhuber, Phys. Rev. C 91, 024326

(2015).

[32] J. F. Berger, M. Girod, and D. Gogny, Nucl. Phys. A 502, 85

(1989).

[33] D. G. J. F. Berger, M. Girod, Comput. Phys. Commun. 63, 365

(1991).

[34] C. R. Chinn, C. Elster, R. M. Thaler, and S. P. Weppner, Phys.

Rev. C 52, 1992 (1995).

[35] G. P. Kamuntavicius, R. K. Kalinauskas, B. R. Barrett, S.

Mickevicius, and D. Germanas, Nucl. Phys. A 695, 191

(2001).

[36] M. Moshinsky and Y. Smirnov, The Harmonic Oscillator in

Modern Physics, Contemporary Concepts in Physics (Harwood

Academic, Reading, UK, 1996).

[37] T. Dytrych, P. Maris, K. D. Launey, J. P. Draayer, J. P. Vary, D.

Langr, E. Saule, M. A. Caprio, U. Catalyurek, and M. Sosonkina,

Comput. Phys. Commun. 207, 202 (2016).

[38] P. Maris and J. P. Vary, Int. J. Mod. Phys. E 22, 1330016 (2013).

024325-15



BURROWS, ELSTER, POPA, LAUNEY, NOGGA, AND MARIS PHYSICAL REVIEW C 97, 024325 (2018)

[39] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79, 014308

(2009).

[40] S. A. Coon, M. I. Avetian, M. K. G. Kruse, U. van

Kolck, P. Maris, and J. P. Vary, Phys. Rev. C 86, 054002

(2012).

[41] S. N. More, A. Ekström, R. J. Furnstahl, G. Hagen, and T.

Papenbrock, Phys. Rev. C 87, 044326 (2013).

[42] K. A. Wendt, C. Forssén, T. Papenbrock, and D. Sääf, Phys. Rev.

C 91, 061301 (2015).

[43] R. J. Furnstahl, G. Hagen, and T. Papenbrock, Phys. Rev. C 86,

031301 (2012).

[44] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-

Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, et al., Phys.

Rev. Lett. 110, 192502 (2013).

024325-16


