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Background: It is well known that effective nuclear interactions are in general nonlocal. Thus if nuclear
densities obtained from ab initio no-core shell-model (NCSM) calculations are to be used in reaction calculations,
translationally invariant nonlocal densities must be available.

Purpose: Though it is standard to extract translationally invariant one-body local densities from NCSM
calculations to calculate local nuclear observables like radii and transition amplitudes, the corresponding nonlocal
one-body densities have not been considered so far. A major reason for this is that the procedure for removing the
center-of-mass component from NCSM wave functions up to now has only been developed for local densities.
Results: A formulation for removing center-of-mass contributions from nonlocal one-body densities obtained
from NCSM and symmetry-adapted NCSM (SA-NCSM) calculations is derived, and applied to the ground state
densities of “He, °Li, 12C, and '%0. The nonlocality is studied as a function of angular momentum components
in momentum as well as coordinate space.

Conclusions: We find that the nonlocality for the ground state densities of the nuclei under consideration increases
as a function of the angular momentum. The relative magnitude of those contributions decreases with increasing
angular momentum. In general, the nonlocal structure of the one-body density matrices we studied is given by

the shell structure of the nucleus, and cannot be described with simple functional forms.

DOI: 10.1103/PhysRevC.97.024325

I. INTRODUCTION AND MOTIVATION

Recent developments of the nucleon-nucleon (NN) or three-
nucleon (3N) interactions, derived from chiral effective field
theory, have yielded major progress [1-3]. These, coupled
with the utilization of massively parallel computing resources
(e.g., see [4-7]), have placed ab initio large-scale simulations
at the frontier of nuclear structure and reaction explorations.
Among other successful many-body theories, the ab initio no-
core shell-model (NCSM) approach, which has considerably
advanced our understanding and capability of achieving first-
principles descriptions of low-lying states in light nuclear
systems [8—12], has over the last decade taken center stage
in the development of microscopic tools for studying the
structure of atomic nuclei. The NCSM concept combined
with a symmetry-adapted (SA) basis in the ab initio SA-
NCSM [13] has further expanded the reach to the structure
of intermediate-mass nuclei [14]. The NCSM framework has
been successfully extended to reactions of light nuclei at low
energies (see, e.g., [15-18]) by combining the NCSM with
resonating group methods. While this approach treats the
many-body scattering problem completely microscopically,
reactions involving heavier nuclei or reactions at higher en-
ergies are usually treated by reducing the many-body degrees
of freedom to a more manageable few-body problem and thus
introducing effective interactions between relevant clusters.
Those effective interactions may either be phenomenologically
described by fitting, e.g., scattering data, or one may attempt
to extract them from structure calculations combined with

2469-9985/2018/97(2)/024325(16)

024325-1

the continuum. A path along this line has recently been
proposed [19] based on the coupled-cluster approach to nuclear
structure.

Microscopic folding models for those effective interactions
also have a long tradition. However, their main disadvantages
is that they were usually constructed for closed shell nuclei
using relatively simple models for the nuclear structure input
(see, e.g., [20-22]). In order to open the path to account
for the full microscopic structure of the clusters and employ
first-principles wave functions, as those derived in the ab
initio NCSM, it is an important first step to construct a
one-body density, which is both nonlocal and translationally
invariant, starting from one-body density matrix (OBDM)
elements obtained from NCSM calculations. The need for
nonlocal densities has been recognized in reaction theory,
e.g., in treating the antisymmetrization between two localized
clusters that accounts for particle exchange [23], as well
as in folding calculations of microscopic optical potentials
[20,22].

In this work we present a “proof-of-principle” study that
focuses on obtaining translationally invariant (#i) nonlocal
one-body densities and discuss their properties. We concentrate
on the deformed oblate '*C nucleus and the open-shell °Li. As
examples for closed shell nuclei we consider “He and '60O.
The NCSM calculations employed here are carried out with
the J-matrix inverse scattering potential, JISP16 [24,25]. In
Sec. II we first define the nonlocal density, and then show
how to remove the center-of-mass (c.m.) contribution to arrive
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at a translationally invariant nonlocal density. In Sec. III, we II. FORMAL CONSIDERATIONS
illustrate the off-shell structure of the fi nonlocal density

. . A. Space-fixed nonlocal densities
for “He, °Li, '?C, and '°0 in momentum space as well as P

for °Li and '’C in coordinate space. We also investigate 1. Space-fixed nonlocal one-body density in coordinate space
the dependence of the nonlocality on the model space, and As a starting point we first derive a space-fixed (s /) nonlocal
finally provide some more details of the nonlocal structure. one-body density, py/(7,r’), between an initial A-body wave
We summarize in Sec. IV. function |W) and a final A-body wave function |¥’),
|
puf(For) = W|Zs3 (7 — HEF — r)|w). (1)

i=1

The many-body wave function |W) is expanded in a basis of Slater determinants of single-particle harmonic oscillator (HO)
states. Since we use sf single-particle coordinates, the wave functions and implicitly the calculated OBDM will include the c.m.
that needs to be removed later. In this paper OBDM elements are calculated within the NCSM, using the JISP16 NN interaction
[24,25]. The NCSM uses a finite set of single-particle HO states, characterized by two basis parameters, the HO energy Aw and
the many-body basis space cutoff Np.x, where Npax is defined as the maximum number of oscillator quanta above the valence
shell for that nucleus.

Expanding the delta functions from Eq. (1) in terms of spherical harmonics, labeling the A-nucleon many-body eigenstates
by the total angular momentum J, its projection M, and all additional quantum numbers collectively by A, we obtain

8(r; ) / N
o ) = (A0S o o ”ZZY, GOY;™ P (Y G AL M), @

i=1 Im I'm
Here 7 represents the angular part of vector 7. After coupling the spherical harmonics to bipolar harmonics,

y;y‘f(f ) = Z <llmllzm2|lm>Y/}1nl(f)Ysz(f/)v

my,my

i+l )
YEYEE) =) Z(zlmllzmﬂlm)y,’,,?(f #),
I=|li—ly| m=—1
and using the Wigner-Eckart theorem, the nonlocal density becomes
il ol T K B(r, r 8! —r)
@i =3 3 (1) M< ) )y*u . A/)<A)LJM > e AGRR! AAJM> )
w K=l i=1

We can immediately make a simplification since in M-scheme calculations M’ = M. Thus, the condition —M’' +k + M =0 in
the 3 symbol forces k to be zero.

To further evaluate the nonlocal density, we rewrite Eq. (4) in second quantization form using « and 8 as final and initial single-
particle HO states, denoted by the single-particle quantum numbers (n,1, j,t,). Then (a)dg)®), where aujm.. = (= 1Y ™™ ép1j— .,
represents the single-particle transition operator of rank K. Using the general expression of the matrix elements of a one-body
operator Tx = ), Tk ; of rank K [26],

1 ,
Wrs Il Tkl ) = = > (@l Tk allB) Wy I ¢l (akag) Ol ), (5)
of

with K = +/2K + I and Tk .1 being a single-particle operator, we obtain for the nonlocal density

I+ / J’ ) s s o
PGy =37 3 (=1)'" ( 5 )y*”c ”)— < H O DD e ﬁ>
I K=|I-I]

x (AN | |(alag)®||ArT). (6)

In Eq. (6), (AMJ’ ||(aTZz,g YK)||ALJ) are reduced one-body density matrix (OBDM) elements. They are calculated using NCSM
eigenstates |[AAJ M) and |AX'J'M’), and are input to our calculations. Replacing « and g by (n',1},, j) and (n,lg, j), respectively,
the reduced single-particle matrix element can be obtained using the HO single-particle wave functions. Note that, for simplicity,
the isospin projections are dropped from the labels, for which (¢,), = (¢;), with only protons entering into calculations of charge
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densities, while calculations of matter densities involve a summation over both protons and neutrons. We can thus separate and

define the K -tensor dependence by

, PN il U1
purk(rr’y= " u’(—l)’*’*”“’f{ I
njn’j'

where R, (r) is the radial component of the single-particle
harmonic oscillator wave function (defined in Appendix A).
Using Eq. (7), the matrix elements of p,(¥,r’) can be expressed
as a sum over all tensors oy (r,r'),

5 = _ J’ K J
puFr)y =Y (=1’ M(—M 0 M)
Kl

x Vo PP )puwk (rir), ®)

separating out the radial and angular components of the
nonlocal density.

2. Space-fixed nonlocal one-body density matrix
in momentum space

In order to remove the c.m. contribution, we need a momen-
tum space representation of the nonlocal density, p ¢ (p, p’). We
obtain it by applying a Fourier transformation to p,f(r,r"),

1 Lo ime
(27_[)3//psf(r,r/)e”’"e_”’" d&’rd’’, 9)

where a normalization factor /(2 7 is included for each

psr(p.p) =

integral, and

TP =4 Y YERYEDN=D) je(pr).
Cc

(10)

Using p,7(r,7") from Eqs. (8) and (7), and the orthonormality
of the spherical harmonics, / YE@Y ™ (F)dP = &1¢8me, leads

to
5 > _ J K J
psp(B.p) =) (=1’ M(_M 0 M)
KIr

(11
where the radial and angular part of the p; ¢ (p, p’) is given by

x Vb, powk (p,p),

, 2 = il ' 14 l K
puk(p.p) =Y jj(=1)"> (—1)”2*’““{1- i 1}
njn/j/ 2
X Ryt (p ) Rut(p)AN T'1(@}y )| ALT ).

12)

This expression is used to calculate the densities from NCSM
calculations of OBDM directly in momentum space. For
completeness, the derivation of the local density directly in
momentum space is given in Appendix A.

B. Translationally invariant nonlocal densities

In order to analyze the charge and mass distribution inside
the nucleus and employ the nonlocal density, e.g., in reaction
calculations, it needs to be translationally invariant. In NCSM

K 7 1A 24 ~
1 }R,ﬂz/(r YR (AN T'NI(aby ) N AR, )

2

(

calculations in a HO basis with N, truncation, as well
as in the SA-NCSM, the wave function in single-particle
coordinates exactly factorizes in a c.m. wave function and a
ti wave function,

WIM) =¥ J M) ® |pem.Os), (13)

which can be used to remove the c.m. contribution from the
nonlocal density. If we want to extend the scheme for removing
the c.m. contribution developed for local densities [27-31]
to the nonlocal case, we need to carefully consider in which
variables we want to work. While in Sec. I A the nonlocal
density is calculated as a function of the independent momenta
pand p’, it is more convenient to proceed with the independent
momenta

Gg=p—-p, K=350+p. (14)
The corresponding set of coordinate space variables is given
by

{=4G+7), Z=F-T, (15)
where the displacement 7 is translationally invariant, and Z is
the average positqion.1 Thus the c.m. contribution must only be
associated with ¢,

¢ = Crel + e (16)

Because of the exact factorization of the c.m. wave function
and the ti wave function, the sf density can be expressed as
a convolution of the #i density distribution p;; with the c.m.
density distribution p. . via

b €2 = [ 9l = G2 o O e (AT
Based on the set of variables from Egs. (14) and (15), we

use a Fourier transformation of the operator defined in Eq. (1)
and the coordinates defined in Eq. (14),

psf(avl(:)
(2 )3 <\l} J M| Zeil‘] ({re]ri’{um) *IKZ |\IJJM)
i=1
(2 )3 (‘I—’ J’ M|eﬂq {“n Ze—ié~2rc|,;e—i/€.2i|wJM>.
v/

(18)

In the above derivation we employed for the c.m. coordinate
RCm =4 Z r; and defined ¢ = 2(RCm + Rém) Using

The variable Z can be identified with the spatial variable.
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Eq. (13) we can separate the c.m. contribution from the intrinsic
part of the nonlocal density:

s (G,K) = (e Osle ™ T%m | Os)

(W, M| Y e i R, T M),

i

1
* ey
19)

We now can define the ¢i matrix elements for the nonlocal
density as

(W MY e e, T ).

i

pi(g,K) = W

(20)

J

Z }’l]cl)c nq

Kol -l

Rur (P Ru(p)Vi (P P)

Thus, if we know the space-fixed nonlocal density as a function
of the momenta g and K and calculate the c.m. contribution in
the |Os) state, we obtain the translationally invariaPt density.

Let us first consider the calculation of p,s(¢g,K). In order
to trzlnsform the sf nonlocal density to the coordinates g
and /C, the harmonic oscillator lengths must be transformed
to b; and bg. This transformation is explicitly given in
Appendix B. Then we need to express the product
Ignz(p)R,,/;/(p/)y(ﬁ,ﬁ’) from Eq. (11) as a function of ¢ and
K. To do so, we use Talmi-Moshinsky transformations from
[nin'l" : K) to |nk,lk,ng,ly 1 K). Those Talmi-Moshinsky
brackets only depend on the transformation parameter d,
defined in Appendix B, the multipole K, and the harmonic
oscillator quantum numbers (n,/,n’,l’). They do not depend
on M and require the energy conservation 2n’ + 1’ +2n +1 =
2ni + Il + 2n, + 1,. Thus the radial and angular components
of the wave functions transform as

LKl nl 2 K )zt Rt OO Ry, (Vi1 (@,K). Q1)

With this, the s f nonlocal density as a function of ¢ and K becomes

057 (G, K) =

K nglynglc nln'l' jj'

X (=)' (=1t HHAE {l

Jo
D) NI

K 1l

Z Z Z (nglgnil - K|n'l'nl

K)dzl(_l)J/_M <_JM Ig )y;)&( ’I@)

K /g ~
1 }anlq(q)Rn;d;g(K:)(A)L J ||(aif1fj’anlj)K||A)‘-J>
2

)y’ (@ K)p 1k (g,10), (22)

where the K -tensor component that depends on ¢ and K is given by

Pk (q,K) =

ngng nln'l’ jj’

= i1 / ~a ! [ K
S tnglynclic s Kin'tnl s Ky (<)% (—1>f+z+’+f+’<1/{’ I 1}
2

X Ruy1, (@) Rt (KOAL T ||y 0t K | AL (23)

Next, we calculate the contribution of the c.m. as
(Gem Osle % | Os) = ¢~ 320" 24)

where A is the number of nucleons and b the harmonic oscil-
lator length. The explicit calculation is given in Appendix C.

Collecting the information from Eqgs. (22) and (24), the ¢ti
nonlocal density can be calculated as

7 0y7(,K), (25)

where we dropped the subscript ¢i. Since the c.m. contribution
is a simple analytic function of g2, the numerical effort in
computing the 7/ nonlocal density is the computation of the s f
nonlocal density as a function of ¢ and K in Eq. (21). This is an
important advantage of the current method, and avoids the need
for transforming NCSM’s OBDM elements to relative (Jacobi)
coordinates. Subsequently, we can obtain the #i nonlocal
density in coordinate space by a Fourier transformation of
Eq. (25). The ti local density can be computed from Eq. (25)

p(G,K) = enn?”

(

by integrating the nonlocal density over I%,

pr=0(q) = f dK K2 pooo(q ,K). (26)

Note that this local density in momentum space is also referred
to as the elastic form factor (see, e.g., Ref. [31]), and can also
be obtained as the Fourier transform of the local probability
density in coordinate space. We use this as numerical check; in
particular, the value at ¢ = 0 should correspond to the number
of nucleons.

III. RESULTS AND DISCUSSION

A. Nonlocal densities in momentum space

The nonlocal densities shown in this work are based on ab
initio NCSM or SA-NCSM calculations of OBDM elements
that employ the JISP16 NN interaction [25]. Before elabo-
rating on the nonlocal structure of the translationally invariant
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density, we first establish that its construction is consistent with
a translationally invariant local density directly constructed
in momentum space as outlined in Appendix A. In Fig. 1
we show the K = 0 component of the local proton density
of 12C as a function of the momentum transfer q, which is
constructed as outlined in Appendix A. We also confirmed that
this is numerically equivalent to the local density construction
presented in Ref. [30]. The solid line represents the Fourier
transform of the density to momentum space, the form factor,
which is normalized at ¢ =0 to the number of protons.
The solid triangles represent the same quantity obtained by
integrating the nonlocal density over the nonlocal variable /C
according to Eq. (26). The integrated values agree with the
directly constructed ones at least within six significant figures.
For comparison, we also include a local density obtained
from a more traditional Hartree-Fock-Bogolyubov mean-field
calculation which utilizes the density-dependent finite-range
Gogny DIS nucleon-nucleon interaction [32,33]. Based on
this density, elastic proton scattering off '>C was successfully
calculated in [34]. However, a slight mismatch in the diffraction
minima of the differential cross section could indicate that the
slower fall-off of the NCSM local density may be preferable.

Next, we want to study nonlocal one-body densities of four
different nuclei, the open shell nuclei °Li and '>C, and the
closed shell nuclei “He and '°O. It is well known that '2C
consisting of six protons and six neutrons is deformed in its
body-fixed frame, ®Li consisting of three protons and three
neutrons can be sometimes viewed as consisting of a “He core
and an additional neutron-proton pair in the p-shell, while “He
and '°0 are closed shell nuclei. In a shell-model framework,

— Constructed Local Density
e HFB Density
w Integrated Non-Local Density

(e}
—_
[\
w
N
(93]

q[fm]

FIG. 1. The translationally invariant local one-body density ob-
tained from a NCSM calculation (N, = 10, iw = 20 MeV) based
on the JISP16 NN interaction for the proton distribution of 'C as
function of the momentum transfer ¢. The solid line (red) shows
the direct construction in momentum space, while the solid triangles
(black) give the local density obtained by integrating the nonlocal
density over the momentum K. As comparison a local density
obtained from a HFB mean field calculation based on the Gogny
interaction [33] is shown by the filled solid (blue) circles.

the protons and neutrons in “He occupy predominantly the s
shell, while in '°O they occupy predominantly the s and p

Pk =0)(q, K)[fm?3]

(@) lg=0 (b) Ig=2

1.3x10°%
9.9x10°
6.6%10°

3.4<10°

2K [fm~1]
o B N W b WU

2K [fm~1]
o R N W B~ U

(c)lg=4

0 1 2 3 4
q [fm~]

1.71071

—-3.1x10°

2.9x1073
2.0x1073
9.7107*
—2.7x107°
-1.0x1073

—2.01073
5

9.1x1072
6.2x1072
3.4x1072
4.8<1073

—2.4x1072

—5.3x1072

(d)Ig=6
1.4107*

9.2x107°
4.8<107°
3.3x107°

—4.1x1073

—8.55107°
0 1 2 3 4 5

q [fm~!]

FIG. 2. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (N, =
10, fiw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of '2C as function of the momenta ¢ and K. Panel (a) depicts
the contribution of I, = 0, (b) of [; =2, (¢) of [, = 4, and (d) of [, = 6.
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o B N W bH W
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2.8x10°
-1.3x10°
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1

2 3
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4

5
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-6.151072

3.8<107°
1.1x107°
-1.7x107°
—4.4x1075
-7.1x107°

-9.9x107°

FIG. 3. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (N.x =
8, liw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of '°O as function of the momenta ¢ and K. Panel (a) depicts
the contribution of [, = 0, (b) of [, = 2, (¢) of [, =4, and (d) of [, = 6.
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6.47107°
3.2x107°

—1.6x1077

FIG. 4. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (N =
14, hw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of “He as function of the momenta g and K. Panel (a) depicts
the contribution of I, = 0, (b) of [; =2, (c) of [, =4, and (d) of [, = 6.
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FIG. 5. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (Npyax =
10,iw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of 12 as function of the local coordinate ¢ and the nonlocal

coordinate Z. Panel (a) depicts the contribution of [, = 0, (b) of [, = 2, (c) of [; =4, and (d) of [, = 6.

Z [fm]

Z [fm]

10

10

(@) l;=0

(c) /(= 4

2 3

¢ [fm

Prik=0)(Z, Z)[fm~°]

2.7-10°
2.2x10°
1.6<10°
1.1-10°
5.3x107!

-1.91072

3.1x107*
2.4x107*
1.8x107*
1.1x107*
3.8x107°

—3.1107>
4 5

(b) /g= 2

(d)l;=6

2 3

¢ [fm

8.4x1073
6.6x1073
4.8<1073
2.9x1073
1.1x1073

-6.9x107*

3.2x107°
2.1x107°
1.0x1073
-9.4x1077
-1.2x1073

—2.3x107°

FIG. 6. The K = 0 component of the translationally invariant nonlocal one-body density obtained from a NCSM calculation (N =
14,iw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of SLi as function of the local coordinate ¢ and the nonlocal

coordinate Z. Panel (a) depicts the contribution of [, = 0, (b) of [, = 2, (c) of [; =4, and (d) of [, = 6.
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FIG. 7. The K = 0 component of the translationally invariant nonlocal one-body density o, (¢,K) obtained from a NCSM calculation
(hw = 20 MeV) based on the JISP16 NN interaction for the proton distribution of °Li as function of the momenta ¢ and K and the size of the
model space. The first column contains angular momentum slices obtained with Ny,,x = 6, the second with Ny, = 10, the third with N = 12,

and the fourth with N, =

shells. Thus we want to explore if nonlocal properties reflect
some of the common perceptions about those nuclei. Since
we make a multipole expansion of the nonlocal density, it is
convenient to concentrate on a specific multipole. Here we
chose the K = 0 multipole, since this component determines
the density of the 0 ground states for the even-even nuclei un-
der consideration and dominates in the 1+ ground state in SLi.
First, we want to consider the K = 0 multipole [see Eq. (23)
for notation] of the nonlocal one-body density in momentum
space, p,1,.(k=0)(¢,K). We show proton densities in physwally
relevant varlables the momentum transfer g =1|p' — p| and

=1 31 p’ + p|. Note that the variable IC being the conjugate

coordlnate to the nonlocal coordinate Z, only appears when
nonlocal densities are considered. The converged nonlocal
densities p, k=0)(¢q,K) for the proton distributions of I2c,
10, and *He are displayed as functions of ¢ and K in Figs. 2, 3,
and 4, respectively, while the corresponding nonlocal density
of SLi is given in the last column of Fig. 7. To illustrate the
contributions of different angular momenta, we show slices of
constant values of [, = Ic. The constraints givenin Eq. (21) in-
dicate that, for K = 0, once [ is fixed, /i takes the same value.

14. The rows represent different angular momentum slices

= [ from 0 to 6.

We also need to point out that the contributions of odd values
of [, cancel out exactly for K = 0 as a result of the symmetry
properties of the Talmi-Moshinsky brackets [35,36]. The van-
ishing contribution for odd /, is validated numerically as well.

A common observations for all four nuclei is that the
contribution of /, = 0 dominates. We further point out that,
when integrating 0,1, (k=0)(¢,K) over K to obtain the local
density, the constraints for [, determine that only /[, =0
contributes to the local dens1ty, as given, e.g., for ’Cin F1g 1.
Thus, all higher values of /, are genuinely nonlocal contribu-
tions for K = 0. For both gLi and “He, the maximum of the
l; = O slice is located at ¢ = 0 and K = 0, and the functions
fall off smoothly to zero in g as well K. This is different
for '2C and '°0, for which the maximum value is located
around K ~ 1 fm~! and ¢ = 0, and which, in addition, exhibit
a minimum around ¢ ~ 2 fm~! for K = 0.

Figures 2—4 as well as Figs. 7-9 are plotted in a way that
p1,1.(q = 2K,K) is shown along the diagonal. For the closed
shell nucleus *He (Fig. 4), for which the protons are assumed to
dominantly occupy the s shell, the maximum of the nonlocality
forl, > 2 follows the diagonal line and moves to higher values
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of g the larger [, becomes. For 5Li (Fig. 7, fourth column),
which can still be considered as dominated by particles in the s
shell, the maximum of p; ;. (¢,K) moves slightly away from the
“diagonal” and the off-shell structure can be roughly located
between p,, (¢ = 4K,K) and p;,;,. (g = K,K), while for '*C
(Fig. 2) and 160 (Fig. 3) the entire nonlocality is located in
this “wedge.” Furthermore the density changes sign along the
line ¢ = 2K. This pattern, together with the different [, =0
behavior, appears to be a signature for nonlocal densities in
p-shell dominated nuclei.

B. Nonlocal densities in coordinate space

Once we obtain the ¢i nonlocal density in momentum space,
we can numerically Fourier transform them to coordinate
space. The conjugate coordinate to the momentum transfer ¢
is the local coordinate ¢ = %l? + 7|, and to K the nonlocal
coordinate Z = |’ — 7|. The angular momenta related to ¢
and Z are denoted as /; and /. In Fig. 5 we show angular
momentum slices of nonlocal proton densities in coordinate
space for K = 0 as a function of ¢ and Z for 12¢ and in
Fig. 6 for °Li. Here we choose the local coordinate ¢ as one

hw=15
(@) ;=0

(b) Ig =2

2K [fm™1]

(d)I;=6

0

q [fm‘1]

U

hw=20
e)lg=0

.
. . [ |
-] ]

E]

(h)I;=6

of the axes, so that one can directly read off the local densities
of 2C and °Li along the line Z = 0. Hence, Fig. 5 shows
that the local density of '2C has its maximum at ¢ ~ 1 fm
and is suppressed at { = 0 fm, suggesting that the density is
pushed away from the center; indeed, if one plots this density
in a body-fixed frame, it will have a deformed torus-like shape
with a suppressed density in the center. However, the present
densities are not calculated in a body-fixed frame, and Fig. 5
does not reveal any features that can be associated with the
nuclear deformation. On the other hand, we can say that when
we compare the [, = 0 contributions in momentum space of
12C and '°0, the local density of '°0 also has a maximum that
is pushed away from the origin, which is a consequence of the
p shell being filled up.

The range of the ¢ and Z axes are chosen such that
the diagonal of the plot shows p,;,(¢,Z = 2¢). Both figures
show similar behavior for [, > 2 as the corresponding g-K
figure. In Fig. 5 for [, > 2, the nonlocal density changes
sign along p;.1,(§,Z = 2¢), and the maxima and minima are
roughly located in the area given by the lines { =4Z and
¢ = Z,indicating a possible p-shell dominance of the nonlocal
density. For °Li the situation is slightly different: for/, = 2 the

hw=25
(i) Ig=0

() Ig=2

NN
Noowow
X X X X X

() Ig=06

FIG. 8. The K = 0 component of the translationally invariant nonlocal one-body density o, (¢,K) obtained from a NCSM calculation
(Nmax = 12) based on the JISP16 NN interaction for the proton distribution of °Li as function of the momenta ¢ and X and the oscillator
parameter Ziw. The first column contains angular momentum slices obtained with Ziw = 15 MeV, the second with Ziew = 20 MeV, and the third
with iw = 25 MeV. The rows represent different angular momentum slices /, = I from 0 to 6.
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maximum still follows the diagonal, and only for [, > 4 does
a p-shell dominance develop. This may indicate that the lower
[; are still s-shell dominated, while the p-shell proton mainly
gives the /; = 6 contribution.

A further study of NCSM calculations with different NN
interactions will have to be carried out to investigate if the
observed nonlocal structures persist and are essentially an indi-
cation of the shell structure of the nucleus under consideration.

C. Dependence of the nonlocal density on the model space

The calculations presented in the previous subsections are
carried out with one-body density matrix elements from NCSM
and SA-NCSM calculations that are close to convergence with
respect to the ground state binding energies and low-lying
excited states, as far as the model space is concerned. For
SLi those studies are carried out in Ref. [30,31,37], together
with model-dependence studies with respect to the root-mean-
square point-proton radius and the quadrupole moment. The
calculations for '2C are discussed in Ref. [37] and those for 10
in Refs. [38,39]. The ¢i density should become independent of

hw=15
(@) I;=0

Z [fm]

50 2.5

the basis parameters Ziw and Nyax as Niax increases. However,
itis impractical to carry out a convergence study of the nonlocal
density itself, and instead we illustrate how some of the features
of the nonlocal density depend on the model space.

First, we consider the K = 0 component of the nonlocal
proton density for a fixed hw =20 MeV as a function of
the Npyax truncation. In Fig. 7 we display slices of o5, (¢,K)
for °Li for fixed Iy =l for Nyax = 6, 10, 12, and 14. For
l; = 0 we observe that the density maximumatg =0, X =0
increases as a function of Np.x. This is consistent with the
fact that the tail of the wave function in coordinate space
(and hence radii) become better described as N, increases.
However, the general distribution remains the same. The
angular momentum slices /[, = 2 and [, = 4 clearly show how
the nonlocal structure builds up as Ny« increases, but again
the general distribution remains the same. Even going from
Nmax = 12 to N = 14, there is a very slight increase of the
maxima of oy ;.. The slice for [; = 6 for Ny, = 6 exhibits a
very different nonlocal structure in comparison to the higher
Npmax values, which can be understood as an effect of the
model-space truncation. We observe changes in the nonlocal

hw=25
(i) ;=0

50 2.5 5

¢ [fm]

FIG. 9. The K = 0 component of the translationally invariant nonlocal one-body density p;,,(¢,Z) obtained from a NCSM calculation
(Nmax = 12) based on the JISP16 NN interaction for the proton distribution of ®Li as function of the local coordinate ¢, the nonlocal coordinate
Z, and the oscillator parameter Ziw. The first column contains angular momentum slices obtained with /iw = 15 MeV, the second with /iw =
20 MeV, and the third with iw = 25 MeV. The rows represent different angular momentum slices [, = [ from 0 to 6.
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structure for /, =6 even when going from Ny, = 12 to
Nmax = 14. However, the absolute values of this contribution is
so small that calculations of observables based on this nonlocal
density are unlikely to be affected by the I, = 6 (or higher)
contributions. In general, the figure shows that the Ny,.x = 6
model space is not sufficient to describe nonlocal correlations,
but the nonlocal structure looks reasonably well converged at
Nmax = 14, similarly to the results calculated earlier for the
binding energy and other observables [30].

Next we keep Npmax fixed (Npax = 12) and study the
nonlocal structure as a function of the oscillator parameter
hw, where we choose the values 15, 20, and 25 MeV. It
is well known that, for a given Np.x, the basis truncation
introduces effective infrared (IR) cutoff and ultraviolet (UV)
cutoffs that also depend on the /iw value: namely, very low fiw
values (a small momentum UV cutoff) cut out high momenta
that may affect short-range correlations, while very large iw
values (small spatial IR cutoff) affect the wave function tail
[40-43]. Note that increasing Np,x increases both the IR and
UV cutoffs, removing both cutoffs in the infinite model space
limit. Exploring the 7w dependence, in comparison to the large
Nmax limit of Fig. 7 which improves both cutoffs, can provide
some indication if the nonlocality is sensitive to these cutoffs.
The corresponding functions oy, (q,K)forl, =1k =0,2,4,
and 6 are shown in Fig. 8 and p;,,(¢,Z) in Fig. 9 for the
proton density of °Li. The study of Ref. [30] has already shown
that, for the local density p(r) of °Li, a smaller value of fiw
leads to a better description of the asymptotic tail of the wave
function and a spatially expanded density, but the density in the
nucleus interior becomes low, whereas for larger values of iw
the situation is reversed. Indeed, the larger hiw value yields a
significantly lower maxima for the density in momentum space
(Fig. 8), whereas the smaller iw value gives very pronounced
maxima as function of ¢ and K. As already mentioned above,
this is the result of the poor convergence of the tail of the wave
function in coordinate space for large values of Ziw. On the
other hand, low 7iw values lack a good description of the high
momentum behavior. Furthermore, for low iw the maxima are
moved toward low ¢ momentum transfers, and for high /, a
particle is mainly transferred from (or to) low p momentum
(diagonal line, as discussed above).

Considering the coordinate space density, 01.1,(&, Z), in
Fig. 9, we find that for small /iw values, the nonlocal structures
are well developed at larger values of ¢ and [, while for/, =0
the maximum at { = Z = 0 is less developed. Again, this
is consistent with the findings in Ref. [30]. In contrast, for
hiw = 25 MeV, we notice that more features are resolved in
the nonlocal structure, especially for higher /;, a direct result
of improving the UV cutoff. Overall, we conclude that the
nonlocality of the density seems to be more sensitive to the IR
cutoff, that is, to the description of the tail of the wave function
in coordinate space, except for high /,, where the nonlocal
contribution, while being very small, becomes also sensitive
to the UV cutoff.

D. Study of the nonlocality of the density

To study the nonlocal behavior in a more quantitative
fashion, we plot the K = 0,/, = 0 component of Pl (q,K)

(b)
—
L —— 0,N=10 i
— — LN=LS
. — . 2 N6
— = 4 N=18x 10°[|

— = 4 N=12x10*{
‘

220 T T T

0 r 0 I
K[fm ]

FIG. 10. The K = 0, /, = 0 component of the translationally in-
variant nonlocal one-body density obtained from a NCSM calculation
based on the JISP16 NN interaction for the proton distribution of '2C
[panel (a)] and “He (panel (b)) as a function of the nonlocal momentum
KC at fixed momenta g as indicated in the legend. The distributions are
normalized by the factors indicated in the legend.

for fixed values of ¢ as a function of K for '°C [Fig. 10(a)]
and “He [Fig. 10(b)]. As soon as we take K-slices of '>C at
higher values of ¢, the form of the nonlocality changes, dips
for ¢ = 1 fm™! for small K, and becomes negative for even
larger g. Since the magnitude of px=¢,=0(¢,K) changes by
orders of magnitude when moving along ¢, we normalize the
slices by a factor N given by

_rlg=0K=0
plg.K=0) °

We also note that pg—o,1,=0(q ,IC) falls off quickly as a function
of IC, independent of the value of ¢, and becomes essentially
zero for C > 2 fm~!. Comparing with Fig. 3, the nonlocal
density of '°0 exhibits the same behavior. Panel (b) of Fig. 10
shows similar slices of the K = 0 component of pI[I;K(q,IC)
for “He. Here we find that the nonlocal density is positive
for all values of ¢ and falls off like a Gaussian. However,
there is no uniform Gaussian bell shape for all g, since for
the larger g values the Gaussian width increases. It appears
that there is no simple parametrization of this behavior as a
function of g. Similarly to '>C, the nonlocality of the *He
density is essentially zero for K > 2 fm~!, though it has larger
high-momentum components compared to '>C. This can be
understood from realizing that smaller radii in coordinate space
translate to larger high-momentum components.

Finally, we show in Fig. 11(a) a “form factor” px—_o(KC), for
K =0, as a function of C, where p;,;,.(¢,K) is integrated over
g. Tt is worthwhile noting that for “He and ®Li this function
is positive, while it starts as negative values for '2C and '°0
before turning positive. This, together with the observations
of Sec. III A, may allow one to conclude that if a nucleus is
dominated by s-shell nucleons, the value of px_o(KC = 0) is
positive, and when p-shell nucleons dominate, px—o(XC = 0)
is negative.

27
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FIG. 11. The K = 0 component of the translationally invariant
one-body density obtained from NCSM calculations based on the
JISP16 NN interaction for the proton distributions of “He, °Li, *C,
and '°0 as a function of the nonlocal momentum K when integrated of
the local momentum ¢ [panel (a)]. Panel (b) depicts the local densities
for the same nuclei as function of the momentum transfer ¢ when
integrated over the nonlocal momentum /C.

In addition, we show in Fig. 11(b) the conventional proton
form factors (local densities in momentum space) for the
same nuclei, which are normalized to the proton number at
g = 0. Only the charge distributions of the heavier nuclei have
a zero crossing visible in the figure; the one for °Li turns
negative at ~6 fm~! while it stays completely positive for
“He. Generally, the proton form factor provides information
about the spatial charge distribution of the nucleus. The
information given by px—o(K) gives a consistent picture;
namely, after the s-shell is filled, additional protons fill up the
p shell.

IV. CONCLUSIONS AND OUTLOOK

In this work we explored features of translationally invariant
nonlocal one-body densities obtained from ab initio NCSM
and SA-NCSM calculations using the JISP16 NN interaction
[25] for several light nuclei. In order to do this, we first defined
the nonlocal one-body density in a space-fixed coordinate
system in such a way that it directly relates to the OBDM
elements which a NSCM calculation provides, and constructed
space-fixed nonlocal one-body densities for *He, SLi, '>C,
and '°0 in momentum and position space. As examples for
our study, we chose *He and '°O representing closed shell
nuclei, together with °Li and !>C representing open shell
nuclei.

To remove the c.m. part of the wave functions calculated
in the NCSM using a harmonic oscillator basis, we first
needed to transform the space-fixed nonlocal densities from
conventionally used linearly independent variables p and p’
to another linearly independent set § and K which is more
appropriate for our task. Their conjugate coordinate variables
¢ and Z are such that the c.m. contribution is only contained in
¢. With this, we can successfully extend a scheme developed

for removing c.m. contributions from local one-body densities
[27-31] to nonlocal one-body densities.

We studied the nonlocal structure of the one-body densities
as a function of the angular momentum /, in momentum
as well as coordinate space. For all four nuclei the largest
contribution to the nonlocal density comes from the [, = O part,
for which the nonlocality is restricted to about 2 fm. The higher
angular momenta, though at least two orders of magnitude
smaller, contribute exclusively to the nonlocal structure. Thus
nuclear properties or reactions that are dominated by these
angular momentum contributions will show sensitivity to the
nonlocality. In addition, we found that the nonlocal structure of
the neutron and proton one-body densities does not show any
significant difference for the N = Z nuclei we investigated.
We also found that the structure of the nonlocality reflects
the shell structure of the nuclei we considered. Once the p
shell becomes dominant, the nonlocality exhibits a specific
pattern not visible in the s-shell dominated “He. Finally, we
investigated if there may be some systematic behavior in the
nonlocal structure of the one-body densities which might be
captured in some analytic form. While this might be possible
for the nonlocal structure of “He, it does not look promising
for the other nuclei we investigated.

We note that the current results are presented for the JISP16
NN interaction, and we have found that, e.g., using chiral
potentials such as the NNLO,yp, [44] for SLi does not intro-
duce significant changes into the density outcomes presented
here. A further study that adopts different NN interactions
will have to be carried out to investigate if the observed
nonlocal structures persist and are essentially an indication
of the nuclear shell structure. We have also studied the role
of nonlocality in densities calculated from the SA-NCSM
using selected model spaces, which yields results that are
essentially the same as compared to those obtained in the
corresponding complete model spaces. This will allow one
to study nonlocal density features in heavier nuclear systems.
The outcomes of these studies will be the focus of a following
publication.

Summarizing, this work shows how the c.m. contribution
can be removed from ab initio nonlocal one-body densities
using NCSM wave functions, in a way similar to that known
for local ones. This will open the path for those densities
to be employed, for example, in calculations of nuclear
reactions.
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APPENDIX A: DERIVATION OF THE SPACE-FIXED
LOCAL ONE-BODY DENSITY CONSTRUCTED
IN MOMENTUM SPACE

To apply the procedure for removing the c.m. contribution
from the local density as suggested in Refs. [30,31,43], the
space-fixed local density constructed in coordinate space needs
to be Fourier transformed to momentum space. A numerical
Fourier transform as suggested in [30] will introduce numer-
ical errors specifically at large momenta due to the highly
oscillatory nature of the transformation. Therefore, it is highly
desirable to derive a scheme in which the space-fixed local
density is constructed directly in momentum space. For this,
we need the HO wave functions, R,;(p), in momentum space:

Ru(p) = (—1)"[

with harmonic oscillator length b =

1
2 b2 l+3/2r 1 2 1
( ) (n + ) ple*%szzLi+2(p2b2)’

(AD)
Fn+1+3)
2 m The corresponding coordinate space HO wave functions are given as
(A2)

1

2 . 2T(n + 1) i (r
Ru(r)=,/= | dp p*R, = e L, 5 ).
/() \/;/ p P~ Ru(p)ji(rp) [(b2)l+3/21‘(n+l+%):| re (b2>

= is included. The function L

Here a normalization coefficient
the difference in phase of (—1)" in R,ll( p) and R, (r).

(,:—i) represents the associated Laguerre polynomials. Note

Combining this with the multipole expansion of the space-fixed nonlocal one-body density in Egs. (6) and (7), we arrive at

I+ K
P E = Y (=D M’( /

nljn'l' j' K=|l—1'|

X]] ( 1)l+l+j+ +K{ '/
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0
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1 }\/ /dpp Ru(p)jirp)y/ = fdpp Ry (P ji(r'p")
2

(A3)

Setting ¥ = ;’, reducing the spherical harmonics, and simplifying the resulting Clebsch-Gordan coefficients by combining them

with the 6 symbol leads to

I+ P
Z Z(I)J M< 0

nljn’l' j' K=|l-1"|

Py (7) =

J i/ j K 1 an i3 ~
M)(]é —]% 0)\/—47;11/(—1)”2*’(%?"0)

2 2 . 2 R N ’ 7 t ~ (K)
X\ dpp” Ru(p)ji(rp) P dp' p” Ry (p) ji(rp ){AX TN |(ayyp jsGntj) " [|AXT ).

(A4)

Rearranging the integrals and performing the Fourier transformation leads to

K
RO
nljn'l' j’ K=|l-1|

I+l J .
22 e b

i K 3
_J _ )j+§+K(i)K

1 .,
o
; 0)@”

X YOEWAN T |[(aby )1 ALT)8 f dp p*Ru(p) [ dp'p” Ry (p") f drr? jx(qr)jirp)jr(r'p'). (AS)

For the special case of K = 0, the integral over r can be evaluated analytically, noting that/ =" and j = j’:

f drr2jo(qr)jirp)jr(rp) =

ﬁ(A)

Pz( ). (AO6)
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Here P;(A) are Legendre polynomials, and the argument A is
defined as

2 2 _ 2
A= p+p—q (A7)
2pp’
The function B(A) is given as
B(A) =1 for—1 < A < 1,
B(A)=1/2 for A = +1, (A8)

otherwise.

B(A) =0

The function 8(A) allows us to constrain the integral over p’
in Eq. (A4) to the values

p'<q+p and p'>|q— pl (A9)

This leads to the final expression for the momentum space
local density, which can be calculated directly in mo-
mentum space from given OBDM elements from NCSM
calculations:

©) g I 0 JN\(J Jj O
Per (@) = (=D < / )(1 1

4 i+3 %0, ’ ~
X T ] =D YO AN I N((ahy ;) VAL

s 712 /
dp'p” Ruyi(p')

x / dp p*Ru(p) — Pi(A).
0 prq

(A10)

Ilp—ql

APPENDIX B: DERIVATION OF HARMONIC
OSCILLATOR LENGTHS FOR THE TRANSFORMATION
TO ¢ AND K

For transformingqthe momenta of p(p, ;;’) in Eq. (11)
to momenta ¢ and K we need to know how the harmonic
oscillator lengths transform. Defining by and b,, we can infer
that a dimensionless coordinate transformation must hold in
the same fashion as the coordinate transformation defined

J

in Eq. (14),
= b o, bk, .
b}CIC = b + % )28
- bq It bq g
byq = pr - ;bp (B1)
The transformation can be written as
(bic/%> y Hid V 1J+d bp'
)= >, (B2)
b,q L _ [ d <bp)
T+d 1+d

with d as a yet undetermined parameter. A comparison with
Eq. (B1) leads to

b,c_\/d _\/1
2 Vi4+d Vi+d’

(B3)
by _ \/ /e
b 1+d 1+d’
which is then solved as
d=1 and by =+2b,
d=1 and b, = i B9
V2

This transformation of the harmonic oscillator lengths is the
same for the conjugate variables ¢ and Z,

d=1 and b, =2b,
d=1 and b b B
= ans = —.

¢ «/5

The values of d enter the Talmi-Moshinsky brackets in Eq. (21),
and b, and by the radial oscillator functions.

APPENDIX C: DERIVATION OF THE CENTER-OF-MASS
CONTRIBUTION

As indicated in Eq. (16), the variable ¢ can be separated
into a component representing the relative motion and one for
the c.m. motion. The displacement Z is already translation-
ally invariant. According to Eq. (13) the c.m. component of
(SA-)NCSM eigenstates is exactly factorized and, by construc-
tion, is in the |Os) state. Thus we need to compute Eq. (24):

o ) — —— o=
(¢C_m,0s|ef’q‘§“-“‘~|¢C_m.0s) = //d3R04mAd3Ré.m_Rnl(Rc.m.)Rn’l/(Ré.m_)y%()(Rc.m.»Rc.m. )eilq{c'm'

= //d3§c.m.d3Zc.m. Z <nlCl/C’nqlq : K|n,l/’nl : K)d:lRn:lc(é‘c.m.)anlz(Zc.m. =0)

ng.ng.lylc

l;lz —— 71.(?‘2““
X VKo (gc.m.a Zem)e o

_ 3 U igin
= /d Cc.m.Roo(Cc.m.)Roo(0)4 e .
7

We note that

(g =0l =0,n, =00, =0:K =0n' =0'=0n=0l=0:K =0)4_; = 1.

(ChH

(C2)

Furthermore, ifn =1 =n'=1' =0, thenn, = [, = nx =[x = 0 as well.
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Evaluating the radial wave function using Eq. (A2) with the corresponding harmonic oscillator lengths, we obtain

1

1

22 2 _% bCZcz.m. 22 2
Roo(Sem) = (b2)—g/2ﬁ e em . Ro(Zem =0)= (1?2)—3/2ﬁ , (C3)
CC.m. Zc.m.
b? b2
Where bf’c.m. = 75 and b%c.m. = 7
Inserting Eq. (C3) into Eq. (C1) leads to
P 1 3/2 3 _% (zcz'i_ié'z'c,m.
{fem Osle™"Tem |pe i Os) = <;> (be., )/ bz, )2 / d’Cem.e " em : (C4)
Completing the square in the integral leads to
7i-)~2- 2 Sem. 02 —1p2 2 —Lp2g?
(@Pc.m.Os e 1 " |pem 0s) = | —= e 2%emd =" 1”1 (C5)
ZC.ITI.

where we used the relations for b, and b, from Eq. (B5) to arrive at the final expression for the c.m. contribution.
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