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Przytycki has shown that the size Nk(S) of a maximal collection of simple closed curves

that pairwise intersect at most k times on a topological surface S grows at most as

|χ(S)|k2+k+1. In this article, we narrow Przytycki’s bounds, obtaining

Nk(S) = O

(

|χ |3k

(log |χ |)2

)

.

In particular, the size of a maximal 1-system grows sub-cubically in |χ(S)|. The proof

uses a circle packing argument of Aougab and Souto and a bound for the number of

curves of length at most L on a hyperbolic surface.

When the genus g is fixed and the number of punctures n grows, we use a

different argument to show

Nk(S) ≤ O(n2k+2).

This may be improved when k = 2, and we obtain the sharp estimate N2(S) = �(n3).

1 Introduction

Let S = Sg,n be an oriented surface of genus g with n punctures, and set χ = χ(S). Given

k ∈ N, a k-system of curves (respectively arcs) is a collection of pairwise non-homotopic
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2 T. Aougab et al.

simple closed curves (respectively properly embedded arcs) on S, no two of which

intersect more than k times. Let

Ak(S) = max {|�| : � is a k-system of arcs on S} and

Nk(S) = max {|�| : � is a k-system of curves on S}.

In 1996, Juvan et al. [5] showed that Nk(S) is always finite. The asymptotic study of

Nk(S) as |χ | → ∞ was later popularized by Benson Farb and Chris Leininger, who

vocally noticed that good bounds were unavailable even when k = 1.

In response, Malestein et al. [7] showed that when S is closed and any k is fixed,

Nk(S) grows at least quadratically and at most exponentially in |χ |. Observing that

asymptotics are easier to find for arcs, and that the arc case informs the curve case,

Przytycki [9] then showed that for fixed k

Ak(S) = �
(

|χ |k+1
)

, and Nk(S) = O
(

|χ |k2+k+1
)

. (1.1)

Aougab has shown [1] that when S is fixed, log(Nk(S)) grows at most linearly

in k, which suggests that it might be possible to improve Przytycki’s upper bound for

curves. We show:

Theorem 1.1. Suppose S is a surface with Euler characteristic χ . Then as |χ | → ∞ we

have

Nk(S) ≤ O

(

|χ |3k

(log |χ |)2

)

. �

Note that when k = 1 and S is closed, this is a slight improvement of Przytycki’s

bound of O(|χ |3). (For larger k, though, the improvement is significant.) The best known

constructions of 1-systems show that N1(S) grows at least quadratically in |χ |. Thus,
it is of course natural to ask whether there exists an ε > 0 so that N1(S) = O(|χ |3−ε).

Indeed, one might expect in general that Nk(S) = �(Ak(S)) = �(|χ |k+1), but currently

this is out of reach.

The proof of Theorem 1.1, which appears in Section 3, is short enough that there

is no need for a detailed summary here. Nonetheless, we point out three main compo-

nents. The first is (a trivial adaptation of) an argument of Aougab and Souto [2, Theorem

1.2], in which a circle packing argument is used to find a hyperbolic structure on which

a given k-system can be realized length-efficiently. The second component is Theorem

2.1, which improves Przytycki’s translation of the bound for arcs to a bound for curves.
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Packing Curves on Surfaces with Few Intersections 3

The third component is a bound due to Buser for the number of primitive curves of

length at most L on a hyperbolic surface homeomorphic to S (see Lemma 3.2). For the

reader’s interest, we make comments on sharpness and possible improvements to the

above argument in Section 5.

We should highlight that our argument uses Przytycki’s boundAk(S) = �
(

|χ |k+1
)

essentially, via the proof of Theorem 2.1. It turns out that we can exploit his bounds

evenmore effectively when the number of punctures is large in comparison to the genus.

Here, the proof is inductive, where we relate Nk(Sg,n) to Nk(Sg,n−1) by projecting a k-

system on Sg,n to one on Sg,n−1 by filling in the puncture. We note that Malestein et

al. [7, Theorem 1.2] used a similar inductive argument in the k = 1 case to show that

N1(Sg,n) = N1(Sg,0) + Cg · n.

Theorem 1.2. There is a constant C = C(k) such that

Nk(Sg,n) ≤ Nk(Sg,0) + C(g+ n)2k+2.

And in fact, for k = 2 we have

N2(Sg,n) ≤ N2(Sg,0) + C(g+ n)3. �

When k is even, Przytycki’s construction [9, Example 4.1] of large k-systems

of arcs can be tweaked in a straightforward manner to produce the lower bound ≈
(g + n)k+1/(k + 1)k+1 for Nk(S). For completeness we recreate this construction in the

salient case below:

Corollary 1.3. When g is fixed and n → ∞, we have N2(Sg,n) = �(n3). �

Proof. For the lower bound, consider three columns of ≈ n/3 punctures each, placed

along the vertical lines x = −1, 0, and 1 on the Riemann sphere, and fix the pair of

“starting” and “ending” points (±2, 0). Each “vertical” column of punctures cuts a vertical

segment into ≈ n/3− 1 segments between punctures. For any choice of such an interval

from the three vertical columns, form a polygonal path from the starting to the ending

point that passes through the chosen three intervals. Appending this arcwith the portion

of the completed real axis that passes through ∞ and connects the endpoints, we obtain

≈ n3 closed curves, every pair of which intersects at most twice. Moreover, it is easy to

see that they are distinct: for any pair of such curves, there is an arc that intersects one

of them essentially, and not the other. This construction evidently can be performed on

any surface Sg,n, and the upper bound is provided by Theorem 1.2. �
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4 T. Aougab et al.

2 Degree bounds for the intersection graph

Let I(�) denote the intersection graph of a curve system �, whose vertices are in 1-1

correspondence with the curves in �, and where two vertices are connected by an edge

exactly when the corresponding curves intersect essentially on the surface S.

In [9], Przytycki’s estimate for Nk(S) is a corollary of his estimate for Ak(S). The

idea is as follows, say when k = 1. If � is a 1-system, cut S open along a curve γ ∈ �.

Any curve in � intersecting γ becomes an arc on the new surface S′. The number of

homotopy classes of such arcs is bounded above by A1(S
′), and at most two curves in �

correspond to the same homotopy class of arc on S′. It follows that the degree of γ in

I(�) is at most 2 · A1(S
′). To finish, note that the total number of vertices in I(�) is at

most the sums of the degrees of the vertices in a maximal independent subset of I(�),

and any independent set (i.e., a set of disjoint simple closed curves on S) has size at most

linear in χ .

To prove Theorem 1.1 in the closed case, we will need the following sharper

upper bound for the degree of a vertex in the intersection graph of a k-system.

Theorem 2.1. Suppose that � is a k-system on a surface S, and γ ∈ �. Then the degree

of γ in the graph I(�) is at most C · |χ |3k−1, for some universal C = C(k). �

When k = 1, this bound agrees with the bound 2 · A1(S
′) = �(|χ |2) one gets with

Przytycki’s argument above and (1.1). In general, though, his argument gives C · |χ |k(k+1),

so Theorem 2.1 is quite a bit stronger. The improvement arises by adopting a slightly

different perspective. Instead of cutting open S along a curve to produce an arc system

on a surface of smaller complexity, one can introduce punctures to S and “slide” curves

to arcs to arrive at an arc system on a surface S′ of slightly larger complexity, and then

apply Przytycki’s bounds for Ak(S
′).

Proof. Let � be an arbitrary k-system on S with |χ(S)| = t and let γ ∈ �. We will show

that the set of curves I(γ ) consisting of elements of � intersecting γ non-trivially, has

size O(t3k−1). Begin by choosing a minimal position realization of I(γ ) ∪ γ with no triple

points, and pick an orientation and a basepoint x on γ . Then the intersections of γ with

the curves in I(γ ) are ordered according to when they appear when one traverses γ in

the given direction starting at x.

Let Sx be the surface obtained by puncturing S at x. If α ∈ I(γ ), we produce an

arc α̃ on Sx as follows. Let y be the first intersection point of α and γ , with respect to

the order above. Isotope α by pushing y along γ to x, in the direction opposite to the
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Packing Curves on Surfaces with Few Intersections 5

orientation. This gives an arc α̃ on Sx ,

α̃ = γ −1
α ∗ α ∗ γα,

where γα is the directed sub-arc of γ from x to y. Since y was the first intersection point

along γ from x, the arc α̃ can be perturbed to be simple (unperturbed, it tracks γα twice.).

We claim thatwhenα, ρ ∈ I(γ ), wehave ι(α̃, ρ̃) ≤ 3k−2. Suppose thatwith respect

to the order above, γ intersects α before it intersects ρ. Then no new intersections with

ρ are created when α is replaced by α̃. Moreover, when pushing ρ along γ to create ρ̃,

one may encounter at most k− 1 strands of α̃. This follows from the fact that ι(α, γ ) ≤ k

and that the first intersection point between α and γ has been pushed all the way to x

in the construction of α̃, leaving at most k−1 strands. Each such strand will contribute

to two intersection points between α̃ and ρ̃, and as ρ,α both belong to a k-system, we

had ι(α, ρ) ≤ k to begin with. Thus ι(α̃, γ̃ ) ≤ 2(k − 1) + k = 3k − 2, as desired.

If α̃, ρ̃ were homotopic on Sx then α, ρ would be homotopic on S, so we have

constructed a (3k − 2)-system of arcs on Sx with size equal to |I(γ )|. By Przytycki’s

upper bound (1.1) for arc systems, |I(γ )| = O(t3k−1). This completes the proof of

Theorem 2.1. �

3 Proof of Theorem 1.1

Let � = {γ1, . . . , γN} be a k-system of curves on a closed surface S with |χ(S)| = t. We

begin the proof of Theorem 1.1 by using the following result of Aougab and Souto.

Proposition 3.1. [2, Theorem 1.2] There exists a hyperbolic structure X on S such that

the geodesic realization of � on X has total length


X (�) ≤ 4
√

2t · ι(�,�) ,

where ι(�,�) is the total geometric self-intersection number of �. �

The idea behind Proposition 3.1 is as follows. By Koebe’s discrete uniformization

theorem, there exists a hyperbolic structure X on S so that the union of all the curves in

� can be realized inside the dual graph of a circle packing on X . The sum of the areas of

these circles is at most 2πt, by Gauss– Bonnet. Using the Cauchy–Schwarz inequality,

this translates into an upper bound on the sum of the radii of the circles, which bounds

the length of �. This argument is carried out for self-intersecting curves in [2], but it

applies verbatim to our setting of curve systems.
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6 T. Aougab et al.

Now since � is a k-system, we have

|ι(�,�)| ≤ k

N
∑

i=1

deg
I(�)(γi) ≤ k · C · t3k−1 · N , (3.1)

where deg
I(�) is the degree of γ in the intersection graph I(�), that is, the number of

curves in � that γ intersects, and C = C(k) is the constant from Theorem 2.1.

Using Proposition 3.1, the average length of a curve from � is then


X (�)

N
≤ C

√

t3k

N
=: L,

for some new C = C(k). By Markov’s inequality, at least half of 
X (γ1), . . . , 
X (γN) are

less than or equal to twice the average length, so by we obtain N/2 curves of length at

most 2L.

To finish, we employ a bound of Buser for the number of primitive geodesics on

a hyperbolic surface that uses L and |χ | efficiently (see Section 5 below for more detail

and comments on sharpness):

Lemma 3.2. [3, Lemma 6.4.4] There is an absolute constant C > 0 so that the number

of primitive closed geodesics on X of length at most L is less than C |χ | eL. �

We immediately conclude that

N ≤ 2 · #
{

closed geodesics γ on X : 
X (γ ) ≤ 2L
}

≤ C
√

t3k/Nt , (3.2)

for some new constant C = C(k).

If we suppose that N �= O
(

t3k

(log t)2

)

, then we can find arbitrarily large t for which

there is a k-system with N ≥
(

logC

log t

)2

t3k curves. Then (3.2) says

(

logC

log t

)2

t3k ≤ N ≤ C
√

t3k/N · t ≤ C

√

t3k/

(

(

logC
log t

)2
t3k

)

· t = t2 ,

a contradiction when k > 0 and t is large. This concludes the proof of Theorem 1.1. �

Remark 3.3. We recall an observation of Malestein et al.: it is evident that the size

of an independent set of I(�) is bounded above by 3t/2, and an application of Turán’s

theorem to the complementary graph of I(�) implies

N ≤ 3t/2 · (D+ 1) ,
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Packing Curves on Surfaces with Few Intersections 7

where D is the average degree of I(�) [7, Theorem 1.5]. Coarsely, N = O(t · D). Running

through the above argument with |ι(�,�)| = DN/2 replacing (3.1), one obtains

N = O

(

t · D
(log t)2

)

for maximal k-systems �. �

4 The Proof of Theorem 1.2

Let Sg,n be an orientable surface with genus g and n punctures. We first show

Nk(Sg,n) ≤ Nk(Sg,n−1) + Ak−1(Sg,n) + 2A2k(Sg,n) ≤ Nk(Sg,n−1) + C(g+ n)2k+1 ,

where C = C(k) is a constant coming from Przytycki’s [9] bounds A2k(S) = �(|χ |2k+1).

Applying this step iteratively, we may conclude

Nk(Sg,n) ≤ Nk(Sg,0) +
n

∑

i=1

C(g+ i)2k+1 ≤ Nk(Sg,0) + C(g+ n)2k+2 .

So, let � be a k-system on Sg,n. Fix aminimal position realization of �, and choose

arbitrarily a puncture p of Sg,n. Project each curve in � to a curve on Sg,n−1 by filling in

the puncture p.

We first bound the number of curves that have inessential projection to Sn−1.

Each such curve c bounds a twice-punctured disk, where one of the punctures is p. In

other words, c is the boundary of a regular neighbourhood of an arc αc from p to some

other puncture. If c,d both have inessential projections, then ι(c,d) = 4ι(αc,αd) + ε,

where ε = 4 or ε = 2, depending on whether c,d share the same second puncture or not.

In particular, ι(αc,αd) ≤ k − 1, so the set of all αc is a (k − 1)-system of arcs. Therefore,

the number of curves c with inessential projection is bounded above by Ak−1(Sg,n).

Remove all curves from � that have inessential projection to Sg,n−1, and continue

to denote this by �. It suffices to show that now

|�| ≤ Nk(Sg,n−1) + 2A2k(Sg,n).

We would like to relate |�| to Nk(Sg,n−1) by saying that the projection of � to Sg,n−1

is a k-system. The problem is that curves can become homotopic after projection, so the

size of the new k-system can be smaller. Let G ⊂ � be a maximal subset of “good” curves
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8 T. Aougab et al.

A B

Fig. 1. The region Ac cobounded by c and gc , and the bold arc αc . (A) c is of type (1). (B) c is of

type (2).

whose projections are not homotopic, and let B = � \ G be the complementary set of

“bad” curves. As |G| ≤ Nk(Sg,n−1), it suffices to prove

|B| ≤ 2A2k(Sg,n).

Let c ∈ B be a bad curve. There is then a unique good curve gc such that the

projections of c and gc to Sg,n−1 are homotopic. It follows that on Sg,n the curves c and gc

either:

(1) are disjoint and bound an annulus Ac punctured by p,

(2) intersect, and there are arcs of c and gc that bound a bigon Ac punctured

by p.

We refer to bad curves where the former holds as Type (1) and the other as Type (2). In

both cases, define an arc αc on Sg,n by connecting p to c with an arc β in Ac, and then

setting

αc = β−1 ∗ c ∗ β.

Both endpoints of αc are at p, and αc is well defined up to homotopy. See Figure 1.

The desired conclusion follows immediately from the following lemma.

Lemma 4.1. The set of homotopy classes {[αc] : c ∈ B} is a 2k-system of arcs of size at

least |B|/2. �

Proof. Fix a pair c,d ∈ B, the corresponding curves gc,gd ∈ G, the arcs αc,αd, and the

regions Ac, Ad.

We start by assuming that c and d are of type (1). The component of the inter-

section Ac ∩ Ad containing p is evidently a disk, with at least one side bounded by an
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Packing Curves on Surfaces with Few Intersections 9

A B C

Fig. 2. Possibilities for Ac ∩ Ad when c is of type (1), with αc shaded and αd in bold.

A B C

Fig. 3. Possibilities for Ac ∩ Ad when c,d are of type (2), with αc shaded and αd bold.

arc of either d or gd. If this arc does not have its endpoints on the same component of

∂Ac, we are in the setting of Figure 2A; if it does we are in the setting of Figure 2B. In the

latter case, whichever of d or gd is on the boundary of the bigon pictured in Figure 2B,

the contributions to the intersection number with c coming from any other components

of the intersection with Ac are unchanged. Because the two pictured intersections can

be homotoped away, we conclude ι([αc], [αd]) ≤ k − 2. Similarly, in Figure 2A, there is a

realization of αd pictured that has at least one fewer intersection point with αc than c

has with d, so that ι(αc,αd) ≤ ι(c,d) − 1 ≤ k − 1.

The argument is the same when c is of type (1) but d is of type (2), but in this

case any of Figure 2A, B, or C are possible. Moreover, there is a minor complication

in Figure 2B: it is now possible that one of the boundary arcs of Ac ∩ Ad pictured is

gd, so that d∩Ac may consist of k arcs connecting distinct boundary components of Ac.

Nonetheless, we still have that the pictured representative for αd satisfies ι([αc], [αd]) ≤ k

in any of Figure 2A, B, or C.

Supposenow that both c andd are of type (2). The component ofAc∩Ad containing

p is either as in Figure 3A or B, or (after homotopingAd if necessary, leaving it inminimal

position with Ac) it is as in Figure 3C. The worst of these cases is Figure 3B, where we

see that ι(αc,αd) ≤ 2k.

Finally, note that c can be recovered as the boundary of a regular neighbourhood

of αc on Sg,n, a once-punctured annulus. Thus {αc : c ∈ B} → {[αc] : c ∈ B} is at most

2-to-1, as desired. �
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10 T. Aougab et al.

When k = 2, note the useful fact that whenever two curves γ , η ∈ � have homo-

topic projections in Sg,n−1, we must have that γ , η are disjoint: If not, there are subarcs

γp, ηp of γ , η that bound a once-punctured bigon in Sn, punctured by p. The assumption

that γ and η are homotopic after filling p implies that γ \ γp and η \ ηp must jointly

bound another bigon on Sn−1 in the complement of the point p, and this contradicts the

assumption that γ and η are in minimal position. Thus, when k = 2, all bad curves c ∈ B

are of type (1), and the proof of Lemma 4.1 demonstrates the stronger claim:

Lemma 4.2. When k = 2 the set of homotopy classes {[αc] : c ∈ B} is a 1-system of size

at least |B|/2. �

The bound N2(Sg,n) ≤ N2(Sg,0)+C(g+n)3 now follows using the same arguments

as above.

Remark 4.3. This method is close to that of [7, Theorem 1.2], where they adopt the

perspective that for k = 1 the size of |B| can be bounded by observing that {Ac : c ∈ B}
is a collection of annuli which pairwise intersect essentially. �

5 Comments on Sharpness in the Proof of Theorem 1.1

A crucial step at the end of the proof of Theorem 1.1 involved Buser’s Lemma 3.2, bound-

ing the number of primitive closed geodesics on a hyperbolic surface roughly by |χ |eL.
In fact, it is pertinent to note that similar uniform bounds may not be pushed much

further. Recall Keen’s Collar Lemma [4, Lemma 13.6] [6], which states that a pair of dis-

joint simple geodesics on a hyperbolic surface of lengths l1 and l2 have disjoint annular

neighbourhoods of widths w(l1) and w(l2), respectively where

w(x) = sinh−1

(

1

sinh(x/2)

)

.

Lemma 5.1. There exists an absolute constant C > 0 so that, for all L > 0, there is

a hyperbolic structure on S with at least C |χ | e L
4 simple closed geodesics of length at

most L. �

Proof. Consider first the unique pants curve α in a pants decomposition of a four-holed

sphere F ⊂ S, and moreover fix a choice of “zero twisting” so that there is a geodesic β

which intersects α twice orthogonally. When a hyperbolic structure is chosen with the

length of α given by r, by the Collar Lemma β has length at least 4 log(1/r). Evidently,
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Packing Curves on Surfaces with Few Intersections 11

if r is chosen much smaller than e−L/4, there are no non-peripheral simple geodesics

supported on F with length at most L other than α. We will choose instead r ≈ e−L/4 that

will allow the construction of many other “short” simple geodesics.

Consider the curve βn formed by applying n half-Dehn twists around α to β. The

hyperbolic length of βn in a hyperbolic structure where α has length r is at most

n · r + 4 log

(

1

r

)

+ C0 ,

whereC0 is someuniformconstant determinedby the hyperbolic geometry of three-holed

spheres with geodesic boundary.

Now let r be chosen as e− L
4 +C0 . The length of βn is at most

n · e− L
4 +C0 + L− 3C0 ,

which is in turn less than L as long as n is at most C1e
L/4, where C1 = 3C0e

−C0 .

Since there are some constant proportion of |χ(S)| many subsurfaces which are

four-holed spheres, we have constructed C · eL/4 · |χ(S)| curves of length at most L, as

desired. �

Remark 5.2. The above construction in one-holed tori subsurfaceswould produce CeL/2

curves of length at most L, with the difference attributable to the fact that one can build

curves that only cross the collar once. On the other hand, planar surfaces have no one-

holed tori subsurfaces, so this would only produce a better lower bound for surfaces

with high genus. �

Remark 5.3. Lemma 5.1 is in contrast with the celebrated computations of Mirzakhani

on the asymptotics of the number of simple closed geodesics of length at most L on a

hyperbolic surface [8]; in the latter theorem the hyperbolic surface is fixed as L grows,

whereas in the above lemma it is not. �

In our application of Lemma 3.2 in the proof of Theorem 1.1 (see (3.2)), it is

essential that our upper bounds are of the form |χ |rCL, for r < 3 and some constant

C > 0. Remarkably, Lemma 3.2 ignores the assumption about the intersection data, and

in light of the construction in Lemma 5.1 it seems likely that much stronger control

should be possible.

In themost interesting case k = 1, we offer a different proof thatmakes essential

use of the intersection data, and that moreover would apply in the context of (3.2). In the
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12 T. Aougab et al.

process, we obtain a slightly better bound than that of Lemma 3.2. On the other hand,

one might view this second proof as evidence that our circle packing approach will not

produce any new bounds much better than those we obtain.

Lemma 5.4. Let � be a 1-system of curves realized by geodesics on X , each of length

at most L. Then

|�| ≤ π (2g+ 1) |χ |
eL/2

L
. �

Proof. For each γ ∈ �, let A(γ ) indicate the annulus Nω(
(γ ,X))(γ ) whose existence in

guaranteed by the Collar Lemma. Consider the map induced by inclusion

i :
⊔

γ

A(γ ) → X .

By the Collar Lemma, if |i−1(p)| = m, then there are m curves from � that intersect.

In particular, we obtain m curves pairwise intersecting exactly once. By [7], such a

collection has m ≤ 2g + 1, so we conclude that i is at most (2g + 1)-to-1. It is standard

that the area of A(γ ) is 
(γ ,X) sinh(ω(γ )), which is at least 2Lexp(−L/2). It follows that

|�| ≤ π (2g+ 1) |χ |
eL/2

L
. �

Remark 5.5. In case k = 1, the bound from Lemma 3.2 is worse than that in Lemma 5.4

for values of L roughly larger than log |χ |. �
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