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Przytycki has shown that the size N, (S) of a maximal collection of simple closed curves
that pairwise intersect at most k times on a topological surface S grows at most as

|x (S)[¥*+¥+1_In this article, we narrow Przytycki’s bounds, obtaining

| x 3% )
Ne(S) =0 ————).
€5 Qmmﬂ

In particular, the size of a maximal 1-system grows sub-cubically in |x(S)|. The proof
uses a circle packing argument of Aougab and Souto and a bound for the number of
curves of length at most L on a hyperbolic surface.

When the genus g is fixed and the number of punctures n grows, we use a

different argument to show
Ni(S) = 0(n**%).

This may be improved when k = 2, and we obtain the sharp estimate NV3(S) = ©(n®).

1 Introduction

Let S = Sy, be an oriented surface of genus g with n punctures, and set x = x(S). Given

k € N, a k-system of curves (respectively arcs) is a collection of pairwise non-homotopic
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2 T.Aougab et al.

simple closed curves (respectively properly embedded arcs) on S, no two of which

intersect more than k times. Let

Ar(S) =max {|l'| : T is a k-system of arcs on S} and

Ni(S) =max {|T'| : T is a k-system of curves on S}.

In 1996, Juvan et al. [5] showed that N (S) is always finite. The asymptotic study of
Ni(S) as |x| — oo was later popularized by Benson Farb and Chris Leininger, who
vocally noticed that good bounds were unavailable even when k = 1.

In response, Malestein et al. [7] showed that when S is closed and any k is fixed,
Ni(S) grows at least quadratically and at most exponentially in |x|. Observing that
asymptotics are easier to find for arcs, and that the arc case informs the curve case,
Przytycki [9] then showed that for fixed k

A(8) = 0 (Ix[**!), and Ni(S) = 0 (Ix[“++1). (1.1)

Aougab has shown [1] that when S is fixed, log(N(S)) grows at most linearly
in k, which suggests that it might be possible to improve Przytycki's upper bound for

curves. We show:

Theorem 1.1. Suppose S is a surface with Euler characteristic x. Then as |x| — oo we

have

Ni(S) <0 (ﬂ> O
(ogx)?

Note that when k = 1 and S is closed, this is a slight improvement of Przytycki’'s
bound of O(|x|®). (For larger k, though, the improvement is significant.) The best known
constructions of 1-systems show that A, (S) grows at least quadratically in |x|. Thus,
it is of course natural to ask whether there exists an € > 0 so that A7(S) = O(|x|>79).
Indeed, one might expect in general that N (S) = ©(Ax(S)) = O(|x|*!), but currently
this is out of reach.

The proof of Theorem 1.1, which appears in Section 3, is short enough that there
is no need for a detailed summary here. Nonetheless, we point out three main compo-
nents. The first is (a trivial adaptation of) an argument of Aougab and Souto [2, Theorem
1.2], in which a circle packing argument is used to find a hyperbolic structure on which
a given k-system can be realized length-efficiently. The second component is Theorem

2.1, which improves Przytycki's translation of the bound for arcs to a bound for curves.
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Packing Curves on Surfaces with Few Intersections 3

The third component is a bound due to Buser for the number of primitive curves of
length at most L on a hyperbolic surface homeomorphic to S (see Lemma 3.2). For the
reader’s interest, we make comments on sharpness and possible improvements to the
above argument in Section 5.

We should highlight that our argument uses Przytycki's bound Ax(S) = © (| x|**!)
essentially, via the proof of Theorem 2.1. It turns out that we can exploit his bounds
even more effectively when the number of punctures is large in comparison to the genus.
Here, the proof is inductive, where we relate Ny (S;,) to Nk(Sy.-1) by projecting a k-
system on S,;, to one on S, by filling in the puncture. We note that Malestein et
al. [7, Theorem 1.2] used a similar inductive argument in the k = 1 case to show that
Ni(Sgn) = Ni(Sg0) + Cg - 1.

Theorem 1.2. There is a constant C = C(k) such that
Nie(Sgn) = Nic(Sg0) + C(g +m)* 2.
And in fact, for k = 2 we have
N2(Sgn) < Na(Sg0) + C(g +n)°. O

When k is even, Przytycki's construction [9, Example 4.1] of large k-systems
of arcs can be tweaked in a straightforward manner to produce the lower bound ~
(g + n)**1/(k 4+ 1)k*! for Ny(S). For completeness we recreate this construction in the

salient case below:
Corollary 1.3. When g is fixed and n — oo, we have N5(S,,) = O(n?). O

Proof. For the lower bound, consider three columns of ~ n/3 punctures each, placed
along the vertical lines x = —1,0, and 1 on the Riemann sphere, and fix the pair of
“starting” and “ending” points (+2, 0). Each “vertical” column of punctures cuts a vertical
segment into ~ n/3 — 1 segments between punctures. For any choice of such an interval
from the three vertical columns, form a polygonal path from the starting to the ending
point that passes through the chosen three intervals. Appending this arc with the portion
of the completed real axis that passes through co and connects the endpoints, we obtain
~ n® closed curves, every pair of which intersects at most twice. Moreover, it is easy to
see that they are distinct: for any pair of such curves, there is an arc that intersects one
of them essentially, and not the other. This construction evidently can be performed on

any surface S, ,, and the upper bound is provided by Theorem 1.2. [
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4 T.Aougab et al.
2 Degree bounds for the intersection graph

Let Z(I') denote the intersection graph of a curve system I', whose vertices are in 1-1
correspondence with the curves in I', and where two vertices are connected by an edge
exactly when the corresponding curves intersect essentially on the surface S.

In [9], Przytycki's estimate for Ny (S) is a corollary of his estimate for Ax(S). The
idea is as follows, say when k = 1. If I" is a 1-system, cut S open along a curve y € T'.
Any curve in I' intersecting y becomes an arc on the new surface S’. The number of
homotopy classes of such arcs is bounded above by A, (S’), and at most two curves in '
correspond to the same homotopy class of arc on S'. It follows that the degree of y in
Z(I') is at most 2 - A;(S’). To finish, note that the total number of vertices in Z(I'") is at
most the sums of the degrees of the vertices in a maximal independent subset of Z(I"),
and any independent set (i.e., a set of disjoint simple closed curves on S) has size at most
linear in .

To prove Theorem 1.1 in the closed case, we will need the following sharper

upper bound for the degree of a vertex in the intersection graph of a k-system.

Theorem 2.1. Suppose that I' is a k-system on a surface S, and y € I'. Then the degree
of y in the graph Z(I') is at most C - |x|**"!, for some universal C = C(k). O

When k = 1, this bound agrees with the bound 2 - A,(S") = ©(|x|?) one gets with
Przytycki’s argument above and (1.1). In general, though, his argument gives C - |x |F*+D,
so Theorem 2.1 is quite a bit stronger. The improvement arises by adopting a slightly
different perspective. Instead of cutting open S along a curve to produce an arc system
on a surface of smaller complexity, one can introduce punctures to S and “slide” curves
to arcs to arrive at an arc system on a surface S’ of slightly larger complexity, and then

apply Przytycki's bounds for Ax(S’).

Proof. Let I be an arbitrary k-system on S with |x(S)| =t and let y € I'. We will show
that the set of curves Z(y) consisting of elements of I' intersecting y non-trivially, has
size O(t**!). Begin by choosing a minimal position realization of Z(y) Uy with no triple
points, and pick an orientation and a basepoint x on y. Then the intersections of y with
the curves in Z(y) are ordered according to when they appear when one traverses y in
the given direction starting at x.

Let Sy be the surface obtained by puncturing S at x. If « € Z(y), we produce an
arc @ on S, as follows. Let y be the first intersection point of @ and y, with respect to

the order above. Isotope « by pushing y along y to x, in the direction opposite to the
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Packing Curves on Surfaces with Few Intersections 5

orientation. This gives an arc @ on Sy,
~ -1
a =Y, * O X Yy,

where vy, is the directed sub-arc of y from x to y. Since y was the first intersection point
along y from x, the arc @ can be perturbed to be simple (unperturbed, it tracks y, twice.).

We claim that when«, p € Z(y), wehave (&, o) < 3k—2. Suppose that with respect
to the order above, y intersects « before it intersects p. Then no new intersections with
p are created when o is replaced by &. Moreover, when pushing p along y to create g,
one may encounter at most k — 1 strands of @. This follows from the fact that (e, y) < k
and that the first intersection point between « and y has been pushed all the way to x
in the construction of &, leaving at most k — 1 strands. Each such strand will contribute
to two intersection points between @ and p, and as p,« both belong to a k-system, we
had (¢, p) < k to begin with. Thus «(&,y) < 2(k — 1) + k = 3k — 2, as desired.

If &, p were homotopic on S, then «, p would be homotopic on S, so we have
constructed a (3k — 2)-system of arcs on S; with size equal to |Z(y)|. By Przytycki’'s
upper bound (1.1) for arc systems, |Z(y)| = O(t%*!). This completes the proof of
Theorem 2.1. |

3 Proof of Theorem 1.1

Let I' = {y1,...,yn} be a k-system of curves on a closed surface S with |x(S)| = t. We
begin the proof of Theorem 1.1 by using the following result of Aougab and Souto.

Proposition 3.1. [2, Theorem 1.2] There exists a hyperbolic structure X on S such that

the geodesic realization of I' on X has total length

Lx(T') <42t - (", T),
where ((T", T') is the total geometric self-intersection number of T'. O

The idea behind Proposition 3.1 is as follows. By Koebe's discrete uniformization
theorem, there exists a hyperbolic structure X on S so that the union of all the curves in
I" can be realized inside the dual graph of a circle packing on X. The sum of the areas of
these circles is at most 27t, by Gauss— Bonnet. Using the Cauchy-Schwarz inequality,
this translates into an upper bound on the sum of the radii of the circles, which bounds
the length of I'. This argument is carried out for self-intersecting curves in [2], but it

applies verbatim to our setting of curve systems.
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6 T.Aougab et al.

Now since I' is a k-system, we have

N
(T, D) <k Y degyp(y) <k-C-t*"-N, (3.1)

i=1

where deg;, is the degree of y in the intersection graph Z(I'), that is, the number of
curves in I' that y intersects, and C = C(k) is the constant from Theorem 2.1.

Using Proposition 3.1, the average length of a curve from I' is then

tx( [ 13k
x( )56’ =
N N

for some new C = C(k). By Markov's inequality, at least half of ¢x(y1),...,¢x(yy) are

less than or equal to twice the average length, so by we obtain N/2 curves of length at
most 2L.

To finish, we employ a bound of Buser for the number of primitive geodesics on
a hyperbolic surface that uses L and |x| efficiently (see Section 5 below for more detail

and comments on sharpness):

Lemma 3.2. [3, Lemma 6.4.4] There is an absolute constant C > 0 so that the number

of primitive closed geodesics on X of length at most L is less than C |x| e’. (]
We immediately conclude that
N < 2-#]closed geodesics y on X : £x(y) < 2L} < CV kg (3.2)

for some new constant C = C(k).
If we suppose that N # O(

(3k
(log )2

), then we can find arbitrarily large ¢t for which

2
there is a k-system with N > (11‘;%) t3* curves. Then (3.2) says

2 3k, ((logC )% 3k
logC t3k<N<C«/t3k/N.t<Ct /(<logt)t )-tztz,
logt - - -

a contradiction when k > 0 and t is large. This concludes the proof of Theorem 1.1. W
Remark 3.3. We recall an observation of Malestein et al.: it is evident that the size

of an independent set of Z(I") is bounded above by 3¢/2, and an application of Turan’s

theorem to the complementary graph of Z(I") implies

N <3t/2-(D+1),
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Packing Curves on Surfaces with Few Intersections 7

where D is the average degree of Z(I') [7, Theorem 1.5]. Coarsely, N = O(t - D). Running
through the above argument with |¢(I",I')| = DN /2 replacing (3.1), one obtains

N—o t-D
B ((1ogt>2)

for maximal k-systems T'. O

4 The Proof of Theorem 1.2

Let S;,, be an orientable surface with genus g and n punctures. We first show
Nk(sg,n) = Nk(Sg,n—l) + Ak—l(sg,n) + 2v42k(sg,n) = Nk(Sg,n—l) + C(g + n)2k+l '

where C = C(k) is a constant coming from Przytycki’s [9] bounds A (S) = O(|x|**1).
Applying this step iteratively, we may conclude

Ni(Sgn) < Ni(Sg0) + Y C(g + D™ < Nic(Sg0) + C(g + n)*+*.

i=1

So,letT" be a k-system on S ,. Fix a minimal position realization of I', and choose
arbitrarily a puncture p of Sy ,,. Project each curve in I" to a curve on S, ,_; by filling in
the puncture p.

We first bound the number of curves that have inessential projection to S, ;.
Each such curve ¢ bounds a twice-punctured disk, where one of the punctures is p. In
other words, c is the boundary of a regular neighbourhood of an arc &, from p to some
other puncture. If ¢, d both have inessential projections, then t(c,d) = 4u(oc, ag) + €,
where € = 4 or € = 2, depending on whether ¢, d share the same second puncture or not.
In particular, (o, @g) < k — 1, so the set of all «, is a (k — 1)-system of arcs. Therefore,
the number of curves ¢ with inessential projection is bounded above by Ax_;(Sg»).

Remove all curves from I" that have inessential projection to S, ,_;, and continue

to denote this by I'. It suffices to show that now
|F| = Nk(Sg,nfl) + 2A2k(5g,n)-

We would like to relate |T'| to Nk (Sy,»—1) by saying that the projection of I' to S,
is a k-system. The problem is that curves can become homotopic after projection, so the

size of the new k-system can be smaller. Let G C I" be a maximal subset of “good” curves
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8 T. Aougab et al.

A

%

! \

Fig.1. The region A. cobounded by ¢ and g, and the bold arc «.. (A) c is of type (1). (B) c is of

type (2).

whose projections are not homotopic, and let 5 = I" \ G be the complementary set of

“bad” curves. As |G| < Ni(Syn-1), it suffices to prove
|B] < 2A21(Sg,n).

Let ¢ € B be a bad curve. There is then a unique good curve g, such that the
projections of ¢ and g, to S;,,—; are homotopic. It follows that on S, the curves ¢ and g,

either:

(1) are disjoint and bound an annulus A, punctured by p,

(2) intersect, and there are arcs of ¢ and g. that bound a bigon A, punctured

by p.

We refer to bad curves where the former holds as Type (1) and the other as Type (2). In
both cases, define an arc o, on Sy, by connecting p to ¢ with an arc g in A;, and then

setting
a. =B xcxp.

Both endpoints of «. are at p, and «, is well defined up to homotopy. See Figure 1.

The desired conclusion follows immediately from the following lemma.

Lemma 4.1. The set of homotopy classes {[a.] : ¢ € B} is a 2k-system of arcs of size at
least |B]/2. O

Proof. Fix a pair c¢,d € B, the corresponding curves g., gy € G, the arcs «., a4, and the
regions A., Ag.
We start by assuming that ¢ and d are of type (1). The component of the inter-

section A. N A4 containing p is evidently a disk, with at least one side bounded by an
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Packing Curves on Surfaces with Few Intersections 9

Fig. 3. Possibilities for A, N A4 when ¢, d are of type (2), with o, shaded and o4 bold.

arc of either d or g4. If this arc does not have its endpoints on the same component of
0A., we are in the setting of Figure 24; if it does we are in the setting of Figure 2B. In the
latter case, whichever of d or g4 is on the boundary of the bigon pictured in Figure 2B,
the contributions to the intersection number with ¢ coming from any other components
of the intersection with A, are unchanged. Because the two pictured intersections can
be homotoped away, we conclude ¢([ee.], [¢4]) < k — 2. Similarly, in Figure 2A, there is a
realization of «y pictured that has at least one fewer intersection point with «, than c
has with d, so that t(a.,aq) < i(c,d)—1 <k —1.

The argument is the same when c is of type (1) but d is of type (2), but in this
case any of Figure 2A, B, or C are possible. Moreover, there is a minor complication
in Figure 2B: it is now possible that one of the boundary arcs of A. N A4 pictured is
da, so that d N A, may consist of k arcs connecting distinct boundary components of A..
Nonetheless, we still have that the pictured representative for o4 satisfies (([a.], [@q]) < k
in any of Figure 2A, B, or C.

Suppose now that both ¢ and d are of type (2). The component of A.NA, containing
pis either as in Figure 3A or B, or (after homotoping A, if necessary, leaving it in minimal
position with A.) it is as in Figure 3C. The worst of these cases is Figure 3B, where we
see that ((a., ag) < 2k.

Finally, note that ¢ can be recovered as the boundary of a regular neighbourhood
of a, on S;,, a once-punctured annulus. Thus {a, : ¢ € B} — {[a.] : ¢ € B} is at most
2-to-1, as desired. [ |
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10 T. Aougab et al.

When k = 2, note the useful fact that whenever two curves y,n € I' have homo-
topic projections in S, ,_;, we must have that y, n are disjoint: If not, there are subarcs
¥p, lp of ¥, 1 that bound a once-punctured bigon in S,, punctured by p. The assumption
that y and 5 are homotopic after filling p implies that y \ y, and 7 \ 1, must jointly
bound another bigon on S,,_; in the complement of the point p, and this contradicts the
assumption that y and » are in minimal position. Thus, when k = 2, all bad curves c € B

are of type (1), and the proof of Lemma 4.1 demonstrates the stronger claim:

Lemma 4.2. When k = 2 the set of homotopy classes {[«.] : ¢ € B} is a 1-system of size
at least |5|/2. O

The bound N,(Sy,n) < N2(Sg0) +C(g+ n)® now follows using the same arguments
as above.

Remark 4.3. This method is close to that of [7, Theorem 1.2], where they adopt the
perspective that for k = 1 the size of |B| can be bounded by observing that {A; : ¢ € B}

is a collection of annuli which pairwise intersect essentially. d

5 Comments on Sharpness in the Proof of Theorem 1.1

A crucial step at the end of the proof of Theorem 1.1 involved Buser’'s Lemma 3.2, bound-
ing the number of primitive closed geodesics on a hyperbolic surface roughly by |x|er.
In fact, it is pertinent to note that similar uniform bounds may not be pushed much
further. Recall Keen's Collar Lemma [4, Lemma 13.6] [6], which states that a pair of dis-
joint simple geodesics on a hyperbolic surface of lengths I; and I, have disjoint annular

neighbourhoods of widths w(l;) and w(l,), respectively where

— 3 -1 1
w(x) = sinh (sinh(x/Z)) .

Lemma 5.1. There exists an absolute constant C > O so that, for all L > 0, there is
a hyperbolic structure on S with at least C |x| et simple closed geodesics of length at
most L. 0

Proof. Consider first the unique pants curve « in a pants decomposition of a four-holed
sphere F C S, and moreover fix a choice of “zero twisting” so that there is a geodesic g
which intersects o twice orthogonally. When a hyperbolic structure is chosen with the

length of « given by r, by the Collar Lemma 8 has length at least 4log(1/r). Evidently,
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Packing Curves on Surfaces with Few Intersections 11

if r is chosen much smaller than e~/%, there are no non-peripheral simple geodesics
supported on F with length at most L other than «. We will choose instead r ~ e~2/* that
will allow the construction of many other “short” simple geodesics.

Consider the curve 8, formed by applying n half-Dehn twists around « to 8. The

hyperbolic length of 8, in a hyperbolic structure where « has length r is at most

1
nr+410g<;>+6’0,

where Cy is some uniform constant determined by the hyperbolic geometry of three-holed
spheres with geodesic boundary.

Now let  be chosen as e~4+%. The length of B, is at most
n.e it 4 L3¢,

which is in turn less than L as long as n is at most C,e*/4, where C, = 3Cye~%.

Since there are some constant proportion of |x(S)| many subsurfaces which are
four-holed spheres, we have constructed C - e/* - |x(S)| curves of length at most L, as
desired. |

Remark 5.2. The above construction in one-holed tori subsurfaces would produce Ce*/?
curves of length at most L, with the difference attributable to the fact that one can build
curves that only cross the collar once. On the other hand, planar surfaces have no one-
holed tori subsurfaces, so this would only produce a better lower bound for surfaces

with high genus. O

Remark 5.3. Lemma 5.1 is in contrast with the celebrated computations of Mirzakhani
on the asymptotics of the number of simple closed geodesics of length at most L on a
hyperbolic surface [8]; in the latter theorem the hyperbolic surface is fixed as L grows,

whereas in the above lemma it is not. O

In our application of Lemma 3.2 in the proof of Theorem 1.1 (see (3.2)), it is
essential that our upper bounds are of the form |x|"CE, for r < 3 and some constant
C > 0. Remarkably, Lemma 3.2 ignores the assumption about the intersection data, and
in light of the construction in Lemma 5.1 it seems likely that much stronger control
should be possible.

In the most interesting case k = 1, we offer a different proof that makes essential

use of the intersection data, and that moreover would apply in the context of (3.2). In the
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12 T. Aougab et al.

process, we obtain a slightly better bound than that of Lemma 3.2. On the other hand,
one might view this second proof as evidence that our circle packing approach will not

produce any new bounds much better than those we obtain.

Lemma 5.4. Let ' be a 1-system of curves realized by geodesics on X, each of length
at most L. Then

el/2
Tl <7 (2g+1) IXIT- 0

Proof. For each y € I', let A(y) indicate the annulus N, x)(y) whose existence in

guaranteed by the Collar Lemma. Consider the map induced by inclusion
i: I_lA(y) — X.
v

By the Collar Lemma, if |i"!(p)| = m, then there are m curves from I' that intersect.

In particular, we obtain m curves pairwise intersecting exactly once. By [7], such a

collection has m < 2g + 1, so we conclude that i is at most (2g + 1)-to-1. It is standard

that the area of A(y) is £(y, X) sinh(w(y)), which is at least 2Lexp(—L/2). It follows that
el/2

Il <m (29+1) IXIT- u

Remark 5.5. Incasek = 1, the bound from Lemma 3.2 is worse than that in Lemma 5.4

for values of L roughly larger than log |x|. d
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