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On the growth of L?-invariants for
sequences of lattices in Lie groups
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Abstract

We study the asymptotic behaviour of Betti numbers, twisted torsion
and other spectral invariants of sequences of locally symmetric spaces. Our
main results are uniform versions of the DeGeorge—Wallach Theorem, of a
theorem of Delorme and various other limit multiplicity theorems.

A basic idea is to adapt the notion of Benjamini—Schramm convergence
(BS-convergence), originally introduced for sequences of finite graphs of
bounded degree, to sequences of Riemannian manifolds, and analyze the
possible limits. We show that BS-convergence of locally symmetric spaces
I'\G// K implies convergence, in an appropriate sense, of the normalized rel-
ative Plancherel measures associated to L?(T'\G). This then yields conver-
gence of normalized multiplicities of unitary representations, Betti numbers
and other spectral invariants. On the other hand, when the corresponding
Lie group G is simple and of real rank at least two, we prove that there is
only one possible BS-limit; i.e., when the volume tends to infinity, locally
symmetric spaces always BS-converge to their universal cover G/K. This
leads to various general uniform results.

When restricting to arbitrary sequences of congruence covers of a fixed
arithmetic manifold we prove a strong quantitative version of BS-conver-
gence, which in turn implies upper estimates on the rate of convergence of
normalized Betti numbers in the spirit of Sarnak—Xue.

An important role in our approach is played by the notion of Invari-
ant Random Subgroups. For higher rank simple Lie groups G, we exploit
rigidity theory and, in particular, the Nevo—Stiick—Zimmer theorem and
Kazhdan‘s property (T), to obtain a complete understanding of the space
of IRS’s of G.
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1. Introduction and statement of the main results

Let G be a connected center-free semi-simple Lie group without compact
factors, K < G a maximal compact subgroup and X = G/K the associated
Riemannian symmetric space. The main results of this paper concern the
asymptotic of L?-invariants of the spaces I'\ X, where I' varies over the space
of lattices of G.

Most of our results rely on the notion of Benjamini—Schramm convergence,
or BS-convergence, for sequences of locally symmetric spaces I'),\ X. We start
by introducing a particularly transparent case: when I';,\ X BS-converges to X.

1.1. Definition. Let (T';,) be a sequence of lattices in G. We say that the
X-orbifolds M,, = I',\ X BS-converge to X if for every R > 0, the probability
that the R-ball centered around a random point in M, is isometric to the
R-ball in X tends to 1 when n — oo; i.e., for every R > 0, we have

vol((Mn)<r)
n—+oo  vol(M,)

where Mcp = {x € M : InjRad,,(x) < R} is the R-thin part of M.

=0,

A straightforward and well-studied example is when I' < G is a uniform
lattice and I';, < I' is a chain of normal subgroups with trivial intersection; in
this case, the R-thin part of I',,\ X is empty for large enough n.

General BS-convergence. The definition above fits into a more general no-
tion of convergence, adapted from that introduced by Benjamini and Schramm
[19] for sequences of bounded degree graphs.

Consider the space M of pointed, proper metric spaces, endowed with
the pointed Gromov—Hausdorff topology. Each I',\X can be turned into a
probability measure on M by choosing the basepoint at random with respect
to volume; this measure is supported on pointed spaces isometric to I';,\ X.
We say that I'y,\ X BS-converges if these measures weakly converge. The limit
object is then a probability measure on M. This perspective is elaborated on
in Section 3.

Most of the results of this paper assume (or prove) BS-convergence to X.
These results can often be extended to general BS-convergent sequences, but
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they tend to get more technical and sometimes further assumptions are needed;
they will appear in a sequel of this paper to be extracted from our original arXiv
paper [2].

This definition of BS-convergence is very broad and works just as well for
sequences of finite volume Riemannian manifolds. In our situation, the com-
mon ambient group G allows a useful algebraic reformulation of BS-convergence
where probability measures on M are replaced by invariant random subgroups
of G, i.e., G-invariant measures on the space of closed subgroups of G. This
reformulation is what we use in most of the paper. This will be discussed at
the end of the introduction and in Sections 2 and 3.

Uniform discreteness. A family of lattices (resp. the associated X-orb-
ifolds) is wuniformly discrete if there is an identity neighborhood in G that
intersects trivially all of their conjugates. For torsion-free lattices I'y, this is
equivalent to saying that there is a uniform lower bound for the injectivity
radius of the manifolds M,, = I';\ X. (So, in particular, a uniformly discrete
family of lattices consists only of uniform lattices.)

Any family (M,,) of covers of a fixed compact orbifold is uniformly discrete.
Margulis has conjectured [87, p. 322] (see also [60, §10]) that the family of all
cocompact torsion-free arithmetic lattices in G is uniformly discrete. This is a
weak form of the famous Lehmer conjecture on monic integral polynomials.

BS-convergence and Plancherel measure. Our first result says that BS-
convergence to X implies a spectral convergence: namely, when (I',) is uni-
formly discrete, the relative Plancherel measure of I',\G will converge to the
Plancherel measure of G in a strong sense.

For an irreducible unitary representation m € G and a uniform lattice T
in G, let m(m,I') be the multiplicity of 7 in the right regular representation
L?*(T'\G). Define the relative Plancherel measure of I'\G as the measure

1
vr = lT\G) Z m(7m, 1),
el
on G. Finally denote by v the Plancherel measure of the right regular repre-
sentation L?(G). Recall that the support of v/ is é\temp — the subset of the
unitary dual G that consists of tempered representations.

1.2. THEOREM (Theorem 6.7). Let (I'y,) be a uniformly discrete sequence
of lattices in G such that the spaces I',\ X BS- converge to X. Then for every
quasi-compact vC -reqular open subset S C GorSc Gtemp, we have

vr, (S) — VG(S).

Note that the Plancherel measure of G depends on a choice of a Haar
measure on G as does vol(I'\G). We recall basic facts on the topology of G in
Section 6.
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Let d(m) be the “multiplicity” — or rather the formal degree — of 7 in
the regular representation L?(G) with respect to the Plancherel measure of G.
Thus, d(7) = 0 unless 7 is a discrete series representation. Theorem 1.2 implies
the following.

1.3. COROLLARY. Let (I'y) be a uniformly discrete sequence of lattices in

G such that the spaces I'y,\ X BS-converge to X. Then for all w € (A;, we have
m(m,Ty)
vol(I',\G) = d(m).

In the special situation when (I';) is a chain of normal subgroups with
trivial intersection in some fixed cocompact lattice I' < G, Corollary 1.3 is the
classical theorem of DeGeorge and Wallach [64]. In that very same situation
Theorem 1.2 is due to Delorme [47]. Since the pioneering work of DeGeorge
and Wallach, “limit formulas” have been the subject of extensive studies. Two
main directions of improvement have been considered.

The first direction is concerned with the extension of the theorems of
DeGeorge—Wallach and Delorme to nonuniform lattices. In the case of the
DeGeorge—Wallach theorem we refer to [45], [14], [38], [100], [106]. Note that
these works were partially motivated by a question of Kazhdan [71] pertaining
to his work on the field of definition of arithmetic varieties. The limit mul-
tiplicity problem for the entire unitary dual has been solved for the standard
congruence subgroups of SLo(Z) by Sarnak in [102] (see also [69], [46]) but is
still open in general. A partial result for certain normal towers of congruence
arithmetic lattices defined by groups of Q-rank one has been shown in [46].
Very recently important progress has been made by Finis, Lapid and Miiller
[55] who can deal with groups of arbitrary rank. In these works the authors
usually deal with towers of normal subgroups.

A second direction is to extend the theorems of DeGeorge—Wallach and
Delorme to more general sequences of (uniform) lattices. This has been ad-
dressed in some of the above mentioned works for certain (nonprincipal) con-
gruence subgroups of a fixed lattice, such as T'o(IV); see also [70] for another
example. Theorem 1.2 is the first example where one can deal with sequences
of noncommensurable lattices.

The classical theorem of DeGeorge and Wallach implies a corresponding
statement on the approximation of L?-Betti numbers by normalized Betti num-
bers of finite covers (see also Donnelly [49]). Theorem 1.2 implies the following
uniform version of it.

1.4. COROLLARY. Let (I'y)n>1 be a uniformly discrete sequence of uniform
lattices in G such that T, \ X BS-converges to X. Then for every k < dim(X),

we have
bi; (Fn)

@
ol x) P ¢ ().
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In the corollary, by (I';) is the k-th Betti number of the (virtually torsion-
free) group T'p,! and

d
/815:2) (X) _ {Vﬁ(};g) k= %dlm X,
0 otherwise
is the k-th L2-Betti number of X, where X? is the compact dual of X equipped
with the Riemannian metric induced by the Killing form on Lie(G). We refer
the reader to Section 6.24 for an analytic definition of B,(f) (X). By [11] and
[94], the Euler characteristic x(X?) is nonzero exactly when the fundamental
rank
)(G) = C-rank(G) — C-rank(K)

of G is zero. Alternatively, it follows from the equality of the Euler character-
istic and its L2-analogue that in the middle dimension, ﬁ,@ (X) # 0if and only
if the Euler characteristic of some (or, equivalently, every) closed X-manifold
is nonzero.

Uniform BS-convergence in higher rank. In the higher rank case we have
the following remarkable phenomenon, which gives a surprisingly strong result
when combined with Theorem 1.2. Note that in the following result we do not
restrict to the case where the I';, are cocompact and, in particular, we do not
assume uniform discreteness.

1.5. THEOREM (Corollary 4.7). Suppose that G has property (T) and real

rank at least two. Let I'y, < G be any sequence of pairwise nonconjugate irre-
ducible lattices in G. Then T',\ X BS-converges to X.

1.6. COROLLARY. If in addition to the conditions of Theorem 1.5 we have
that (Ty,) is uniformly discrete (in particular, cocompact), then for every quasi-
compact vC -regular subset S C G, we have

vr, (S) — I/G(S)

and, in particular,
m(m,Ty)

vol(T', \ X)
for any m € G. And even more particularly, we have

be(I'n) )
ol x) A X)

— d(m)

for every k < dim(X).

'The group I',, being virtually torsion-free, the orbifold I',\X is finitely covered by a
manifold whose I';,-invariant rational k-th cohomology group coincides with the rational k-th
orbifold cohomology of I',,\ X and is of finite rank by (I",,); in particular, if T',, is torsion-free,
then bg(T'n) is the k-th Betti number of I',,\ X.
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Here is a particular example to illustrate the strength of Corollary 1.6:

1.7. Example. Let n > 3, let I" be a cocompact lattice in SL,(R), and let

I';, < T be a sequence of distinct, finite index subgroups of I'. Then for all &,
bk (Fm) 0.
[Ty

Even in this example, where all the lattices fall in one commensurability
class, we do not see a proof that avoids using Theorem 1.5.

It is easy to see that the analogue of Corollary 1.6 — and Therefore, of
Theorem 1.5 — is false for some rank one symmetric spaces. For instance,
suppose M is a closed hyperbolic d-manifold and 7 (M) surjects onto the free
group of rank two. Then finite covers of M corresponding to subgroups of
Z x 7 have first Betti numbers that grow linearly with the volume. However,
for d # 2, there will be sublinear growth of the first Betti number in any
sequence of covers corresponding to a chain of finite index normal subgroups
of 1 (M) with trivial intersection, e.g., by the DeGeorge—Wallach theorem.

Removing the injectivity radius condition for hyperbolic manifolds. If
rank(X) > 2 or if X is the symmetric space corresponding to Sp(d, 1) or F,~ 20,
then all irreducible X-manifolds are arithmetic, by Margulis’s Arithmeticity
[87, Th. 1.10, p. 298] and the Corlette-Gromov—Schoen Theorem [39], [67],
respectively. For SU(d, 1), there are few known examples of nonarithmetic
manifolds for d = 2,3, and it is likely that most manifolds are arithmetic.
According to Margulis’ conjecture it is Therefore, natural to expect that if X
is not isometric to some real hyperbolic space H? (d > 2), then the family of
all irreducible compact X-manifolds is uniformly discrete. On the other hand,
it is shown in [9], [22], [16] that for every d > 2, there are compact hyperbolic
manifolds of dimension d with arbitrarily small closed geodesics. Still, a careful
estimate of the norm of the heat kernel in the thin part of rank one manifolds
(see Section 7) allows us to prove the following.

1.8. THEOREM (Theorem 7.13). Let M, = I',\H be a sequence of com-
pact hyperbolic d-manifolds that BS-converges to H®. Then for every k < d,

bk(Mn)

— 32y
WM oty e -

Note that for X = H?2, the hyperbolic plane, Theorem 7.13 is a conse-
quence of the Gauss—Bonnet theorem, even under the weak assumption that
only vol(M,,) — oo, without requiring BS-convergence. In general there are
many sequences of hyperbolic manifolds that BS-converge to H¢, but where
the global injectivity radius is not bounded below. A typical example is given
by Brock—Dunfield [31], and while these are (intentionally) integer homology
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spheres, similar examples can be constructed where the only control on the
first Betti numbers is through Theorem 1.8.

The idea of our argument for Theorem 1.8 also gives an alternative proof,
in the real hyperbolic case, of the classical theorem of Gromov that Betti num-
bers are linearly bounded by volume [12, Th. 2]. We were not able to perform
the same analysis in the higher rank case. However, assuming the Margulis
conjecture, our result for higher rank symmetric spaces (Corollary 1.6) is much
stronger than Gromov’s linear bound.?

Explicit estimates for congruence covers. When restricted to congruence
covers of a given arithmetic hyperbolic manifold, Gromov conjectured that the
k-th Betti number should be bounded above by a constant times n®, where n
is the index of the cover and

2k
a=_—0 0<k<[(d-1)/2];

see Sarnak and Xue [103]. Cossutta and Marshall [40] and Bergeron, Millson
and Moeglin [23] proved an even better (and sharp) bound for principal con-
gruence covers of level a power of a prime and small degree k < d/3. Our
next result is a weak form of Gromov’s conjecture. While we cannot approach
the precise constant suggested by Gromov, we do obtain a very general result
that applies to all semi-simple Lie groups and general congruence (not just
principal) subgroups.

1.9. THEOREM (Theorem 6.14). Let G be a semi-simple Lie group, and
let ' < G be a uniform arithmetic subgroup. Let m € G be a nontempered
irreducible representation. Then there are constants o > 0 and C < oo such
that for every congruence subgroup A < T,

m(m,A) < C-[T: A7
As a consequence we obtain the following.

1.10. COROLLARY. Let G and I' be as in Theorem 1.9. Suppose that
1
|k — 5dimX| > §(G).

Then there exist constants o > 0 and C' such that for every congruence subgroup
A <T, we have

br(A) < C-vol(A\X) 7.

2Recall however that Gromov’s theorem applies in the much broader setup of Hadamard
spaces with bounded curvature and no Euclidian factors, which we do not consider in this

paper.
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Theorem 1.9 is a consequence of the following result, which is of indepen-
dent interest.

1.11. THEOREM (Theorem 5.6). Let G be a k-simple simply connected
algebraic group defined over a number field k. Let O be the ring of integers
in k. There exist a finite index center-free subgroup IT' C G(O) and positive
constants € and C (depending only on T' and some fized word metric on it)
with the following property.

Let g € T' — {1}, and let H be a congruence subgroup of index N in T.
Then g fizes at most eC{ 9 NI=¢ points in the action of I' on the right cosets
H\T' by multiplication. Here l(g) is the length of g with respect to the fived
word metric of .

Theorem 1.11 leads to the following effective version (for subgroups of a
fixed lattice) of Theorem 1.5; this allows us to prove Theorem 1.9. Implicit
here is an effective proof (again, for subgroups of a fixed lattice) of the second
part of Corollary 1.6.

1.12. THEOREM (Theorem 5.2). Let I'y C G be a cocompact arithmetic
lattice. Then there exist positive constants ¢ and p depending only on Ty, such
that for any congruence subgroup I' C I'g and any R > 1, we have

vol(T\X)<r) < e“Bvol(T'\ X))+

Growth of Reidemeister torsion. When the fundamental rank 6(G) is pos-
itive, the symmetric space X is L2-acyclic. It is then natural to investigate a
secondary invariant such as the L2-torsion of X; see [85], [24]. This is known
to be nonvanishing if and only if §(G) = 1, e.g., in the case G = SL2(C). We
study L?-torsion for BS-convergent sequences in Section 8; see, in particular,
Theorem 8.4.

In this introduction, we stress the particular case of compact orientable
hyperbolic 3-manifolds. Given such an M we denote by acan the discrete faith-
ful SLy(C)-representation of w1 M. The corresponding twisted chain complex

Co(M) @z, a1) C*
is acyclic [96] and it follows that the corresponding Reidemeister torsion
T(M, tean) € R*
is well defined. The following result is a consequence of Theorem 8.4.

1.13. THEOREM. Let (My,), be a uniformly discrete sequence of orientable
compact hyperbolic 3-manifolds that BS-converges toward H>. Then

11

. 1
lim ————log|7(M,, @can)| = ~Ton

n—-+oo vol(M,,)



GROWTH OF L2-INVARIANTS FOR SEQUENCES OF LATTICES IN LIE GROUPS 719

The role of IRS. An important tool in our project is the notion of an
invariant random subgroup (IRS). An IRS is a conjugacy invariant probability
measure on the space Subg of closed subgroups of G. We refer the reader to
6], [29], [112], [61], [62] for other recent works that make use of this notion.

Any lattice T' < G defines an IRS pup supported on the conjugacy class T'C.
It turns out (see Theorem 2.9) that if G is a connected simple Lie group,
then any nonatomic IRS is supported on discrete subgroups (hereafter called
a discrete IRS). Every discrete IRS gives rise to a probability measure on the
space of rooted metric spaces M mentioned above, and one can relate weak*
convergence of IRS’s to weak® convergence of measures on M. See Section 3
for details.

Denote by p¢ and purgq the atomic measures supported on {G} and {Idg}
respectively. The following is a variant of Theorem 1.5 stated in the language
of IRS’s.

1.14. THEOREM (Theorems 4.2 and 4.4). Let G be a connected, center-free
higher rank stmple Lie group. Then

e the ergodic IRS’s are exactly pa, prg and pur where T is a lattice in G;
e the set of ergodic IRS’s is compact and its only accumulation point is pig.

The first part of Theorem 1.14 is a consequence of the Nevo—Stiick—Zimmer
rigidity theorem [109], [91].

The picture is much wilder in rank one. For example, starting with a
lattice I' < G and an infinite index normal subgroup A <1 I', one can induce
the measure on I'\G to an ergodic IRS supported on the conjugacy class A%,
More generally, any IRS in I" can be induced to an IRS in G. We investigate
these constructions and more exotic ones in a sequel of this paper to be ex-
tracted from our original arXiv paper [2]. In particular, we define their spectral
measure and their L?-Betti numbers and we prove spectral convergence along
sequences that BS-converge toward a nontrivial IRS.

Acknowledgments. This research was supported by the MTA Renyi “Lend-
ulet” Groups and Graphs Research Group, the NSF Postdoctoral Fellowship,
the Institut Universitaire de France, the ERC Consolidator Grant 648017, the
EPSRC, the ISF grant 1003/11 and the ISF-Moked grant 2095/15.

2. Invariant Random Subgroups

Let G be a locally compact second countable group. We denote by Subg
the set of closed subgroups of G. There exists a natural topology on Subg, the
Chabauty topology [34], that is generated by open sets of the form
(1) O1(K)={H € Subg : HN K =} for K C G compact, and
(2) Ox(U) ={H € Subg : HNU # 0} for U C G open.
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Alternatively, a sequence (Hy)n>0 in Subg converges to H € Subg if and

only if

(1) for every x € H, there exists a sequence (x,,) € G" such that z,, € H,, and
Tn — x in G;

(2) for every strictly increasing sequence of integers (ny)r>o and for any con-
verging sequence xp, — x such that z,, € H,,, we have x € H.

The Chabauty topology is compact, separable and metrizable [17, Lemma
E.1.1]. While the proof of metrizability referenced uses Urysohn’s theorem,
one can also write down an explicit metric. For instance, when G is compact,
the Chabauty topology is induced by the Hausdorff metric on C(G). In the
noncompact case, one can metrize it by integrating up the Hausdorff metrics
on all R-balls around a fixed base point; see [4]. We refer the reader to [68]
(and also to [62]) for more information on the topology of Chabauty spaces.

Note. We will not always require G to be locally compact. In this case,
the Chabauty topology is defined as above, but it will not always be compact.

Here is an easy exercise in the definitions that we will use in Section 3.

2.1. LEMMA. Let G be a connected Lie group, and suppose that (') is
a sequence in Subg with T,y NU = {id} for some fized neighborhood U of the
identity id in G. If (T),) converges toward a group H in Subg, then H is
discrete. Moreover, if all the I';,’s are torsion free, so is H.

Proof. If H is not discrete, then it intersects U. So, O2(U ~\ {id}) is a
neighborhood of H that does not contain any I',,. If g is a nontrivial element
in H with ¢F = id, then there is a sequence =, € I, with 7, — g. Therefore,
vk — id, so by uniform discreteness we have v* = id for large n, implying that
I',, has torsion. O

2.2. PROPOSITION. Let G be a connected Lie group. Then G is an isolated
point in Subg if and only if G is topologically perfect.

Recall that a topological group is topologically perfect if its commutator
subgroup is dense. So, in particular, the proposition implies that if G is con-
nected and semi-simple, then G is an isolated point in Subg.

Proof. Suppose that G is topologically perfect. Then by [30, Th. 2.1]
there exist d = dim(G) open sets 4,...,Q4 C G such that for every choice
of d elements g; € Q;, i = 1,...,d, the subgroup (gi,...,g4) is dense in G.
Therefore, if H € Subg intersects each of the §;, then H = G, and thus
N, 0(;) = {G} is open.

Conversely, if G is not topologically perfect, then it surjects on the cir-
cle S'. Let H, be the pre-image in G of the cyclic group of order n in S?.
Then clearly we have that H,, converges to G. O
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We also recall the following well-known fact, which follows from classical
work of Kuranishi [75] and Toyama [111]. See also Theorem 4.1.7 in [110].

2.3. PROPOSITION. Let G be a Lie group, and let (I'y)n>1 be a sequence
of discrete subgroups in G that converges to a subgroup H. Then the connected
component H® of H is nilpotent.

We now come to the central definition of this section.

2.4. Definition. Let G be a topological group. An invariant random sub-
group (IRS) of G is a G-invariant Borel probability measure on Subg.

Here, G acts on Subg by conjugation. The name IRS has been coined
in [6]. We consider the set

IRS(G) = Prob(Subg)™

of invariant random subgroups of G endowed with the weak* (or, vaguely
speaking, the weak) topology. When G is locally compact, as Sub¢ is compact
and the G-action is continuous, it follows from Riesz’ representation theorem
and Alaoglu’s theorem that the space of invariant random subgroups of G is
also compact.

IRS’s arise naturally when dealing with nonfree actions, as the stabilizer
of a random point in a probability measure preserving action is an IRS. More
precisely, when G acts by measure preserving transformations on a countably
separated probability space (€2, v), the push forward of v under the stabilizer
map®

stab : @ — Subg, stab(z) = G,

is an IRS in G. We say that the IRS is induced from the probability measure
preserving action.

As an example, suppose that H is a closed subgroup of G such that G/H
admits a finite G-invariant measure; for instance, H could be a lattice in G. In
this case, we scale the measure on G/H to a probability measure and denote
by ppr the invariant random subgroup induced by the left action of G on G/H.

This construction can be further generalized. Let H be a closed subgroup
in G, and let N = Ng(H) be its normalizer in G. Suppose that G/N admits
a left G-invariant probability measure. Consider the map G — Subg given
by g — gHg™*
supported on the conjugates of H, which we denote pr. This notation conflicts
with that in the previous paragraph; indeed, if both G/H and G/N admit an
invariant probability measure, then we have two definitions of uy. However,
both these constructions give rise to the same measure.

. The push-forward measure on Subg is a G-invariant measure

3Tt is a result of Varadarajan that the stabilizers are closed subgroups; see [115,
Cor. 2.1.20].
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Invariant random subgroups can also be constructed as products. Let
H,, H be commuting subgroups of GG, and assume that Hy, H and the product
H{Hs are all closed in G. If ui, ys are invariant random subgroups of G that
are supported on Subg,,Subg,, we can push forward the product measure on
Subp, x Subp, using

SubH1 X SubH2 — Subg, (Kl,KQ) — K1 x Ko

to a measure on Subg, which we denote 1 ® pe. It is easy to check that this
measure is G-invariant.

Finally, suppose I' < GG is a lattice and u is an IRS of the discrete group I'.
The IRS of G induced from p is the random subgroup of G obtained by taking
a random conjugate of I' and then a p-random subgroup in this conjugate
(which is well defined because of the invariance of p). Formally, the natural
map

G x Subr 3 (g,A) — gAg~! € Subg

factors through the quotient of G'x Subr by the I'-action (g, A)y = (g, 7 ' Ay).
This quotient has a natural G-invariant probability measure, and we define
our IRS to be the push forward of this measure by the factored map (G x
Subr)/T'" — Subg. This is a particularly important construction when G =
SO(n, 1), in which case lattices have many IRS’s; see [2].

2.5. IRS’s wia stabilizers. The following theorem shows that, when G is
locally compact, every IRS is induced from a probability measure preserving
action.

2.6. THEOREM. Let G be a locally compact second countable group, and
let p € IRS(G). Then u is induced from some probability measure preserving
action of G.

When G is countable and discrete, this was proven in [6, Prop. 13]. The
reader should note that we do not use this result anywhere in this paper,
although it could be used to give a slightly shorter proof of Theorems 4.1
and 4.3. However, we consider it of independent interest.

Proof. The coset space of G, written Cosg, is the set
Cosg = {Hg : H € Subg, g € G},

equipped with the Fell topology of closed subsets of G. Then G acts on Cosg,

both from the left via Hg LA kHg and from the right via Hg LA Hgk. With
respect to the left action, the stabilizer map is the natural projection

stab : Cosqg — Subg, Hg+— H,
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where the fiber above H € Subg is the coset space H\G. Note that as usual
for a stabilizer map, the G-action permutes the fibers and descends to the
conjugation action of G on Subg.

By [26, Th. 3.1], for almost every subgroup H in the support of u, there is
a right G-invariant measure vy on H\G, and one can choose the map H +— v
to be Borel.* So, integrating against p creates a measure v on Cosg:

V= / v di.
Subg

The left and right G-actions on Cosg commute, so the left action of g pushes
forward vy to a measure on gHg !'\G that is again right G-invariant. By
uniqueness, we have g«vy = Avypg-1 for some A € R. Combining this with the
conjugation invariance of u, the left G-action preserves the measure class of v.

Suppose for a moment that each vy is finite, i.e., that py-a.e. H € Subg has
co-finite volume. Then after scaling, we can take each vy to be a probability
measure. The vy are then permuted by the left G-action, which implies that v
(and not just its measure class) is left G-invariant. Furthermore, v is then
a probability measure that pushes forward to pu under stab. So, the theorem
follows.

In general, it is enough to prove the theorem when p is ergodic, so we can
break into cases depending on whether for u-a.e. H € Subg, we have

(1) v is finite (in which case we are done),
(2) vy is infinite and H\G is discrete,
(3) vy is infinite and H\G is nondiscrete.

Of the latter two cases, (3) is the more difficult, so we will focus on that and
mention (2) again at the end. Assuming (3), the two problems are that only
the measure class of v is G-invariant and that v is not a probability measure.
To deal with the first issue, we replace the action G ~ Cosg with its Maharam
extension

G~ Cosg xR, (Hg,t) —s (ng, dkd e )(Hg) )

which preserves the measure v X £ on Cosg X R, where ¢ is Lebesgue measure.
Note that the stabilizer map for the Maharam extension is just the projection

Cosg x R — Subg, (Hg,t) — H,

for since H acts trivially on H\G, it preserves v, and combining this with
the conjugation invariance of u gives that dh © )(H g) = 1 whenever h € H.

‘Here, we regard the vy as measures on Cosg, so the parametrization is Borel when for
every Borel B C Cosg, the map H — vy (B) is Borel.
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We now have a G-invariant measure v x £ and a disintegration

u><£:/ vg x £du
Subg

with respect to the stabilizer map. If the fiber measures vy x £ were probability
measures, we would be done as before, but they are not. So, the idea is to
replace each fiber H\G x R with an associated Poisson process.

One way to make this rigorous is as follows. Both Cosg xR and Subg xR
are Polish spaces that map onto Subg, such that the fiber measures

vxflon H\G xR, and fon {H} xR
have no atoms, so a result of Rokhlin [101, p. 41] gives a measure isomorphism
¢:COSGXR—>SubGXR+

that commutes with the projections to Subg.? Conjugating the G-action on
Cosg X R by ¢, we have a measurable G-action on Subg x R, such that

(a) the fibers {H} x Ry are permuted by conjugating H;

(b) g € G pushes forward the Lebesgue measure on {H} x R to the Lebesgue
measure on {gHg 1} x Ry;

(c) the stabilizer of (H,t) € Subg x Ry is H.

Let S(Ry) be the set of all countable subsets of Ry, and let 7 be the
Poisson process on R that we regard as a probability measure on S(R4).
(We refer the reader to [41], [44] for details.) There is an induced action
G ~ Subg x S(Ry), which (using (b) above) preserves the probability measure
WX T

By (b) and (c), the quotient group Ng(H)/H acts freely on the fiber
{H} xRy C Subg x R4, preserving the Lebesgue measure, so by Lemma 2.7
below the induced action on {H} x S(R) is essentially free. In other words,
the G-stabilizer map

stab : Subg x S(Ry) — Subg

is the projection onto the first coordinate. Hence, stab.(u x ¢) = p, and we
are done.

Finally, a quick remark about the proof of (2). Here, there is no need
for the Maharam extension since if one defines the vy to be the appropriate
counting measures, then they will be permuted by the G-action. The rest of

5In the cited reference, Rokhlin’s theorem is only for probability measures, not arbitrary
o-finite measures. However, one can always scale a o-finite measure with a Borel function to
become a probability measure, and it is not hard to then see that his theorem extends to the
o-finite case.
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the proof proceeds in the same way, with all references to R, replaced by Z
and the Poisson process replaced by i.i.d. Benoulli measures. ]

As promised, here is the lemma we used in the proof above.

2.7. LEMMA. Suppose that a group G acts measurably and freely on Ry,
preserving Lebesque measure £. Then G acts essentially freely on the space
S(Ry) of countable subsets of Ry, with respect to the Poisson process .

This is folklore, but we include a brief proof for completeness, since we
are not aware of a reference.

Proof. On the contrary, suppose that there is a positive m-probability that
an element D € S(Ry) has nontrivial stabilizer. Then there is some interval
(0,n) such that there is a positive m-probability that for D € S(R.), the
intersection D N (0,n) contains elements 1, ..., x4 with

(2.7.1) g(z1) = z2, g(x3) = x4 for some g € G.

The intersection D N (0,n) is almost surely finite, and after conditioning
on cardinality k, the points of D are distributed within (0,n) according to the
Lebesgue measure on (0,n)*, cf. [44, Ex. 7.1(a)]:

for (x1,...,x,)€(0,n)*, we have Dﬂ([),n):{acl,...,mk},) ey
Prob ( given that DN(0,n) has k elements =dl (.%'1, T ,ka).
So, in particular, there is a positive probability that (z1,...,24) € (0,n)%

satisfies (2.7.1). But by freeness of the action, for such (z1,...,z4), the last
coordinate is determined by the first three. So, applying Fubini’s theorem on
(0,n)* = (0,n)® x (0,n), we have a contradiction. O

2.8. IRS’s in Lie groups. From now on, unless explicitly mentioned oth-
erwise, we will assume that G is a connected Lie group.
The following is a variant of the classical Borel density theorem.

2.9. THEOREM (Borel’s density theorem). If G is simple (with trivial cen-
ter), then every IRS with no atoms is supported on discrete Zariski dense
subgroups of G.

A subgroup T' of G is Zariski dense if the only closed subgroup H < G
that contains I' and has finitely many connected components is G itself. This
coincides with the algebraic definition of Zariski density when G has the struc-
ture of a real algebraic group. One recovers the classical theorem of Borel [28]
when p is the IRS pp associated with a closed subgroup of finite co-volume
H <G.

Although the proof could be rearranged in a way that avoids and hence
reproves the classical Borel density theorem, we will make use of Borel’s result
in the proof of the following.
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2.10. LEMMA. The only IRS supported on the set of finite subgroups of G
is the Dirac measure 0iqy -

Proof. Let p be an ergodic IRS supported on finite subgroups of G. Since
G has only countably many conjugacy classes of finite subgroups, u is sup-
ported on a single conjugacy class, say F¢ for some appropriate finite sub-
group F' < G. Thus p induces a finite G-invariant probability measure on the
homogenous space G/Ng(F). Thus Ng(F) is of finite co-volume in G. By
the classical Borel density theorem, Ng(F') is Zariski dense. Since F' is finite,
N¢g(F) is algebraic and hence Ng(F) = G. As G is connected and F' is dis-
crete, we deduce that F is central in G. Finally, since GG has a trivial center,
F = {id}. O

Proof of Theorem 2.9. Associating to a closed subgroup H < G either

(1) the Lie algebra of the identity component of H, or
(2) the Lie algebra of the identity component of the Zariski closure of H,

an IRS induces two Ad(G)-invariant measures, p; and ug, on the Grasmannian
manifold of the Lie algebra g of G. Note that both (1) and (2) are measurable
as maps from Subg to the Grassmannian (see [63] for details). As follows from
Furstenberg’s proof of the Borel density theorem (see [59]), every such measure
is supported on {{0}, g}.

The pi-mass of g is exactly the mass that the given IRS gives to the
atom G, which is by assumption 0. Thus p; is the Dirac measure supported
on {0}, which is equivalent to the statement that our IRS is supported on
discrete subgroups.

On the other hand, any Zariski closed discrete subgroup of G is finite.
Therefore, p2({0}) is the amount of mass that our IRS gives to finite subgroups
of G. By Lemma 2.10, this must be 0. Therefore, uo is the Dirac measure
supported on g, which implies that our IRS is supported on Zariski dense
subgroups. O

Remark. For a connected semi-simple group Lie G (which is neither nec-
essarily simple nor center-free), an elaboration of the argument above provides
the following. Given an ergodic IRS g in G, there are normal subgroups
Ni, No < G, with N7 < Ny such that for p-a.e. H € Subg, the identity con-
nected component H° is N; and the Zariski closure H~ is No. For details, see
[63], where the analog result is established for groups over general local fields.

3. Large injectivity radius and BS-convergence

Let G be a semi-simple Lie group, and let X = G/K be an associated Rie-
mannian symmetric space. An X -orbifold is a Riemannian orbifold obtained
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as a quotient I'\ X for some discrete subgroup I' < G. Our goal is to under-
stand the topology of Subg geometrically through these quotient orbifolds and
then to promote this to an understanding of discrete IRS’s as random pointed
X-orbifolds.

To begin with, let us understand the geometric meaning of Chabauty
convergence to the identity. The injectivity radius of an X-orbifold M = T'\ X
at z € M is

1
InjRadp, \ x (z) = 5 min{d(z,v2) | v € T'n, — {id}},

where & € X is any lift of . We then have

3.1. LEMMA. A sequence of subgroups I';, < G converges to {id} in the
Chabauty topology if and only if InjRadp \ x ([id]) — oo.

Here, [id] is the projection of the identity in G.

Proof. 1t suffices to show that the subsets
Ur = {H € Subg | #y € H ~ {id} with dx([id],[id]) < R} C Subg,

with R € (0,00), form a basis of open sets around {id} € Subg.

To show that Ug is open, consider a sequence (H,) of subgroups in
Subg that do not belong to Ug; i.e., there are elements ~, in H, \ {id} with
dx([id],~v[id]) < R. Passing to a subsequence, we may suppose that the se-
quence (7,) converges towards some element v € G. Using the exponential
map and replacing each -, by an appropriate power, we may furthermore as-
sume that v # id. Then  translates [id] by at most R, and appears in any
Chabauty limit H of (H,,), so any such limit is also outside Ug.

We can prove that the Ug form a basis by comparing them with the basic
open sets O1(K), O2(U) defined in Section 2. First, suppose K C G is compact
and id ¢ K. Choosing R larger than the [id]-translation distance of all v € K,
we have Ur C O1(K). And if U C G is open and id € U, then O2(U) = Subg,
and hence contains Up for all R. O

On the level of IRS’s, we have

3.2. PROPOSITION. A sequence of IRS’s (un) of G converges weakly to piq
if and only if for every R > 0, the u,-probability that for a subgroup I' € Subg
we have InjRadp x ([id]) < R tends to zero as n — oo.

Proof. With the notation of the proof of Lemma 3.1, ur, — piq if and
only if

n11_>1rr010 pr, (Ug) =1 forall R > 0. O

And for lattice IRS’s, this can be rewritten as follows.
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3.3. COROLLARY. Suppose that (I'y) is a sequence of lattices in G. Then
(ur,) converges weakly to piq if for every R > 0, we have

(3.3.1) Jim Py, {z € ')\ X | InjRadp, \ x(z) < R} =0,
where Py, is the normalized Riemannian measure on I';)\ X

Proof. Consider the G-invariant probability measure fi on I',\G. Pushing
forward this measure to Subg by the stabilizer map I'ng +— ¢ 'T',g gives
ur, , while pushing it forward under the projection I')\G — T',,\ X gives P,.
Therefore,

Pn {z € T,\X | InjRadp,\ x (z) < R}
= ,u,{F g9 € T\G | InjRadr\ x([g]) < R}
=5 {g 7,9 € Subg | InjRadg-1p, g x ([id]) < R} ,

where the last line uses that dx ([g],7[g]) = dx ([id], g~ yg[id]). So, the corol-
lary follows from Proposition 3.2. U

In Section 4, we will show that any sequence of irreducible lattice IRS’s
in a center-free higher rank semi-simple Lie group with property (T) weakly
converges to p;q. Using Corollary 3.3, we will see in Section 6 how to deduce
asymptotics for Betti numbers and representation multiplicities, as discussed
in the introduction.

As in the introduction, we say a sequence of X-orbifolds Benjamini—
Schramm converges to X when (3.3.1) holds for all R. More generally, the
theory of invariant random subgroups of Lie groups can be recast in a geo-
metric context, where weak convergence is replaced by a suitable generalized
BS-convergence. This interpretation is inspired by a program in graph theory,
e.g., [5], [8], [10], [18], that was popularized by Benjamini-Schramm [19]. We
will briefly discuss the graph theory and then explain how to translate to the
continuous setting.

3.4. Graphs and IRS’s of discrete groups. All the material here is well
known; for more information, we refer the reader to [7], [10], [26].
Let G be the space of all isomorphism types of rooted graphs (X, p), where

A((X,p), (v.q)) =int {; | Bx(v. )= Br(a.R)}

so two rooted graphs are close if balls of large radius around their base points
are isomorphic. We consider the set Prob(G) of all Borel probability measures
on G with the topology of weak® convergence.

One way to understand weak® convergence is as follows. For each R > 0
and each finite rooted graph B = (B, p), let Pr p(1) be the probability that
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the R-ball around the root of a u-randomly chosen (X, p) € G is isomorphic to
(B,p). Then

(3.4.1) p; — pweakly <= Ppp(pi) = Prp(p) VR>0,B=(B,p).

Here, the condition Bx(p, R) = (B,p) determines a basic open set for the
topology of G, whose p-measure is Pr g(p). Equation (3.4.1) follows since
these sets are also closed.

Any finite graph X determines an element px € Prob(G), by choosing the
root uniformly from the vertices of X. One says that a sequence (X;) of finite
graphs Benjamini-Schramm converges to a measure p € Prob(G) if px, — u
weakly. In light of (3.4.1), a Benjamini—-Schramm limit captures, for large i,
the limiting statistics of the isomorphism types of all R-balls in X;.

Now let G = (S) be a finitely generated group. A subgroup H < G deter-
mines a rooted Schreier graph, written Schg(H\G), where vertices are cosets
Hyg, the root is H, and where an edge labeled s € S joins Hg to Hgs. Adding
edge labels, we have a space Gg of isomorphism types of rooted S-labeled
graphs, and the map

Subg — Gs, H +— SChs(H\G)

is a homeomorphism onto its image; see [7]. So, an IRS u of G determines a
measure Schg(u) on Gg, and the induced map

{IRS’s of G} — Prob(G), p+— Schg(p)

is a weak® homeomorphism onto its image. Therefore, the study of IRS’s of G
is equivalent to the study of (certain) random S-labeled rooted graphs.

Passing to the continuous setting, we would like to study discrete IRS’s
I' of a Lie group G as random pointed quotients I'\ X. There are a number of
settings in which one can develop such a theory, but the following is the most
general.

3.5. The Gromov—-Hausdorff space. Consider the set
M= {proper, pointed length spaces (X, xo)} /pointed isometry.

In [66], Gromov defined a notion of convergence of pointed metric spaces using
a generalization of the Hausdorff metric. Following a variant given in [33, §3.2],
two pointed metric spaces (X, z¢) and (X', z() are (e, R)-related, written

(Xa .’EU) ~e,R (Xla 1'6),
if there are compact subspaces K C X and K’ C X’ containing the basepoints
and a relation ~ between K and K’ that satisfies the following properties:
(1) Bx(zo,R) C K and Bx/ (x4, R) C K,
(2) o ~ xp;
(3) for each x € K, there exists 2’ € K’ such that x ~ 2/;
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(4) for each 2’ € K, there exists x € K such that x ~ 2; and
(5) if z ~ 2/ and y ~ ¢/, then |dx(z,y) — dx/ (2, )] < e.
This defined a (pointed) Gromov-Hausdorff topology on M: a basis of neigh-
borhoods of (X, zg) is defined by considering for each € > 0 and R > 0 the set
of proper, pointed length spaces that are (e, R)-related to (X, xz).

It is well known that this topology is separable and completely metrizable,
i.e., Polish; a distance between (X, o) and (X', z() can be defined by taking
the infimal € = eg such that (X, z0) and (X', z() are (e, R)-related and then
setting

min{eg, 1}

d((X,0), (X's0)) = > =

R=1
Note that the space of rooted graphs G from the previous section embeds in M,
once we declare all edges in a graph to have unit length.

Suppose that G is a semi-simple Lie group, and let X = G/K be an
associated Riemannian symmetric space. For simplicity, we will deal with
X -manifolds T\ X rather than X-orbifolds in the rest of the section; i.e., we
will assume that our discrete I' is torsion free. As a geometric analogue of
Lemma 3.1, we have

3.6. PROPOSITION. A sequence of pointed X -manifolds (M;,p;) converges
in the Gromov-Hausdorff topology to X if and only if InjRad ;. (p;) — oc.

Here, any base point for a space with a transitive isometry group, like X,
gives the same element of M, so we drop the base point from the notation. The
difficulty in proving Proposition 3.6 is that Gromov-Hausdorff convergence is
metric, not topological, and the homeomorphism type may change drastically
in a Gromov—Hausdorff limit. However, the following lemma shows that when
the curvature and its derivatives are bounded, this is not the case.

3.7. LEMMA. Suppose that (M;,p;) is a sequence of complete Riemann-
tan d-manifolds and that the covariant derivatives of the curvature tensors R;
satisfy

|VFR;| < Cr < o0

for some fized sequence (Cy) independent of i and of the point in M;. If (M;, p;)
converges to a Riemannian d-manifold (M, p) in the Gromov—Hausdorff topol-
ogqy, then the convergence is smooth and

InjRad y, (p;) — InjRad,,(p).

Here, tensor norms are induced by the associated Riemannian metrics.
We say that (M;, p;) — (M, p) smoothly if there is a sequence of embeddings

¢i : B(p, R;) — M;
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with R; — oo and ¢;(p) = pi, such that ¢fg; — g in the C*°-topology, where
gi, g are the Riemannian metrics on M;, M.

The authors would like to thank Igor Belegradek for a very helpful con-
versation related to the proof below.

Proof of Lemma 3.7. First, suppose that InjRad,, (p;) — 0. As the sec-
tional curvatures of M; are bounded, a result of Cheeger—Gromov—Taylor [37,
Th. 4.7] implies that voly, (pi, 1) — 0 as well. The Gromov-Hausdorff limit
then has Hausdorff dimension at most d —1; this dates back to work of Gromov
in the 1970’s, but a citation for a more general result is [36, Th. 3.1]. In our
case, though, the limit is a Riemannian d-manifold, so we have a contradiction.

So, there is a lower bound on the injectivity radii InjRad,;, (p;). From
this and the bounds on the derivatives of curvature, it is well known that the
convergence is smooth; see [78, Th. 4.1]. The continuity of injectivity radius
is then a result of Erlich [52]. O

Proof of Proposition 3.6. Pick a base point p € X. If the injectivity radius
at p; goes to infinity, then there are radii R; — oo such that the ball Byy, (pi, R;)
is isometric to By (p, R;). This isometry gives a (0, R;)-relation.

Conversely, suppose (M;, p;) converges in the Gromov—Hausdorff topology
to X. The hypotheses of Lemma 3.7 are satisfied, since for every ¢ and at every
point in M;, we have |V¥R;| = |[V*Rx/|, which we can take as our C. So, the
injectivity radius at p; goes to infinity. O

Benjamini—Schramm convergence of X-manifolds to X can now be rein-
terpreted using weak convergence of measures on M. Note that every com-
plete finite volume Riemannian orbifold M produces a probability measure pps
on M: one pushes forward the normalized Riemannian measure of M under
the natural map M — M, where z — (M, ). Also, we denote the atomic
measure on X € M by ux.

As an immediate consequence of Corollary 3.3 and Proposition 3.6, we
have

3.8. COROLLARY. For X-manifolds M; = I';\ X, the following are equiva-
lent:

(1) the IRS’s ur, weakly converge to pig;
(2) for every R > 0, lim; oo Pi{z € I''\X | InjRadp, x(z) < R} = 0;
(3) the measures ppr, on M weakly converge to px.

3.9. General Benjamini—Schramm convergence. To reinterpret weak con-
vergence of more general IRS’s geometrically, we need to add frames to our
space M, similarly to how we added S-labels to rooted graphs in Section 3.4.
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A frame for a Riemannian manifold M is an orthonormal basis f for some
tangent space Ty (y)M, where w(f) € M. We let

MFI = {framed Riemannian d-manifolds (M, f )} /framed isometry.

A framed (e, R)-relation between (M, f) and (N, f’) is an (e, R)-relation be-
tween the pointed manifolds (M, 7(f)) and (N, w(f’)) with the additional as-
sumption

(3.9.1) exp¢(v) ~ expy(v) when v € Bga(0, R).

Here, expy : R? — M is the Riemannian exponential map associated to f. If
a framed (e, R)-relation exists, we write (M, f) ~cr (IV, f’). As in the pointed
case, framed (e, R)-relations induce a (framed) Gromov-Hausdorff topology on
the set MF?, and this topology is again Polish.

If G is a semi-simple Lie group and X = G/K is a symmetric space, let
Subdtf = {discrete, torsion-free I' < G} C Subg.
Fixing an orthonormal frame f for X and setting d = dimX, we have a map
@ : Subdt — MFL T+ (T\X, [f]).
3.10. PROPOSITION. The map ® is a homeomorphism onto its image.

Proof. As MF® is Hausdorff, it suffices to show that ® is a continu-
ous, proper injection. Injectivity is clear, since an isometry (I'\X,[f]) —
(I"\X, [f]) lifts to a (I',I")-equivariant isometry X — X fixing the base
frame f, which must then be the identity, implying I' = I. For properness,
Lemma 3.7 implies that on any compact subset K € MF?, there is some € > 0
such that

InjRad,,(p) > € for all (M,p) € K.

So, @ !(K) is a family of uniformly discrete, torsion-free subgroups of G.
Lemma 2.1 implies that (K is precompact in Sub@’, so it suffices to check
that ® is continuous, since then the preimage ®~!(K) will be closed, hence
compact.

Suppose that I'; — ', in Subg, write M; = I';\ X, and let the projection
of the frame f € X be f; € T),M;. Fixing R > 0, we define a relation ~
between the balls By, (pi, R) and By (peo, R) as in (3.9.1), via

expy, (v) ~ expy_(v) when v € Bpa(0, R).

Fixing € > 0, we want to show that ~ is an (e, R)-relation for large i. As
conditions (1)—(4) are immediate, the point is to prove (5), i.e., that for large i,

(3.10.1) | dur,(expy, (v), expy, () — dar (expy, (v), expy (w)) | < €
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for all v,w € Bpa(0,R). If not, then after passing to a subsequence, there
are sequences v;, w; that violate this inequality for all i. Passing to another
subsequence, we can assume that (v;, w;) = (Voo, Woo) in Bra(0, R) X Bra(0, R).

Now expy, (v;) is the projection under X — M; of the point exp¢(v;) € X,
and similarly for w; and ¢ = co. So for i =1,2,..., 00, there are g; € I'; with

d, (expy, (vi), expy, (wi)) = dx (i exp(vi), exp(wi)).
That is, g; expy(v;) is the closest point in the I';-orbit of exp,(v;) to exp (w;).
Passing to a subsequence, we may assume that g; — ¢ in G, since all the g;
translate a point inside Bx(w(f), R) a distance at most, say, 10R. Then by
Chabauty convergence, we have g € ', so

Jim da; (expy, (vi), expy, (wi)) = lim dx(g; expy(vi), exp(wi))
= dx(gexps(veo), expy(Weo))
> du, (expy (Voo), expy_ (Woo))-
On the other hand, Chabauty convergence also provides a sequence z; € T';
with z; = goo. So,
Zliglo ds; (expy, (vi), expy, (w;)) < zli)rgo dx (z;exps(vi),exp(w;))
= dx (goo €xP (Voo ), €XP f (Woo))
= dpr,, (expy,_ (Voo), exXpy_ (Woo))-
This contradicts the fact that the v;, w; were chosen to violate (3.10.1). O

An IRS p of G is discrete or torsion free if p-a.e. closed subgroup of G is
discrete, or torsion free. As a consequence of Proposition 3.10, we have

3.11. COROLLARY. The following map is a homeomorphism onto its image:
@, : {discrete, torsion-free IRS’s of G} — Prob(MF?)

So, weak convergence of (discrete, torsion-free) IRS’s can be viewed as
weak convergence of measures on the Gromov—Hausdorff space of framed
X-manifolds.

Corollary 3.11 captures most of the interesting topology of the space of
all IRS’s of G. When G is a simple Lie group, for instance, Theorem 2.9 and
Proposition 2.2 imply that every IRS of GG is supported on discrete subgroups,
except for a possible atom on the isolated subgroup {G} € Subg. So, the space
of all IRS’s is a cone on the space of discrete IRS’s.

While we have chosen to simplify the argument by considering manifolds
instead of orbifolds, the corollary is still true if one replaces framed mani-
folds by framed orbifolds and drops the torsion-free hypothesis. For simple
Lie groups G, a quick and dirty argument is as follows. Omne proves as in
Proposition 3.10 that the map ® in a continuous injection, and hence a Borel
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isomorphism onto its image,® so ®, is a continuous injection. Since G is sim-
ple, the argument in the previous paragraph shows that the space of discrete
IRS’s is compact, and any continuous injection from a compact space into a
Hausdorff space is a homeomorphism onto its image.

4. IRS’s in higher rank

As in the previous section, suppose that G is a center free semi-simple Lie
group without compact factors, and let X = G/K be the associated Riemann-
ian symmetric space. We say an IRS is irreducible if every simple factor acts
ergodically. When G has higher rank and Kazhdan’s property (T), we prove
the following strong result using the Nevo—Stiick—Zimmer rigidity theorem (see
below).

4.1. THEOREM. Let G be a center-free semi-simple Lie group of real rank
at least two and with Kazhdan’s property (T). Let p be a nonatomic irreducible
IRS of G. Then p = ur for some irreducible lattice I' < G.

Recall that a simple Lie group of R-rank at least two has property (T) by
Kazhdan’s theorem [15, §1.6] and a rank-one simple Lie group has property (T)
if and only if it is locally isomorphic to Sp(n,1), n > 2 or Fy_sg) by Kostant’s
result [15, §3.3]. A semi-simple Lie group has property (T) if and only if all
its simple factors have (T). By the arithmeticity theorems of Margulis and
Corlette-Gromov—Schoen [86], [39], [67], if G has property (T), then all its
lattices are arithmetic.

When all the simple factors of G are of real rank at least two, one can
furthermore classify all the ergodic invariant random subgroups of G as follows.

4.2. THEOREM. Let G be a connected semi-simple Lie group without cen-
ter, and suppose that each simple factor of G has R-rank at least two. Then
every ergodic invariant random subgroup is either

(1) pn for a normal subgroup N in G,
(2) pa for a lattice A in a normal subgroup M of G; or
(3) products of the previous two measures, where N and M commute.
Explicitly, if p is an ergodic invariant random subgroup, then there are com-
muting normal subgroups N, M in G and a lattice A in M such that p =
HN @ A = AN xA-

We shall prove Theorems 4.2 and 4.1 by making use of the following fun-

damental result of Nevo, Stiick and Zimmer, which is a particular case of [109,
Th. 4.3].

SAny continuous injection between standard Borel spaces is a Borel isomorphism [72,
Th. 15.6], and Subg and MF? are Polish spaces.
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4.3. THEOREM (Nevo-Stiick-Zimmer). Let G be a connected semi-simple
Lie group without center, such that each simple factor of G has R-rank at least 2
or is isomorphic to Sp(n, 1), n > 2 or Fy_oq). Suppose that G, as well as every
rank one factor of G, acts ergodically and faithfully preserving a probability
measure on a space X. Then there is a normal subgroup N <t G and a lattice
I' < N such that for almost every x € X, the stabilizer of x is conjugate to I'.

Let us mention that some new results in the spirit of Theorem 4.3 were
established recently in [42] and [80].

Before we start the proofs, we would like to mention that the following
could be simplified a bit by appealing to Theorem 2.6. In particular, one could
avoid referencing the Margulis normal subgroup theorem. However, we have
chosen to give an independent proof, as it is not that much longer.

Proof of Theorems 4.1 and 4.2. Let us assume that G has R-rank at least
two and Kazhdan’s property (T). At various points in the proof we will mention
how the assumptions of Theorem 4.2 imply a stronger conclusion. In the
following, let p be an ergodic invariant random subgroup of G.

Suppose first that the action of G is faithful. By 4.3 we obtain a normal
subgroup N and a lattice I' < N such that the stabilizer, i.e., the normalizer,
of a p-random subgroup is conjugated to I'. We claim that N = . Indeed, the
direct complement M of N in G normalizes every conjugate of any subgroup
of I'. Hence M fixes almost every point in Subg and as the action is faithful,
M is trivial.

Next we claim that if A is a subgroup of G whose normalizer is I", then
[[' : A] < oco. Recall the Margulis Normal Subgroup Theorem: a normal
subgroup of an irreducible lattice in a semi-simple Lie group with R-rank > 2 is
either central or is a lattice. In our cases, the assumptions of Theorem 4.1 impl
that I" is irreducible, but the assumptions of Theorem 4.2 do not. However, by
[98, Th. 5.22], there is a decomposition of G as a product of normal subgroups
[1G; such that I'; ;== I' N G; is an irreducible lattice in G; and []I'; has finite
index in I". Note that by the assumptions of 4.2, R-rank(G;) > 2 for every
i. Moreover, the projection of A to each G; cannot be trivial since I' is the
full normalizer of A. By considering the commutator [I';, A] one deduces that
A; := AN G, is nontrivial for every ¢. By the normal subgroup theorem, A; is
of finite index in I'; as the latter is center free. Therefore, [T A; and hence also
A is a lattice in G =[] G;.

We have shown that a p-random subgroup in Subg is a lattice. It is proved
in [109] that the action of G' on the subset of lattices in Subg is tame; i.e.,
the Borel structure on the orbit space is countably separable. In particular,
an ergodic measure supported on this subset must be supported on a single
orbit. Thus p = pa for some lattice A. In particular, this finishes the proof of
Theorem 4.1.
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We now finish the remaining cases of Theorem 4.2 when the action is
not faithful. Let N be the kernel of this action. If N = G, then p is sup-
ported on a normal subgroup of G, and we are done. Otherwise, take a direct
complement M of N such that G ~ N x M.

We note that a subgroup normalized by N has a certain decomposition as
a direct product. To this end, suppose that a subgroup H € Sub¢ is normalized
by a simple factor L of N. By simplicity, either H contains L or LN H = 1.
In the latter case, L and H commute, and thus the projection of H to L is
central, and hence trivial. It follows that if H is normalized by N, then it
decomposes as H = Hy x Hp;, where Hy := H N N is a product of simple
factors in N and Hy; := HN M.

As there are finitely many possibilities for Hp, this factor of the decom-
position is independent of H, by ergodicity. That is, there exists a normal
subgroup L < N such that H = L x (H N M) for almost every H € Subg.
Thus, p = pp ® ', where ¢/ is an invariant ergodic measure supported on the
image of Suby; in Subg. Since M acts faithfully and ergodically on (Subyy, p'),
we deduce from the previous case that u' = uy for a lattice A in M. Finally,
it is easy to check that u = ur ® ua = prxa. This completes the proof of
Theorem 4.2. ]

The proof of the uniform approximation results in the higher rank case
relies on the following.

4.4. THEOREM. Let G be a center-free semi-simple Lie group of R-rank
at least two with Kazhdan’s property (T). Then uiq is the only accumulation

point of the set
{pr | T is an irreducible lattice in G} .

We will make use of the following result.

4.5. THEOREM (Glasner—Weiss [65]). Let X be a compact topological space,
and let G be a topological group with property (T) acting continuously on X.
Let (uy) be a sequence of G-invariant Borel probability measures on X that
weakly converges to - If the measures u, are ergodic, then the limit measure
Loo 15 ergodic.

Proof of Theorem 4.4. Fix a sequence I'), of distinct irreducible lattices
in G such that p,, := pr, weakly converges and let pio be the limit measure.
An important point here is that u. is ergodic with respect to the action of
every simple factor of G. By our assumption, if NV is any simple factor of G,
then it has property (T). Therefore, by Theorem 4.5, N acts ergodically on fieo.
Combining this with Theorem 4.1, we deduce that either ., = pn for a normal
subgroup N < G, or s, = i for an irreducible lattice A < G.

Let us start by ruling out the possibility that p., = puny for any con-
nected normal subgroup of positive dimension. Since N is not nilpotent, by
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Proposition 2.3 there is a neighborhood U of N in Subg that does not contain
any lattice. Thus, if u, weakly converges to uy, we would have

0 =liminf i, (U) 2 pn(U) = 1,

which is absurd.

Next, we exclude the case that u. = pur for a lattice I' in G. By our
assumption G has property (T). Therefore, by a theorem of Leuzinger [79]
there is a uniform lower bound for A;(I',\X), the first nonzero eigenvalue of
the Laplacian operator on I' )\ X. Furthermore, since () is not eventually
constant, the co-volumes of I';, must tend towards infinity by Wang’s Finiteness
Theorem [114, 8.1]. Theorem 4.4 then follows from the following lemma.

4.6. LEMMA. Let G be a semi-simple Lie group, let X be its associated
Riemannian symmetric space and let 'y, be a sequence of lattices in G where
the co-volume of T, tends to infinity and inf A\;(T,\X) > 0. Then the set
{pr, } is discrete.

Proof. For simplicity, we will first describe the proof when all the I';, are
torsion-free, and afterward we will indicate the modifications necessary to deal
with torsion.

Assume that after passing to a subsequence, ur, weakly converges to ur
for some lattice I' in G. As these measures are supported on the conjugates of
their defining lattices, after conjugations and passing to a further subsequence
we can assume that I',, converges to I' in the Chabauty topology. By Propo-
sition 3.10 and Lemma 3.7, this implies that after a suitable choice of base
points the manifolds Y;, = I',\ X converge to Y = I'\ X in the pointed smooth
topology.

If Y is compact, then the sequence (I',) is eventually constant, contradict-
ing the fact that the co-volumes tend to infinity. Otherwise, for every § > 0,
there is a codimension-zero submanifold By C Y with

(Y
VO2() < vol(Bs) <vol(Y) and vol’™(9Bs) < 4.

This implies that for large n, there is a subset B,, C Y}, such that

104
"Oi ) < vol(B,) < 2vol(Y) and vol™(9B,) < 26,

where if d = dim X, then vol®~! is (d — 1)-dimensional volume. As vol(Y,) —
oo, we have vol(Y,, \ B,) — oo as well. This implies that for large n, the
Cheeger constant

vold=1(9B) 80
= ] <
MYa) = A RolB) Vol (Y \ B) = vol(¥)’
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where the infimum is over codimension-zero submanifolds of Y,,. As ¢ was
arbitrary, this implies that h(Y,) — 0. An inequality of Buser [32] then implies
that A\ (Y,) — 0, contradicting the uniform spectral gap condition.

Morally, the proof for orbifolds is the same, but we cannot rely on smooth
convergence because Lemma 3.7 applies only to manifolds. However, one can
proceed as follows. Choose a large metric ball B C X whose projection to Y is
nearly full measure, but where 9B projects to have small (d — 1)-dimensional
volume. Fixing ¢ > 0, we can verify that the projection of B has small
volume by choosing a small number of e-balls whose I'-translates cover an e/2-
neighborhood of dB. For large n, the projection of B to Y, will still have
volume bounded below. In X, a neighborhood of the boundary 0B will still
be covered by the I',-translates of our e-balls above, so its projection in Y,
has small volume. This is enough to force the first eigenvalue A\ (I';,\ X)) — 0;
compare with [25, Prop. 2.1]. O

In summary, we have shown that the only possible accumulation point of
the set

{pr | T is a lattice in G}

is pig- On the other hand, u;q is clearly an accumulation point. For instance, if
I' < GG is any lattice, then by residually finiteness, there is a chain of finite index
normal subgroups I';, < T' with trivial intersection. Then I';,\ X BS-converges
to X, and by Corollary 3.3, ur,, — piq. Hence we have proved Theorem 4.4. [

4.7. COROLLARY. Let G be a center-free semi-simple Lie group with R-rank
at least two and Kazhdan’s property (T), and let (I'y)n>0 be a sequence of
irreducible lattices in G where the co-volume of T, tends to infinity. Then
', \X BS-converges to X.

As a consequence we have

4.8. COROLLARY. Let G and X be as above. Then for every r > 0 and
for every sequence of X -orbifolds M,, with vol(M,) — oo, one has

vol((Mn)<r)

— 0.
vol(M,,)

In Section 6 we will see how to use Corollary 4.8 to obtain estimates on
the growth of Betti numbers. In particular, if (I'y),>0 is a uniformly dis-
crete sequence of nonconjugate lattices in a higher rank, center-free simple Lie
group, then the hypotheses of Theorem 6.7 and Corollaries 6.9 and 6.25 follow
from Corollary 4.7. In particular, the convergence of volume-normalized Betti
numbers (Corollary 1.6) follows.
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5. Benjamini—Schramm convergence for congruence lattices

Let G be a semi-simple real simple Lie group, X = G/K its associated
symmetric space, and let I'y C G be a uniform irreducible arithmetic lat-
tice. We will assume that I'g is torsion free so, in particular, I'g intersects
the center Z(G) of G at the identity. There exists a k-simple, simply con-
nected algebraic group G defined over a totally real number field k& such that
Iy is commensurable with G(Og), the group of S-integral points of G. The
principal congruence subgroups of T'g,

I'o(N)={y€TpNG(Og): v =id mod N},

obviously form a BS-convergent sequence of lattices in G. One may even
quantify this observation:

5.1. LEMMA. There are constants a > 0 and b, depending on ', such that
for all N > 1,

InjRad(Tg(N)) > alogvol(To(N)\X) + b.

Here we denote by InjRad(T") the infimum over x € T'\X of the local
injectivity radii InjRadp x ().

The conclusion of Lemma 5.1 does not hold for general congruence lattices
(i.e., lattices that contain a principal congruence subgroup), as shown in the
following example.

Example. Let H be a proper k-subgroup of G that contains a semi-simple
element of G. Consider the congruence subgroups of I'y:

{yeToNG(Og) : v € H({Og) mod N}.

These form a sequence of cocompact lattices in G whose volumes tend to
infinity but whose (minimal) injectivity radius remains bounded. (In fact it
becomes stationary.)

It nevertheless remains true that any sequence of distinct congruence sub-
groups of I'g locally converges toward the trivial group.

The main result of this section is to prove the following quantified version
of the above statement.

5.2. THEOREM. There exist positive constants ¢ and & depending only on
Ty (and G), such that for any congruence subgroup I' C Ty and any R > 1, we

have
vol((D\X)<g) < e“fyvol(T\X)' 0.

The proof of this theorem is given in the rest of the section.”

"Note that recently corresponding results in special cases were obtained in [56], [81], [99]
for congruence lattices that do not admit a common ambient lattice.



ABERT, BERGERON, BIRINGER, GELANDER,
740 NIKOLOV, RAIMBAULT and SAMET

We note that if I' is an arithmetic lattice that has the Strong Approxi-
mation Property below, then one can prove uniform BS-convergence for finite
index subgroups of I' without having to use Theorem 5.2.

An arithmetic lattice I in a Lie group G has the Strong Approzrimation
Property (SAP) if, for every Zariski dense subgroup H of I', the closure of H
in the congruence completion of I' is open. This is equivalent to the statement
that for every Zariski dense subgroup H, there exists M > 0, such that for
any congruence subgroup K of I') we have |[I': HK| < M. For I' with SAP,
one can prove uniform BS-convergence for congruence subgroups of I' without
having to use Theorem 5.2:

5.3. THEOREM. Let I be an arithmetic lattice with SAP, and assume that
I' has trivial center. Then for any sequence of congruence subgroups I'y, of T’
with [ : T'y,] — oo, we have pr, — u1.

SAP has been proved by Nori [92] and Matthews, Vaserstein and Weisfeiler
[88] for arithmetic lattices in simple, connected, simply connected groups G.
So,

5.4. COROLLARY. Let I' be an arithmetic lattice in a simple connected
Lie group G and assume that I' has trivial center. Then for any sequence of
congruence subgroups Ty, of T' with [T : T',] — oo, we have ur, — 1.

Proof. The group I' is commensurable with an arithmetic lattice I'g in the
universal cover of G. By replacing I" with I'g and using [92] and [88] we can
Therefore, reduce the corollary to the previous theorem. O

Proof of Theorem 5.3. Assume, by contradiction, that ur, does not con-
verge to p1. By passing to a subsequence, we can assume that ur, — @ where
wu # p1. Let K be the p-random subgroup of I'. Since [I' : '] — oo, K has
infinite index in I' a.s. We shall prove that K = 1 a.s., to reach a contradiction.

Let us say that a subgroup H of I" is hyperclosed if it can be obtained as
an ascending union H = (J72; Ji of congruence closed subgroups Jj, C I'. We
claim that a Zariski dense hyperclosed subgroup H of I' has finite index in I'.
Indeed, by a standard dimension argument, there exists some k such that Jj is
already Zariski dense. By SAP the congruence closure of Jj (which equals Jj)
has finite index in I'" and so does H.

Now given a sequence of congruence subgroups H,, of I', in the Chabauty
topology, we have

(o ol o)
imH, = | J () Ha-
k=1n=k

Since the intersection of congruence closed subgroups is congruence closed,
we get that lim H,, is hyperclosed. The set of possible Chabauty limits of
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congruence subgroups is compact in the Chabauty topology, so we obtain that
1 is supported on hyperclosed subgroups. Applying SAP on hyperclosed sub-
groups and that K has infinite index in I' a.s. gives us that K is not Zariski
dense in I' a.s. By Theorem 2.9, this implies that K = 1 a.s., a contradic-
tion. U

5.5. Proof of Theorem 5.2. We first reduce the proof to the case where I'g
is a finite index subgroup of G(Qg). In fact we will show that if Ty and Ay
are two arithmetic commensurable torsion-free lattices, then the conclusion of
Theorem 5.2 holds for the congruence subgroups of I'y if and only if it holds
for the congruence subgroup of Ay provided we change the constant c.

By considering I'g N A inside I'y and inside Ag, we see that it is sufficient
to prove the case when Ay is a finite index subgroup of I'y.

Let I' C T'g be a congruence subgroup, and denote by M the corresponding
X-manifold T\ X. Set A =T N Ay and M’ = A\X. Let p: M' — M be the
covering map and m := [I'g : Ag]. Then [I' : A] < m and p is of degree at most
m so that for any x € M and 2’ € M’ with p(2') = z, we have

: /
Ww < InjRad,;(z) < InjRad, (z').

In particular,

VOI(M/<mR)
[ :17]

In turn, vol(M’) < vol(M)m. So if we have the inequality

vol(M~,,r) < e Bvol(M')1 0

VO](M<R) S S VOI(M<mR)

for some ¢ and §, then by changing the constant ¢ (to em + (1 — 0) logm) we
obtain the corresponding inequality

VOI(M<R) < ecmR—‘,—(l—(S) IOngO](M)l_(S.

The other direction is even easier: starting with a congruence subgroup
A containing Ag(N) for some integer N, we put I := AT'((/N), a congruence
subgroup in I', and observe that A = ' Ag. The inequality for vol((I'\X)<r)
easily gives a corresponding inequality for vol((A\X)<g).

So it is sufficient to prove Theorem 5.2 in the case when I'y is any given
finite index subgroup of G(Og).

We will first prove the following combinatorial version of Theorem 5.2.

5.6. THEOREM. Let G be a k-simple simply connected algebraic group de-
fined over a number field k. For a finite set of valuations S of O, including all
archimedian ones, let Og be the ring of S-integers in k. There exist some finite
index center-free subgroup I' C G(QOg) and some positive constants ¢ and C
(depending only on T' and some fized word metric on it) with the following

property.
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Let g € T'— {1}, and let H be a congruence subgroup of index N in T.
Then g fizes at most eC{9NI=¢ points in the action of ' on the right cosets
H\T' by multiplication. Here l(g) is the length of g with respect to the fized
word metric of .

The proof of this theorem that appeared in our original 2012 arXiv preprint
had a mistake in Proposition 5.14 below, a correct proof of which has since
been given by Finis-Lapid [53], who also obtain explicit bounds in Theo-
rem 5.6. Here we give a self-contained proof based on the theory of p-adic
analytic groups, which avoids the algebraic geometry arguments in [53]. We
only need the basic Lemma 5.17 on the solutions of polynomial congruences
and well-known results on the fixity of permutation actions of simple groups
of Lie type. A careful examination of all the steps of the proof can lead to an
explicit value of €, at least for Chevalley groups, on the order of magnitude
(dim G)~*QdimG which seems however very far from optimal.

We postpone the proof of Theorem 5.6 and first show how it implies The-
orem 5.2.

5.7. Proof of Theorem 5.2. According to Section 5.5 we may assume that
I’y is the finite index subgroup of G(Qg) given by Theorem 5.6. Let I' C T’y
be any congruence subgroup.

Let 2 C X be a compact fundamental domain for the action of I'y on X,
and let p : M = T'\X — My = I'o\ X be the covering map. We will identify
the elements of M (resp. Mp) with the orbits of I' (resp. I'g) in X.

Suppose that y € M has InjRad;;(y) < R. Let z be a lift of y in X, i.e.,
y =Tz € I'\X. We have that d(z,vz) < 2R for some y € I.

Now let g be the unique element of I'y such that ¢~ 'z = ¢ € Q. We have

d(z,yz) = d(:co,gflfya:) = d(zo,720) < 2R,

where 79 = g~ yg. Since 79 moves the point xq of € to a point of distance at
most 2R from it and since Q) is compact, it follows that I(79) < C'R for some
constant C’ depending only on the choice of 2 and a generating set (fixed by
the choice of the word metric in Theorem 5.6) of I'.

Now, given the element zo € 2 and a nontrivial 79 € Ty with I(y9) <
C'R, suppose that for some x = gzg € X (g € Ty), there exists v € T’ with
d(z,vz) < 2R and 79 = 9. Then g~'yg = 7o so that I'g = I'gyp. The number
of I'-equivalence classes of points x = gz in 'zy as above giving rise to the
same 7o is Therefore, equal to the cardinal of the set fix(yo,'\I'g) of fixed
points of g acting on I'\I'p.

Therefore,

Vol(M<g) < Vol(Q) > [fix(y0,T'\Io)|.
0<l(v0)<C'R
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In turn, by Theorem 5.6,
Cl 1—
Ifix(70, [\Do)| < e“t00) [Ty - T ¢

and there are at most ¢ elements 4o with 0 < I(79) < C'R that combine to
give the desired bound for large enough c. O

5.8. The proof of Theorem 5.6 takes up the rest of this section. We can
consider G(k) as the rational points of a restriction of scalars of an absolutely
simple group defined over a larger field. Moreover, the respective groups of
integral points and their congruence topologies are compatible. So by enlarging
the field k if necessary we may assume from the start that G is absolutely
simple.

Take a prime ideal B of O, and let p be the rational prime such that J|p.
Let ry be the ramification index of 8, and let wy be its residue degree, i.e.,
|O : P| = p“*. We have p =[], B and [k : Q] = Y, rpwip.

From now on we will denote by 8 a prime ideal of Og dividing a rational
prime p. We will denote by | — | the %B-adic valuation on k defined by |z|p =
p~ WP for & € P\P" L. Denote by kyp and Ogp the completions of £ and Og
with respect to this valuation. We have [kyp : Q,] = rqpwg. Let Gp = G(Og)
be the congruence completion of G(Og) with respect to the J-adic topology.
For m > 1, let Gy(m) be the principal congruence subgroup mod B"*™,
i.e., the matrices in G that are congruent to the identity mod PB"™*™. (The
presence of 7y in the exponent is to ensure that (G (4))52; is the Frattini series
of the p-adic analytic group G(1).) The dimension of G as an analytic group
over Q, is rpwyp dim G = [ky : Q,] dim G. Note that all but finitely many of
the prime ideals B are unramified, i.e., rp = 1. For almost all unramified
prime ideals B, the quotient Sy := Gis/Gyp(1) is the reduction G(Og /%) of G
mod ‘B. Since G is absolutely simple and simply connected, it follows that Sy
is generated by its unipotent elements and is Therefore, a finite quasi-simple
group Sy of Lie type over the field Og/9; see Proposition 7.5 of [95]. (A perfect
group is called quasi-simple if it is simple modulo its center.) Moreover, the
Frattini subgroup ®(Gsyp) contains Gip(1); see [83, Lemma 16.4.5]. Let us call
these prime ideals good and all other prime ideals bad. Let Z be the finite
center of G.

For a rational prime p, define G, := [[p)ppes Gp, and for m € N, let
Gp(m) = Tlgpppes Gp(m). That is, Gp(m) consists of the elements of Gy
congruent to 1 mod p™. The group G is a semi-simple p-adic analytic group
of dimension at most D := [k : Q]dimG. (The dimension of G, is exactly D
when the set S avoids any ideal divisors of p.) The level of an open subgroup
H < G, is defined to be the integer n, such that H contains Gp,(n) but not
Gp(n —1).
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Let P = {P1,...,%,} be a finite set of prime ideals of Og including all
the bad primes such that the principal congruence subgroup

P:{ge(}((’)s):gEidmOd‘Bl"’mr}

intersects Z trivially.
We will show that I' satisfies the conclusion of Theorem 5.6. From now
on we fix an element g € I'\{1}.

5.9. The congruence subgroups of G(Og) correspond to open subgroups
of its congruence completion

G= [ G=T]Gx

p prime PES

The strategy is to reduce the fixity estimate of Theorem 5.6 to an analo-
gous problem inside each local p-adic factor G,. This reduction follows easily
from the detailed knowledge of the subgroups and representations of the sim-
ple factors Sq for different prime ideals and, in particular, the elementary fact
that Sy has no proper subgroups of index less than p. We then solve the
local problem (Proposition 5.14) using the natural coordinate system of uni-
form subgroups of G,. To formulate the local estimate we need some further
notation.

Let L be the Lie algebra of G, which is a simple Lie algebra defined over k.
Let Ly be the Og-Lie ring that corresponds to the uniform pro-p group G (1),
so Ly is an Op-lattice of the kyp-Lie algebra L ®j, ky. There is a free Og-lattice
Lo of L such that for almost all prime ideals B, we have Ly = Lo ®04 BOgp.
(The two lattices are open in L ®j kyp and so commensurable for all 93.) Let
Ady : G — End(Lg) be the adjoint representation on Lg. Define ng(g) to
be the largest integer m such that Adg(g) =1 mod P™.

Note that since g ¢ Z by our choice of I, the integers ngp(g) exist.

Define n,(g) = maxgy, ng(g) (where the maximum is over all prime ideals
B of Og dividing p). For completeness, we set n,(g) = 0 for those primes p
that are units in Og. For example when G(Og) = SL,,(Z), then L, = sl,,(Z,),
in which case n,(g) is the largest integer m such that g is congruent to a scalar
matrix modulo p™.

Since ¢ is not in the center of G, we have Ad(g) — 1 # 0 as a linear
endomorphism of L. Choose any nonzero matrix coefficient 5 € k of the
matrix of Ad(g) — 1 with respect to a fixed Og-basis of Ly. For any prime p
that is not a unit of Og, by the definition of n,(g) there is a prime ideal P of
O outside S that divides p and such that Bl < |0 : B9 < p~™(9). (Here,
we may need to change § by a multiplicative constant to take account for the
finitely many prime ideals such that Ly # Lo ®0g POx.)
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Hence [Typgs [Blp < [I,»~"9. On the other hand, for any valuation v,
the coefficient |3], is bounded above exponentially by the word length (g).
Putting it all together we conclude that [[,eq|8]e < €9 for some con-
stant C depending only on I' (and the basis of Ly and the word metric on IT').

Note that
H ‘/6|v = 1’
v

where the product runs over all valuations of . Therefore, all but finitely
many of the n,(g)’s are zero and (compare with Lemma 5.1)

(5.9.1) Hpnp(g) < C1ll),
P

Given a congruence subgroup I of ', we want to compute the fizity ratio

ny _ fix(g, T\D)|
a(g, I'\I') = W

of g acting the right cosets of I in I' by multiplication.

The congruence completion of G(Og) is G := [1, Gp- Let I be the closure
of T'in G, and let H be the closure of I'. We have now reduced our claim to
showing that there exists some positive constants C' and § depending only on
I" such that

(5.9.2) a(g, H\T) < e“'O[T . H]7S.

5.10. Reduction to the local case. We have [ = [I,Tp is a product of
its projections I', onto G,. Moreover, I'), = G, for almost all p and always
[, > Gp(1). Let H, be the projection of H onto the factor I', of I'. We have
that H <[, Hp and so

(5.10.1) alg, H\D) < o (g, T[T H,\T) =[] alg, H\T)-
p p

Since H contains G, for almost all primes p, the product above is equal
to a finite product.

Let 2, = [y : Hy]. Clearly N = [I': I"] = [I" : H] > [],, zp, where again
we have that x, = 1 for almost all primes p.

5.11. LEMMA. There is a positive constant 61, such that
N < Hacp.
p

Proof. Let A = T, Gp(1) < T. Each Gp(1) is a pro-p group, and hence
H N A is the direct product of its projections onto the Sylow pro-p factors
Gp(1) of A. Since

N =[:HAJA:HNA],
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it is enough to prove the special case when H = HA; i.e., H > A. Then
H/A < T/A = []good 3 S where by the choice of I' the product runs over
the good prime ideals B of Og. Thus each Sy is a finite quasi-simple group
of Lie type of bounded rank of characteristic p. Let S, = [[good g|p SOp, and
let us denote by Lie(p) the set of simple groups of Lie type over fields of
characteristic p. We can replace H with its image in a finite product []_; Sy,
such that H does not contain any of the factors S,,. Then H,, becomes the
projection of H in the factor S,,. By the Larsen-Pink theorem [76], there is a
function f : N — N such that a subgroup of GL(n,[F,m) contains a subgroup
of index at most f(n) whose non-abelian composition factors are from Lie(p).
In particular, if ¢ > f := f(dimG) is a large prime, then the direct factors of
Sq cannot occur as composition factors of any subgroup of any of the factors
of S, for p # q. It follows that if ¢ > f is a prime and H; = S, i.e., g = 1,
then actually H > 5.

By enlarging the set P defining I' to include all prime ideals dividing
g for primes ¢ < f, we can ensure that H,, is a proper subgroup of S,,.
The group S,, is a product of finite quasi-simple groups from Lie(p;) and, in
particular, it is generated by elements of order p;. Hence a proper subgroup
of S, must have index at least p; and x,, = [Sp, : Hp,] > p;. On the other

hand, |S,,| < pF¥U™E and N < 15, |S,,- So Lemma 5.11 follows with
61 = ([k: Q]dimG)~! = D71, O

5.12. The local case. Lemma 5.11 reduces the proof of (5.9.2) to its local
counterpart (5.14.1) below at each prime p. Here we explain how to conclude

the proof of Theorem 5.6 assuming the following.

5.13. PROPOSITION. There exist constants Cy and d9 > 0 depending only
on I' such that for all primes p,

(5.13.1) alg, Hy\I') < p@r(@)g 02,

Multiplying the inequalities(5.13.1) for all primes p and using (5.10.1),
(5.9.1) and Lemma 5.11, we obtain

O[(g, H\f) S HpCan(g) (H :L.p)—52 S 80102[(9)]\[_6162.
p p

Theorem 5.6 follows. O

By considering the image of Hj, in the local factor G, Proposition 5.13 is
easily deduced from the following local bound.

5.14. PROPOSITION. There are constants a,b,c > 0 that depend on G but

not on the prime p such that if H is an open subgroup of G, of level n and
g € Gy, — Z(Gyp), then the fizity proportion a(g, H\G,) of g on H\G), is at

C

most p~" provided n > max{a,bn,(g)}.



GROWTH OF L2-INVARIANTS FOR SEQUENCES OF LATTICES IN LIE GROUPS 747

Let us show how Proposition 5.14 implies the existence of Cy and do such
that

(5.14.1) alg, H\Gp) < p>9(G, : H]™*

provided g € T'\{1}. This inequality easily gives (5.13.1) by increasing C5 to
take into account the index [G(Og) : I'].

Since H contains Gp(n) from the definition of n, we have [G), : H] < [G), :
Gp(n)] < prlEQdmG — ;0D (where D = [k : Q] dim G). Therefore,

(5.14.2) a(g, H\G,) < |G, : H|~/P

provided n > max{a, bn,(g)}.

It remains to prove (5.14.1) when n < a or n < bny(g). First we consider
the case that n,(g) = 0. Then by the choice of I' we have that p is a product
of good prime ideals.

Since ny(g) = 0, it follows that g is not in the center of any of the fac-
tors of the semi-quasisimple group S, = Gp/G(1) = [y Sp- We also have
HGp(1) < Gp because Gj(1) is in the Frattini subgroup of G;,. Choose a max-
imal subgroup M of S, containing the image of H. There are two possibilities:

(1) M is the preimage of a maximal subgroup My < Sy of one of the factors
of Sp. The main result of [82] says that with finitely many exceptions any
nontrivial element of a simple group S of Lie type over a field of size ¢ has
fixity at most 4/3¢ in any primitive action of S unless S = PSL(2, ¢) when
it is at most 2/(¢+ 1) for ¢ > 5. The proof relies on a case-by-case analysis
of the Aschbacher classification of the maximal subgroups of S. It follows
that o(g, M\S,) < (g, Mo\Sy) < 2/a.

(2) M is the preimage of a diagonal subgroup 7' in a product S x S of
two isomorphic factors of S,. Now a direct computation shows that for
(y1,y2) € S x S, the fixity ratio a((y1,y2),T\S x S) is nonzero only if y;
and y are conjugate, and if so, then is at most |Cs(y1)|/|S|. Since we
are assuming that y; is noncentral in S and S is generated by elements of
order p, we have as before that |Cs(y1)|/|S] < 1/p.

All together, we can deduce that
a(g, H\Gp) < ag, M\Sy) <p~*,

for example, with €3 = 1/2.
We set d2 = min{f, &} and note that when n < a, then

P2 < pfaézD < [Gp : H]*tszl

To deal with the case n,y(g) > 1 we simply set Co = (a + b)d2D, which
ensures that p©2™»(9)[G,, : H]7% > 1 when n < max{a, bn,(g)}.
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5.15. Proof of Proposition 5.14. From now on we fix a prime number p
and denote n,(g) by n,.

The congruence completion Gy, is a p-adic analytic group of dimension
d = d(p) = dim G(Xypppeslhy @ Qp]) over Q,, and we shall refer to [48] for
standard results about these. Note that d < D = [k : Q] dim G. Recall that
Gp(i) is the kernel of G, — G(Og/p'). There exists a constant ¢y > 1 such
that the congruence subgroup Gjp(cp) is a uniform pro-p group for all primes
p. In fact [83, Cor. 16.4.6] gives that ¢y = 1 for all except finitely many
primes p. We set ¢ = ¢ unless p = 2, when we set ¢; = ¢g + 1. Define
U = Gp(c1). So U is a uniform group of dimension d and, in addition, when
p = 2, U is the Frattini subgroup of a uniform group. (We need this in order
to apply Proposition 8.21 from [48] at a later point.) The series (Gp())i>c,
coincides with the Frattini series of U defined by Uy = U and U;+1 = ®(U;),
ie., Uy = Gp(i + c1) = [Iypp Gp(i + ¢1) for all @ > 0. For a prime ideal B of
Os dividing p, we define Uy ; = G(i + c1), so that U; = [Ty, Usp.i-

Let n be the level of H. From now on we denote n’ =n — ¢y, so Gp(n) =
Uy <HDbut Uy 1 £ H.

First observe that at the cost of increasing a and b and decreasing c, it is
sufficient to prove Proposition 5.14 with n’ in place of n.

Next we introduce coordinates of the second kind for U, which are more
suitable for parametrizing its open subgroups, in the spirit of [104]. The prop-
erties of a uniform pro-p group U we state below can be found in [48, Chs. 4
and 8].

Suppose elements e1,...,eq in U are given such that their images form
a basis of the vector space U/U; = U/®(U). Then €} ,... ek is a basis for
Ui/U;41 for each i € N.

Moreover, every element of U can be expressed uniquely in the form
1%, ¢i, where ¢; € {e;) ~ Zy,. The following properties hold:

(1) The map u : (Z,)? — U defined by u(y1,...,yqa) = e} --- €4 is a homeo-
morphism. We say that the elements ey, ..., eq provide a basis for coordi-
nates p of the second kind for U.

(2) U; is the image of (p'Z,)? under p.

(3) If we identify U with (Z,)? via u, the group operations in U (including

exponentiation exp,(z) = a®

, 2 € 7y for fixed a € U) are given by a
converging power series in Z,[[x1, ..., xq]] with (21,...,24) € (Z,)? This
follows from [48, Prop. 8.21]; inequality (5) in loc. cit., together with the
formula for the power series g; on page 192, implies that the coefficients of
g; are p-adic integers.

Suppose H is an open subgroup of G, of level n. Put H' = HNU. Then
there exists a basis ey, ..., eq for coordinates p of the second kind for U with

the following additional properties:
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(4) For some integers 0 < s1 < s9 < -+ < 84, we have p(z1,...,24) € H' if
and only if x; € p%Z,. Moreover, H > Us,,, H' # Us,—1 and so n' = s,.

(5) For each m € N, the subgroup H'U,, has the parametrization H'U,, =
w(p¥1Zy, . .., p*aZ,), where k; = min{s;, m}.

In the language of [104] the elements ef', ..., e} are a good basis for H’
inU.

Let us indicate how to find a good basis for an open subgroup H’ such
that U > H' > U;. We find subsets By, ... B; of U inductively as follows.

By is any subset of U that is a basis for the vector subspace H'U;/U; in
U/U;. Having found By, ..., B;—1, we choose B; such that the set

: i —T1
U {a?""" | a € B,}
r=0

is a basis for the subspace (H'U;+1 NU;)/Uit1 in U; /U;41.

Then {ei,...eq} = BoU---U B;. In addition, each |B;| is the number of
the integers from s1, ..., sq that are equal to 4.

We will choose an integer m < n’ with n’/m bounded, and for any element
w € Gy, we will find an upper bound for the proportion

HUpz | © € Upw, zgz~! € H}|
(g, Hw) = U < U] |

The reason for focusing on fixed points of g on the cosets of each U,/ \U,,w
separately as opposed to the whole space U,/\G, is that we will be able to
express ay,(g, H,w) as the probability of solving polynomial congruences in
Zy, of bounded degree in the coordinates x1,...,z4.

If we prove that there are some constants a, b, ¢ depending only on G, such
that a, (g, H, w) < p~™' for any w € G)p and n' > max{a, bn,}, it will follow
that a(g, H\G,) < p~™° and we will be done.

We may assume that the numerator of a,, (g, H, w) is not zero. (Otherwise
the proportion is zero and we are done.) So we may assume that wgw™!' € H

1

and by replacing g with wgw™", we are reduced to proving that for some

constant ¢ (to be specified later),

e U\Un | g r) € HY _ e
[Um : Un’]

Bm(g, H)

for all sufficiently large integers n’.

The main idea of the proof is to reduce the membership condition [g, z] € H
to a power series congruence defined by a good basis for H and then the
choice of m reduces this to a polynomial congruence of bounded degree whose
solutions we then estimate with Lemma 5.17 below.
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If x = p(xr,...2q) = [[4 €, then p~Y([g,x]) = (f1,---,f1), where
fi € Zp[[z1,...,x4)] are converging power series in z1,...,24 € Z,. Indeed
if e/ = t;, then [g,x] = x 9% = (T[T, 7)1 [I4, e and we are composing
the power series defining multiplication and exponentiation in the coordinate
system f.

Recall the definition of n, = n,(g) as the largest integer [ such that
Ad(g)p =1 mod B! for some prime ideal P of Og dividing p.

The following lemma is well known in the case m = 1 and is a consequence
of the simplicity of the Lie algebras of the p-adic analytic groups Gy and the
fact that they are defined uniformly over k.

5.16. LEMMA. There exists a constant A independent of p, such that for
any m > 1, (gU) contains Uaman,-

Proof. Since Uy, is equal to the direct product @g,Usp m, it is sufficient
to prove the lemma with Uy, in place of Uy, Note that

<qu3,m> 2 [ga U‘B,ma U‘ﬁ,mv sy UZB,m]

so it is sufficient to show that [g, Ugp m, Up,m. - - -, Up,m] generates a group con-
taining Up Am+n, for some constant A.

The logarithm map establishes a bijection between the uniform group
Up and its Ogp-Lie ring Ly such that piLsp = ‘Berm corresponds to Usy;.
Moreover, for any j € N, the graded Lie algebras

®i>;Uypi/Upivj and @ p' Lo /p' ™ Lo
are isomorphic. In particular, g acts nontrivially by conjugation on

Umvm/qu‘?m"’_nP—i_l :

Hence [9,Upm| ¢ Upmin,+1 and we can choose y € [g,Upm] with y &
Up.m+np+1- Now for almost all prime ideals 3, we have that Ly is isomorphic
to Lo ®og ‘BOsg, where Ly is a fixed integral lattice of the k-Lie algebra of G.
For all B, the absolute simplicity of G gives that L1 = Lo®og kyp = Ly Q@oy, by
is a simple kg-Lie algebra of dimension dim G. In particular, [Ly, L] = L;
and the Jacobi identity gives [T, L1] C [[T, L1], L1] for any subset T' of L;.
Here and below, for subsets X,Y of a given Lie algebra, we denote by [X,Y]
the vector space spanned by all Lie brackets [z,y] with z € X and y € Y, and
for an integer n € N, we denote [X,,Y] := [--[X,Y],Y],...,Y] (n times).
It follows that for any w € L; — {0}, the ascending sequence of subspaces
[w, L1] C [w, Ly, L] C --- stabilizes at L; in at most dim L; = dim G steps
and hence [w,gima L1] = L.
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We claim that there is a constant Ay such that for any w € Ly outside
pLs,

(5.16.1) PA"BL‘B C [w,dim G Lap]-

Indeed if this is not true, there is a sequence (wy)72, with wy, € Ly —pLy
such that pqug Z [Wk,dim g Lep] for any k& € N. By passing to a subsequence
we may assume that wj, converge to some wq in the B-adic topology of Lep.
Moreover, wy & pLyg and, in particular, wg # 0. Now [wo,qim g L1] = L1 and
so p" Ly C [wo,dim G L] for some m € N. Since wy, — wo, we have wy, = wy
mod p" Ly for almost all £, but this contradicts the choice of wy when k > m.
The claim follows.

In fact for almost all prime ideals, the reduction L' := Lg/BLg of the
lattice Lo mod P is a simple Lie algebra over Og /P, and so L' = [w,gimq L]
for any nonzero w € L'. Since Ly ~ Lo ®og POy for almost all B, this gives
that Ay can be taken to be dim G for those 8. By further increasing Ay at
the remaining finitely many prime ideals, we conclude that (5.16.1) holds with
a constant Ay in place of Agp, which does not depend on p.

Applying (5.16.1) to the graded Lie algebra

@ U‘B,i/Um,iJrAlH ~ @ piLgp/pi-FAl—i-le
> >4,

we see that ([y,dima Up,m]) contains Ugp A, 4m dim G+m+n,- The lemma follows
with A =dim G + Ay + 1. O

To illustrate the main steps of the proof we first consider the special case
when the integers s; associated to the good basis describing H' = H N U are
§1=--+=58g_1=0and sg=n'.

For n’ > 6A + 6n,, choose an integer m such that % <m< n/;f‘n”

The membership of x = pu(x1,...,24) € Uy, is described by z; € p™Zy,
and so we can write x; = p™y; for some y; € Z, We now claim that
fa(P™Zp, ..., p™Zy) ¢ pAM T HIZ, and, in particular, not all coefficients of
fa(P™y1, ..., p™yq) are not divisible by pAm+retl,

Suppose for the sake of contradiction that

Fa(@™ Ly, . .. . D" L) C pAmT T,

Then [g, U] € H'UAmqn,+1- Since g€ H, it follows that (gUm) < HU pmynp+1,
and so Lemma 5.16 gives HUam+tn,+1 = Uam+n,. But since Uamin,+1 =
®(Uam+n,) we obtain H > Uamin,. Since m < (n' —mn,)/A, it follows that
H > U,_1, which contradicts the condition that H has level n. The claim
follows.
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We now estimate the number of elements x = p(p™y1, ..., p"yq) € Un /Ups
such that [g,x] € H'. This is equivalent to the congruence

a0y, p™ya) = 0 mod p™, i € Z,/p" T,

On the other hand, since m > n’/3A, the above congruence is equivalent
to a polynomial congruence of the form

plF(y17"'7yd) EO mOd p”’?

where the degree of F' is at most 3A and the integer [ is chosen such that some
coefficient of F' is coprime to p.

We showed that fq(p™Zy,...,p"Z,) ¢ pA™te+17Z, and Therefore, | <
Am +ny < n'/2, where the last inequality following from m < (n' — 2n,)/2A.
S0 y1,...,Yd € Zp are solutions to the congruence

F(y1,...,ya) =0 mod p’,

where F' is a polynomial in d variables of degree at most 34 and ¢ is an
integer with n’ > ¢ > n’/2. By Lemma 5.17 the number of solutions has
proportion at most (3A)%(t + 1)?~1p~t/34 in (Z,/p'Z,)?. Since A does not
depend on p and we can find a constant a; such that if n’ > a; we get that
(3A)4(n/+1)4-1 < /124 < /124 This gives By, (g, H) < p~"/124 whenever
n’ > max{a;, 124, 12n,}.

This concludes the proof in the special case when H can be described with
a good basis with integers sy =+ = s4_1 = 0 and sq = n’.

We now prove the general case when the integers s; associated to a good
basis of H = HNU are 0 < 51 < --- < s4 = n'. Set sp = 0, and let
e=(34)"P < (34)~%

Since s4 = n’ > 0 and sy = 0, there exists an integer ¢ > 1 such that
s; > 3As;—1. Let 1 < ip < n be the largest such integer. Since s;/s;_1 < 34
for all d > j > iy and s4 = n/, we have s;,/s; > € for all j > iy and, in
particular, s;, > n’e. Assuming s;, > 6n, + 6A (which is the case provided
n' > 6(n,+A)e 1), choose an integer m such that s;,/3A < m < (s;,—2n,)/2A.
Consider the power series f, ..., fgin Z,[[z1, ..., z4]] defined by pu(fi,..., fa) =
l9,x], x = p(x1,...,2q) € U.

The condition [g,x] € H' is equivalent to

fi(x1,...,2q) =0mod p¥. Vj=1,...,d.

Now take x € U,, i.e., xj € p"Z,. By setting x, = p"yp, k =1,...,d,
define pY to be the largest power of p dividing all the coefficients of the power
series 2z (y1,...,ya) == f;(0"y1, ..., P"Yd).

Now we claim that [; < Am + n, + 1 for some j > iy5. Suppose for
the sake of contradiction that I[; > Am + n, + 1 for all j > 9. This means
that pAm+metl| f;(zy, ..., z4) for all j > ig. At the same time, since x € Uy,
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l9,x] € U, and so p™|f; for all j. Since m > s;,/3A and s;—1 < si,/34,
it follows that m > s;,—1 and so m > s; for all j < i9 — 1. Altogether we
have pmintsiAmtny+1} ¢ for all j = 1,...,d and so [g, U] € H'Uamin,+1-
Lemma 5.16 now gives Uam+n, < HUAm+n,+1 and hence H > Uaptp,. This
is a contradiction since Am + n, < s;,/2 < n'. The claim follows.

Therefore, I; < Am + n, < s;,/2 for some j > io.

We want to estimate the number of cosets xU,, in Uy, /U, with [g,x] € H'.
Let x = pu(p™y1,...,p"yq) € Up,. We will estimate the number of solutions in
(Y1, -, ya) € (Zp/p" ~™Z,)? to the congruence

"y, .., p"yq) = mod p¥.

Since s; > s;,, we must have that p*o|f;(p™yi1,...,p"ya). Since m > s;,/3A,
the last congruence implies a polynomial congruence

P Fj(y1, ..., ya) =0 mod p*o,

where deg F; < s;,/m < 3A and the polynomial F} is not divisible by p. We
proved l; < s;,/2 and, in particular,

Fj(yla--~7yd) = 0 mod pt,

where the integer ¢ satisfies n’ > ¢ > s;,/2. Recall also that s;, > n’e. By
Lemma 5.17 below the proportion of solutions in (Z,/p" ~™Z,)? to the last
congruence is at most

(SA)d(t + 1)d—1p—t/dchj < (SATL/)dp_n/E/GA.

So if n’ > 6(A +n,)e ! is in addition sufficiently large in terms of A and D so
that (3An/ )P < p"' /124 we see that B, (g, H) < p~™¢/124. Proposition 5.14
follows with ¢ = ¢/12A = (34)~P~1/4.

The following is proved in [53, Lemma A.9] with a slightly stronger bound,
but we include a proof here for completeness.

5.17. LEMMA. Let f € Zplx1,...,z4] be a polynomial of degree r, with at
least one coefficient that is not divisible by p. For any n € N, the proportion
of solutions to f =0 mod p" in (Z,/p"Zy)* is at most r¥(n + 1) 1p=/7.

Proof. The case d = 1 can be found in [108, Cor. 2], which proves a
stronger bound involving the discriminant of f. In particular, the bound rp™/"
we require is the inequality (44) there without any condition on the discrimi-
nant.

To prove the lemma in general we argue by induction on d and assume it
holds for d—1. Write f = ggx2”+gla:3"°_1+- -+ gm, where g; € Z,[x1, ..., xq-1].
At least one of the g;, say g;, is not divisible by p and degg; < r.

For 0 < s < n, let X be the set of tuples (z1,...,24-1) € (Zy/p"Zp)* "
such that p® is the greatest power of p dividing all of g, ..., g, evaluated at
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(21,...,24—1). By the induction hypothesis applied to g; we may assume
‘Xs| < ’I"d_l(s + 1)d—2pn(d—1)—s/r.

For a given (d — 1)-tuple in X, the number of choices for x4 € Z,/p"Z, such
that p™|f is at most

n—s n—s

mp" T <rpt T

by case d = 1 of the lemma applied to go x4+ g’" and n — s in place of n.
Putting everything together, the number of solutlons to p™|f is at most

n n
> | Xo|rp" ™ < ri> (s + 1)d=2pnd=3="7 < g 4 1)yd-tpnd=,
s=0

The last inequality following from the crude estimate 1429724 - .4 (n+1)?-2 <
(n 4+ 1)4=1, the lemma follows.

O

6. Spectral approximation for locally convergent sequences
of lattices

Let G be a connected center free semi-simple Lie group. We let G be
the unitary dual of G, i.e., the set of equivalence classes of irreducible unitary
representations of G, endowed with the Fell topology; see, e.g., [20, §2.2]. We
fix once and for all a Haar measure on G.

Let ¢ € C°(G). If m € G, then

7(0) = [ o))y : Hr = Mo
is a bounded operator of trace class. We denote by
¢ : 7 — trace ()
the (scalar) Fourier transform on G.

6.1. Topology of G. As a topological space, G is not separated. It is
somewhat easier to work with the set ©(G) of infinitesimal characters of G,
i.e., the set of characters of the center Z(g) of the universal enveloping algebra
of G.

Fix M AN a minimal parabolic subgroup of G and a corresponding real
vector space

Ho = ibo D ag,

where by is a Cartan subalgebra of the compact Lie group K N M. The space
ho can be identified with a split Cartan subalgebra of a split inner form of G.
In particular, the complex Weyl group W of G acts on hy. We fix a positive
definite, W-invariant inner product (-,-) on bg.



GROWTH OF L2-INVARIANTS FOR SEQUENCES OF LATTICES IN LIE GROUPS 755

The infinitesimal character of an irreducible representation 7w € G is rep-
resented by a W-orbit 6, in the complex dual space h* of hgy. It satisfies

m(z2f) = (W), 0=)7(f), (2 € Z(9), | € CZ(G)),

where h : Z(g) — S(h)" is the isomorphism of Harish-Chandra, from Z(g)
onto the algebra of W-invariant polynomial on h*.
The map

(6.1.1) p:G—0(G)

that maps 7 € G onto its infinitesimal character 0 is continuous with respect
to the Fell topology. See [105, Lemma 3.4] for a more precise description of

the topological space G with respect to this map.

G

The Plancherel measure v is a positive Borel measure on G. Note that v/

depends on a choice of a Haar measure on G: if the Haar measure is multiplied
& is multiplied by ¢~'. Denote by B.(G) the space of
bounded r“-measurable functions f on G such that the support of f has

by a scalar ¢, then v

compact image in the space of infinitesimal character via the map p defined in
(6.1.1).

6.2. Definition. Let F(G) be the space of functions f € B.(G) such that
for every Levi subgroup L of G and every discrete series o of L, the function

X = f(indf (0 ® X))

on “unramified” unitary characters of L (see [105, §3]) has the property that
its discontinuous points are contained in a measure zero set. Here by definition
f(ind¥ (0 @ x)) is the sum of f(o’) as ¢’ runs over the irreducible subquotients
of the (normalized) induced representation ind¥ (o ® ) with multiplicity. (Any
such subquotient ¢’ is unitary.)

For any ¢ € C2°(G), the function ¢ belongs to F(G).

—

6.3. Definition. Let F(G) be the subspace
{6:0€CX(G)} C F(G).

Remark. There are many functions in F. (@) that do not belong to F (6)
any characteristic function of a Z/G—regular open subset § C G or S C Giemp
belongs to F(G); see [105, Lemma 7.2].

o~

It is much easier to work with continuous linear forms on F(G) than with
Borel measures on G. This is possible thanks to the following fundamental
density principle due to Sauvageot [105, Th. 7.3(b)]; see also [107, App. A] for
some corrections.
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6.4. PROPOSITION. Let f € 5’-:(@) For every positive €, there exist ¢, 1) €
C(G) such that for every m € G, we have

|f(7) = $(m)] < () and v (¢) <.

In other words the Plancherel measure v© is completely determined by the

continuous linear I form that it defines on F (G) Granted this proposition
we shall work with continuous linear forms on F(G).

6.5. The measure associated to a uniform lattice. Let I' be a uniform lat-
tice in G. We denote by pr the quasi-regular representation of G in the space
L?(T'\G). Then pr is a direct sum of representations 7 € G occuring with
finite multiplicities m(m, I'). The measure

1
vr = oG z;m(rr,f’)é7r

is, up to the factor vol(I'\G)™!, the Plancherel measure of L*(T'\G). This
measure defines a continuous linear form Ir on F (é\) Here again, as the
spectrum of pr is discrete, the measure vr is determined by It and, if ¢ €
C(G), we have

trace pr(¢) = Z m(m, )trace 7(¢)

el
= vol(I\G) It (o).

On the other hand, given f € L?(T'\G), we have®

(pr /¢

e (ﬁzrdw vy> fy)dy.

It follows that the kernel of pr(¢) is
(6.5.1) Kd) (z,9) Z oz lyy), (z,y e T\G).
~yel

The sum over I' is finite for any x and y, since it may be taken over the
intersection of the discrete group I' with the compact subset zsupp(¢)y ! C G.

8Here and below we shall often abusively identify functions on T'\G and T'-invariant func-
tions on G. Similarly we often use the same notation (z or y) for an element in I'\G and for
a choice of a representative of this element in G.
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We conclude that
1

vol(I"\G) Jra

= K3(id, id)dpur (A).
A€ESubg

Vp(g/f)\) = K{E(:c,x)dx

(6.5.2)

Here for any discrete subgroup A € Subg and any (z,y) € G, we denote by

=Y o= Ay).

A€A

The latter equality of (6.5.2) then follows from the fact that Kng,l(x,y) =

Kf(x, y) the sum

Kf(g_lx,g_ly). Note that A +— Kf(id,id) defines a continuous function on
the support of ur.

6.6. Definition. We say that a discrete IRS p or a sequence piq, pto, ... of
discrete IRS’s of G is uniformly discrete if there exists some positive € such
that

VA € U2 supp(pn), A NBg(id, e) = {id}.

We shall sometimes specify € by saying that a sequence of IRS or a single IRS
is e-discrete.

Ezample. Let (I'y)n>1 be a uniformly discrete sequence of uniform lattices
in G. Then the sequence (ur, )n>1 is uniformly discrete.

6.7. THEOREM. Let (I'y)n>1 be a uniformly discrete sequence of uniform
lattices in G such that T',,\ X BS- converges to X. Then for every relatively
compact v -reqular open subset S C GorSc Gtemp, the sequence of measures
(vr,, )n>1 1s such that

vr, () — v9(9).
Proof. Set v, = vr, and I,, = It,. Let ¢ € C°(G). We shall first prove
that
(6.7.1) lim I, (¢) = I%(¢).

n——+o0o

We will make use of the following general lemma.

6.8. LEMMA. Let u, be a uniformly discrete sequence of IRS’s. Then there
exist an open neighborhood of the identity U C G and a compact subset K C G
such that, setting U* := U \ {id}, the open sets O1(K) and O2(U*) in Subg
are disjoint, every nondiscrete subgroup H € Subg is contained in Oo(U™),
and

Usupp(pn) € O1(K).
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Proof. Let d be a left invariant metric on G, and let § be small enough
so that the corresponding d-ball around id has no nontrivial subgroups. Since
the sequence (I'y,)p>1 is uniformly discrete, there exists some ¢ < ¢ such that

S Usupp(un) = Bg(id,e) N A = {id}.

Let U be the open ball B;(id,¢), and let K be the compact set that is the
closed € ball minus the open €/2 ball around id. Recall the following definitions:

O1(K)={H € Subg: HNK =0}
and

O2(U*) ={H € Subg : HNU* # 0}.
These are open subsets of Subg. Every nondiscrete subgroup H € Subg is
obviously contained in Oy(U*) and

Usupp(pn) € O:1(K).

Let us now prove that Op(K) and Oy(U*) are disjoint: suppose by way of
contradiction that their intersection contains some subgroup H < G. Then
the intersection of H with the closed £/2 ball around id contains a nontriv-
ial element h. Since Bg(id,e/2) does not contain nontrivial subgroups, the
cyclic group (h) is not entirely contained into Bg(id,e/2). Let h* be the first
nontrivial power that does not belong to B¢ (id,e/2). Since both d(id, h) and
d(id, h*~1) are < /2 and since the metric d is left invariant, we conclude that
we have d(id, h*) < e. Therefore, h* belongs to K, a contradiction. O

We shall apply Lemma 6.8 to the sequence u, = ur,. Let V be an
open symmetric neighborhood of the identity in G such that V2 C U. The
G-translates of V' form an open covering of G from which we may extract
a finite collection g1V, ..., grV that covers the compact support of ¢. Every
A ¢ O(U*) intersects each g;V along at most one element. It follows that the
function

A > o)
AEA
is well defined, continuous and uniformly bounded (by k||¢||o) on Subg \
Oy(U*). Tietze’s Extension Theorem then allows to extend this function to a
compactly supported continuous function Fy on Subg such that

F (A) _ Z/\EA ¢(A) 1f A € Un Supp(:u‘n)v
¢ 0 if A is not discrete.

Since by hypothesis the sequence p,, converges weakly toward u;q, we get
that

In(¢): Sub F¢Cl,un—>/s . F¢dﬂid~
ubg ubg
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The limit is equal to ¢(id) which, according to the Plancherel formula proved
by Harish-Chandra, is equal to I(¢). This proves (6.7.1).

To conclude the proof of Theorem 6.7 we recall that the linear form I,
determines the Borel measure v, on G and that it similarly follows from Propo-
sition 6.4 (Sauvageot’s density principle) that the linear form I¢ determines
the Plancherel measure of G. The theorem easily follows. Indeed, let S C CAJ,
or S C @temp, be a relatively compact open subset that is regular with respect
to the Plancherel measure of G (i.e., v%(S) = v%(S)). Let € be a positive real
number. By the density principle, there exist ¢, € C2°(G) such that

15 = ¢ < ¢ and v9(P) < e.
We conclude that
v, (9) = v9(S)| < vr, (8) + v, (8) — vE ()] + v¥ ()
< 1(B) = I9(5)| + 21°(D) + [1.(8) — I°(3)|
< A4e
for sufficiently large n. g
Theorem 6.7 implies the following.

6.9. COROLLARY (Pointwise convergence). Let (I'y,)n>1 be a uniformly dis-
crete sequence of uniform lattices in G such that T),\X BS-converges to X.

Then
i, (7)) = v8({m)
for every m € G.
Note that d(r) := v%({r}) is 0 unless 7 is square integrable (i.e., is a

discrete series), in which case it is the formal degree of 7; see [64, Th. 6.2].

6.10. An alternative proof of Corollary 6.9. Here we propose a proof of
Corollary 6.9 in the spirit of DeGeorge-Wallach [64] and Savin [106] that avoids
the intricate analysis of [105]. We first prove that

Hl(ﬂ', ') )
lim sup ——————=- = limsup v,

<v9({r}) = d(n).
Let ¢ € C°(G). We first note that

MHW Ok %
vol(T\G) H=5 =" ol(T\G)
(6.10.2) - trace pr(¢x9)
vol(T\G)

<vr(p*9).
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Remark. We have

VO (Hx ) = (6% )(1) = ||6][>

Note that

Ix@ics = (x(oy0)l” = | [ olo) (oo, ehds]

where v is any unit vector in the Hilbert space associated with 7. It is There-
fore, tempting to apply (6.10.2) with ¢(g) = ¢r(9) := xr(9)(7(g9)v,v), where
Xr is the characteristic function of G, = KAF K, AT ={a € A" : a = exp(H),
||H|| < r} for some metric || - || on the Lie algebra of the Cartan subgroup A.
The function ¢, is not smooth. However it is a limit in L? of smooth functions
with support in G, and (6.10.2) still holds. Similarly, under the hypotheses of
Corollary 6.9, equation (6.7.1) applies to ¢, * ggr. We Therefore, conclude from
the remark above that we have

m(m, ') 1
6.10.3 lim sup < .
(6109 PG = TT6P
As r tends to infinity, 1/||#,||?> tends to 0 if 7 is not square integrable and

tends to d(w) if 7 is a discrete series. Inequality (6.10.3) Therefore, implies
(6.10.1).

6.11. Now fix 7 a discrete series representation of G. The set
Gr)={weG:0,=0,}

is finite. Computing the G(m)-part of the Euler characteristic, DeGeorge and
Wallach [64, Cor. 5.3] proved the following.

6.12. PROPOSITION. Given a discrete series representation m of G, there
are constants c(w), w € G(m) with c(w) = 1 whenever w is a discrete series
representation, such that

Z c(w)vol F\G Z dw

~

weG(m) wGG(w)

Note that when w is not a discrete series, then the limit multiplicity is 0
by (6.10.1). Proposition 6.12 and (6.10.1) therefore imply Corollary 6.9. O

6.13. Sequences of congruence lattices. Now we fix a uniform irreducible
arithmetic lattice I' C G as I'g in Theorem 5.2. We also fix m € G a non-
tempered representation; i.e., 7 is not weakly contained in L?(G). In this
setting we prove the following.
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6.14. THEOREM. Let (I'y)n>1 be any infinite sequence of distinct congru-
ence subgroups of T'. Then there exists « = a(G,T',m) > 0 such that

m(m,T,) < vol(T,\G)1 ™.

Proof. This follows the same lines as Section 6.10: Let (7, V) be the lowest
K-type of m, as defined by Vogan [113], and let v € V; be a highest weight
vector. As in [106] we introduce

W, = span {Tv : T € Homg(V;, L*(T,\G))} C L*(Tn\G)
and

)P
Bul@) = sup 172

(z € TL\G).

As in Section 6.10 we let
or(9) = xr(9)(m(g)v,v) (9 € G, r>0).

We will use the following two lemmas. The first goes back at least to
Kazhdan’s proof [71] of the so-called Kazhdan’s inequality according to which
along a residual tower the limsup of the normalized Betti numbers are bounded
above by the corresponding L?-Betti numbers; we include a proof of this first
lemma for the reader’s convenience. The second — due to Savin [106, Prop. 3]
— is a reformulation of the basic identity of DeGeorge and Wallach.

6.15. LEMMA. We have

/ By (2)dz = m(r, T).
T\G

Proof. Let fi,..., fm (m = m(n,I';)) be an orthonormal basis of W,,.
The Cauchy-Schwarz inequality implies that B, (z) < 2™, |fi(z)]?. Now if we
fix z, the function F' : y — >, fi(x) fi(y) belongs in W,, and we have

[F|[* = F(z) = 3| fi(=)]”

It follows that for all z, we have

m
=Y |fi(@)]?
i=1
Integration over I',\G gives the lemma. O
6.16. LEMMA. We have
w(dr)v = ||¢r|Po.

Now let f € W,,. It follows from Lemma 6.16 that

el f (2 /@ flzg dg—/F > be(z M vg) fg)dy.

’yel‘
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By the Cauchy-Schwarz inequality, we have

> dr(@ " vg)

vel'n

2 1/2
dg) .

(6.16.1) o, PIF @) < 111 < S

Given z € G, we set
Ny (z;7) = #{y € Ty, : xr(z 1yz) # 0}.
Theorem 5.2 implies the following.

6.17. PROPOSITION. There exist positive constants 3, ¢ such that for alln,

VOI((FTL\G)<clogVol(Fn\G’)) < VOI(FH\G)I_E'
We now recall the following.

6.18. LEMMA. There exist constants c1,ca > 0, depending only on G, such
that for any x,y € X,

N(z;R) :=|{y €T :d(z,vx) < R}| < cllanaan\G(a:)*deCQR,
where d is the dimension of X.

Proof. Clearly, it suffices to prove this for R > InjRad,, (z). By defini-
tion,
B(z,InjRadr \g(z)) N B(yz, InjRady;, (z)) = 0
for all v € I' — {id}. This implies

N(z; R) - vol B(z,InjRadp, \¢ (7)) < vol B(z, R + InjRadp, \ (7))
<vol B(z,2R).

Now, Knieper [74] shows that there exists a constant co = a(G) such that
rankp (G)—1
vol B(z,R) ~ R~ 2z >R
asymptotically as R — oo. This yields an upper bound for vol B(x,2R).
On the other hand, since X has nonpositive curvature, the volume of a
ball in X is bounded below by the volume of a ball with the same radius in
d-dimensional Euclidean space. Hence

vol B(z,InjRadr, \¢(z)) > b - InjRadp, \ (),
with a constant b = b(d). The lemma follows. O

Remark. When InjRadp \g(z) and R are both sufficiently small, it is pos-
sible to attain better bounds in 6.18 by using the Margulis lemma; see the
analysis in Section 7.
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6.19. Replacing the constant ¢ by some smaller positive constant we may
assume:

(6.19.1) cea < B.
Here ¢y is the constant of Lemma 6.18. From this we conclude

6.20. LEMMA. There exists a positive constant C' such that for all n,

Ny (z;2clog vol(I'),\G))dz < Cvol(I'),\G).
r\G
Proof. We split the integral into two parts:
L :/ Ny (x;2clog vol(I',\G) )dx
{z€l'n\G:InjRady, \ g (z)<clog vol(I'n\G) }
and Io. Since in I the integrand is everywhere equal to 1, we have [y <
vol(I',\G). As for I}, we use Lemma 6.18 to get the bound:
Ny (z;2clog vol(T'),\G)) < cllanaan\G(x)_dvol(Fn\G)CQC.

Since each lattice I', is a subgroup of I', there exists a uniform (in n) lower
bound on Ianaan\G(x). We Therefore, conclude from Proposition 6.17 and
(6.19.1) that

I, < (const)vol(T,\@)2+1=F < (const)vol(T,\G).
The lemma follows. 0
6.21. Now taking r = clogvol(I',\G) we note that for every z € I',\G
and g € G, the sum Y. cr, ¢r(z7'yg) has at most Ny (x;2r) nonzero term.

Therefore,
2

< Np(32r) Y

Y€l

> ée(zvg) qﬁr(m_lvg)f

vel'n

Moreover, since

or(a9)| " dg = |67

(>

’YEFn
it follows from (6.16.1) that for every x € I',\G,

F@P _ Nalw,2r)

(6.21.1) <
/117 Jealk
Integrating (6.21.1) over I',\G we conclude from Lemma 6.20 that
1 (T, \G
m(7,Ty) Ny (z; clog vol(T',\G))dz < oY T\G)

llorll?

P —
= lell? Jrane
We finally note that

lorll? = [ 1x(gyv,v)Pdg

r
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and
vol(G,) > exp(vr) = vol(I', \G)¥

for some positive constant v. Combining this last inequality with the asymp-
totics of the matrix coefficient g — (m(g)v,v) (see, e.g., [73] or [13, Cor. 3.18
and Lemma 4.4]), we conclude from the fact that 7 is nontempered that there
exists some positive constant « such that

1 —a

The theorem follows. ]

6.22. Nonuniform lattices. In the nonuniform case things get more com-
plicated: there is continuous spectrum in L?(T'\G), and the integral

Kff (x,z)dx
uYe.
is divergent. We may nevertheless hope that, maybe under suitable conditions,
Theorem 6.7 holds when replacing vr by the measure associated to the discrete,
or to the cuspidal, spectrum of L?(I'\G). There are not yet such complete
results even in the case of towers of coverings. We may however refer to the
already mentioned work of Shin [107] and to the recent work of Finis, Lapid
and Miiller [55], [54] which, in particular, completely solves the problem for
the case of principal congruence subgroups of GL(n).

6.23. From representations to differential forms. We conclude this section
by relating the above results with the study of the spectrum of the Laplace
operator.

Given a unitary representation 7 of K we consider the following subset
of G:

G, ={m € G:Homg (7, H,) # {0} }.
Let 7, (k = 0,1,...) be the adjoint representation of K into A*p. Represen-
tations in é\m are exactly the ones that correspond to k-differential forms on
X = G/K. Our choice of Haar measure on G corresponds to a choice of a left
invariant Riemannian metric on G. We denote by vol(K') the corresponding

volume of K.
Let T" be a lattice in G. First note that we have

(6.23.1) vol(T\G) = vol(I'\ X )vol(K).

Now let C' € Z(g) be the Casimir element. Set Ay = —0,(C). Let 7 € CA?Tk
and v € H, be a nonzero vector in the K-type 7. Any element in

E¥(\G) := span {T’U : T € Homg(H, LQ(F\G)} c L*(T\G)
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defines a square-integrable k-differential form on I'\ G/ K whose eigenvalue is A.
Conversely it follows from Matsushima’s formula (see, e.g., [20, Th. 1.0.2]) that

E¥YT\G) = @ EFT\G),
WEG %
Ar=A
where E’/\“(F\G) denotes the A-eigenspace of the Laplace operator on square-
integrable k-differential forms on I'"\ X.
We let O (G) be the image of G\Tk by the map p in (6.1.1). Evaluation on
the Casimir element Therefore, gives a map

(6.23.2) Ox(G) = RT.

A Borel measure v on G induces a measure p*r on O(G) that we may restrict
to a measure on O (G); we denote by v* the push-forward of the latter by the
map (6.23.2) so that v* is a measure on R*.

6.24. Suppose that I is uniform. We have
A = —rdim BYT\G).
vol(I'\G)
In particular,
oy = 20
vol(T\G)’

where b (T") is the k-th Betti number of I'. Note that I being virtually torsion-
free, bi(T") makes sense. If T' is torsion-free, we have bi(I") = by (T'\X). Simi-
larly v“F is the spectral measure of the Laplace operator on square-integrable
differential K-forms on X, and we define the k-th L?-Betti number of the
symmetric space X = G/K as

2 (X) = v ({0})vol(K).

Note that it follows from (6.23.1) that Vol(F\X)ﬂ,(f) (X) is the usual k-th
L?-Betti number of T
Theorem 6.7 implies the following two corollaries:

6.25. COROLLARY. Let (I'y)n>1 be a uniformly discrete sequence of uni-
form lattices in G such that T',,\ X BS-converges to X. Then for each k, the

sequence of spectral measures V’Ifn converges weakly toward v&F

6.26. COROLLARY. Let (I'y)n>1 be a uniformly discrete sequence of uni-
form lattices in G such that T\ X BS-converges to X. Then

be(ln) L@
60 vol(Tr\ X) A (%)

for 0 < k < dim(X).
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6.27.  We finally recall from [27, p. 98] that if 7 € G is such that 7 € G,
and \; = 0, we have

1 1
7 is tempered & k € §dimX—e,§dimX—|—e ,

where e = (rankcG — rankc(K)). Theorem 6.14 Therefore, implies the fol-
lowing.

6.28. COROLLARY. Let (I'y,)n>1 be a sequence of congruence lattices in a
fized rational form G(Q). Suppose that vol(I',\X) — oco. Then there exists
a = a(G) > 0 such that for every k ¢ {% dim X —e, 3 dim X + e],

b(Ty) < vol(T,\X)1 2.

7. Heat kernel estimates and hyperbolic manifolds

As explained in the announcement [3], our original proof of Corollary 6.26
used the heat kernel following the original path of DeGeorge-Wallach and
especially Donnelly [49]. Introducing the notion of BS-convergence allowed us
to deal with more general sequences than our predecessors did. However, as in
these classical works, this approach relies on heat kernel estimates that require
a lower bound on the injectivity radius (our “uniformly discrete” assumption).
One novel aspect of the current section is a fine study of heat kernel estimates
in the thin parts of hyperbolic manifolds in dimension d > 4. This will allow
us to get rid of the “uniform discreteness” assumption.

As in the preceding sections we let X = G/K be the symmetric space
associated to a connected center free semi-simple Lie group G.

7.1. The heat kernel on forms. We denote by e—tA,(f) (z,y) the heat ker-
nel on square-integrable k-forms on X. The corresponding bounded integral
operator in End(Qé) (X)) defined by

(e F)(2) = /X e (@, y) fy) dy VI € Q) (X)

is the fundamental solution of the heat equation (cf. [14]).
A standard result from local index theory (see, e.g., [24, Lemma 3.8])
implies

7.2. LEMMA. Let m > 0. There exists a positive constant ¢ = ¢(G,m)
such that
(2)
e (z, )| < ct*d/2e*d(x’y)2/5t, 0<t<m.
Much of the content of the statement above is when ¢ — 0. Here, we
are mostly interested in the case of fixed ¢, in which case Lemma 7.2 gives
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constants c¢1, co depending only on G,t such that
(2)
(7.2.1) le™" 3% (@, y)|| < e /e,

Now let M = T'\X be a compact X-manifold. Let Ag be the Laplacian
on differentiable k-forms on M. It is a symmetric, positive definite, elliptic
operator with pure point spectrum. Write e *2k (z,y) (x,y € M) for the heat
kernel on k-forms on M. Then for each positive ¢, we have

(7.2.2) e (2, y) = S () e A (7, 7D),
vyer

where ,y are lifts of 2,y to X and by (v,)*, we mean pullback by the map
(z,y) — (Z,79). The sum converges absolutely and uniformly for Z,¢y in
compacta; this follows from Lemmas 6.18 and 7.2. Given x € M and a lift
T € X, we set

2)

(123)  flw) =l (@,2) - B @0 = | Y e @ 0)|.

yel\{1}

Here, the middle part of the equation can be made well defined by identifying
the tangent spaces of T, M and T3X. Let f,(Z) = fi(x), and note that f; is
I-invariant. Recall that we denote by InjRad,,(z) the injectivity radius of M
at x.

7.3. (L?-)Betti numbers. The trace of the heat kernel etay (x,z) on the
diagonal is independent of x € X, being G-invariant. We denote it by

NG IAD
Tre 2% =tre 2 (z,x).

It follows from Section 6.24 that

B,(f) (X) = lim Tre—tA.

t—o0
It is equal to zero unless §(G) = 0 and k = 3 dim X, in which case
52(x) = XX
vol(Xd)’

where X? is the compact dual; see [93].
Recall also that the usual Betti numbers of M are given by

bi(M) = lim Tre "% = lim tr e Ak (z,z)dx
t—o00 t—oo Jpr

and that since Tre™** = Y, e™* where \; are the eigenvalues of Ay, the
limit above is monotone decreasing in t.
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7.4. LEMMA. Let t > 0 be a real number. There exists a constant C =
C(t, Q) such that for any x € M,

fi(z) < C - InjRad,, (v) 74

Proof. Let x € M, and let Z be a lift of x to X. Then by the definition
(7.2.3),

ERYNCIP ~
fle) < 30 e (@ -2
ver\{1}
< Z ce” MEAD?/5t -y (7.2.1)
yel\{1}

oo
< Z 067"2/5"/]\](3;, n+1),
n=0
where in an overestimate, N(z;n + 1) = #{y € T\ {1} : d(z,72) < n + 1}.
But
N(z;n+ 1) < ¢;InjRad, (z) %D

by Lemma 6.18 for some ¢y, ¢c3 depending only on G. So for some C = C(t, G),

o
fi(x) < Z ccle_”2/5t+62(”+1)1anadM(x)_d < C - InjRad,,(z)~%. O

n=0
7.5. Convergence of Betti numbers. We now explain how to use the heat

kernel estimates above to prove the following proposition, which implies Corol-
lary 6.26.

7.6. PROPOSITION. Suppose (M,) is a sequence of compact X -manifolds
that BS-converges to X. Then we have (1) = (2) = (3) = (4), where

(1) (My) is uniformly discrete;

1 ) 4 ‘

(2) m /Mn InJRadMn () %z — 0;
bk(Mn) (2) . . ‘
O Jim a0 for k=0, dim(X);
(4) lim M = 5;&2)()() fork=0,...,dim(X).

n—-+oo vol(M,,)

Proof. (1) = (2). Since (M, is uniformly discrete, there is some € > 0
such that the injectivity radius InjRad,; (x) > € for all z,n. Fixing R > 0,

) . _ ) _ I(Mn)<r _ _
lim —— | InjRad dip < 1 d  YOUUMn)<R —d) _ p—d
5 iy L, e, ) e < Jiy (4 e ) <

by integrating separately over (M, )<gr and its complement, and then using
BS-convergence. Sending R — oo proves (2).
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(2) = (3). Since B,(f)(X) = limy 0 Tr(e_tAi(cz) (Z,%)), we may fix an
arbitrarily small v > 0 and ¢ large enough so that

6,&2) (X) < Tr(e_tAl(f) (@,%)) + v.

Then since by (M) < [, tr et (z,2)dz for each fixed ¢, we have

fé“ﬂi”)) - A7 (X) < vol<1M> et w) - 4P (X)do
1 n
Sm Mnft (z)dx + v.

Now it follows from the hypothesis of the proposition and Lemma 7.4 that for
n large enough, the right-hand side is less than 2v, so (3) follows.

(3) = (4). Unless dim(X) is even and k = dim(X)/2, the equality in
(4) is automatic since ﬂ,(f) (X) = 0. The equality when k = dim(X)/2 follows
since the Euler characteristic of M, is the same as its L2-analogue. U

7.7. Heat kernel estimates in rank one. We now establish some prelimi-
nary estimates on the difference f;(x) between the heat kernel on a rank one
locally symmetric space M and the L? heat kernel in the universal cover. While
we will apply these estimates only to real hyperbolic manifolds, we write them
up more generally here, since we anticipate they will be useful in the future
and the proof is not any simpler for X = H".

Let G = G(R) be a connected adjoint simple real algebraic group of real
rank one. We fix a Cartan decomposition g = €@ p of g = Lie(G) and let
K < G be the maximal compact subgroup of G corresponding to £.

Let Zp € X = G/K be the point corresponding to K. Recall that p is
identified with the tangent space T3,X and the Killing form on G induces an
inner product on p that determines the Riemannian structure on X. Fix an
Ad(K)-invariant inner product on £, and extend it to an Ad(K)-invariant inner
product on g so that ¢ and p are orthogonal. Finally, let d = dim(X) and let
s = rankc(G) be the complex rank of G; e.g., if G = SO(d, 1), then s = [%]

We wish to establish estimates on f; within the “thin parts” of an X-mani-
fold, i.e., parts where the injectivity radius is small. The geometry of thin parts
is controlled by the classical Margulis lemma:

7.8. THEOREM ([110, §4.1]). There is a constant € = €(X) > 0 such that if
A is a discrete, torsion-free subgroup of G consisting of semi-simple elements
and is generated by {v € A : d(y-Z,z) < €} for some T € X, then A is
cyclic. Moreover, there is a unique geodesic, the axis of A, on which it acts by
translations.
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An important consequence of the Margulis lemma is the thick-thin de-
composition which, in our case, says that the thin part

M., = {az € M : InjRad,,(z) < %}

consists of finitely many connected components, each of which is a tubular
neighborhood of a short closed geodesic.

For # € X, we shall denote by Xz . the set of elements in I' that move Z
by less than € and by I'; c = (X3 ¢) the cyclic group it generates.

The following proposition gives an estimate on f; in terms of the number
of I'-orbit points in a ball. It is easily deduced from the proof of Lemma 7.4,
more precisely from both Lemma 7.2 and the fact that X has exponential
growth.

7.9. PROPOSITION. Given r > 0, there is D = D(r,t) such that for any
x e X,
fi(x) < D -card(I' - z N B(z,1)).

In view of Proposition 7.9, our goal is to estimate the number of orbit
points in a given ball and deduce bounds on f;. We will split this into two
estimates: one that is better close to the geodesic core of the thin part, and
one that is better at points far from the core.

7.10. LEMMA (Near the core). Let x € M be a point in an e-thin tubular
neighborhood of a short geodesic, and suppose that the length of that short
geodesic is T. Then fi(z) < Ci7 1, for some constant Cy = C1(X,t).

Proof. Let x be such a point in M, and let  be a lift of z to X. In view
of Proposition 7.9 we should obtain an upper bound of the form const - 7! on

the cardinality of the set
E=T-2NB(Z,e) =Tz - TN B(T,¢).

Let ¢ be the axis of I'; ¢ and m. : X — ¢ be the nearest point projection.
Since c is convex and X is nonpositively curved, 7. is 1-Lipschitz. Since I'; c is
torsion free and stabilizes c, it follows that the restriction of 7. to a I'z (-orbit is
one-to-one and its image is again a I'z --orbit. Moreover, since £ has diameter
< 2¢, we deduce that 7.(£) is contained in an interval of length 2¢ in ¢. Thus
Card(€) < % d

Lemma 7.10 gives a sufficiently good bound on f;(z) when z is close to a
short geodesic. However when x is far from the geodesic, the injectivity radius
InjRad,;(x) might be of several magnitude larger than the minimal displace-
ment 7, and the result of 7.10 will not be enough for our purpose, so we should
obtain a better estimate in terms of InjRad,,;(z). At first glance one may ex-
pect that the number of orbit points in a ball is controlled by InjRad,;(z)~!
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(or by InjRad;;(z)~" in general when r = rankr(X)). However the rotational
parts of the isometries may make the orbit denser at certain distances from the
submanifold of local minimal displacement. The true exponent is the absolute
rank s:

7.11. LEMMA (Far from the core). If x lies in the e-thin part of M, then
fi(x) < CoInjRady, (z)~°
for some constant Co = Ca( X, t).
Proof. Let 6 > 0 be sufficiently small so that for
Uz, = exp({X € g [|X| < 6},

we have that UZ forms a Zassenhaus neighborhood in G (see [98, Ch. XI] and
[110, §4.1]). Here, p € X is the point corresponding to K € G/K = X.

We shall call Uz, the Zassenhaus neighborhood associated to zg. Since G
acts transitively, for any £ € X we have some g € GG such that g -9 = . Set
Uz = gUz,9~ " and U% as the Zassenhaus neighborhood associated to Z. Since
Uz, is invariant under conjugation by K, Uz is well defined.

The orbit map X — exp(X) - Z( restricted to {X € g : | X]|| < 6} is
a-bi-Lipschitz for some constant o and covers an open ball By (Zo, 3) for some
1 > 6 > 0. It follows that if V4,...,V; € g are of norm at most § and
{exp(V1)-Zo,...,exp(V})-To} forms a p-discrete subset of X, then {V1,...,V;}
is £ discrete in g.

Now let x € M<, be the point in question, and let £ € X be a lift of x.
We may suppose that InjRad,,(z) < . Let

mo MUz {g€Gdlg-0.7) <1}
1(Uz)
Note that m is independent of . In the proof of the Margulis lemma given in
[110, §4.1] it is shown that the Margulis constant e can be chosen to be 1/m
or smaller. Since we have defined m and 8 independently of €, we may assume

that e < % In that case, as follows easily from the argument in [110, §4.1],
N = (U% NIz ) is a subgroup of index < m in I'; ¢ and one can choose coset
representatives within X7’.. In particular, it follows that

card (I‘ -2NB <§c, g)) <m-card(N -z N B(z, B)).
Moreover, by the Zassenhaus—Kazhdan-Margulis theorem (see [98, Ch. XIJ),
log N spans a connected nilpotent Lie sub-algebra n of the Lie algebra of the
stabilizer Stabg(c), where c is the axis of I'; .. Note that Stabg(c) is isomorphic

to a compact group times R* and hence admits no unipotent elements. It fol-
lows that n is abelian and semi-simple and its exponentiation exp(n) is a torus
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in G. In particular, dimn < s. Finally, since N -z N B(Z, 8) is InjRad,,(z)/2
discrete, we get that log(V) is InjRad,,(x)/(2a) discrete in n. Thus

card(N - & N B(Z, 8)) < card(log(N) N By(0,6)) < C’ (IanagM(x)>s7

and the result follows from Proposition 7.9. O

7.12. Real hyperbolic manifolds. Given a symmetric space X of noncompact
type, Margulis has conjectured that the set of arithmetic compact X-manifolds
is uniformly discrete. If rank(X) > 2 or if X is the symmetric space corre-
sponding to Sp(d,1) or F; % then all irreducible X-manifolds are arithmetic,
by Margulis’s Arithmeticity Theorem [86] and the Corlette-Gromov—Schoen
Theorem [39], [67], respectively. For SU(d, 1) there are a few known examples
of nonarithmetic manifolds for d = 2, 3, and it is likely that most manifolds are
arithmetic. It is thus natural to conjecture that if X is not isometric to H¢,
then the family of all irreducible compact X-manifolds is uniformly discrete.

For X = HY it is known that for all d, there are closed hyperbolic
d-manifolds with arbitrarily short systoles, [9], [22], [16]. Our aim here is to
prove a strong generalization of Corollary 6.26 for H¢, not assuming uniform
discreteness.

7.13. THEOREM. Let M, = T',\H? be a sequence of compact hyperbolic
d-manifolds that BS-converges to H¢. Then for every k=0,...,d,

_ (@) pyd
n—+oo VOI(Mn) Bk (H )

Remark. The analog of Theorem 7.13 holds in the greater generality where
H¢ is replaced by a general rank one symmetric space. The proof of that,
however, uses different techniques and is much longer. This result will appear
in [1], where we will also treat higher rank symmetric spaces.

Note that for X = H?, the hyperbolic plane, Theorem 7.13 is a conse-
quence of the Gauss—Bonnet theorem, even under the weak assumption that
only vol(M,,) — oo, without requiring BS-convergence. The cases d = 3 and
d > 4 will be handled separately. When d > 4, Theorem 7.13 will follow
from a fine analysis of the heat kernel in the thin parts of the M,,, which is
of independent interest. In dimension 3, the analogous statements about the
heat kernel are not true, as we will explain, but we can use a trick to reduce
the calculation of Betti numbers to estimates on the heat kernel only over the
thick part of M,.
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We start with the case d > 4. Fix k € {1,...,d}, and let f; be the function
defined in 7.2.3. In view of Proposition 7.6, we need to prove

1
13.1 lim ———— .
(7.13.1) im AN fi(x)dx — 0

The crucial technical tool is the following.

7.14. THEOREM. Given d > 4 and t > 0, there is a constant C = C(d,t)
such that

/ fil@) dz < Cp - vol(M<.)
MSE/Z

for every compact hyperbolic d-manifold.

Assuming Theorem 7.14, let us prove (7.13.1). First, note that
(7.14.1)

o D fe@)de . fil@) de o i@ dr vol((My) <o)
n vol(My) n vol(M,,) vol((Mp,)<c) vol(M,,)
. f(Mn)ze c(t)Ianad(x)_d dx _ vol((My)<e)
< lim vol(M,) +Co- = )

Here, c(t)InjRad(z) ¢ comes from Lemma 7.4 and the Cj is from Theorem 7.14.
On the far right, BS-convergence M, — X implies that the limit is zero. So,
for any fixed r > e, splitting up the first term in (7.14.1) gives the upper bound

Jatysinianye, €O dr oy c(t)r=de

= lim vol (M) Vol (M)
< c(t)e? lim Voii)(lj(\@ij’”) + c(t)r?

=c(t)r ¢,
again by BS-convergence. Letting r — oo, this proves (7.13.1).

7.15. The proof of Theorem 7.14. We shall work in radial horospherical
coordinates of the upper half space model of H?

2
{(z1,...,2q € ]Rd) cxg >0}, ds® = %
d

Consider the vertical geodesic ¢ = (0, 00) and the horizontal (intrinsically Eu-
clidean) horosphere E4~! passing through c at p = (0,...,0,1). We will con-
sider the coordinates (r,6) for points on E4! where r is the horospherical
radial distance to p and 6 is the direction. (Note that the hyperbolic distance
of the point (r,0) to p is roughly logr.) We can extend these coordinates
to the upper half space, letting (r,6,a) denote the point a -  where x is the
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point on E4~! of coordinate (r,0) and a is the isometric homothety corre-
sponding to a multiplication by a > 0 in R™. Let G, be the stabilizer of ¢ in G,
G.=S50(d—1) x R*Y.

7.16. LEMMA. There are R < oo and o > 1 such that if r1,790 > R, then
for any two points points x1 = (r1,0), xo = (r2,0) at the same direction 0 and
any g € G for which dg(z1),dg(x2) < €, we have

1" dg(z1) ™
T9 dg(:L‘Q) 7"2.

Proof. Since the points x1,z9 are far from the invariant geodesic ¢ =
(0,00) and have small g-displacement, the distances d(g - x;,x;) are approxi-
mated, up to a bounded multiplicative error, by the intrinsic Euclidean distance
between the Euclidean projections of ¢ - ; and z; to the horosphere E4~1. For
the projections (considered with the intrinsic distance), however, the ratio in
question is equal to % by similarity of Euclidean triangles. O

Now let M2, be a thin component that is a tubular neighborhood of a
short geodesic, and let M2 . be a connected component of its pre-image in the
upper half space. We ma37 suppose that the short geodesic lifts to ¢ = (0, 00).
Suppose that the length of the short geodesic is 7. Note that G. = Ng(G.),
and hence it follows from the Margulis lemma that I', . is contained in G..
Choose a fundamental domain for T', . in M2, of the following form:

F={(r,0,a):r<¢(0), 1<a<e},

where 1(6) is defined to be the radial horospherical distance for which at
direction 6 the minimal displacement is exactly e, i.e.,

min{d,(z) : 7 € Ty, \ {1}} = min{dy (2) s 7 € T\ {1}} = ¢
for € B! of coordinates (1(6), 0).

7.17. LEMMA. Given R > 0, there is some T(R) > 0 such that if 7 < 7,
then

¥(0) > R V0.

Proof. Let a > 0 be sufficiently small so that any two horocylic rays
r1(t) = (t,01,a) and ro(t) = (t,02,a) starting at an angle < « stay at distance
< €/2 from each other when ¢ < R. Since SO(d — 1) is compact, there is
some | € N such that for any o € SO(d — 1), there is j = j(0) < [ such that
Z(0(9),0) < « for every © € R4™1. Let A > 0 be small enough so that any
two horocyclic rays orthogonal to ¢ that start parallel to each other at distance
< A stay at distance < e/2 for t < T.

Take 70 = % If ¢ € G, is any isometry with displacement 7 < 7 and

rotational part o, it is easy to see that ¢/(°) has translational part < X on ¢
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and rotational part < «. Thus its displacement is < € everywhere on the R
neighborhood of c. O

We may fix R > 0 and assume 7 < 7(R). To estimate the integral of
fi(x) over F, we divide the domain into two parts, F; = {0 < r < R} and
Fa={R<r <)}

/ fi(x)dz = fi(x)dx + fi(z)dz.
F Fi Fo
The first integral can be bounded using Lemma 7.10:

fe(z)dx < vol(Fy)-Cyr~t < 7-vol(BTH(R)) - Cy7 ! = vol(BYY(R)) - C4,
Fi

where B1(R) is a Euclidian (d — 1)-ball of radius R. So the first integral
is bounded by a constant. Recall that the volume of each thin component is
bounded below by a constant since one can inject an § ball tangent to the
boundary of the component.
Let us estimate the second integral. Note that by Lemma 7.16 the I', .
—1 _er

minimal displacement at (r,0) for » > R is at least « OR Therefore, using
Lemma 7.11 we deduce

fil)dz < Coa® /w(9)<€'r>s =2 dp
F AL =220 Jiesie Jg ¥(0) e

¥(9)
< Const - T/ (w(e)S/ rd_s_zdr> de.
Sd—2 0

Here s = [%], and since d > 4, we have d — s — 2 > 0. It follows that

fi(z)dz < Const/ 7 -1p(0) - p(0)2d6.
Fa Sd-2

The point is that the last term is, up to a constant, the volume of the thin
component. This concludes the proof of Theorem 7.14. ]

7.18. The case d = 3. Equation (7.13.1) is false when d = 3, essentially
since f; has infinite integral when M has a cusp, and cusped manifolds can be
approximated by closed manifolds using hyperbolic Dehn surgery.

To discuss this in more detail, suppose that M is a finite volume hyperbolic
d-manifold. When M is noncompact, the heat operators on k-forms e *2# are
not of trace class. In fact, following [90, eq. (3.3)], we may endow M with a
height function in the cusps. For Y big enough, the truncation M(Y") of M at
height Y is diffeomorphic to the so-called Borel-Serre compactification of M.
Fixing ¢, it is a consequence of the Selberg trace formula (see, e.g., [58] for the
case of functions and [90, eq. (5.5)] for the general case) that

/ tre ' (z, x)dxe ~ kologY + c.
M(Y)
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Here, the notation A(Y) ~ B(Y) means that A(Y) — B(Y) - 0as Y — +o0,

and ko and c are positive constants that depends on ¢. (In the case of 0-forms,
RS o—t(1+s?)

2
In particular, for Y big enough, we have

ds, where h is the number of cusps.)

/ tre 1% (2, z)dz > 2vol(M).
M(Y)

When M has dimension d = 3, hyperbolic Dehn surgery constructs from M a
closed hyperbolic manifold M’ so that M<y is almost isometrically embedded
inside M’ and vol(M’) is close to vol(M). In particular, we may construct M’
so that

/ tr et (z, z)dz > vol(M').

Now take k = 1. Starting from a sequence of finite volume, noncompact,
hyperbolic manifolds that BS-converges toward H¢, the construction above
yields a sequence of closed hyperbolic manifolds (M,,) such that

/ tre 'z, x)dx > vol(M,).

On the other hand, the integral m Jar, fre—tAy” (x, z)dz is finite, bounded

uniformly in n and approaches 69) (H3) = 0 as t tends to infinity. In particular,
for ¢ small enough, we may assume that

(2) 1
/ fretAY (z,z)dx < =vol(M,).
M, 2

And it follows that (7.13.1) cannot hold (when d = 3).

We now prove Theorem 7.13 when d = 3. Suppose that (M,,) is a sequence
of finite volume® hyperbolic 3-manifolds that BS-converges to H?. In light of
Proposition 7.6, we need to show that!”
b1 (My,)

(2) (173
m < o).
3 too vol(M,,) = By (1)

(7.18.1)

Fix € less than the Margulis constant. When M is a finite volume hy-
perbolic 3-manifold, we let M7 be the union of the e-thick part of M and any
components of the e-thin part on which the injectivity radius is bounded below
by €/2.

7.19. LEMMA. M7 is a closed, 3-dimensional submanifold whose boundary
consists of tori or Klein bottles smoothly embedded in M, and the components
of M\ My are either solid tori or solid Klein bottles (i.e., disk bundles over

9This argument even works for nonuniform lattices, while the estimates in the d > 4 case
are just for uniform lattices.
'ONote that the right-hand side below is 0, but we will not make use of that.
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a circle) or are products T? x (0,00) or K2 x (0,00). Furthermore, My has
“bounded geometry,” in the sense of [84, Def. 2.24].

As we will see below, “bounded geometry” requires that the boundary of
M is not too distorted in M, which is why we take My instead of just the
e-thick part.

Proof. In dimension 3, the Margulis lemma implies that each component
of the thin part M \ My is the quotient of either a metric neighborhood of a
geodesic in H? or of a horoball; this implies that the boundary is smooth, and
it gives the topological information above.!! See also [17] for details.

In [84, Def. 2.24], “bounded geometry” means the following. First, the
injectivity radius of Mz should be bounded below, which is true by definition.
Second, the geodesic flow starting from the inward normal vector field on O Mp
should give a collar neighborhood of the boundary with radius bounded be-
low; this follows since the injectivity radius of Mp is bounded below and since
the components of the preimage of M \ Mz in H? are convex. (This again is
a 3 dimensional phenomenon and is false in higher dimension.) Finally, the
derivatives of the metric tensor and its inverse should be bounded, both in ex-
ponential coordinates and the “boundary normal coordinates” on the collar of
OMr above. In exponential coordinates, the bounds come from differentiating
the metric tensor on H?, while in boundary normal coordinates, one uses that
the second fundamental form of My C M has bounded derivatives, as it is
the quotient of a horosphere or of a metric neighborhood of a geodesic with
radius bounded below by €/4. O

For all four topological types of components of M \ My, the first cohomol-
ogy of the boundary surjects, so using Mayer—Vietoris sequence we see that

bl(M) < bl(MT).

Therefore, to prove (7.18.1) it suffices to estimate the Betti numbers of (M,,)r.

Let A be the Laplacian operator on differential 1-forms on M, and let
e 1A (x, ) be the corresponding heat kernel. We also let A7 be the Laplacian
operator on differential 1-forms on My with absolute boundary conditions, and

Hsometries of H® that translate along an axis ¢ are compositions of pure translations
and 2-dimensional rotations in the orthogonal direction. So for a given r > 0, a loxodromic
isometry of H® with geodesic axis ¢ acts with the same translation distance on every point of
the boundary dN, (c¢) of the r-neighborhood around ¢. This is not true in higher dimensions,
since the rotational part of an isometry can be more complicated, and in fact the components
of M \ My that are (nonmetric) neighborhoods of closed geodesics may not have smooth
boundary.
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denote by e tAT (z,x) its integral kernel. Tt follows from [50, Th. 6.1] that

(7.19.1) bi(Mr) = lim Tr e A1 = lim tre tAT (z,z) dx;
t—o00 t—o00 M.

note that since Tre ™t = ¥, e7?, where ); are the eigenvalues of AT, the
expression above is monotone decreasing in ¢, so the limit exists.

Recall that ﬁf) (H3) = limy_yo0 tr 1Ay (z,Z), where 1oy (z,Z) is the
L?-heat kernel of H3. In light of (7.19.1), it suffices to fix ¢ > 0 and show that

(2)
(7.19.2) lim sup tre tAT (z,x)dr < tr emtAr (Z,%)

n—oo vol(Mp) /(Mn)T

for some (arbitrary) & € H?. Then taking ¢t — oo proves (7.18.1).

Fix some large R > 1 > ¢, and consider the subset (M,)>r C (M,)r.
Then the boundary of (M,,)r is uniformly far from (M,,)>r, and by a theorem
of Liick and Schick [84, Th. 2.26] we have that for all = € (M,)>rg,

e (2, 2) — e A1 (2, 2)|| < C(t, R),

where C(t, R) — 0 as R — oo. (Note: although their statement assumes that
M,, has bounded geometry, which in this case means the global injectivity
radius InjRadM,, > 0, it suffices in their proof to assume a lower injectivity
radius bound on (M,)>g, which is automatic.) So, by Lemma 7.4, for all
S (Mn)zR’

e (@, 2) — 7 (3, 8)] < C(t, B) + C(OR™ = C'(1, R),

where again C’(t, R) — 0 as R — oo. Hence, for all n, we have the average
value

1

(7.19.3) 7V01(Mn)>3

/ tre AT (x,z)dr < tr 1Ay (z,%) + C'(t, R).
(Mn)ZR

Next, if z € Dy, = (My)r \ (My)>R, we have by [84, Th. 2.35] that
e~ (2, 2)|| < C(1),

since by Lemma 7.19 the manifold with boundary (M,,)r has bounded geom-
etry, in the sense of [84, Def. 2.24]. So, we also have the average value

1
volD,,

(7.19.4) / tre T (2, 2) dx < C(1).
Dy,
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Combining (7.19.3) and (7.19.4), we obtain that for all n,

1 T
lim su 7/ tre A1 x,x)dr
n—>oopV01(Mn)T (Mn)T ( )
vol (Mn)zR( AD , ) vol D,
W tre 1 (.’L’,I‘) -+ C (t, R) + VOan C(t)
2 vol D
<tre (7,7 (¢ " O(t).
<tre "1 (m,:z:)—i—C(,R)—i—VOanC()

For a fixed R, by first letting n — oo, we deduce from BS-convergence that the
last term vanishes in the limit. Finally, by sending R — oo, the term C’(¢, R)
disappears. O

8. Growth of torsion

In this last section we consider only those X = G/K for which all ﬁ,(f) (X)
vanish. It is then natural to consider the secondary invariant given by the
L?-torsion. We first review its definition and then consider the corresponding
approximation problems. We continue with the notation of the preceeding

sections. In particular, we let I' be a cocompact torsion-free subgroup of G
and let M =T\ X.

8.1. L2- and analytic torsion. We will work in the setting of [24]: here we
will be as brief as possible concerning definitions, etc., and refer to that paper
for all details.

Given a finite-dimensional representation p of G¢ on a vector space E
one can construct a canonical G-equivariant Hermitian bundle E, on X with
fiber E. The space of square-integrable k-forms with coefficients in E, is
then endowed with a Laplacian A,(f) and associated heat kernels eftAl(cQ)(p)
which are bounded operators given by convolution with a G-equivariant kernel

187 () (z,y) (a section of a bundle over X x X). The trace tr et (o) (x, )
does not depend on x € X. Let I'(s) denote the Euler Gamma-function; the
determinant det A,(f) is then defined by

1 1
W e )

+oo )
+/ tTlre A (z, ) dt
1

d
log det A,(f) =
s

(see [85, Def. 3.128] for a justification) and the L2-torsion tg?) (p) is defined by

1
(8.1.1) P (p) = 5 > (~D*klog det N
k>0
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The bundle E, descends to a bundle V on M, with Laplacians A and

N

heat kernels e : similar to the L?-case one can define determinants of the

Ay and analytic torsion Ths(p). We raise the following question/conjecture.

8.2. CONJECTURE. Let (M,,) be a uniformly discrete sequence of compact
X-manifolds that BS-converges to X. Then we have

log Ty, (p) (2
ol ()

We note that tg?)(p) is nonzero if and only if §(G) = 1, i.e., if G is one
of the groups SLy(C), SL3(R), SOy, m, nm odd. In principle one can compute
an explicit value of tg?) for all G and p; see [24, §5]. When G = SOgp41 1, the
space X is the real hyperbolic space H?P*!. For trivial p [85, Th. 3.152], we

have

W3 T T THY T qnp2r

8.3. Strongly acyclic coefficients. The representation p is said to be strongly
acyclic if there is a constant n such that for every cocompact I' C G and for
every k, the spectrum of the Laplace operator Ay on I'\X is contained in
[, +00[. (In particular, this implies that H*(M;V) = 0.) When p is strongly
acyclic, Conjecture 8.2 was proven for normal chains in [24, Th. 4.5]. The

£2) 1 L@ _ 3

proof of loc. cit. adapts immediately to the setting of Benjamini—Schramm
convergence, simply by replacing the main lemma there by Lemma 7.4. Thus
we obtain

8.4. THEOREM. Assume that p: G — GL(FE) is strongly acyclic. Let (M)
be a uniformly discrete sequence of compact X-manifolds that BS-converges
toward X. Then we have

log(Ts, (p))
vol(M,,)

2
— 1 (p).

8.5. Fxample. Given any orientable compact hyperbolic 3-manifold M =
I'\H3, we can consider the discrete faithful SLy(C)-representation ceapn : I' <
SL2(C). It is strongly acyclic. (See Example (3) of [24, §5.9.3] with (p,q) =
(1,0).) In particular, the corresponding twisted chain complex

C.(M) @z C?

is acyclic and it follows that the corresponding Reidemeister torsion 7(M, ccan)
€ R* is defined. According to the Cheeger—Miiller theorem extended to uni-
modular representation by Miiller [89], we have Ti/(p) = |7(M, ccan)|, and
Theorem 1.13 follows from Theorem 8.4.
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8.6. Torsion homology. In this (largely speculative) section we suppose
that p is trivial. According to the Cheeger—Miiller theorem [35], [89], the
analytic torsion T); decomposes as a product of

dim X
H (_1)k+1|Hk(M7 Z)tors‘
k=0
by a so-called regulator; see [24, eq. (2.2.4)]. This relates Conjecture 8.2 to
the following question: Let M, be a sequence of compact X-manifolds that
BS-converges to X. Do we have

vol(M,,)

log |Hy, (M, Z)iors| 1] if b = dmf=L,
0 otherwise

for every k < dim(X)?

To avoid discussing the growth of Hy(M,) for k& # (dim(X) — 1)/2,
here we will restrict to the case X = H?® so that Hy(M,) are torsion-free
if k # % =1 and tg?) = —(6m)~!. In this setting there are extensive
computations by Sengun [43] for covers of a fixed manifold that suggest the
answer to the question above is negative, indicating that the contribution of the
regulator to the limit in Conjecture 8.2 should be nonzero in general. However
the same computations suggest that this is not the case when considering only
congruence covers of an arithmetic manifold. See [21] for a detailed discus-
sion on regulators and the differences between congruence and noncongruence
covers.

The following result of Brock—Dunfield [31] finally shows that Conjec-
ture 8.2 cannot hold for general (nonuniformly discrete) sequences.

8.7. THEOREM. There exists a sequence of hyperbolic integer homology
3-spheres that BS-converges toward the hyperbolic 3-space.

According to the Cheeger-Miiller theorem, if M is a homology sphere
then Th; = 1. Thus the theorem above provides us with a sequence M,, that
converges to H? in the Benjamini-Schramm sense but such that the conclusion
of the conjecture is violated in an extreme way.

8.8. Knot exteriors. Given a hyperbolic knot, Dunfield, Friedl and Jack-
son [51] have introduced an invariant Tx(t) € C[t*!] that is defined as the
normalized twisted Alexander polynomial of K corresponding to the discrete
and faithful SLg(C)-representation of the knot group. It follows from [77, Th. 4]
that the following holds. Let M,, be the n-th cyclic ramified cover of S? along
K. Then for n large enough, M,, is hyperbolic and
(88.1) lim L log (M, acan)| = — log m(Ti),

n—+oo n
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where m is the exponential Mahler measure. On the other hand, Friedl and
Jackson [57] produce computations that suggest that logm(Tx) correlates
strongly with vol(K): as vol(K) tends to infinity, the ratio log m(7Tx)/vol(K)
seems to tend to a constant =~ (0.29.

Let M, be the hyperbolic orbifold with underlying space S* and n-th
cyclic singularity along K. Then M, is a regular n-sheeted cover of M,,.
Now recalling that M,, BS-converges toward S* — K (and, in particular, that
vol(M,,) — vol(K)) as n tends to infinity and that 11/127 ~ 0.29, in view of
Theorem 1.13 and equation (8.8.1) it is natural to ask the following question

(compare [97]):

Question. Let (K,) be a sequence of hyperbolic knots in S? such that
vol(K,) — +oo. Can it happen that the sequence of finite volume hyperbolic
manifolds S? — K,, BS-converge toward H?>?
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