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Abstract

We study the asymptotic behaviour of Betti numbers, twisted torsion

and other spectral invariants of sequences of locally symmetric spaces. Our

main results are uniform versions of the DeGeorge–Wallach Theorem, of a

theorem of Delorme and various other limit multiplicity theorems.

A basic idea is to adapt the notion of Benjamini–Schramm convergence

(BS-convergence), originally introduced for sequences of finite graphs of

bounded degree, to sequences of Riemannian manifolds, and analyze the

possible limits. We show that BS-convergence of locally symmetric spaces

Γ\G/K implies convergence, in an appropriate sense, of the normalized rel-

ative Plancherel measures associated to L2(Γ\G). This then yields conver-

gence of normalized multiplicities of unitary representations, Betti numbers

and other spectral invariants. On the other hand, when the corresponding

Lie group G is simple and of real rank at least two, we prove that there is

only one possible BS-limit; i.e., when the volume tends to infinity, locally

symmetric spaces always BS-converge to their universal cover G/K. This

leads to various general uniform results.

When restricting to arbitrary sequences of congruence covers of a fixed

arithmetic manifold we prove a strong quantitative version of BS-conver-

gence, which in turn implies upper estimates on the rate of convergence of

normalized Betti numbers in the spirit of Sarnak–Xue.

An important role in our approach is played by the notion of Invari-

ant Random Subgroups. For higher rank simple Lie groups G, we exploit

rigidity theory and, in particular, the Nevo–Stück–Zimmer theorem and

Kazhdan‘s property (T), to obtain a complete understanding of the space

of IRS’s of G.
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1. Introduction and statement of the main results

Let G be a connected center-free semi-simple Lie group without compact

factors, K ≤ G a maximal compact subgroup and X = G/K the associated

Riemannian symmetric space. The main results of this paper concern the

asymptotic of L2-invariants of the spaces Γ\X, where Γ varies over the space

of lattices of G.

Most of our results rely on the notion of Benjamini–Schramm convergence,

or BS-convergence, for sequences of locally symmetric spaces Γn\X. We start

by introducing a particularly transparent case: when Γn\X BS-converges toX.

1.1. Definition. Let (Γn) be a sequence of lattices in G. We say that the

X-orbifolds Mn = Γn\X BS-converge to X if for every R > 0, the probability

that the R-ball centered around a random point in Mn is isometric to the

R-ball in X tends to 1 when n→ ∞; i.e., for every R > 0, we have

lim
n→+∞

vol((Mn)<R)

vol(Mn)
= 0,

where M<R = {x ∈M : InjRadM (x) < R} is the R-thin part of M .

A straightforward and well-studied example is when Γ ≤ G is a uniform

lattice and Γn ≤ Γ is a chain of normal subgroups with trivial intersection; in

this case, the R-thin part of Γn\X is empty for large enough n.

General BS-convergence. The definition above fits into a more general no-

tion of convergence, adapted from that introduced by Benjamini and Schramm

[19] for sequences of bounded degree graphs.

Consider the space M of pointed, proper metric spaces, endowed with

the pointed Gromov–Hausdorff topology. Each Γn\X can be turned into a

probability measure on M by choosing the basepoint at random with respect

to volume; this measure is supported on pointed spaces isometric to Γn\X.

We say that Γn\X BS-converges if these measures weakly converge. The limit

object is then a probability measure on M. This perspective is elaborated on

in Section 3.

Most of the results of this paper assume (or prove) BS-convergence to X.

These results can often be extended to general BS-convergent sequences, but
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they tend to get more technical and sometimes further assumptions are needed;

they will appear in a sequel of this paper to be extracted from our original arXiv

paper [2].

This definition of BS-convergence is very broad and works just as well for

sequences of finite volume Riemannian manifolds. In our situation, the com-

mon ambient groupG allows a useful algebraic reformulation of BS-convergence

where probability measures on M are replaced by invariant random subgroups

of G, i.e., G-invariant measures on the space of closed subgroups of G. This

reformulation is what we use in most of the paper. This will be discussed at

the end of the introduction and in Sections 2 and 3.

Uniform discreteness. A family of lattices (resp. the associated X-orb-

ifolds) is uniformly discrete if there is an identity neighborhood in G that

intersects trivially all of their conjugates. For torsion-free lattices Γn, this is

equivalent to saying that there is a uniform lower bound for the injectivity

radius of the manifolds Mn = Γn\X. (So, in particular, a uniformly discrete

family of lattices consists only of uniform lattices.)

Any family (Mn) of covers of a fixed compact orbifold is uniformly discrete.

Margulis has conjectured [87, p. 322] (see also [60, §10]) that the family of all

cocompact torsion-free arithmetic lattices in G is uniformly discrete. This is a

weak form of the famous Lehmer conjecture on monic integral polynomials.

BS-convergence and Plancherel measure. Our first result says that BS-

convergence to X implies a spectral convergence: namely, when (Γn) is uni-

formly discrete, the relative Plancherel measure of Γn\G will converge to the

Plancherel measure of G in a strong sense.

For an irreducible unitary representation π ∈ “G and a uniform lattice Γ

in G, let m(π,Γ) be the multiplicity of π in the right regular representation

L2(Γ\G). Define the relative Plancherel measure of Γ\G as the measure

νΓ =
1

vol(Γ\G)

∑

π∈Ĝ

m(π,Γ)δπ

on “G. Finally denote by νG the Plancherel measure of the right regular repre-

sentation L2(G). Recall that the support of νG is “Gtemp — the subset of the

unitary dual “G that consists of tempered representations.

1.2. Theorem (Theorem 6.7). Let (Γn) be a uniformly discrete sequence

of lattices in G such that the spaces Γn\X BS-converge to X . Then for every

quasi-compact νG-regular open subset S ⊂ “G or S ⊂ “Gtemp, we have

νΓn(S) → νG(S).

Note that the Plancherel measure of G depends on a choice of a Haar

measure on G as does vol(Γ\G). We recall basic facts on the topology of “G in

Section 6.
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Let d(π) be the “multiplicity” — or rather the formal degree — of π in

the regular representation L2(G) with respect to the Plancherel measure of G.

Thus, d(π) = 0 unless π is a discrete series representation. Theorem 1.2 implies

the following.

1.3. Corollary. Let (Γn) be a uniformly discrete sequence of lattices in

G such that the spaces Γn\X BS-converge to X . Then for all π ∈ “G, we have

m(π,Γn)

vol(Γn\G)
→ d(π).

In the special situation when (Γn) is a chain of normal subgroups with

trivial intersection in some fixed cocompact lattice Γ ≤ G, Corollary 1.3 is the

classical theorem of DeGeorge and Wallach [64]. In that very same situation

Theorem 1.2 is due to Delorme [47]. Since the pioneering work of DeGeorge

and Wallach, “limit formulas” have been the subject of extensive studies. Two

main directions of improvement have been considered.

The first direction is concerned with the extension of the theorems of

DeGeorge–Wallach and Delorme to nonuniform lattices. In the case of the

DeGeorge–Wallach theorem we refer to [45], [14], [38], [100], [106]. Note that

these works were partially motivated by a question of Kazhdan [71] pertaining

to his work on the field of definition of arithmetic varieties. The limit mul-

tiplicity problem for the entire unitary dual has been solved for the standard

congruence subgroups of SL2(Z) by Sarnak in [102] (see also [69], [46]) but is

still open in general. A partial result for certain normal towers of congruence

arithmetic lattices defined by groups of Q-rank one has been shown in [46].

Very recently important progress has been made by Finis, Lapid and Müller

[55] who can deal with groups of arbitrary rank. In these works the authors

usually deal with towers of normal subgroups.

A second direction is to extend the theorems of DeGeorge–Wallach and

Delorme to more general sequences of (uniform) lattices. This has been ad-

dressed in some of the above mentioned works for certain (nonprincipal) con-

gruence subgroups of a fixed lattice, such as Γ0(N); see also [70] for another

example. Theorem 1.2 is the first example where one can deal with sequences

of noncommensurable lattices.

The classical theorem of DeGeorge and Wallach implies a corresponding

statement on the approximation of L2-Betti numbers by normalized Betti num-

bers of finite covers (see also Donnelly [49]). Theorem 1.2 implies the following

uniform version of it.

1.4. Corollary. Let (Γn)n≥1 be a uniformly discrete sequence of uniform

lattices in G such that Γn\X BS-converges to X . Then for every k ≤ dim(X),

we have
bk(Γn)

vol(Γn\X)
→ β

(2)
k (X).
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In the corollary, bk(Γn) is the k-th Betti number of the (virtually torsion-

free) group Γn,
1 and

β
(2)
k (X) =





χ(Xd)
vol(Xd)

k = 1
2 dimX,

0 otherwise

is the k-th L2-Betti number of X , where Xd is the compact dual of X equipped

with the Riemannian metric induced by the Killing form on Lie(G). We refer

the reader to Section 6.24 for an analytic definition of β
(2)
k (X). By [11] and

[94], the Euler characteristic χ(Xd) is nonzero exactly when the fundamental

rank

δ(G) = C-rank(G)− C-rank(K)

of G is zero. Alternatively, it follows from the equality of the Euler character-

istic and its L2-analogue that in the middle dimension, β
(2)
k (X) 6= 0 if and only

if the Euler characteristic of some (or, equivalently, every) closed X-manifold

is nonzero.

Uniform BS-convergence in higher rank. In the higher rank case we have

the following remarkable phenomenon, which gives a surprisingly strong result

when combined with Theorem 1.2. Note that in the following result we do not

restrict to the case where the Γn are cocompact and, in particular, we do not

assume uniform discreteness.

1.5. Theorem (Corollary 4.7). Suppose that G has property (T) and real

rank at least two. Let Γn ≤ G be any sequence of pairwise nonconjugate irre-

ducible lattices in G. Then Γn\X BS-converges to X .

1.6. Corollary. If in addition to the conditions of Theorem 1.5 we have

that (Γn) is uniformly discrete (in particular, cocompact), then for every quasi-

compact νG-regular subset S ⊂ “G, we have

νΓn(S) → νG(S)

and, in particular,
m(π,Γn)

vol(Γn\X)
→ d(π)

for any π ∈ “G. And even more particularly, we have

bk(Γn)

vol(Γn\X)
→ β

(2)
k (X)

for every k ≤ dim(X).

1The group Γn being virtually torsion-free, the orbifold Γn\X is finitely covered by a

manifold whose Γn-invariant rational k-th cohomology group coincides with the rational k-th

orbifold cohomology of Γn\X and is of finite rank bk(Γn); in particular, if Γn is torsion-free,

then bk(Γn) is the k-th Betti number of Γn\X.
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Here is a particular example to illustrate the strength of Corollary 1.6:

1.7. Example. Let n ≥ 3, let Γ be a cocompact lattice in SLn(R), and let

Γm ≤ Γ be a sequence of distinct, finite index subgroups of Γ. Then for all k,

bk(Γm)

[Γ : Γm]
→ 0.

Even in this example, where all the lattices fall in one commensurability

class, we do not see a proof that avoids using Theorem 1.5.

It is easy to see that the analogue of Corollary 1.6 — and Therefore, of

Theorem 1.5 — is false for some rank one symmetric spaces. For instance,

suppose M is a closed hyperbolic d-manifold and π1(M) surjects onto the free

group of rank two. Then finite covers of M corresponding to subgroups of

Z ∗ Z have first Betti numbers that grow linearly with the volume. However,

for d 6= 2, there will be sublinear growth of the first Betti number in any

sequence of covers corresponding to a chain of finite index normal subgroups

of π1(M) with trivial intersection, e.g., by the DeGeorge–Wallach theorem.

Removing the injectivity radius condition for hyperbolic manifolds. If

rank(X) ≥ 2 or if X is the symmetric space corresponding to Sp(d, 1) or F−20
4 ,

then all irreducible X-manifolds are arithmetic, by Margulis’s Arithmeticity

[87, Th. 1.10, p. 298] and the Corlette–Gromov–Schoen Theorem [39], [67],

respectively. For SU(d, 1), there are few known examples of nonarithmetic

manifolds for d = 2, 3, and it is likely that most manifolds are arithmetic.

According to Margulis’ conjecture it is Therefore, natural to expect that if X

is not isometric to some real hyperbolic space Hd (d ≥ 2), then the family of

all irreducible compact X-manifolds is uniformly discrete. On the other hand,

it is shown in [9], [22], [16] that for every d ≥ 2, there are compact hyperbolic

manifolds of dimension d with arbitrarily small closed geodesics. Still, a careful

estimate of the norm of the heat kernel in the thin part of rank one manifolds

(see Section 7) allows us to prove the following.

1.8. Theorem (Theorem 7.13). Let Mn = Γn\Hd be a sequence of com-

pact hyperbolic d-manifolds that BS-converges to Hd. Then for every k ≤ d,

lim
n→+∞

bk(Mn)

vol(Mn)
= β

(2)
k (Hd).

Note that for X = H2, the hyperbolic plane, Theorem 7.13 is a conse-

quence of the Gauss–Bonnet theorem, even under the weak assumption that

only vol(Mn) → ∞, without requiring BS-convergence. In general there are

many sequences of hyperbolic manifolds that BS-converge to Hd, but where

the global injectivity radius is not bounded below. A typical example is given

by Brock–Dunfield [31], and while these are (intentionally) integer homology
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spheres, similar examples can be constructed where the only control on the

first Betti numbers is through Theorem 1.8.

The idea of our argument for Theorem 1.8 also gives an alternative proof,

in the real hyperbolic case, of the classical theorem of Gromov that Betti num-

bers are linearly bounded by volume [12, Th. 2]. We were not able to perform

the same analysis in the higher rank case. However, assuming the Margulis

conjecture, our result for higher rank symmetric spaces (Corollary 1.6) is much

stronger than Gromov’s linear bound.2

Explicit estimates for congruence covers. When restricted to congruence

covers of a given arithmetic hyperbolic manifold, Gromov conjectured that the

k-th Betti number should be bounded above by a constant times nα, where n

is the index of the cover and

α =
2k

d− 1
, 0 ≤ k ≤ [(d− 1)/2];

see Sarnak and Xue [103]. Cossutta and Marshall [40] and Bergeron, Millson

and Moeglin [23] proved an even better (and sharp) bound for principal con-

gruence covers of level a power of a prime and small degree k < d/3. Our

next result is a weak form of Gromov’s conjecture. While we cannot approach

the precise constant suggested by Gromov, we do obtain a very general result

that applies to all semi-simple Lie groups and general congruence (not just

principal) subgroups.

1.9. Theorem (Theorem 6.14). Let G be a semi-simple Lie group, and

let Γ ≤ G be a uniform arithmetic subgroup. Let π ∈ “G be a nontempered

irreducible representation. Then there are constants α > 0 and C < ∞ such

that for every congruence subgroup ∆ ≤ Γ,

m(π,∆) ≤ C · [Γ : ∆]1−α.

As a consequence we obtain the following.

1.10. Corollary. Let G and Γ be as in Theorem 1.9. Suppose that

|k −
1

2
dimX| > δ(G).

Then there exist constants α > 0 and C such that for every congruence subgroup

∆ ≤ Γ, we have

bk(∆) ≤ C · vol(∆\X)1−α.

2Recall however that Gromov’s theorem applies in the much broader setup of Hadamard

spaces with bounded curvature and no Euclidian factors, which we do not consider in this

paper.
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Theorem 1.9 is a consequence of the following result, which is of indepen-

dent interest.

1.11. Theorem (Theorem 5.6). Let G be a k-simple simply connected

algebraic group defined over a number field k. Let O be the ring of integers

in k. There exist a finite index center-free subgroup Γ ⊂ G(O) and positive

constants ε and C (depending only on Γ and some fixed word metric on it)

with the following property.

Let g ∈ Γ − {1}, and let H be a congruence subgroup of index N in Γ.

Then g fixes at most eCl(g)N1−ε points in the action of Γ on the right cosets

H\Γ by multiplication. Here l(g) is the length of g with respect to the fixed

word metric of Γ.

Theorem 1.11 leads to the following effective version (for subgroups of a

fixed lattice) of Theorem 1.5; this allows us to prove Theorem 1.9. Implicit

here is an effective proof (again, for subgroups of a fixed lattice) of the second

part of Corollary 1.6.

1.12. Theorem (Theorem 5.2). Let Γ0 ⊂ G be a cocompact arithmetic

lattice. Then there exist positive constants c and µ depending only on Γ0, such

that for any congruence subgroup Γ ⊂ Γ0 and any R > 1, we have

vol((Γ\X)<R) ≤ ecRvol(Γ\X)1−µ.

Growth of Reidemeister torsion. When the fundamental rank δ(G) is pos-

itive, the symmetric space X is L2-acyclic. It is then natural to investigate a

secondary invariant such as the L2-torsion of X; see [85], [24]. This is known

to be nonvanishing if and only if δ(G) = 1, e.g., in the case G = SL2(C). We

study L2-torsion for BS-convergent sequences in Section 8; see, in particular,

Theorem 8.4.

In this introduction, we stress the particular case of compact orientable

hyperbolic 3-manifolds. Given such anM we denote by αcan the discrete faith-

ful SL2(C)-representation of π1M . The corresponding twisted chain complex

C∗(M̃)⊗Z[π1M ] C
2

is acyclic [96] and it follows that the corresponding Reidemeister torsion

τ(M,αcan) ∈ R∗

is well defined. The following result is a consequence of Theorem 8.4.

1.13. Theorem. Let (Mn)n be a uniformly discrete sequence of orientable

compact hyperbolic 3-manifolds that BS-converges toward H3. Then

lim
n→+∞

1

vol(Mn)
log |τ(Mn, αcan)| = −

11

12π
.
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The role of IRS. An important tool in our project is the notion of an

invariant random subgroup (IRS). An IRS is a conjugacy invariant probability

measure on the space SubG of closed subgroups of G. We refer the reader to

[6], [29], [112], [61], [62] for other recent works that make use of this notion.

Any lattice Γ ≤ G defines an IRS µΓ supported on the conjugacy class ΓG.

It turns out (see Theorem 2.9) that if G is a connected simple Lie group,

then any nonatomic IRS is supported on discrete subgroups (hereafter called

a discrete IRS). Every discrete IRS gives rise to a probability measure on the

space of rooted metric spaces M mentioned above, and one can relate weak∗

convergence of IRS’s to weak∗ convergence of measures on M. See Section 3

for details.

Denote by µG and µId the atomic measures supported on {G} and {IdG}

respectively. The following is a variant of Theorem 1.5 stated in the language

of IRS’s.

1.14. Theorem (Theorems 4.2 and 4.4). Let G be a connected, center-free

higher rank simple Lie group. Then

• the ergodic IRS’s are exactly µG, µId and µΓ where Γ is a lattice in G;

• the set of ergodic IRS’s is compact and its only accumulation point is µId.

The first part of Theorem 1.14 is a consequence of the Nevo–Stück–Zimmer

rigidity theorem [109], [91].

The picture is much wilder in rank one. For example, starting with a

lattice Γ ≤ G and an infinite index normal subgroup ∆ C Γ, one can induce

the measure on Γ\G to an ergodic IRS supported on the conjugacy class ∆G.

More generally, any IRS in Γ can be induced to an IRS in G. We investigate

these constructions and more exotic ones in a sequel of this paper to be ex-

tracted from our original arXiv paper [2]. In particular, we define their spectral

measure and their L2-Betti numbers and we prove spectral convergence along

sequences that BS-converge toward a nontrivial IRS.

Acknowledgments. This research was supported by the MTA Renyi “Lend-

ulet” Groups and Graphs Research Group, the NSF Postdoctoral Fellowship,

the Institut Universitaire de France, the ERC Consolidator Grant 648017, the

EPSRC, the ISF grant 1003/11 and the ISF-Moked grant 2095/15.

2. Invariant Random Subgroups

Let G be a locally compact second countable group. We denote by SubG
the set of closed subgroups of G. There exists a natural topology on SubG, the

Chabauty topology [34], that is generated by open sets of the form

(1) O1(K) = {H ∈ SubG : H ∩K = ∅} for K ⊂ G compact, and

(2) O2(U) = {H ∈ SubG : H ∩ U 6= ∅} for U ⊂ G open.
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Alternatively, a sequence (Hn)n≥0 in SubG converges to H ∈ SubG if and

only if

(1) for every x ∈ H, there exists a sequence (xn) ∈ GN such that xn ∈ Hn and

xn → x in G;

(2) for every strictly increasing sequence of integers (nk)k≥0 and for any con-

verging sequence xnk
→ x such that xnk

∈ Hnk
, we have x ∈ H.

The Chabauty topology is compact, separable and metrizable [17, Lemma

E.1.1]. While the proof of metrizability referenced uses Urysohn’s theorem,

one can also write down an explicit metric. For instance, when G is compact,

the Chabauty topology is induced by the Hausdorff metric on C(G). In the

noncompact case, one can metrize it by integrating up the Hausdorff metrics

on all R-balls around a fixed base point; see [4]. We refer the reader to [68]

(and also to [62]) for more information on the topology of Chabauty spaces.

Note. We will not always require G to be locally compact. In this case,

the Chabauty topology is defined as above, but it will not always be compact.

Here is an easy exercise in the definitions that we will use in Section 3.

2.1. Lemma. Let G be a connected Lie group, and suppose that (Γn) is

a sequence in SubG with Γn ∩ U = {id} for some fixed neighborhood Uof the

identity id in G. If (Γn) converges toward a group H in SubG, then H is

discrete. Moreover, if all the Γn’s are torsion free, so is H .

Proof. If H is not discrete, then it intersects U . So, O2(U r {id}) is a

neighborhood of H that does not contain any Γn. If g is a nontrivial element

in H with gk = id, then there is a sequence γn ∈ Γn with γn → g. Therefore,

γkn → id, so by uniform discreteness we have γkn = id for large n, implying that

Γn has torsion. �

2.2. Proposition. Let G be a connected Lie group. Then G is an isolated

point in SubG if and only if G is topologically perfect.

Recall that a topological group is topologically perfect if its commutator

subgroup is dense. So, in particular, the proposition implies that if G is con-

nected and semi-simple, then G is an isolated point in SubG.

Proof. Suppose that G is topologically perfect. Then by [30, Th. 2.1]

there exist d = dim(G) open sets Ω1, . . . ,Ωd ⊂ G such that for every choice

of d elements gi ∈ Ωi, i = 1, . . . , d, the subgroup 〈g1, . . . , gd〉 is dense in G.

Therefore, if H ∈ SubG intersects each of the Ωi, then H = G, and thus

∩di=1O2(Ωi) = {G} is open.

Conversely, if G is not topologically perfect, then it surjects on the cir-

cle S1. Let Hn be the pre-image in G of the cyclic group of order n in S1.

Then clearly we have that Hn converges to G. �
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We also recall the following well-known fact, which follows from classical

work of Kuranishi [75] and Toyama [111]. See also Theorem 4.1.7 in [110].

2.3. Proposition. Let G be a Lie group, and let (Γn)n≥1 be a sequence

of discrete subgroups in G that converges to a subgroup H . Then the connected

component H◦ of H is nilpotent.

We now come to the central definition of this section.

2.4. Definition. Let G be a topological group. An invariant random sub-

group (IRS) of G is a G-invariant Borel probability measure on SubG.

Here, G acts on SubG by conjugation. The name IRS has been coined

in [6]. We consider the set

IRS(G) = Prob(SubG)
inv

of invariant random subgroups of G endowed with the weak∗ (or, vaguely

speaking, the weak) topology. When G is locally compact, as SubG is compact

and the G-action is continuous, it follows from Riesz’ representation theorem

and Alaoglu’s theorem that the space of invariant random subgroups of G is

also compact.

IRS’s arise naturally when dealing with nonfree actions, as the stabilizer

of a random point in a probability measure preserving action is an IRS. More

precisely, when G acts by measure preserving transformations on a countably

separated probability space (Ω, ν), the push forward of ν under the stabilizer

map3

stab : Ω −→ SubG, stab(x) = Gx

is an IRS in G. We say that the IRS is induced from the probability measure

preserving action.

As an example, suppose that H is a closed subgroup of G such that G/H

admits a finite G-invariant measure; for instance, H could be a lattice in G. In

this case, we scale the measure on G/H to a probability measure and denote

by µH the invariant random subgroup induced by the left action of G on G/H.

This construction can be further generalized. Let H be a closed subgroup

in G, and let N = NG(H) be its normalizer in G. Suppose that G/N admits

a left G-invariant probability measure. Consider the map G → SubG given

by g 7→ gHg−1. The push-forward measure on SubG is a G-invariant measure

supported on the conjugates of H, which we denote µH . This notation conflicts

with that in the previous paragraph; indeed, if both G/H and G/N admit an

invariant probability measure, then we have two definitions of µH . However,

both these constructions give rise to the same measure.

3It is a result of Varadarajan that the stabilizers are closed subgroups; see [115,

Cor. 2.1.20].
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Invariant random subgroups can also be constructed as products. Let

H1, H2 be commuting subgroups of G, and assume thatH1, H2 and the product

H1H2 are all closed in G. If µ1, µ2 are invariant random subgroups of G that

are supported on SubH1 , SubH2 , we can push forward the product measure on

SubH1 × SubH2 using

SubH1 × SubH2 → SubG, (K1,K2) 7→ K1 ×K2

to a measure on SubG, which we denote µ1 ⊗ µ2. It is easy to check that this

measure is G-invariant.

Finally, suppose Γ < G is a lattice and µ is an IRS of the discrete group Γ.

The IRS of G induced from µ is the random subgroup of G obtained by taking

a random conjugate of Γ and then a µ-random subgroup in this conjugate

(which is well defined because of the invariance of µ). Formally, the natural

map

G× SubΓ 3 (g,Λ) 7−→ gΛg−1 ∈ SubG

factors through the quotient ofG×SubΓ by the Γ-action (g,Λ)γ = (gγ, γ−1Λγ).

This quotient has a natural G-invariant probability measure, and we define

our IRS to be the push forward of this measure by the factored map (G ×

SubΓ)/Γ → SubG. This is a particularly important construction when G =

SO(n, 1), in which case lattices have many IRS’s; see [2].

2.5. IRS’s via stabilizers. The following theorem shows that, when G is

locally compact, every IRS is induced from a probability measure preserving

action.

2.6. Theorem. Let G be a locally compact second countable group, and

let µ ∈ IRS(G). Then µ is induced from some probability measure preserving

action of G.

When G is countable and discrete, this was proven in [6, Prop. 13]. The

reader should note that we do not use this result anywhere in this paper,

although it could be used to give a slightly shorter proof of Theorems 4.1

and 4.3. However, we consider it of independent interest.

Proof. The coset space of G, written CosG, is the set

CosG = {Hg : H ∈ SubG, g ∈ G},

equipped with the Fell topology of closed subsets of G. Then G acts on CosG,

both from the left via Hg
k
7→ kHg and from the right via Hg

k
7→ Hgk. With

respect to the left action, the stabilizer map is the natural projection

stab : CosG −→ SubG, Hg 7−→ H,
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where the fiber above H ∈ SubG is the coset space H\G. Note that as usual

for a stabilizer map, the G-action permutes the fibers and descends to the

conjugation action of G on SubG.

By [26, Th. 3.1], for almost every subgroup H in the support of µ, there is

a right G-invariant measure νH on H\G, and one can choose the map H 7→ νH
to be Borel.4 So, integrating against µ creates a measure ν on CosG:

ν =

∫

SubG

νH dµ.

The left and right G-actions on CosG commute, so the left action of g pushes

forward νH to a measure on gHg−1\G that is again right G-invariant. By

uniqueness, we have g∗νH = λνgHg−1 for some λ ∈ R. Combining this with the

conjugation invariance of µ, the left G-action preserves the measure class of ν.

Suppose for a moment that each νH is finite, i.e., that µ-a.e. H ∈ SubG has

co-finite volume. Then after scaling, we can take each νH to be a probability

measure. The νH are then permuted by the left G-action, which implies that ν

(and not just its measure class) is left G-invariant. Furthermore, ν is then

a probability measure that pushes forward to µ under stab. So, the theorem

follows.

In general, it is enough to prove the theorem when µ is ergodic, so we can

break into cases depending on whether for µ-a.e. H ∈ SubG, we have

(1) νH is finite (in which case we are done),

(2) νH is infinite and H\G is discrete,

(3) νH is infinite and H\G is nondiscrete.

Of the latter two cases, (3) is the more difficult, so we will focus on that and

mention (2) again at the end. Assuming (3), the two problems are that only

the measure class of ν is G-invariant and that ν is not a probability measure.

To deal with the first issue, we replace the action Gy CosG with its Maharam

extension

Gy CosG × R, (Hg, t)
k

7−→

Ç
kHg,

dν

dk∗(ν)
(Hg) · t

å
,

which preserves the measure ν × ` on CosG×R, where ` is Lebesgue measure.

Note that the stabilizer map for the Maharam extension is just the projection

CosG × R −→ SubG, (Hg, t) 7−→ H,

for since H acts trivially on H\G, it preserves νH , and combining this with

the conjugation invariance of µ gives that dν
dh∗(ν)

(Hg) = 1 whenever h ∈ H.

4Here, we regard the νH as measures on CosG, so the parametrization is Borel when for

every Borel B ⊂ CosG, the map H 7−→ νH(B) is Borel.
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We now have a G-invariant measure ν × ` and a disintegration

ν × ` =

∫

SubG

νH × ` dµ

with respect to the stabilizer map. If the fiber measures νH×` were probability

measures, we would be done as before, but they are not. So, the idea is to

replace each fiber H\G× R with an associated Poisson process.

One way to make this rigorous is as follows. Both CosG×R and SubG×R+

are Polish spaces that map onto SubG, such that the fiber measures

ν × ` on H\G× R, and ` on {H} × R+

have no atoms, so a result of Rokhlin [101, p. 41] gives a measure isomorphism

φ : CosG × R −→ SubG × R+

that commutes with the projections to SubG.
5 Conjugating the G-action on

CosG × R by φ, we have a measurable G-action on SubG × R+ such that

(a) the fibers {H} × R+ are permuted by conjugating H;

(b) g ∈ G pushes forward the Lebesgue measure on {H}×R+ to the Lebesgue

measure on {gHg−1} × R+;

(c) the stabilizer of (H, t) ∈ SubG × R+ is H.

Let S(R+) be the set of all countable subsets of R+, and let π be the

Poisson process on R+ that we regard as a probability measure on S(R+).

(We refer the reader to [41], [44] for details.) There is an induced action

Gy SubG×S(R+), which (using (b) above) preserves the probability measure

µ× π.

By (b) and (c), the quotient group NG(H)/H acts freely on the fiber

{H} × R+ ⊂ SubG × R+, preserving the Lebesgue measure, so by Lemma 2.7

below the induced action on {H} × S(R+) is essentially free. In other words,

the G-stabilizer map

stab : SubG × S(R+) −→ SubG

is the projection onto the first coordinate. Hence, stab∗(µ × `) = µ, and we

are done.

Finally, a quick remark about the proof of (2). Here, there is no need

for the Maharam extension since if one defines the νH to be the appropriate

counting measures, then they will be permuted by the G-action. The rest of

5In the cited reference, Rokhlin’s theorem is only for probability measures, not arbitrary

σ-finite measures. However, one can always scale a σ-finite measure with a Borel function to

become a probability measure, and it is not hard to then see that his theorem extends to the

σ-finite case.
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the proof proceeds in the same way, with all references to R+ replaced by Z
and the Poisson process replaced by i.i.d. Benoulli measures. �

As promised, here is the lemma we used in the proof above.

2.7. Lemma. Suppose that a group G acts measurably and freely on R+,

preserving Lebesgue measure `. Then G acts essentially freely on the space

S(R+) of countable subsets of R+, with respect to the Poisson process π.

This is folklore, but we include a brief proof for completeness, since we

are not aware of a reference.

Proof. On the contrary, suppose that there is a positive π-probability that

an element D ∈ S(R+) has nontrivial stabilizer. Then there is some interval

(0, n) such that there is a positive π-probability that for D ∈ S(R+), the

intersection D ∩ (0, n) contains elements x1, . . . , x4 with

(2.7.1) g(x1) = x2, g(x3) = x4 for some g ∈ G.

The intersection D ∩ (0, n) is almost surely finite, and after conditioning

on cardinality k, the points of D are distributed within (0, n) according to the

Lebesgue measure on (0, n)k, cf. [44, Ex. 7.1(a)]:

Prob
(
for (x1,...,xk)∈(0,n)

k, we have D∩(0,n)={x1,...,xk},
given that D∩(0,n) has k elements

)
= d`k(x1, . . . , xk).

So, in particular, there is a positive probability that (x1, . . . , x4) ∈ (0, n)4

satisfies (2.7.1). But by freeness of the action, for such (x1, . . . , x4), the last

coordinate is determined by the first three. So, applying Fubini’s theorem on

(0, n)4 = (0, n)3 × (0, n), we have a contradiction. �

2.8. IRS’s in Lie groups. From now on, unless explicitly mentioned oth-

erwise, we will assume that G is a connected Lie group.

The following is a variant of the classical Borel density theorem.

2.9. Theorem (Borel’s density theorem). If G is simple (with trivial cen-

ter), then every IRS with no atoms is supported on discrete Zariski dense

subgroups of G.

A subgroup Γ of G is Zariski dense if the only closed subgroup H < G

that contains Γ and has finitely many connected components is G itself. This

coincides with the algebraic definition of Zariski density when G has the struc-

ture of a real algebraic group. One recovers the classical theorem of Borel [28]

when µ is the IRS µH associated with a closed subgroup of finite co-volume

H ≤ G.

Although the proof could be rearranged in a way that avoids and hence

reproves the classical Borel density theorem, we will make use of Borel’s result

in the proof of the following.
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2.10. Lemma. The only IRS supported on the set of finite subgroups of G

is the Dirac measure δ{id}.

Proof. Let µ be an ergodic IRS supported on finite subgroups of G. Since

G has only countably many conjugacy classes of finite subgroups, µ is sup-

ported on a single conjugacy class, say FG for some appropriate finite sub-

group F ≤ G. Thus µ induces a finite G-invariant probability measure on the

homogenous space G/NG(F ). Thus NG(F ) is of finite co-volume in G. By

the classical Borel density theorem, NG(F ) is Zariski dense. Since F is finite,

NG(F ) is algebraic and hence NG(F ) = G. As G is connected and F is dis-

crete, we deduce that F is central in G. Finally, since G has a trivial center,

F = {id}. �

Proof of Theorem 2.9. Associating to a closed subgroup H < G either

(1) the Lie algebra of the identity component of H, or

(2) the Lie algebra of the identity component of the Zariski closure of H,

an IRS induces two Ad(G)-invariant measures, µ1 and µ2, on the Grasmannian

manifold of the Lie algebra g of G. Note that both (1) and (2) are measurable

as maps from SubG to the Grassmannian (see [63] for details). As follows from

Furstenberg’s proof of the Borel density theorem (see [59]), every such measure

is supported on {{0}, g}.

The µ1-mass of g is exactly the mass that the given IRS gives to the

atom G, which is by assumption 0. Thus µ1 is the Dirac measure supported

on {0}, which is equivalent to the statement that our IRS is supported on

discrete subgroups.

On the other hand, any Zariski closed discrete subgroup of G is finite.

Therefore, µ2({0}) is the amount of mass that our IRS gives to finite subgroups

of G. By Lemma 2.10, this must be 0. Therefore, µ2 is the Dirac measure

supported on g, which implies that our IRS is supported on Zariski dense

subgroups. �

Remark. For a connected semi-simple group Lie G (which is neither nec-

essarily simple nor center-free), an elaboration of the argument above provides

the following. Given an ergodic IRS µ in G, there are normal subgroups

N1, N2 C G, with N1 ≤ N2 such that for µ-a.e. H ∈ SubG, the identity con-

nected component H◦ is N1 and the Zariski closure H
Z
is N2. For details, see

[63], where the analog result is established for groups over general local fields.

3. Large injectivity radius and BS-convergence

Let G be a semi-simple Lie group, and let X = G/K be an associated Rie-

mannian symmetric space. An X-orbifold is a Riemannian orbifold obtained
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as a quotient Γ\X for some discrete subgroup Γ < G. Our goal is to under-

stand the topology of SubG geometrically through these quotient orbifolds and

then to promote this to an understanding of discrete IRS’s as random pointed

X-orbifolds.

To begin with, let us understand the geometric meaning of Chabauty

convergence to the identity. The injectivity radius of an X-orbifold M = Γ\X

at x ∈M is

InjRadΓn\X(x) =
1

2
min{d(x̃, γx̃) | γ ∈ Γn − {id}},

where x̃ ∈ X is any lift of x. We then have

3.1. Lemma. A sequence of subgroups Γn < G converges to {id} in the

Chabauty topology if and only if InjRadΓn\X([id]) → ∞.

Here, [id] is the projection of the identity in G.

Proof. It suffices to show that the subsets

UR = {H ∈ SubG | @γ ∈ H r {id} with dX([id], γ[id]) ≤ R} ⊂ SubG,

with R ∈ (0,∞), form a basis of open sets around {id} ∈ SubG.

To show that UR is open, consider a sequence (Hn) of subgroups in

SubG that do not belong to UR; i.e., there are elements γn in Hn \ {id} with

dX([id], γ[id]) ≤ R. Passing to a subsequence, we may suppose that the se-

quence (γn) converges towards some element γ ∈ G. Using the exponential

map and replacing each γn by an appropriate power, we may furthermore as-

sume that γ 6= id. Then γ translates [id] by at most R, and appears in any

Chabauty limit H of (Hn), so any such limit is also outside UR.

We can prove that the UR form a basis by comparing them with the basic

open sets O1(K), O2(U) defined in Section 2. First, suppose K ⊂ G is compact

and id /∈ K. Choosing R larger than the [id]-translation distance of all γ ∈ K,

we have UR ⊂ O1(K). And if U ⊂ G is open and id ∈ U , then O2(U) = SubG,

and hence contains UR for all R. �

On the level of IRS’s, we have

3.2. Proposition. A sequence of IRS’s (µn) of G converges weakly to µid
if and only if for every R > 0, the µn-probability that for a subgroup Γ ∈ SubG
we have InjRadΓ\X([id]) ≤ R tends to zero as n→ ∞.

Proof. With the notation of the proof of Lemma 3.1, µΓn → µid if and

only if

lim
n→∞

µΓn(UR) = 1 for all R > 0. �

And for lattice IRS’s, this can be rewritten as follows.
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3.3. Corollary. Suppose that (Γn) is a sequence of lattices in G. Then

(µΓn) converges weakly to µid if for every R > 0, we have

(3.3.1) lim
n→∞

Pn{x ∈ Γn\X | InjRadΓn\X(x) ≤ R} = 0,

where Pn is the normalized Riemannian measure on Γn\X .

Proof. Consider the G-invariant probability measure µ̂ on Γn\G. Pushing

forward this measure to SubG by the stabilizer map Γng 7→ g−1Γng gives

µΓn , while pushing it forward under the projection Γn\G → Γn\X gives Pn.

Therefore,

Pn
¶
x ∈ Γn\X | InjRadΓn\X(x) ≤ R

©

= µ̂
¶
Γng ∈ Γn\G | InjRadΓn\X([g]) ≤ R

©

= µ
¶
g−1Γng ∈ SubG | InjRadg−1Γng\X([id]) ≤ R

©
,

where the last line uses that dX([g], γ[g]) = dX([id], g
−1γg[id]). So, the corol-

lary follows from Proposition 3.2. �

In Section 4, we will show that any sequence of irreducible lattice IRS’s

in a center-free higher rank semi-simple Lie group with property (T) weakly

converges to µid. Using Corollary 3.3, we will see in Section 6 how to deduce

asymptotics for Betti numbers and representation multiplicities, as discussed

in the introduction.

As in the introduction, we say a sequence of X-orbifolds Benjamini–

Schramm converges to X when (3.3.1) holds for all R. More generally, the

theory of invariant random subgroups of Lie groups can be recast in a geo-

metric context, where weak convergence is replaced by a suitable generalized

BS-convergence. This interpretation is inspired by a program in graph theory,

e.g., [5], [8], [10], [18], that was popularized by Benjamini–Schramm [19]. We

will briefly discuss the graph theory and then explain how to translate to the

continuous setting.

3.4. Graphs and IRS’s of discrete groups. All the material here is well

known; for more information, we refer the reader to [7], [10], [26].

Let G be the space of all isomorphism types of rooted graphs (X, p), where

d
Ä
(X, p), (Y, q)

ä
= inf

ß
1

R

∣∣∣∣ BX(p,R) ∼= BY (q,R)

™
,

so two rooted graphs are close if balls of large radius around their base points

are isomorphic. We consider the set Prob(G) of all Borel probability measures µ

on G with the topology of weak∗ convergence.

One way to understand weak∗ convergence is as follows. For each R > 0

and each finite rooted graph B = (B, p), let PR,B(µ) be the probability that
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the R-ball around the root of a µ-randomly chosen (X, p) ∈ G is isomorphic to

(B, p). Then

(3.4.1) µi → µ weakly ⇐⇒ PR,B(µi) → PR,B(µ) ∀R > 0, B = (B, p).

Here, the condition BX(p,R) ∼= (B, p) determines a basic open set for the

topology of G, whose µ-measure is PR,B(µ). Equation (3.4.1) follows since

these sets are also closed.

Any finite graph X determines an element µX ∈ Prob(G), by choosing the

root uniformly from the vertices of X. One says that a sequence (Xi) of finite

graphs Benjamini–Schramm converges to a measure µ ∈ Prob(G) if µXi → µ

weakly. In light of (3.4.1), a Benjamini–Schramm limit captures, for large i,

the limiting statistics of the isomorphism types of all R-balls in Xi.

Now let G = 〈S〉 be a finitely generated group. A subgroup H < G deter-

mines a rooted Schreier graph, written SchS(H\G), where vertices are cosets

Hg, the root is H, and where an edge labeled s ∈ S joins Hg to Hgs. Adding

edge labels, we have a space GS of isomorphism types of rooted S-labeled

graphs, and the map

SubG −→ GS , H 7−→ SchS(H\G)

is a homeomorphism onto its image; see [7]. So, an IRS µ of G determines a

measure SchS(µ) on GS , and the induced map

{IRS’s of G} −→ Prob(G), µ 7−→ SchS(µ)

is a weak∗ homeomorphism onto its image. Therefore, the study of IRS’s of G

is equivalent to the study of (certain) random S-labeled rooted graphs.

Passing to the continuous setting, we would like to study discrete IRS’s

Γ of a Lie group G as random pointed quotients Γ\X. There are a number of

settings in which one can develop such a theory, but the following is the most

general.

3.5. The Gromov–Hausdorff space. Consider the set

M =
¶
proper, pointed length spaces (X,x0)

©
/pointed isometry.

In [66], Gromov defined a notion of convergence of pointed metric spaces using

a generalization of the Hausdorff metric. Following a variant given in [33, §3.2],

two pointed metric spaces (X,x0) and (X ′, x′0) are (ε,R)-related, written

(X,x0) ∼ε,R (X ′, x′0),

if there are compact subspaces K ⊂ X and K ′ ⊂ X ′ containing the basepoints

and a relation ∼ between K and K ′ that satisfies the following properties:

(1) BX(x0, R) ⊂ K and BX′(x′0, R) ⊂ K ′;

(2) x0 ∼ x′0;

(3) for each x ∈ K, there exists x′ ∈ K ′ such that x ∼ x′;
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(4) for each x′ ∈ K ′, there exists x ∈ K such that x ∼ x′; and

(5) if x ∼ x′ and y ∼ y′, then |dX(x, y)− dX′(x′, y′)| ≤ ε.

This defined a (pointed) Gromov–Hausdorff topology on M: a basis of neigh-

borhoods of (X,x0) is defined by considering for each ε > 0 and R > 0 the set

of proper, pointed length spaces that are (ε,R)-related to (X,x0).

It is well known that this topology is separable and completely metrizable,

i.e., Polish; a distance between (X,x0) and (X ′, x′0) can be defined by taking

the infimal ε = εR such that (X,x0) and (X ′, x′0) are (ε, R)-related and then

setting

d
Ä
(X,x0), (X

′, y0)
ä
=

∞∑

R=1

min{εR, 1}

2R
.

Note that the space of rooted graphs G from the previous section embeds in M,

once we declare all edges in a graph to have unit length.

Suppose that G is a semi-simple Lie group, and let X = G/K be an

associated Riemannian symmetric space. For simplicity, we will deal with

X-manifolds Γ\X rather than X-orbifolds in the rest of the section; i.e., we

will assume that our discrete Γ is torsion free. As a geometric analogue of

Lemma 3.1, we have

3.6. Proposition. A sequence of pointed X-manifolds (Mi, pi) converges

in the Gromov–Hausdorff topology to X if and only if InjRadMi
(pi) → ∞.

Here, any base point for a space with a transitive isometry group, like X,

gives the same element of M, so we drop the base point from the notation. The

difficulty in proving Proposition 3.6 is that Gromov–Hausdorff convergence is

metric, not topological, and the homeomorphism type may change drastically

in a Gromov–Hausdorff limit. However, the following lemma shows that when

the curvature and its derivatives are bounded, this is not the case.

3.7. Lemma. Suppose that (Mi, pi) is a sequence of complete Riemann-

ian d-manifolds and that the covariant derivatives of the curvature tensors Ri
satisfy

|∇kRi| < Ck <∞

for some fixed sequence (Ck) independent of i and of the point inMi. If (Mi, pi)

converges to a Riemannian d-manifold (M,p) in the Gromov–Hausdorff topol-

ogy, then the convergence is smooth and

InjRadMi
(pi) −→ InjRadM (p).

Here, tensor norms are induced by the associated Riemannian metrics.

We say that (Mi, pi) −→ (M,p) smoothly if there is a sequence of embeddings

φi : B(p,Ri) −→Mi
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with Ri → ∞ and φi(p) = pi, such that φ∗i gi → g in the C∞-topology, where

gi, g are the Riemannian metrics on Mi,M .

The authors would like to thank Igor Belegradek for a very helpful con-

versation related to the proof below.

Proof of Lemma 3.7. First, suppose that InjRadMi
(pi) → 0. As the sec-

tional curvatures of Mi are bounded, a result of Cheeger–Gromov–Taylor [37,

Th. 4.7] implies that volMi(pi, 1) → 0 as well. The Gromov–Hausdorff limit

then has Hausdorff dimension at most d−1; this dates back to work of Gromov

in the 1970’s, but a citation for a more general result is [36, Th. 3.1]. In our

case, though, the limit is a Riemannian d-manifold, so we have a contradiction.

So, there is a lower bound on the injectivity radii InjRadMi
(pi). From

this and the bounds on the derivatives of curvature, it is well known that the

convergence is smooth; see [78, Th. 4.1]. The continuity of injectivity radius

is then a result of Erlich [52]. �

Proof of Proposition 3.6. Pick a base point p ∈ X. If the injectivity radius

at pi goes to infinity, then there are radii Ri → ∞ such that the ball BMi(pi, Ri)

is isometric to BX(p,Ri). This isometry gives a (0, Ri)-relation.

Conversely, suppose (Mi, pi) converges in the Gromov–Hausdorff topology

to X. The hypotheses of Lemma 3.7 are satisfied, since for every i and at every

point in Mi, we have |∇kRi| = |∇kRX |, which we can take as our Ck. So, the

injectivity radius at pi goes to infinity. �

Benjamini–Schramm convergence of X-manifolds to X can now be rein-

terpreted using weak convergence of measures on M. Note that every com-

plete finite volume Riemannian orbifoldM produces a probability measure µM
on M: one pushes forward the normalized Riemannian measure of M under

the natural map M −→ M, where x 7−→ (M,x). Also, we denote the atomic

measure on X ∈ M by µX .

As an immediate consequence of Corollary 3.3 and Proposition 3.6, we

have

3.8. Corollary. For X-manifolds Mi = Γi\X , the following are equiva-

lent :

(1) the IRS’s µΓi weakly converge to µid;

(2) for every R > 0, limi→∞ Pi{x ∈ Γi\X | InjRadΓi\X(x) ≤ R} = 0;

(3) the measures µMi on M weakly converge to µX .

3.9. General Benjamini–Schramm convergence. To reinterpret weak con-

vergence of more general IRS’s geometrically, we need to add frames to our

space M, similarly to how we added S-labels to rooted graphs in Section 3.4.
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A frame for a Riemannian manifoldM is an orthonormal basis f for some

tangent space Tπ(f)M , where π(f) ∈M . We let

MFd =
¶
framed Riemannian d-manifolds (M,f)

©
/framed isometry.

A framed (ε, R)-relation between (M, f) and (N, f ′) is an (ε, R)-relation be-

tween the pointed manifolds (M,π(f)) and (N, π(f ′)) with the additional as-

sumption

(3.9.1) expf (v) ∼ expf ′(v) when v ∈ BRd(0, R).

Here, expf : Rd −→M is the Riemannian exponential map associated to f . If

a framed (ε, R)-relation exists, we write (M,f) ∼ε,R (N, f ′). As in the pointed

case, framed (ε, R)-relations induce a (framed) Gromov–Hausdorff topology on

the set MFd, and this topology is again Polish.

If G is a semi-simple Lie group and X = G/K is a symmetric space, let

SubdtfG = {discrete, torsion-free Γ < G} ⊂ SubG.

Fixing an orthonormal frame f for X and setting d = dimX, we have a map

Φ : SubdtfG −→ MFd, Γ
Φ

7−→ (Γ\X, [f ]).

3.10. Proposition. The map Φ is a homeomorphism onto its image.

Proof. As MFd is Hausdorff, it suffices to show that Φ is a continu-

ous, proper injection. Injectivity is clear, since an isometry (Γ\X, [f ]) −→

(Γ′\X, [f ]) lifts to a (Γ,Γ′)-equivariant isometry X −→ X fixing the base

frame f , which must then be the identity, implying Γ = Γ′. For properness,

Lemma 3.7 implies that on any compact subset K ⊂ MFd, there is some ε > 0

such that

InjRadM (p) ≥ ε for all (M,p) ∈ K.

So, Φ−1(K) is a family of uniformly discrete, torsion-free subgroups of G.

Lemma 2.1 implies that Φ−1(K) is precompact in SubdtfG , so it suffices to check

that Φ is continuous, since then the preimage Φ−1(K) will be closed, hence

compact.

Suppose that Γi → Γ∞ in SubG, write Mi = Γi\X, and let the projection

of the frame f ∈ X be fi ∈ TpiMi. Fixing R > 0, we define a relation ∼

between the balls BMi(pi, R) and BM∞(p∞, R) as in (3.9.1), via

expfi(v) ∼ expf∞(v) when v ∈ BRd(0, R).

Fixing ε > 0, we want to show that ∼ is an (ε, R)-relation for large i. As

conditions (1)–(4) are immediate, the point is to prove (5), i.e., that for large i,

(3.10.1)
∣∣∣ dMi(expfi(v), expfi(w))− dM∞(expf∞(v), expf∞(w))

∣∣∣ ≤ ε
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for all v, w ∈ BRd(0, R). If not, then after passing to a subsequence, there

are sequences vi, wi that violate this inequality for all i. Passing to another

subsequence, we can assume that (vi, wi) → (v∞, w∞) in BRd(0, R)×BRd(0, R).

Now expfi(vi) is the projection underX −→Mi of the point expf (vi) ∈ X,

and similarly for wi and i = ∞. So for i = 1, 2, . . . ,∞, there are gi ∈ Γi with

dMi(expfi(vi), expfi(wi)) = dX(gi expf (vi), expf (wi)).

That is, gi expf (vi) is the closest point in the Γi-orbit of expf (vi) to expf (wi).

Passing to a subsequence, we may assume that gi → g in G, since all the gi
translate a point inside BX(π(f), R) a distance at most, say, 10R. Then by

Chabauty convergence, we have g ∈ Γ∞, so

lim
i→∞

dMi(expfi(vi), expfi(wi)) = lim
i→∞

dX(gi expf (vi), expf (wi))

= dX(g expf (v∞), expf (w∞))

≥ dM∞(expf∞(v∞), expf∞(w∞)).

On the other hand, Chabauty convergence also provides a sequence xi ∈ Γi
with xi → g∞. So,

lim
i→∞

dMi(expfi(vi), expfi(wi)) ≤ lim
i→∞

dX(xi expf (vi), expf (wi))

= dX(g∞ expf (v∞), expf (w∞))

= dM∞(expf∞(v∞), expf∞(w∞)).

This contradicts the fact that the vi, wi were chosen to violate (3.10.1). �

An IRS µ of G is discrete or torsion free if µ-a.e. closed subgroup of G is

discrete, or torsion free. As a consequence of Proposition 3.10, we have

3.11. Corollary.The following map is a homeomorphism onto its image:

Φ∗ : {discrete, torsion-free IRS’s of G} −→ Prob(MFd)

So, weak convergence of (discrete, torsion-free) IRS’s can be viewed as

weak convergence of measures on the Gromov–Hausdorff space of framed

X-manifolds.

Corollary 3.11 captures most of the interesting topology of the space of

all IRS’s of G. When G is a simple Lie group, for instance, Theorem 2.9 and

Proposition 2.2 imply that every IRS of G is supported on discrete subgroups,

except for a possible atom on the isolated subgroup {G} ∈ SubG. So, the space

of all IRS’s is a cone on the space of discrete IRS’s.

While we have chosen to simplify the argument by considering manifolds

instead of orbifolds, the corollary is still true if one replaces framed mani-

folds by framed orbifolds and drops the torsion-free hypothesis. For simple

Lie groups G, a quick and dirty argument is as follows. One proves as in

Proposition 3.10 that the map Φ in a continuous injection, and hence a Borel
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isomorphism onto its image,6 so Φ∗ is a continuous injection. Since G is sim-

ple, the argument in the previous paragraph shows that the space of discrete

IRS’s is compact, and any continuous injection from a compact space into a

Hausdorff space is a homeomorphism onto its image.

4. IRS’s in higher rank

As in the previous section, suppose that G is a center free semi-simple Lie

group without compact factors, and let X = G/K be the associated Riemann-

ian symmetric space. We say an IRS is irreducible if every simple factor acts

ergodically. When G has higher rank and Kazhdan’s property (T), we prove

the following strong result using the Nevo–Stück–Zimmer rigidity theorem (see

below).

4.1. Theorem. Let G be a center-free semi-simple Lie group of real rank

at least two and with Kazhdan’s property (T). Let µ be a nonatomic irreducible

IRS of G. Then µ = µΓ for some irreducible lattice Γ ≤ G.

Recall that a simple Lie group of R-rank at least two has property (T) by

Kazhdan’s theorem [15, §1.6] and a rank-one simple Lie group has property (T)

if and only if it is locally isomorphic to Sp(n, 1), n ≥ 2 or F4(−20) by Kostant’s

result [15, §3.3]. A semi-simple Lie group has property (T) if and only if all

its simple factors have (T). By the arithmeticity theorems of Margulis and

Corlette–Gromov–Schoen [86], [39], [67], if G has property (T), then all its

lattices are arithmetic.

When all the simple factors of G are of real rank at least two, one can

furthermore classify all the ergodic invariant random subgroups of G as follows.

4.2. Theorem. Let G be a connected semi-simple Lie group without cen-

ter, and suppose that each simple factor of G has R-rank at least two. Then

every ergodic invariant random subgroup is either

(1) µN for a normal subgroup N in G;

(2) µΛ for a lattice Λ in a normal subgroup M of G; or

(3) products of the previous two measures, where N and M commute.

Explicitly, if µ is an ergodic invariant random subgroup, then there are com-

muting normal subgroups N,M in G and a lattice Λ in M such that µ =

µN ⊗ µΛ = µN×Λ.

We shall prove Theorems 4.2 and 4.1 by making use of the following fun-

damental result of Nevo, Stück and Zimmer, which is a particular case of [109,

Th. 4.3].

6Any continuous injection between standard Borel spaces is a Borel isomorphism [72,

Th. 15.6], and SubG and MFd are Polish spaces.
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4.3. Theorem (Nevo–Stück–Zimmer). Let G be a connected semi-simple

Lie group without center, such that each simple factor of G has R-rank at least 2
or is isomorphic to Sp(n, 1), n ≥ 2 or F4(−20). Suppose that G, as well as every

rank one factor of G, acts ergodically and faithfully preserving a probability

measure on a space X . Then there is a normal subgroup N CG and a lattice

Γ < N such that for almost every x ∈ X , the stabilizer of x is conjugate to Γ.

Let us mention that some new results in the spirit of Theorem 4.3 were

established recently in [42] and [80].

Before we start the proofs, we would like to mention that the following

could be simplified a bit by appealing to Theorem 2.6. In particular, one could

avoid referencing the Margulis normal subgroup theorem. However, we have

chosen to give an independent proof, as it is not that much longer.

Proof of Theorems 4.1 and 4.2. Let us assume that G has R-rank at least

two and Kazhdan’s property (T). At various points in the proof we will mention

how the assumptions of Theorem 4.2 imply a stronger conclusion. In the

following, let µ be an ergodic invariant random subgroup of G.

Suppose first that the action of G is faithful. By 4.3 we obtain a normal

subgroup N and a lattice Γ < N such that the stabilizer, i.e., the normalizer,

of a µ-random subgroup is conjugated to Γ. We claim that N = G. Indeed, the

direct complement M of N in G normalizes every conjugate of any subgroup

of Γ. Hence M fixes almost every point in SubG and as the action is faithful,

M is trivial.

Next we claim that if Λ is a subgroup of G whose normalizer is Γ, then

[Γ : Λ] < ∞. Recall the Margulis Normal Subgroup Theorem: a normal

subgroup of an irreducible lattice in a semi-simple Lie group with R-rank ≥ 2 is

either central or is a lattice. In our cases, the assumptions of Theorem 4.1 impl

that Γ is irreducible, but the assumptions of Theorem 4.2 do not. However, by

[98, Th. 5.22], there is a decomposition of G as a product of normal subgroups∏
Gi such that Γi := Γ ∩Gi is an irreducible lattice in Gi and

∏
Γi has finite

index in Γ. Note that by the assumptions of 4.2, R-rank(Gi) ≥ 2 for every

i. Moreover, the projection of Λ to each Gi cannot be trivial since Γ is the

full normalizer of Λ. By considering the commutator [Γi,Λ] one deduces that

Λi := Λ ∩Gi is nontrivial for every i. By the normal subgroup theorem, Λi is

of finite index in Γi as the latter is center free. Therefore,
∏

Λi and hence also

Λ is a lattice in G =
∏
Gi.

We have shown that a µ-random subgroup in SubG is a lattice. It is proved

in [109] that the action of G on the subset of lattices in SubG is tame; i.e.,

the Borel structure on the orbit space is countably separable. In particular,

an ergodic measure supported on this subset must be supported on a single

orbit. Thus µ = µΛ for some lattice Λ. In particular, this finishes the proof of

Theorem 4.1.
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We now finish the remaining cases of Theorem 4.2 when the action is

not faithful. Let N be the kernel of this action. If N = G, then µ is sup-

ported on a normal subgroup of G, and we are done. Otherwise, take a direct

complement M of N such that G ' N ×M .

We note that a subgroup normalized by N has a certain decomposition as

a direct product. To this end, suppose that a subgroupH ∈ SubG is normalized

by a simple factor L of N . By simplicity, either H contains L or L ∩H = 1.

In the latter case, L and H commute, and thus the projection of H to L is

central, and hence trivial. It follows that if H is normalized by N , then it

decomposes as H = HN × HM , where HN := H ∩ N is a product of simple

factors in N and HM := H ∩M .

As there are finitely many possibilities for HN , this factor of the decom-

position is independent of H, by ergodicity. That is, there exists a normal

subgroup L ≤ N such that H = L × (H ∩M) for almost every H ∈ SubG.

Thus, µ = µL ⊗ µ′, where µ′ is an invariant ergodic measure supported on the

image of SubM in SubG. SinceM acts faithfully and ergodically on (SubM , µ
′),

we deduce from the previous case that µ′ = µΛ for a lattice Λ in M . Finally,

it is easy to check that µ = µL ⊗ µΛ = µL×Λ. This completes the proof of

Theorem 4.2. �

The proof of the uniform approximation results in the higher rank case

relies on the following.

4.4. Theorem. Let G be a center-free semi-simple Lie group of R-rank
at least two with Kazhdan’s property (T). Then µid is the only accumulation

point of the set

{µΓ | Γ is an irreducible lattice in G} .

We will make use of the following result.

4.5.Theorem (Glasner–Weiss [65]). Let X be a compact topological space,

and let G be a topological group with property (T) acting continuously on X .

Let (µn) be a sequence of G-invariant Borel probability measures on X that

weakly converges to µ∞. If the measures µn are ergodic, then the limit measure

µ∞ is ergodic.

Proof of Theorem 4.4. Fix a sequence Γn of distinct irreducible lattices

in G such that µn := µΓn weakly converges and let µ∞ be the limit measure.

An important point here is that µ∞ is ergodic with respect to the action of

every simple factor of G. By our assumption, if N is any simple factor of G,

then it has property (T). Therefore, by Theorem 4.5, N acts ergodically on µ∞.

Combining this with Theorem 4.1, we deduce that either µ∞ = µN for a normal

subgroup N ≤ G, or µ∞ = µΛ for an irreducible lattice Λ < G.

Let us start by ruling out the possibility that µ∞ = µN for any con-

nected normal subgroup of positive dimension. Since N is not nilpotent, by
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Proposition 2.3 there is a neighborhood U of N in SubG that does not contain

any lattice. Thus, if µn weakly converges to µN , we would have

0 = lim inf
n→∞

µn(U) ≥ µN (U) = 1,

which is absurd.

Next, we exclude the case that µ∞ = µΓ for a lattice Γ in G. By our

assumption G has property (T). Therefore, by a theorem of Leuzinger [79]

there is a uniform lower bound for λ1(Γn\X), the first nonzero eigenvalue of

the Laplacian operator on Γn\X. Furthermore, since (µn) is not eventually

constant, the co-volumes of Γn must tend towards infinity by Wang’s Finiteness

Theorem [114, 8.1]. Theorem 4.4 then follows from the following lemma.

4.6. Lemma. Let G be a semi-simple Lie group, let X be its associated

Riemannian symmetric space and let Γn be a sequence of lattices in G where

the co-volume of Γn tends to infinity and inf λ1(Γn\X) > 0. Then the set

{µΓn} is discrete.

Proof. For simplicity, we will first describe the proof when all the Γn are

torsion-free, and afterward we will indicate the modifications necessary to deal

with torsion.

Assume that after passing to a subsequence, µΓn weakly converges to µΓ
for some lattice Γ in G. As these measures are supported on the conjugates of

their defining lattices, after conjugations and passing to a further subsequence

we can assume that Γn converges to Γ in the Chabauty topology. By Propo-

sition 3.10 and Lemma 3.7, this implies that after a suitable choice of base

points the manifolds Yn = Γn\X converge to Y = Γ\X in the pointed smooth

topology.

If Y is compact, then the sequence (Γn) is eventually constant, contradict-

ing the fact that the co-volumes tend to infinity. Otherwise, for every δ > 0,

there is a codimension-zero submanifold Bδ ⊂ Y with

vol(Y )

2
≤ vol(Bδ) ≤ vol(Y ) and vold−1(∂Bδ) < δ.

This implies that for large n, there is a subset Bn ⊂ Yn such that

vol(Y )

4
≤ vol(Bn) ≤ 2vol(Y ) and vold−1(∂Bn) < 2δ,

where if d = dimX, then vold−1 is (d− 1)-dimensional volume. As vol(Yn) →

∞, we have vol(Yn \ Bn) → ∞ as well. This implies that for large n, the

Cheeger constant

h(Yn) := inf
B⊂Yn

vold−1(∂B)

min{vol(B), vol(Yn \B)
≤

8δ

vol(Y )
,
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where the infimum is over codimension-zero submanifolds of Yn. As δ was

arbitrary, this implies that h(Yn) → 0. An inequality of Buser [32] then implies

that λ1(Yn) → 0, contradicting the uniform spectral gap condition.

Morally, the proof for orbifolds is the same, but we cannot rely on smooth

convergence because Lemma 3.7 applies only to manifolds. However, one can

proceed as follows. Choose a large metric ball B ⊂ X whose projection to Y is

nearly full measure, but where ∂B projects to have small (d− 1)-dimensional

volume. Fixing ε > 0, we can verify that the projection of ∂B has small

volume by choosing a small number of ε-balls whose Γ-translates cover an ε/2-

neighborhood of ∂B. For large n, the projection of B to Yn will still have

volume bounded below. In X, a neighborhood of the boundary ∂B will still

be covered by the Γn-translates of our ε-balls above, so its projection in Yn
has small volume. This is enough to force the first eigenvalue λ1(Γn\X) → 0;

compare with [25, Prop. 2.1]. �

In summary, we have shown that the only possible accumulation point of

the set

{µΓ | Γ is a lattice in G}

is µid. On the other hand, µid is clearly an accumulation point. For instance, if

Γ < G is any lattice, then by residually finiteness, there is a chain of finite index

normal subgroups Γn < Γ with trivial intersection. Then Γn\X BS-converges

toX, and by Corollary 3.3, µΓn → µid. Hence we have proved Theorem 4.4. �

4.7. Corollary. Let G be a center-free semi-simple Lie group with R-rank
at least two and Kazhdan’s property (T), and let (Γn)n≥0 be a sequence of

irreducible lattices in G where the co-volume of Γn tends to infinity. Then

Γn\X BS-converges to X .

As a consequence we have

4.8. Corollary. Let G and X be as above. Then for every r > 0 and

for every sequence of X-orbifolds Mn with vol(Mn) → ∞, one has

vol((Mn)<r)

vol(Mn)
→ 0.

In Section 6 we will see how to use Corollary 4.8 to obtain estimates on

the growth of Betti numbers. In particular, if (Γn)n≥0 is a uniformly dis-

crete sequence of nonconjugate lattices in a higher rank, center-free simple Lie

group, then the hypotheses of Theorem 6.7 and Corollaries 6.9 and 6.25 follow

from Corollary 4.7. In particular, the convergence of volume-normalized Betti

numbers (Corollary 1.6) follows.
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5. Benjamini–Schramm convergence for congruence lattices

Let G be a semi-simple real simple Lie group, X = G/K its associated

symmetric space, and let Γ0 ⊂ G be a uniform irreducible arithmetic lat-

tice. We will assume that Γ0 is torsion free so, in particular, Γ0 intersects

the center Z(G) of G at the identity. There exists a k-simple, simply con-

nected algebraic group G defined over a totally real number field k such that

Γ0 is commensurable with G(OS), the group of S-integral points of G. The

principal congruence subgroups of Γ0,

Γ0(N) = {γ ∈ Γ0 ∩G(OS) : γ ≡ id mod N},

obviously form a BS-convergent sequence of lattices in G. One may even

quantify this observation:

5.1. Lemma. There are constants a > 0 and b, depending on Γ, such that

for all N ≥ 1,

InjRad(Γ0(N)) ≥ a log vol(Γ0(N)\X) + b.

Here we denote by InjRad(Γ) the infimum over x ∈ Γ\X of the local

injectivity radii InjRadΓ\X(x).

The conclusion of Lemma 5.1 does not hold for general congruence lattices

(i.e., lattices that contain a principal congruence subgroup), as shown in the

following example.

Example. Let H be a proper k-subgroup of G that contains a semi-simple

element of G. Consider the congruence subgroups of Γ0:

{γ ∈ Γ0 ∩G(OS) : γ ∈ H(OS) mod N}.

These form a sequence of cocompact lattices in G whose volumes tend to

infinity but whose (minimal) injectivity radius remains bounded. (In fact it

becomes stationary.)

It nevertheless remains true that any sequence of distinct congruence sub-

groups of Γ0 locally converges toward the trivial group.

The main result of this section is to prove the following quantified version

of the above statement.

5.2. Theorem. There exist positive constants c and δ depending only on

Γ0 (and G), such that for any congruence subgroup Γ ⊂ Γ0 and any R > 1, we

have

vol((Γ\X)<R) ≤ ecRvol(Γ\X)1−δ.

The proof of this theorem is given in the rest of the section.7

7Note that recently corresponding results in special cases were obtained in [56], [81], [99]

for congruence lattices that do not admit a common ambient lattice.
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We note that if Γ is an arithmetic lattice that has the Strong Approxi-

mation Property below, then one can prove uniform BS-convergence for finite

index subgroups of Γ without having to use Theorem 5.2.

An arithmetic lattice Γ in a Lie group G has the Strong Approximation

Property (SAP) if, for every Zariski dense subgroup H of Γ, the closure of H

in the congruence completion of Γ is open. This is equivalent to the statement

that for every Zariski dense subgroup H, there exists M > 0, such that for

any congruence subgroup K of Γ, we have |Γ : HK| ≤ M . For Γ with SAP,

one can prove uniform BS-convergence for congruence subgroups of Γ without

having to use Theorem 5.2:

5.3. Theorem. Let Γ be an arithmetic lattice with SAP, and assume that

Γ has trivial center. Then for any sequence of congruence subgroups Γn of Γ

with [Γ : Γn] → ∞, we have µΓn → µ1.

SAP has been proved by Nori [92] and Matthews, Vaserstein andWeisfeiler

[88] for arithmetic lattices in simple, connected, simply connected groups G.

So,

5.4. Corollary. Let Γ be an arithmetic lattice in a simple connected

Lie group G and assume that Γ has trivial center. Then for any sequence of

congruence subgroups Γn of Γ with [Γ : Γn] → ∞, we have µΓn → µ1.

Proof. The group Γ is commensurable with an arithmetic lattice Γ0 in the

universal cover of G. By replacing Γ with Γ0 and using [92] and [88] we can

Therefore, reduce the corollary to the previous theorem. �

Proof of Theorem 5.3. Assume, by contradiction, that µΓn does not con-

verge to µ1. By passing to a subsequence, we can assume that µΓn → µ where

µ 6= µ1. Let K be the µ-random subgroup of Γ. Since [Γ : Γn] → ∞, K has

infinite index in Γ a.s. We shall prove that K = 1 a.s., to reach a contradiction.

Let us say that a subgroup H of Γ is hyperclosed if it can be obtained as

an ascending union H =
⋃∞
k=1 Jk of congruence closed subgroups Jk ⊂ Γ. We

claim that a Zariski dense hyperclosed subgroup H of Γ has finite index in Γ.

Indeed, by a standard dimension argument, there exists some k such that Jk is

already Zariski dense. By SAP the congruence closure of Jk (which equals Jk)

has finite index in Γ and so does H.

Now given a sequence of congruence subgroups Hn of Γ, in the Chabauty

topology, we have

limHn =
∞⋃

k=1

∞⋂

n=k

Hn.

Since the intersection of congruence closed subgroups is congruence closed,

we get that limHn is hyperclosed. The set of possible Chabauty limits of
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congruence subgroups is compact in the Chabauty topology, so we obtain that

µ is supported on hyperclosed subgroups. Applying SAP on hyperclosed sub-

groups and that K has infinite index in Γ a.s. gives us that K is not Zariski

dense in Γ a.s. By Theorem 2.9, this implies that K = 1 a.s., a contradic-

tion. �

5.5. Proof of Theorem 5.2. We first reduce the proof to the case where Γ0

is a finite index subgroup of G(OS). In fact we will show that if Γ0 and ∆0

are two arithmetic commensurable torsion-free lattices, then the conclusion of

Theorem 5.2 holds for the congruence subgroups of Γ0 if and only if it holds

for the congruence subgroup of ∆0 provided we change the constant c.

By considering Γ0∩∆0 inside Γ0 and inside ∆0, we see that it is sufficient

to prove the case when ∆0 is a finite index subgroup of Γ0.

Let Γ ⊂ Γ0 be a congruence subgroup, and denote byM the corresponding

X-manifold Γ\X. Set ∆ = Γ ∩∆0 and M ′ = ∆\X. Let p : M ′ → M be the

covering map and m := [Γ0 : ∆0]. Then [Γ : ∆] ≤ m and p is of degree at most

m so that for any x ∈M and x′ ∈M ′ with p(x′) = x, we have

InjRadM ′(x′)

m
≤ InjRadM (x) ≤ InjRadM ′(x′).

In particular,

Vol(M<R) ≤
Vol(M ′

<mR)

[Γ : Γ′]
≤ Vol(M<mR).

In turn, vol(M ′) ≤ vol(M)m. So if we have the inequality

vol(M ′
<mR) ≤ ecmRvol(M ′)1−δ

for some c and δ, then by changing the constant c (to cm+ (1 − δ) logm) we

obtain the corresponding inequality

vol(M<R) ≤ ecmR+(1−δ) logmvol(M)1−δ.

The other direction is even easier: starting with a congruence subgroup

∆ containing ∆0(N) for some integer N , we put Γ := ∆Γ0(N), a congruence

subgroup in Γ, and observe that ∆ = Γ∩∆0. The inequality for vol((Γ\X)<R)

easily gives a corresponding inequality for vol((∆\X)<R).

So it is sufficient to prove Theorem 5.2 in the case when Γ0 is any given

finite index subgroup of G(OS).

We will first prove the following combinatorial version of Theorem 5.2.

5.6. Theorem. Let G be a k-simple simply connected algebraic group de-

fined over a number field k. For a finite set of valuations S of O, including all

archimedian ones, let OS be the ring of S-integers in k. There exist some finite

index center-free subgroup Γ ⊂ G(OS) and some positive constants ε and C

(depending only on Γ and some fixed word metric on it) with the following

property.
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Let g ∈ Γ − {1}, and let H be a congruence subgroup of index N in Γ.

Then g fixes at most eCl(g)N1−ε points in the action of Γ on the right cosets

H\Γ by multiplication. Here l(g) is the length of g with respect to the fixed

word metric of Γ.

The proof of this theorem that appeared in our original 2012 arXiv preprint

had a mistake in Proposition 5.14 below, a correct proof of which has since

been given by Finis–Lapid [53], who also obtain explicit bounds in Theo-

rem 5.6. Here we give a self-contained proof based on the theory of p-adic

analytic groups, which avoids the algebraic geometry arguments in [53]. We

only need the basic Lemma 5.17 on the solutions of polynomial congruences

and well-known results on the fixity of permutation actions of simple groups

of Lie type. A careful examination of all the steps of the proof can lead to an

explicit value of ε, at least for Chevalley groups, on the order of magnitude

(dimG)−[k:Q] dimG, which seems however very far from optimal.

We postpone the proof of Theorem 5.6 and first show how it implies The-

orem 5.2.

5.7. Proof of Theorem 5.2. According to Section 5.5 we may assume that

Γ0 is the finite index subgroup of G(OS) given by Theorem 5.6. Let Γ ⊂ Γ0

be any congruence subgroup.

Let Ω ⊂ X be a compact fundamental domain for the action of Γ0 on X,

and let p : M = Γ\X → M0 = Γ0\X be the covering map. We will identify

the elements of M (resp. M0) with the orbits of Γ (resp. Γ0) in X.

Suppose that y ∈ M has InjRadM (y) < R. Let x be a lift of y in X, i.e.,

y = Γx ∈ Γ\X. We have that d(x, γx) < 2R for some γ ∈ Γ.

Now let g be the unique element of Γ0 such that g−1x = x0 ∈ Ω. We have

d(x, γx) = d(x0, g
−1γx) = d(x0, γ

gx0) < 2R,

where γg = g−1γg. Since γg moves the point x0 of Ω to a point of distance at

most 2R from it and since Ω is compact, it follows that l(γg) < C ′R for some

constant C ′ depending only on the choice of Ω and a generating set (fixed by

the choice of the word metric in Theorem 5.6) of Γ0.

Now, given the element x0 ∈ Ω and a nontrivial γ0 ∈ Γ0 with l(γ0) <

C ′R, suppose that for some x = gx0 ∈ X (g ∈ Γ0), there exists γ ∈ Γ with

d(x, γx) < 2R and γg = γ0. Then g
−1γg = γ0 so that Γg = Γgγ0. The number

of Γ-equivalence classes of points x = gx0 in Γx0 as above giving rise to the

same γ0 is Therefore, equal to the cardinal of the set fix(γ0,Γ\Γ0) of fixed

points of γ0 acting on Γ\Γ0.

Therefore,

Vol(M<R) ≤ Vol(Ω)
∑

0<l(γ0)<C′R

|fix(γ0,Γ\Γ0)|.
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In turn, by Theorem 5.6,

|fix(γ0,Γ\Γ0)| ≤ eCl(γ0)[Γ0 : Γ]
1−ε

and there are at most eC
′′R elements γ0 with 0 < l(γ0) < C ′R that combine to

give the desired bound for large enough c. �

5.8. The proof of Theorem 5.6 takes up the rest of this section. We can

consider G(k) as the rational points of a restriction of scalars of an absolutely

simple group defined over a larger field. Moreover, the respective groups of

integral points and their congruence topologies are compatible. So by enlarging

the field k if necessary we may assume from the start that G is absolutely

simple.

Take a prime ideal P of O, and let p be the rational prime such that P|p.

Let rP be the ramification index of P, and let wP be its residue degree, i.e.,

|O : P| = pwP . We have p =
∏

P|pP
rP and [k : Q] =

∑
P|p rPwP.

From now on we will denote by P a prime ideal of OS dividing a rational

prime p. We will denote by | − |P the P-adic valuation on k defined by |x|P =

p−wPn for x ∈ Pn\Pn+1. Denote by kP and OP the completions of k and OS

with respect to this valuation. We have [kP : Qp] = rPwP. Let GP = G(OP)

be the congruence completion of G(OS) with respect to the P-adic topology.

For m ≥ 1, let GP(m) be the principal congruence subgroup mod PrPm,

i.e., the matrices in GP that are congruent to the identity mod PrPm. (The

presence of rP in the exponent is to ensure that (GP(i))
∞
i=1 is the Frattini series

of the p-adic analytic group GP(1).) The dimension of GP as an analytic group

over Qp is rPwP dimG = [kP : Qp] dimG. Note that all but finitely many of

the prime ideals P are unramified, i.e., rP = 1. For almost all unramified

prime ideals P, the quotient SP := GP/GP(1) is the reduction G(OS/P) of G

mod P. Since G is absolutely simple and simply connected, it follows that SP
is generated by its unipotent elements and is Therefore, a finite quasi-simple

group SP of Lie type over the fieldOS/P; see Proposition 7.5 of [95]. (A perfect

group is called quasi-simple if it is simple modulo its center.) Moreover, the

Frattini subgroup Φ(GP) contains GP(1); see [83, Lemma 16.4.5]. Let us call

these prime ideals good and all other prime ideals bad. Let Z be the finite

center of G.

For a rational prime p, define Gp :=
∏

P|p,P6∈S GP, and for m ∈ N, let
Gp(m) :=

∏
P|p,P6∈S GP(m). That is, Gp(m) consists of the elements of Gp

congruent to 1 mod pm. The group Gp is a semi-simple p-adic analytic group

of dimension at most D := [k : Q] dimG. (The dimension of Gp is exactly D

when the set S avoids any ideal divisors of p.) The level of an open subgroup

H ≤ Gp is defined to be the integer n, such that H contains Gp(n) but not

Gp(n− 1).
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Let P = {P1, . . . ,Pr} be a finite set of prime ideals of OS including all

the bad primes such that the principal congruence subgroup

Γ = {g ∈ G(OS) : g ≡ id mod P1 · · ·Pr}

intersects Z trivially.

We will show that Γ satisfies the conclusion of Theorem 5.6. From now

on we fix an element g ∈ Γ\{1}.

5.9. The congruence subgroups of G(OS) correspond to open subgroups

of its congruence completion

‹G =
∏

p prime

Gp =
∏

P6∈S

GP.

The strategy is to reduce the fixity estimate of Theorem 5.6 to an analo-

gous problem inside each local p-adic factor Gp. This reduction follows easily

from the detailed knowledge of the subgroups and representations of the sim-

ple factors SP for different prime ideals and, in particular, the elementary fact

that SP has no proper subgroups of index less than p. We then solve the

local problem (Proposition 5.14) using the natural coordinate system of uni-

form subgroups of Gp. To formulate the local estimate we need some further

notation.

Let L be the Lie algebra of G, which is a simple Lie algebra defined over k.

Let LP be the OP-Lie ring that corresponds to the uniform pro-p group GP(1),

so LP is an OP-lattice of the kP-Lie algebra L⊗k kP. There is a free OS-lattice

L0 of L such that for almost all prime ideals P, we have LP = L0 ⊗OS
POP.

(The two lattices are open in L ⊗k kP and so commensurable for all P.) Let

AdP : GP → End(LP) be the adjoint representation on LP. Define nP(g) to

be the largest integer m such that AdP(g) ≡ 1 mod Pm.

Note that since g 6∈ Z by our choice of Γ, the integers nP(g) exist.

Define np(g) = maxP|p nP(g) (where the maximum is over all prime ideals

P of OS dividing p). For completeness, we set np(g) = 0 for those primes p

that are units in OS . For example when G(OS) = SLn(Z), then Lp = sln(Zp),
in which case np(g) is the largest integer m such that g is congruent to a scalar

matrix modulo pm.

Since g is not in the center of G, we have Ad(g) − 1 6= 0 as a linear

endomorphism of L. Choose any nonzero matrix coefficient β ∈ k of the

matrix of Ad(g) − 1 with respect to a fixed OS-basis of L0. For any prime p

that is not a unit of OS , by the definition of np(g) there is a prime ideal P of

O outside S that divides p and such that |β|P ≤ |O : P|np(g) ≤ p−np(g). (Here,

we may need to change β by a multiplicative constant to take account for the

finitely many prime ideals such that LP 6= L0 ⊗OS
POP.)



GROWTH OF L2-INVARIANTS FOR SEQUENCES OF LATTICES IN LIE GROUPS 745

Hence
∏

P6∈S |β|P ≤
∏
p p

−np(g). On the other hand, for any valuation v,

the coefficient |β|v is bounded above exponentially by the word length l(g).

Putting it all together we conclude that
∏
v∈S |β|v ≤ eC1l(g) for some con-

stant C1 depending only on Γ (and the basis of L0 and the word metric on Γ).

Note that ∏

v

|β|v = 1,

where the product runs over all valuations of O. Therefore, all but finitely

many of the np(g)’s are zero and (compare with Lemma 5.1)

(5.9.1)
∏

p

pnp(g) ≤ eC1l(g).

Given a congruence subgroup Γ′ of Γ, we want to compute the fixity ratio

α(g,Γ′\Γ) =
|fix(g,Γ′\Γ)|

[Γ : Γ′]

of g acting the right cosets of Γ′ in Γ by multiplication.

The congruence completion of G(OS) is G̃ :=
∏
pGp. Let Γ̄ be the closure

of Γ in G̃, and let H be the closure of Γ′. We have now reduced our claim to

showing that there exists some positive constants C and δ depending only on

Γ such that

(5.9.2) α(g,H\Γ̄) ≤ eCl(g)[Γ̄ : H]−δ.

5.10. Reduction to the local case. We have Γ̄ =
∏
p Γp is a product of

its projections Γp onto Gp. Moreover, Γp = Gp for almost all p and always

Γp ≥ Gp(1). Let Hp be the projection of H onto the factor Γp of Γ̄. We have

that H ≤
∏
pHp and so

(5.10.1) α(g,H\Γ̃) ≤ α
(
g,

∏

p

Hp\Γ̃
)
=

∏

p

α(g,Hp\Γp).

Since H contains Gp for almost all primes p, the product above is equal

to a finite product.

Let xp = [Γp : Hp]. Clearly N = [Γ : Γ′] = [Γ̄ : H] ≥
∏
p xp, where again

we have that xp = 1 for almost all primes p.

5.11. Lemma. There is a positive constant δ1, such that

N δ1 ≤
∏

p

xp.

Proof. Let ∆ =
∏
pGp(1) ≤ Γ̃. Each Gp(1) is a pro-p group, and hence

H ∩ ∆ is the direct product of its projections onto the Sylow pro-p factors

Gp(1) of ∆. Since

N = [Γ̃ : H∆][∆ : H ∩∆],
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it is enough to prove the special case when H = H∆; i.e., H ≥ ∆. Then

H/∆ ≤ Γ/∆ =
∏

good P SP where by the choice of Γ the product runs over

the good prime ideals P of OS . Thus each SP is a finite quasi-simple group

of Lie type of bounded rank of characteristic p. Let Sp =
∏

good P|p SP, and

let us denote by Lie(p) the set of simple groups of Lie type over fields of

characteristic p. We can replace H with its image in a finite product
∏s
i=1 Spi

such that H does not contain any of the factors Spi . Then Hpi becomes the

projection of H in the factor Spi . By the Larsen–Pink theorem [76], there is a

function f : N → N such that a subgroup of GL(n,Fpm) contains a subgroup

of index at most f(n) whose non-abelian composition factors are from Lie(p).

In particular, if q > f := f(dimG) is a large prime, then the direct factors of

Sq cannot occur as composition factors of any subgroup of any of the factors

of Sp for p 6= q. It follows that if q > f is a prime and Hq = Sq, i.e., xq = 1,

then actually H ≥ Sq.

By enlarging the set P defining Γ to include all prime ideals dividing

q for primes q ≤ f , we can ensure that Hpi is a proper subgroup of Spi .

The group Spi is a product of finite quasi-simple groups from Lie(pi) and, in

particular, it is generated by elements of order pi. Hence a proper subgroup

of Spi must have index at least pi and xpi = [Spi : Hp1 ] ≥ pi. On the other

hand, |Spi | < p
[k:Q] dimG

i and N ≤
∏s
i=1 |Spi |. So Lemma 5.11 follows with

δ1 = ([k : Q] dimG)−1 = D−1. �

5.12. The local case. Lemma 5.11 reduces the proof of (5.9.2) to its local

counterpart (5.14.1) below at each prime p. Here we explain how to conclude

the proof of Theorem 5.6 assuming the following.

5.13. Proposition. There exist constants C2 and δ2 > 0 depending only

on Γ such that for all primes p,

(5.13.1) α(g,Hp\Γ̃) ≤ pC2np(g)x−δ2p .

Multiplying the inequalities(5.13.1) for all primes p and using (5.10.1),

(5.9.1) and Lemma 5.11, we obtain

α(g,H\Γ̃) ≤
∏

p

pC2np(g)(
∏

p

xp)
−δ2 ≤ eC1C2l(g)N−δ1δ2 .

Theorem 5.6 follows. �

By considering the image of Hp in the local factor Gp, Proposition 5.13 is

easily deduced from the following local bound.

5.14. Proposition. There are constants a, b, c > 0 that depend on G but

not on the prime p such that if H is an open subgroup of Gp of level n and

g ∈ Gp − Z(Gp), then the fixity proportion α(g,H\Gp) of g on H\Gp is at

most p−cn provided n > max{a, bnp(g)}.
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Let us show how Proposition 5.14 implies the existence of C2 and δ2 such

that

(5.14.1) α(g,H\Gp) ≤ pC2np(g)[Gp : H]−δ2

provided g ∈ Γ\{1}. This inequality easily gives (5.13.1) by increasing C2 to

take into account the index [G(OS) : Γ].

Since H contains Gp(n) from the definition of n, we have [Gp : H] ≤ [Gp :

Gp(n)] ≤ pn[k:Q] dimG = pnD (where D = [k : Q] dimG). Therefore,

(5.14.2) α(g,H\Gp) ≤ [Gp : H]−c/D

provided n > max{a, bnp(g)}.

It remains to prove (5.14.1) when n ≤ a or n ≤ bnp(g). First we consider

the case that np(g) = 0. Then by the choice of Γ we have that p is a product

of good prime ideals.

Since np(g) = 0, it follows that g is not in the center of any of the fac-

tors of the semi-quasisimple group Sp = Gp/Gp(1) =
∏

P|p SP. We also have

HGp(1) < Gp because Gp(1) is in the Frattini subgroup of Gp. Choose a max-

imal subgroup M of Sp containing the image of H. There are two possibilities:

(1) M is the preimage of a maximal subgroup M0 ≤ SP of one of the factors

of Sp. The main result of [82] says that with finitely many exceptions any

nontrivial element of a simple group S of Lie type over a field of size q has

fixity at most 4/3q in any primitive action of S unless S = PSL(2, q) when

it is at most 2/(q+1) for q ≥ 5. The proof relies on a case-by-case analysis

of the Aschbacher classification of the maximal subgroups of S. It follows

that α(g,M\Sp) ≤ α(g,M0\SP) ≤ 2/q.

(2) M is the preimage of a diagonal subgroup T in a product S × S of

two isomorphic factors of Sp. Now a direct computation shows that for

(y1, y2) ∈ S × S, the fixity ratio α((y1, y2), T\S × S) is nonzero only if y1
and y2 are conjugate, and if so, then is at most |CS(y1)|/|S|. Since we

are assuming that y1 is noncentral in S and S is generated by elements of

order p, we have as before that |CS(y1)|/|S| ≤ 1/p.

All together, we can deduce that

α(g,H\Gp) ≤ α(g,M\Sp) ≤ p−ε2 ,

for example, with ε2 = 1/2.

We set δ2 = min{ c
D ,

ε2
aD} and note that when n ≤ a, then

p−ε2 ≤ p−aδ2D ≤ [Gp : H]−δ2 .

To deal with the case np(g) ≥ 1 we simply set C2 = (a + b)δ2D, which

ensures that pC2np(g)[Gp : H]−δ2 ≥ 1 when n ≤ max{a, bnp(g)}.
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5.15. Proof of Proposition 5.14. From now on we fix a prime number p

and denote np(g) by np.

The congruence completion Gp is a p-adic analytic group of dimension

d = d(p) = dimG(
∑

P|p,P6∈S [kP : Qp]) over Qp, and we shall refer to [48] for

standard results about these. Note that d ≤ D = [k : Q] dimG. Recall that

Gp(i) is the kernel of Gp → G(OS/p
i). There exists a constant c0 ≥ 1 such

that the congruence subgroup Gp(c0) is a uniform pro-p group for all primes

p. In fact [83, Cor. 16.4.6] gives that c0 = 1 for all except finitely many

primes p. We set c1 = c0 unless p = 2, when we set c1 = c0 + 1. Define

U = Gp(c1). So U is a uniform group of dimension d and, in addition, when

p = 2, U is the Frattini subgroup of a uniform group. (We need this in order

to apply Proposition 8.21 from [48] at a later point.) The series (Gp(i))i≥c1
coincides with the Frattini series of U defined by U0 = U and Ui+1 = Φ(Ui),

i.e., Ui = Gp(i + c1) =
∏

P|pGP(i + c1) for all i ≥ 0. For a prime ideal P of

OS dividing p, we define UP,i = GP(i+ c1), so that Ui =
∏

P|p UP,i.

Let n be the level of H. From now on we denote n′ = n− c1, so Gp(n) =

Un′ ≤ H but Un′−1 6≤ H.

First observe that at the cost of increasing a and b and decreasing c, it is

sufficient to prove Proposition 5.14 with n′ in place of n.

Next we introduce coordinates of the second kind for U , which are more

suitable for parametrizing its open subgroups, in the spirit of [104]. The prop-

erties of a uniform pro-p group U we state below can be found in [48, Chs. 4

and 8].

Suppose elements e1, . . . , ed in U are given such that their images form

a basis of the vector space U/U1 = U/Φ(U). Then ep
i

1 , . . . , e
pi

d is a basis for

Ui/Ui+1 for each i ∈ N.
Moreover, every element of U can be expressed uniquely in the form∏d

i=1 ci, where ci ∈ 〈ei〉 ' Zp. The following properties hold:

(1) The map µ : (Zp)d → U defined by µ(y1, . . . , yd) = ey11 · · · eydd is a homeo-

morphism. We say that the elements e1, . . . , ed provide a basis for coordi-

nates µ of the second kind for U .

(2) Ui is the image of (piZp)d under µ.

(3) If we identify U with (Zp)d via µ, the group operations in U (including

exponentiation expa(z) = az, z ∈ Zp for fixed a ∈ U) are given by a

converging power series in Zp[[x1, . . . , xd]] with (x1, . . . , xd) ∈ (Zp)d. This

follows from [48, Prop. 8.21]; inequality (5) in loc. cit., together with the

formula for the power series gi on page 192, implies that the coefficients of

gi are p-adic integers.

Suppose H is an open subgroup of Gp of level n. Put H ′ = H ∩ U . Then

there exists a basis e1, . . . , ed for coordinates µ of the second kind for U with

the following additional properties:
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(4) For some integers 0 ≤ s1 ≤ s2 ≤ · · · ≤ sd, we have µ(x1, . . . , xd) ∈ H ′ if

and only if xi ∈ psiZp. Moreover, H ′ ≥ Usd , H
′ 6≥ Usd−1 and so n′ = sd.

(5) For each m ∈ N, the subgroup H ′Um has the parametrization H ′Um =

µ(pk1Zp, . . . , pkdZp), where ki = min{si,m}.

In the language of [104] the elements es11 , . . . , e
sd
d are a good basis for H ′

in U .

Let us indicate how to find a good basis for an open subgroup H ′ such

that U ≥ H ′ ≥ Ul. We find subsets B1, . . . Bl of U inductively as follows.

B0 is any subset of U that is a basis for the vector subspace H ′U1/U1 in

U/U1. Having found B0, . . . , Bi−1, we choose Bi such that the set

i⋃

r=0

{ap
i−r

| a ∈ Br}

is a basis for the subspace (H ′Ui+1 ∩ Ui)/Ui+1 in Ui/Ui+1.

Then {e1, . . . ed} = B0 ∪ · · · ∪ Bl. In addition, each |Bi| is the number of

the integers from s1, . . . , sd that are equal to i.

We will choose an integerm ≤ n′ with n′/m bounded, and for any element

w ∈ Gp, we will find an upper bound for the proportion

αm(g,H,w) =
|{Un′x | x ∈ Umw, xgx

−1 ∈ H}|

[Um : Un′ ]
.

The reason for focusing on fixed points of g on the cosets of each Un′\Umw

separately as opposed to the whole space Un′\Gp is that we will be able to

express αm(g,H,w) as the probability of solving polynomial congruences in

Zp of bounded degree in the coordinates x1, . . . , xd.

If we prove that there are some constants a, b, c depending only on G, such

that αm(g,H,w) < p−n
′c for any w ∈ Gp and n′ > max{a, bnp}, it will follow

that α(g,H\Gp) ≤ p−n
′c and we will be done.

We may assume that the numerator of αm(g,H,w) is not zero. (Otherwise

the proportion is zero and we are done.) So we may assume that wgw−1 ∈ H

and by replacing g with wgw−1, we are reduced to proving that for some

constant c (to be specified later),

βm(g,H) =
|{x ∈ Un′\Um | [g, x] ∈ H}|

[Um : Un′ ]
≤ p−n

′c

for all sufficiently large integers n′.

The main idea of the proof is to reduce the membership condition [g, x]∈H

to a power series congruence defined by a good basis for H and then the

choice of m reduces this to a polynomial congruence of bounded degree whose

solutions we then estimate with Lemma 5.17 below.
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If x = µ(x1, . . . xd) =
∏d
i=1 e

xi
i , then µ−1([g,x]) = (f1, . . . , fd), where

fi ∈ Zp[[x1, . . . , xd]] are converging power series in x1, . . . , xd ∈ Zp. Indeed

if egi = ti, then [g,x] = x−gx = (
∏d
i=1 t

xi
i )−1 ∏d

i=1 e
xi
i and we are composing

the power series defining multiplication and exponentiation in the coordinate

system µ.

Recall the definition of np = np(g) as the largest integer l such that

Ad(g)P ≡ 1 mod Pl for some prime ideal P of OS dividing p.

The following lemma is well known in the case m = 1 and is a consequence

of the simplicity of the Lie algebras of the p-adic analytic groups GP and the

fact that they are defined uniformly over k.

5.16. Lemma. There exists a constant A independent of p, such that for

any m ≥ 1, 〈gUm〉 contains UAm+np .

Proof. Since Um is equal to the direct product ⊕P|pUP,m, it is sufficient

to prove the lemma with UP,m in place of Um Note that

〈gUP,m〉 ⊇ [g, UP,m, UP,m, . . . , UP,m]

so it is sufficient to show that [g, UP,m, UP,m, . . . , UP,m] generates a group con-

taining UP,Am+np for some constant A.

The logarithm map establishes a bijection between the uniform group

UP and its OP-Lie ring LP such that piLP = PrPiLP corresponds to UP,i.

Moreover, for any j ∈ N, the graded Lie algebras

⊕i≥jUP,i/UP,i+j and ⊕i≥j p
iLP/p

i+jLP

are isomorphic. In particular, g acts nontrivially by conjugation on

UP,m/UP,m+np+1.

Hence [g, UP,m] 6⊂ UP,m+np+1 and we can choose y ∈ [g, UP,m] with y 6∈

UP,m+np+1. Now for almost all prime ideals P, we have that LP is isomorphic

to L0 ⊗OS
POP, where L0 is a fixed integral lattice of the k-Lie algebra of G.

For all P, the absolute simplicity of G gives that L1 = L0⊗OS
kP = LP⊗OP

kP
is a simple kP-Lie algebra of dimension dimG. In particular, [L1, L1] = L1

and the Jacobi identity gives [T, L1] ⊆ [[T, L1], L1] for any subset T of L1.

Here and below, for subsets X,Y of a given Lie algebra, we denote by [X,Y ]

the vector space spanned by all Lie brackets [x, y] with x ∈ X and y ∈ Y , and

for an integer n ∈ N, we denote [X,n Y ] := [· · · [X,Y ], Y ], . . . , Y ] (n times).

It follows that for any w ∈ L1 − {0}, the ascending sequence of subspaces

[w,L1] ⊂ [w,L1, L1] ⊂ · · · stabilizes at L1 in at most dimL1 = dimG steps

and hence [w,dimG L1] = L1.
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We claim that there is a constant AP such that for any w ∈ LP outside

pLP,

(5.16.1) pAPLP ⊂ [w,dimG LP].

Indeed if this is not true, there is a sequence (wk)
∞
k=1 with wk ∈ LP−pLP

such that pkLP 6⊂ [wk,dimG LP] for any k ∈ N. By passing to a subsequence

we may assume that wk converge to some w0 in the P-adic topology of LP.

Moreover, w0 6∈ pLP and, in particular, w0 6= 0. Now [w0,dimG L1] = L1 and

so pmLP ⊂ [w0,dimG LP] for some m ∈ N. Since wk → w0, we have wk ≡ w0

mod pmLP for almost all k, but this contradicts the choice of wk when k > m.

The claim follows.

In fact for almost all prime ideals, the reduction L′ := L0/PL0 of the

lattice L0 mod P is a simple Lie algebra over OS/P, and so L′ = [w,dimG L′]

for any nonzero w ∈ L′. Since LP ' L0 ⊗OS
POP for almost all P, this gives

that AP can be taken to be dimG for those P. By further increasing AP at

the remaining finitely many prime ideals, we conclude that (5.16.1) holds with

a constant A1 in place of AP, which does not depend on p.

Applying (5.16.1) to the graded Lie algebra

⊕

i>A1

UP,i/UP,i+A1+1 '
⊕

i≥A1

piLP/p
i+A1+1LP

we see that 〈[y,dimG UP,m]〉 contains UP,A1+m dimG+m+np . The lemma follows

with A = dimG+A1 + 1. �

To illustrate the main steps of the proof we first consider the special case

when the integers si associated to the good basis describing H ′ = H ∩ U are

s1 = · · · = sd−1 = 0 and sd = n′.

For n′ > 6A+ 6np, choose an integer m such that n′

3A < m ≤ n′−2np

2A .

The membership of x = µ(x1, . . . , xd) ∈ Um is described by xi ∈ pmZp,
and so we can write xi = pmyi for some yi ∈ Zp. We now claim that

fd(p
mZp, . . . , pmZp) 6⊂ pAm+np+1Zp and, in particular, not all coefficients of

fd(p
my1, . . . , p

myd) are not divisible by pAm+np+1.

Suppose for the sake of contradiction that

fd(p
mZp, . . . , p

mZp) ⊂ pAm+np+1Zp.

Then [g, Um] ⊂ H ′UAm+np+1. Since g∈H, it follows that 〈gUm〉 ≤ HUAm+np+1,

and so Lemma 5.16 gives HUAm+np+1 ≥ UAm+np . But since UAm+np+1 =

Φ(UAm+np) we obtain H ≥ UAm+np . Since m < (n′ − np)/A, it follows that

H ≥ Un′−1, which contradicts the condition that H has level n. The claim

follows.
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We now estimate the number of elements x=µ(pmy1, . . . , p
myd)∈Um/Un′

such that [g,x] ∈ H ′. This is equivalent to the congruence

fd(p
my1, . . . , p

myd) ≡ 0 mod pn
′
, yi ∈ Zp/p

n′−mZp.

On the other hand, since m > n′/3A, the above congruence is equivalent

to a polynomial congruence of the form

plF (y1, . . . , yd) ≡ 0 mod pn
′
,

where the degree of F is at most 3A and the integer l is chosen such that some

coefficient of F is coprime to p.

We showed that fd(p
mZp, . . . , pmZp) 6⊂ pAm+np+1Zp and Therefore, l ≤

Am+ np ≤ n′/2, where the last inequality following from m < (n′ − 2np)/2A.

So y1, . . . , yd ∈ Zp are solutions to the congruence

F (y1, . . . , yd) ≡ 0 mod pt,

where F is a polynomial in d variables of degree at most 3A and t is an

integer with n′ > t ≥ n′/2. By Lemma 5.17 the number of solutions has

proportion at most (3A)d(t + 1)d−1p−t/3A in (Zp/ptZp)d. Since A does not

depend on p and we can find a constant a1 such that if n′ > a1 we get that

(3A)d(n′+1)d−1 < 2n
′/12A ≤ pn

′/12A. This gives βm(g,H) ≤ p−n
′/12A whenever

n′ > max{a1, 12A, 12np}.

This concludes the proof in the special case when H can be described with

a good basis with integers s1 = · · · = sd−1 = 0 and sd = n′.

We now prove the general case when the integers si associated to a good

basis of H ′ = H ∩ U are 0 ≤ s1 ≤ · · · ≤ sd = n′. Set s0 = 0, and let

ε = (3A)−D ≤ (3A)−d.

Since sd = n′ > 0 and s0 = 0, there exists an integer i ≥ 1 such that

si > 3Asi−1. Let 1 ≤ i0 ≤ n be the largest such integer. Since sj/sj−1 ≤ 3A

for all d ≥ j > i0 and sd = n′, we have si0/sj ≥ ε for all j ≥ i0 and, in

particular, si0 ≥ n′ε. Assuming si0 > 6np + 6A (which is the case provided

n′ > 6(np+A)ε
−1), choose an integerm such that si0/3A < m ≤ (si0−2np)/2A.

Consider the power series f, . . . , fd in Zp[[x1, . . . , xd]] defined by µ(f1, . . . , fd) =

[g,x], x = µ(x1, . . . , xd) ∈ U .

The condition [g,x] ∈ H ′ is equivalent to

fj(x1, . . . , xd) ≡ 0 mod psj . ∀j = 1, . . . , d.

Now take x ∈ Um i.e., xj ∈ pmZp. By setting xk = pmyk, k = 1, . . . , d,

define plj to be the largest power of p dividing all the coefficients of the power

series zj(y1, . . . , yd) := fj(p
my1, . . . , p

myd).

Now we claim that lj < Am + np + 1 for some j ≥ i0. Suppose for

the sake of contradiction that lj ≥ Am + np + 1 for all j ≥ i0. This means

that pAm+np+1|fj(x1, . . . , xd) for all j ≥ i0. At the same time, since x ∈ Um,
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[g,x] ∈ Um and so pm|fj for all j. Since m > si0/3A and si0−1 < si0/3A,

it follows that m > si0−1 and so m > sj for all j ≤ i0 − 1. Altogether we

have pmin{sj ,Am+np+1}|fj for all j = 1, . . . , d and so [g, Um] ⊆ H ′UAm+np+1.

Lemma 5.16 now gives UAm+np ≤ HUAm+np+1 and hence H ≥ UAm+np . This

is a contradiction since Am+ np ≤ si0/2 < n′. The claim follows.

Therefore, lj ≤ Am+ np ≤ si0/2 for some j ≥ i0.

We want to estimate the number of cosets xUn′ in Um/Un′ with [g,x] ∈ H ′.

Let x = µ(pmy1, . . . , p
myd) ∈ Um. We will estimate the number of solutions in

(y1, . . . , yd) ∈ (Zp/pn
′−mZp)d to the congruence

fj(p
my1, . . . , p

myd) ≡ mod psj .

Since sj ≥ si0 , we must have that psi0 |fj(p
my1, . . . , p

myd). Since m > si0/3A,

the last congruence implies a polynomial congruence

pljFj(y1, . . . , yd) ≡ 0 mod psi0 ,

where degFj ≤ si0/m < 3A and the polynomial Fj is not divisible by p. We

proved lj ≤ si0/2 and, in particular,

Fj(y1, . . . , yd) ≡ 0 mod pt,

where the integer t satisfies n′ > t ≥ si0/2. Recall also that si0 ≥ n′ε. By

Lemma 5.17 below the proportion of solutions in (Zp/pn
′−mZp)d to the last

congruence is at most

(3A)d(t+ 1)d−1p−t/ degFj < (3An′)dp−n
′ε/6A.

So if n′ > 6(A+ np)ε
−1 is in addition sufficiently large in terms of A and D so

that (3An′)D < pn
′ε/12A, we see that βm(g,H) < p−n

′ε/12A. Proposition 5.14

follows with c = ε/12A = (3A)−D−1/4.

The following is proved in [53, Lemma A.9] with a slightly stronger bound,

but we include a proof here for completeness.

5.17. Lemma. Let f ∈ Zp[x1, . . . , xd] be a polynomial of degree r, with at

least one coefficient that is not divisible by p. For any n ∈ N, the proportion

of solutions to f ≡ 0 mod pn in (Zp/pnZp)k is at most rd(n+ 1)d−1p−n/r.

Proof. The case d = 1 can be found in [108, Cor. 2], which proves a

stronger bound involving the discriminant of f . In particular, the bound rpn/r

we require is the inequality (44) there without any condition on the discrimi-

nant.

To prove the lemma in general we argue by induction on d and assume it

holds for d−1. Write f = g0x
m
d +g1x

m−1
d +· · ·+gm, where gi ∈ Zp[x1, . . . , xd−1].

At least one of the gi, say gj , is not divisible by p and deg gj ≤ r.

For 0 ≤ s ≤ n, let Xs be the set of tuples (x1, . . . , xd−1) ∈ (Zp/pnZp)d−1

such that ps is the greatest power of p dividing all of g0, . . . , gm evaluated at
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(x1, . . . , xd−1). By the induction hypothesis applied to gj we may assume

|Xs| ≤ rd−1(s+ 1)d−2pn(d−1)−s/r.

For a given (d− 1)-tuple in Xs, the number of choices for xd ∈ Zp/pnZp such

that pn|f is at most

mpn−
n−s
m ≤ rpn−

n−s
r

by case d = 1 of the lemma applied to g0
psx

m
d + · · ·+ gm

ps and n− s in place of n.

Putting everything together, the number of solutions to pn|f is at most

n∑

s=0

|Xs|rp
n−n−s

r ≤ rd
n∑

s=0

(s+ 1)d−2pnd−
s
r
−n−s

r ≤ rd(n+ 1)d−1pnd−
n
r .

The last inequality following from the crude estimate 1+2d−2+· · ·+(n+1)d−2 ≤

(n+ 1)d−1, the lemma follows. �

6. Spectral approximation for locally convergent sequences

of lattices

Let G be a connected center free semi-simple Lie group. We let “G be

the unitary dual of G, i.e., the set of equivalence classes of irreducible unitary

representations of G, endowed with the Fell topology; see, e.g., [20, §2.2]. We

fix once and for all a Haar measure on G.

Let φ ∈ C∞
c (G). If π ∈ “G, then

π(φ) :=

∫

G
φ(g)π(g)dg : Hπ → Hπ

is a bounded operator of trace class. We denote by

φ̂ : π 7→ trace π(φ)

the (scalar) Fourier transform on “G.
6.1. Topology of “G. As a topological space, “G is not separated. It is

somewhat easier to work with the set Θ(G) of infinitesimal characters of G,

i.e., the set of characters of the center Z(g) of the universal enveloping algebra

of G.

Fix MAN a minimal parabolic subgroup of G and a corresponding real

vector space

h0 = ib0 ⊕ a0,

where b0 is a Cartan subalgebra of the compact Lie group K ∩M . The space

h0 can be identified with a split Cartan subalgebra of a split inner form of G.

In particular, the complex Weyl group W of G acts on h0. We fix a positive

definite, W -invariant inner product (·, ·) on h0.
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The infinitesimal character of an irreducible representation π ∈ “G is rep-

resented by a W -orbit θπ in the complex dual space h∗ of h0. It satisfies

π(zf) = 〈h(z), θπ〉π(f), (z ∈ Z(g), f ∈ C∞
c (G)),

where h : Z(g) → S(h)W is the isomorphism of Harish-Chandra, from Z(g)

onto the algebra of W -invariant polynomial on h∗.

The map

(6.1.1) p : “G→ Θ(G)

that maps π ∈ “G onto its infinitesimal character θπ is continuous with respect

to the Fell topology. See [105, Lemma 3.4] for a more precise description of

the topological space “G with respect to this map.

The Plancherel measure νG is a positive Borel measure on “G. Note that νG
depends on a choice of a Haar measure on G: if the Haar measure is multiplied

by a scalar c, then νG is multiplied by c−1. Denote by Bc(“G) the space of

bounded νG-measurable functions f on “G such that the support of f has

compact image in the space of infinitesimal character via the map p defined in

(6.1.1).

6.2. Definition. Let ‹F(“G) be the space of functions f ∈ Bc(“G) such that

for every Levi subgroup L of G and every discrete series σ of L, the function

χ 7→ f(indGL (σ ⊗ χ))

on “unramified” unitary characters of L (see [105, §3]) has the property that

its discontinuous points are contained in a measure zero set. Here by definition

f(indGL (σ⊗χ)) is the sum of f(σ′) as σ′ runs over the irreducible subquotients

of the (normalized) induced representation indGL (σ⊗χ) with multiplicity. (Any

such subquotient σ′ is unitary.)

For any φ ∈ C∞
c (G), the function φ̂ belongs to ‹F(“G).

6.3. Definition. Let F(“G) be the subspace

{φ̂ : φ ∈ C∞
c (G)} ⊂ ‹F(“G).

Remark. There are many functions in ‹F(“G) that do not belong to F(“G):
any characteristic function of a νG-regular open subset S ⊂ “G or S ⊂ “Gtemp

belongs to ‹F(“G); see [105, Lemma 7.2].

It is much easier to work with continuous linear forms on F(“G) than with

Borel measures on “G. This is possible thanks to the following fundamental

density principle due to Sauvageot [105, Th. 7.3(b)]; see also [107, App. A] for

some corrections.
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6.4. Proposition. Let f ∈ ‹F(“G). For every positive ε, there exist φ, ψ ∈

C∞
c (G) such that for every π ∈ “G, we have

|f(π)− φ̂(π)| ≤ ψ̂(π) and νG(ψ̂) ≤ ε.

In other words the Plancherel measure νG is completely determined by the

continuous linear IG form that it defines on F(“G). Granted this proposition

we shall work with continuous linear forms on F(“G).
6.5. The measure associated to a uniform lattice. Let Γ be a uniform lat-

tice in G. We denote by ρΓ the quasi-regular representation of G in the space

L2(Γ\G). Then ρΓ is a direct sum of representations π ∈ “G occuring with

finite multiplicities m(π,Γ). The measure

νΓ =
1

vol(Γ\G)

∑

π∈Ĝ

m(π,Γ)δπ

is, up to the factor vol(Γ\G)−1, the Plancherel measure of L2(Γ\G). This

measure defines a continuous linear form IΓ on F(“G). Here again, as the

spectrum of ρΓ is discrete, the measure νΓ is determined by IΓ and, if φ ∈

C∞
c (G), we have

trace ρΓ(φ) =
∑

π∈Ĝ

m(π,Γ)trace π(φ)

= vol(Γ\G)IΓ(φ̂).

On the other hand, given f ∈ L2(Γ\G), we have8

(ρΓ(φ)f)(x) =

∫

G
φ(y)f(xy)dy

=

∫

G
φ(x−1y)f(y)dy

=

∫

Γ\G

Ñ
∑

γ∈Γ

φ(x−1γy)

é
f(y)dy.

It follows that the kernel of ρΓ(φ) is

(6.5.1) Kφ
Γ(x, y) =

∑

γ∈Γ

φ(x−1γy), (x, y ∈ Γ\G).

The sum over Γ is finite for any x and y, since it may be taken over the

intersection of the discrete group Γ with the compact subset xsupp(φ)y−1 ⊂ G.

8Here and below we shall often abusively identify functions on Γ\G and Γ-invariant func-

tions on G. Similarly we often use the same notation (x or y) for an element in Γ\G and for

a choice of a representative of this element in G.
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We conclude that

νΓ(φ̂) =
1

vol(Γ\G)

∫

Γ\G
Kφ

Γ(x, x)dx

=

∫

Λ∈SubG

Kφ
Λ(id, id)dµΓ(Λ).

(6.5.2)

Here for any discrete subgroup Λ ∈ SubG and any (x, y) ∈ G, we denote by

Kφ
Λ(x, y) the sum

Kφ
Λ(x, y) =

∑

λ∈Λ

φ(x−1λy).

The latter equality of (6.5.2) then follows from the fact that Kφ
gΛg−1(x, y) =

Kφ
Λ(g

−1x, g−1y). Note that Λ 7→ Kφ
Λ(id, id) defines a continuous function on

the support of µΓ.

6.6. Definition. We say that a discrete IRS µ or a sequence µ1, µ2, . . . of

discrete IRS’s of G is uniformly discrete if there exists some positive ε such

that

∀Λ ∈ ∪∞
n=1supp(µn), Λ ∩ BG(id, ε) = {id}.

We shall sometimes specify ε by saying that a sequence of IRS or a single IRS

is ε-discrete.

Example. Let (Γn)n≥1 be a uniformly discrete sequence of uniform lattices

in G. Then the sequence (µΓn)n≥1 is uniformly discrete.

6.7. Theorem. Let (Γn)n≥1 be a uniformly discrete sequence of uniform

lattices in G such that Γn\X BS-converges to X . Then for every relatively

compact νG-regular open subset S ⊂ “G or S ⊂ “Gtemp, the sequence of measures

(νΓn)n≥1 is such that

νΓn(S) → νG(S).

Proof. Set νn = νΓn and In = IΓn . Let φ ∈ C∞
c (G). We shall first prove

that

(6.7.1) lim
n→+∞

In(φ̂) = IG(φ̂).

We will make use of the following general lemma.

6.8. Lemma. Let µn be a uniformly discrete sequence of IRS’s. Then there

exist an open neighborhood of the identity U ⊂ G and a compact subset K ⊂ G

such that, setting U∗ := U \ {id}, the open sets O1(K) and O2(U
∗) in SubG

are disjoint, every nondiscrete subgroup H ∈ SubG is contained in O2(U
∗),

and ⋃

n

supp(µn) ⊂ O1(K).
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Proof. Let d be a left invariant metric on G, and let δ be small enough

so that the corresponding δ-ball around id has no nontrivial subgroups. Since

the sequence (Γn)n≥1 is uniformly discrete, there exists some ε < δ such that

Λ ∈
⋃

n

supp(µn) ⇒ BG(id, ε) ∩ Λ = {id}.

Let U be the open ball BG(id, ε), and let K be the compact set that is the

closed ε ball minus the open ε/2 ball around id. Recall the following definitions:

O1(K) = {H ∈ SubG : H ∩K = ∅}

and
O2(U

∗) = {H ∈ SubG : H ∩ U∗ 6= ∅}.

These are open subsets of SubG. Every nondiscrete subgroup H ∈ SubG is

obviously contained in O2(U
∗) and
⋃

n

supp(µn) ⊂ O1(K).

Let us now prove that O1(K) and O2(U
∗) are disjoint: suppose by way of

contradiction that their intersection contains some subgroup H < G. Then

the intersection of H with the closed ε/2 ball around id contains a nontriv-

ial element h. Since BG(id, ε/2) does not contain nontrivial subgroups, the

cyclic group 〈h〉 is not entirely contained into BG(id, ε/2). Let h
k be the first

nontrivial power that does not belong to BG(id, ε/2). Since both d(id, h) and

d(id, hk−1) are ≤ ε/2 and since the metric d is left invariant, we conclude that

we have d(id, hk) ≤ ε. Therefore, hk belongs to K, a contradiction. �

We shall apply Lemma 6.8 to the sequence µn = µΓn . Let V be an

open symmetric neighborhood of the identity in G such that V 2 ⊂ U . The

G-translates of V form an open covering of G from which we may extract

a finite collection g1V, . . . , gkV that covers the compact support of φ. Every

Λ /∈ O2(U
∗) intersects each giV along at most one element. It follows that the

function

Λ 7→
∑

λ∈Λ

φ(λ)

is well defined, continuous and uniformly bounded (by k||φ||∞) on SubG \

O2(U
∗). Tietze’s Extension Theorem then allows to extend this function to a

compactly supported continuous function Fφ on SubG such that

Fφ(Λ) =





∑
λ∈Λ φ(λ) if Λ ∈

⋃
n supp(µn),

0 if Λ is not discrete.

Since by hypothesis the sequence µn converges weakly toward µid, we get

that

In(φ̂) =

∫

SubG

Fφdµn →

∫

SubG

Fφdµid.
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The limit is equal to φ(id) which, according to the Plancherel formula proved

by Harish-Chandra, is equal to IG(φ̂). This proves (6.7.1).

To conclude the proof of Theorem 6.7 we recall that the linear form In
determines the Borel measure νn on “G and that it similarly follows from Propo-

sition 6.4 (Sauvageot’s density principle) that the linear form IG determines

the Plancherel measure of G. The theorem easily follows. Indeed, let S ⊂ “G,
or S ⊂ “Gtemp, be a relatively compact open subset that is regular with respect

to the Plancherel measure of G (i.e., νG(S) = νG(S)). Let ε be a positive real

number. By the density principle, there exist φ, ψ ∈ C∞
c (G) such that

|1S − φ̂| ≤ ψ̂ and νG(ψ̂) ≤ ε.

We conclude that

|νΓn(S)− νG(S)| ≤ νΓn(ψ̂) + |νΓn(φ̂)− νG(φ̂)|+ νG(ψ̂)

≤ |In(ψ̂)− IG(ψ̂)|+ 2IG(ψ̂) + |In(φ̂)− IG(φ̂)|

≤ 4ε

for sufficiently large n. �

Theorem 6.7 implies the following.

6.9.Corollary (Pointwise convergence). Let (Γn)n≥1 be a uniformly dis-

crete sequence of uniform lattices in G such that Γn\X BS-converges to X .

Then

lim
n→+∞

νΓn({π}) = νG({π})

for every π ∈ “G.

Note that d(π) := νG({π}) is 0 unless π is square integrable (i.e., is a

discrete series), in which case it is the formal degree of π; see [64, Th. 6.2].

6.10. An alternative proof of Corollary 6.9. Here we propose a proof of

Corollary 6.9 in the spirit of DeGeorge–Wallach [64] and Savin [106] that avoids

the intricate analysis of [105]. We first prove that

lim sup
n→∞

m(π,Γn)

vol(Γn\G)
= lim sup

n→∞
νn({π})

≤ νG({π}) = d(π).

(6.10.1)

Let φ ∈ C∞
c (G). We first note that

m(π,Γ)

vol(Γ\G)
||π(φ)||2H−S ≤

||ρΓ(φ)||
2
H−S

vol(Γ\G)

≤
trace ρΓ(φ ∗ φ̃)

vol(Γ\G)

≤ νΓ(
’
φ ∗ ‹φ).

(6.10.2)
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Remark. We have

νG(
’
φ ∗ ‹φ) = (φ ∗ φ̃)(1) = ||φ||2.

Note that

||π(φ)||2H−S ≥ |〈π(φ)v, v〉|2 =

∣∣∣∣
∫

G
φ(g)〈π(g)v, v〉dg

∣∣∣∣
2

,

where v is any unit vector in the Hilbert space associated with π. It is There-

fore, tempting to apply (6.10.2) with φ(g) = φr(g) := χr(g)〈π(g)v, v〉, where

χr is the characteristic function of Gr = KA+
r K, A+

r = {a ∈ A+ : a = exp(H),

||H|| ≤ r} for some metric || · || on the Lie algebra of the Cartan subgroup A.

The function φr is not smooth. However it is a limit in L2 of smooth functions

with support in Gr and (6.10.2) still holds. Similarly, under the hypotheses of

Corollary 6.9, equation (6.7.1) applies to φr ∗ φ̃r. We Therefore, conclude from

the remark above that we have

(6.10.3) lim sup
n→+∞

m(π,Γn)

vol(Γn\G)
≤

1

||φr||2
.

As r tends to infinity, 1/||φr||
2 tends to 0 if π is not square integrable and

tends to d(π) if π is a discrete series. Inequality (6.10.3) Therefore, implies

(6.10.1).

6.11. Now fix π a discrete series representation of G. The set

“G(π) = {ω ∈ “G : θω = θπ}

is finite. Computing the G(π)-part of the Euler characteristic, DeGeorge and

Wallach [64, Cor. 5.3] proved the following.

6.12. Proposition. Given a discrete series representation π of G, there

are constants c(ω), ω ∈ “G(π) with c(ω) = 1 whenever ω is a discrete series

representation, such that

∑

ω∈Ĝ(π)

c(ω)
m(ω,Γ)

vol(Γ\G)
=

∑

ω∈Ĝ(π)

d(ω).

Note that when ω is not a discrete series, then the limit multiplicity is 0

by (6.10.1). Proposition 6.12 and (6.10.1) therefore imply Corollary 6.9. �

6.13. Sequences of congruence lattices. Now we fix a uniform irreducible

arithmetic lattice Γ ⊂ G as Γ0 in Theorem 5.2. We also fix π ∈ “G a non-

tempered representation; i.e., π is not weakly contained in L2(G). In this

setting we prove the following.
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6.14. Theorem. Let (Γn)n≥1 be any infinite sequence of distinct congru-

ence subgroups of Γ. Then there exists α = α(G,Γ, π) > 0 such that

m(π,Γn) � vol(Γn\G)
1−α.

Proof. This follows the same lines as Section 6.10: Let (τ, Vτ ) be the lowest

K-type of π, as defined by Vogan [113], and let v ∈ Vτ be a highest weight

vector. As in [106] we introduce

Wn = span
¶
Tv : T ∈ HomG(Vτ , L

2(Γn\G))
©
⊂ L2(Γn\G)

and

Bn(x) = sup
f∈Wn

|f(x)|2

||f ||2
(x ∈ Γn\G).

As in Section 6.10 we let

φr(g) = χr(g)〈π(g)v, v〉 (g ∈ G, r > 0).

We will use the following two lemmas. The first goes back at least to

Kazhdan’s proof [71] of the so-called Kazhdan’s inequality according to which

along a residual tower the limsup of the normalized Betti numbers are bounded

above by the corresponding L2-Betti numbers; we include a proof of this first

lemma for the reader’s convenience. The second — due to Savin [106, Prop. 3]

— is a reformulation of the basic identity of DeGeorge and Wallach.

6.15. Lemma. We have∫

Γn\G
Bn(x)dx = m(π,Γn).

Proof. Let f1, . . . , fm (m = m(π,Γn)) be an orthonormal basis of Wn.

The Cauchy-Schwarz inequality implies that Bn(x) ≤
∑m
i=1 |fi(x)|

2. Now if we

fix x, the function F : y 7→
∑
i fi(x)fi(y) belongs in Wn and we have

||F ||2 = F (x) =
∑

i

|fi(x)|
2.

It follows that for all x, we have

Bn(x) =
m∑

i=1

|fi(x)|
2.

Integration over Γn\G gives the lemma. �

6.16. Lemma. We have

π(φr)v = ||φr||
2v.

Now let f ∈Wn. It follows from Lemma 6.16 that

||φr||
2f(x) =

∫

G
φr(g)f(xg)dg =

∫

Γn\G

∑

γ∈Γn

φr(x
−1γg)f(g)dg.
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By the Cauchy-Schwarz inequality, we have

(6.16.1) ||φr||
2|f(x)| ≤ ||f ||

Ñ∫

Γn\G

∣∣∣∣∣∣
∑

γ∈Γn

φr(x
−1γg)

∣∣∣∣∣∣

2

dg

é1/2

.

Given x ∈ G, we set

Nn(x; r) = #{γ ∈ Γn : χr(x
−1γx) 6= 0}.

Theorem 5.2 implies the following.

6.17. Proposition. There exist positive constants β, c such that for all n,

vol((Γn\G)<c log vol(Γn\G)) ≤ vol(Γn\G)
1−β .

We now recall the following.

6.18. Lemma. There exist constants c1, c2 > 0, depending only on G, such

that for any x, y ∈ X ,

N(x;R) := |{γ ∈ Γ : d(x, γx) ≤ R}| ≤ c1InjRadΓn\G(x)
−dec2R,

where d is the dimension of X .

Proof. Clearly, it suffices to prove this for R ≥ InjRadMn
(x). By defini-

tion,

B(x, InjRadΓn\G(x)) ∩B(γx, InjRadMn
(x)) = ∅

for all γ ∈ Γ− {id}. This implies

N(x;R) · volB(x, InjRadΓn\G(x)) ≤ volB(x,R+ InjRadΓn\G(x))

≤ volB(x, 2R).

Now, Knieper [74] shows that there exists a constant c2 = a(G) such that

volB(x,R) ≈ R
rank

R
(G)−1

2 ec2R

asymptotically as R→ ∞. This yields an upper bound for volB(x, 2R).

On the other hand, since X has nonpositive curvature, the volume of a

ball in X is bounded below by the volume of a ball with the same radius in

d-dimensional Euclidean space. Hence

volB(x, InjRadΓn\G(x)) ≥ b · InjRadΓn\G(x)
d,

with a constant b = b(d). The lemma follows. �

Remark. When InjRadΓn\G(x) and R are both sufficiently small, it is pos-

sible to attain better bounds in 6.18 by using the Margulis lemma; see the

analysis in Section 7.
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6.19. Replacing the constant c by some smaller positive constant we may

assume:

(6.19.1) cc2 ≤ β.

Here c2 is the constant of Lemma 6.18. From this we conclude

6.20. Lemma. There exists a positive constant C such that for all n,
∫

Γn\G
Nn(x; 2c log vol(Γn\G))dx ≤ Cvol(Γn\G).

Proof. We split the integral into two parts:

I1 =

∫

{x∈Γn\G:InjRadΓn\G(x)≤c log vol(Γn\G)}
Nn(x; 2c log vol(Γn\G))dx

and I2. Since in I2 the integrand is everywhere equal to 1, we have I2 ≤

vol(Γn\G). As for I1, we use Lemma 6.18 to get the bound:

Nn(x; 2c log vol(Γn\G)) ≤ c1InjRadΓn\G(x)
−dvol(Γn\G)

c2c.

Since each lattice Γn is a subgroup of Γ, there exists a uniform (in n) lower

bound on InjRadΓn\G(x). We Therefore, conclude from Proposition 6.17 and

(6.19.1) that

I1 ≤ (const)vol(Γn\G)
c2c+1−β ≤ (const)vol(Γn\G).

The lemma follows. �

6.21. Now taking r = c log vol(Γn\G) we note that for every x ∈ Γn\G

and g ∈ G, the sum
∑
γ∈Γn

φr(x
−1γg) has at most Nn(x; 2r) nonzero term.

Therefore,
∣∣∣∣∣∣
∑

γ∈Γn

φr(x
−1γg)

∣∣∣∣∣∣

2

≤ Nn(x; 2r)
∑

γ∈Γn

∣∣∣φr(x−1γg)
∣∣∣
2
.

Moreover, since ∫

Γn\G

∑

γ∈Γn

∣∣∣φr(x−1γg)
∣∣∣
2
dg = ||φr||

2,

it follows from (6.16.1) that for every x ∈ Γn\G,

(6.21.1)
|f(x)|2

||f ||2
≤
Nn(x, 2r)

||φr||2
.

Integrating (6.21.1) over Γn\G we conclude from Lemma 6.20 that

m(π,Γn) ≤
1

||φr||2

∫

Γn\G
Nn(x; c log vol(Γn\G))dx ≤ C

vol(Γn\G)

||φr||2
.

We finally note that

||φr||
2 =

∫

Gr

|〈π(g)v, v〉|2dg
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and

vol(Gr) ≥ exp(νr) = vol(Γn\G)
cν

for some positive constant ν. Combining this last inequality with the asymp-

totics of the matrix coefficient g 7→ 〈π(g)v, v〉 (see, e.g., [73] or [13, Cor. 3.18

and Lemma 4.4]), we conclude from the fact that π is nontempered that there

exists some positive constant α such that

1

||φr||2
� vol(Γn\G)

−α.

The theorem follows. �

6.22. Nonuniform lattices. In the nonuniform case things get more com-

plicated: there is continuous spectrum in L2(Γ\G), and the integral
∫

Γ\G
Kφ

Γ(x, x)dx

is divergent. We may nevertheless hope that, maybe under suitable conditions,

Theorem 6.7 holds when replacing νΓ by the measure associated to the discrete,

or to the cuspidal, spectrum of L2(Γ\G). There are not yet such complete

results even in the case of towers of coverings. We may however refer to the

already mentioned work of Shin [107] and to the recent work of Finis, Lapid

and Müller [55], [54] which, in particular, completely solves the problem for

the case of principal congruence subgroups of GL(n).

6.23. From representations to differential forms. We conclude this section

by relating the above results with the study of the spectrum of the Laplace

operator.

Given a unitary representation τ of K we consider the following subset

of “G:
“Gτ = {π ∈ “G : HomK(τ,Hπ) 6= {0}}.

Let τk (k = 0, 1, . . .) be the adjoint representation of K into ∧kp. Represen-

tations in “Gτk are exactly the ones that correspond to k-differential forms on

X = G/K. Our choice of Haar measure on G corresponds to a choice of a left

invariant Riemannian metric on G. We denote by vol(K) the corresponding

volume of K.

Let Γ be a lattice in G. First note that we have

(6.23.1) vol(Γ\G) = vol(Γ\X)vol(K).

Now let C ∈ Z(g) be the Casimir element. Set λπ = −θπ(C). Let π ∈ “Gτk
and v ∈ Hπ be a nonzero vector in the K-type τk. Any element in

Ekπ(Γ\G) := span
¶
Tv : T ∈ HomG(Hπ, L

2(Γ\G)
©
⊂ L2(Γ\G)
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defines a square-integrablek-differential form on Γ\G/Kwhose eigenvalue is λπ.

Conversely it follows from Matsushima’s formula (see, e.g., [20, Th. 1.0.2]) that

Ekλ(Γ\G) =
⊕

π∈Ĝτk
λπ=λ

Ekπ(Γ\G),

where Ekλ(Γ\G) denotes the λ-eigenspace of the Laplace operator on square-

integrable k-differential forms on Γ\X.

We let Θk(G) be the image of “Gτk by the map p in (6.1.1). Evaluation on

the Casimir element Therefore, gives a map

(6.23.2) Θk(G) → R+.

A Borel measure ν on “G induces a measure p∗ν on Θ(G) that we may restrict

to a measure on Θk(G); we denote by νk the push-forward of the latter by the

map (6.23.2) so that νk is a measure on R+.

6.24. Suppose that Γ is uniform. We have

νkΓ({λ}) =
1

vol(Γ\G)
dimEkλ(Γ\G).

In particular,

νkΓ({0}) =
bk(Γ)

vol(Γ\G)
,

where bk(Γ) is the k-th Betti number of Γ. Note that Γ being virtually torsion-

free, bk(Γ) makes sense. If Γ is torsion-free, we have bk(Γ) = bk(Γ\X). Simi-

larly νG,k is the spectral measure of the Laplace operator on square-integrable

differential K-forms on X, and we define the k-th L2-Betti number of the

symmetric space X = G/K as

β
(2)
k (X) = νG,k({0})vol(K).

Note that it follows from (6.23.1) that vol(Γ\X)β
(2)
k (X) is the usual k-th

L2-Betti number of Γ.

Theorem 6.7 implies the following two corollaries:

6.25. Corollary. Let (Γn)n≥1 be a uniformly discrete sequence of uni-

form lattices in G such that Γn\X BS-converges to X . Then for each k, the

sequence of spectral measures νkΓn
converges weakly toward νG,k.

6.26. Corollary. Let (Γn)n≥1 be a uniformly discrete sequence of uni-

form lattices in G such that Γn\X BS-converges to X . Then

lim
n→∞

bk(Γn)

vol(Γn\X)
= β

(2)
k (X)

for 0 ≤ k ≤ dim(X).
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6.27. We finally recall from [27, p. 98] that if π ∈ “G is such that π ∈ “Gτk
and λπ = 0, we have

π is tempered ⇔ k ∈
ï
1

2
dimX − e,

1

2
dimX + e

ò
,

where e = 1
2(rankCG − rankC(K)). Theorem 6.14 Therefore, implies the fol-

lowing.

6.28. Corollary. Let (Γn)n≥1 be a sequence of congruence lattices in a

fixed rational form G(Q). Suppose that vol(Γn\X) → ∞. Then there exists

α = α(G) > 0 such that for every k /∈
î
1
2 dimX − e, 12 dimX + e

ó
,

bk(Γn) � vol(Γn\X)1−α.

7. Heat kernel estimates and hyperbolic manifolds

As explained in the announcement [3], our original proof of Corollary 6.26

used the heat kernel following the original path of DeGeorge–Wallach and

especially Donnelly [49]. Introducing the notion of BS-convergence allowed us

to deal with more general sequences than our predecessors did. However, as in

these classical works, this approach relies on heat kernel estimates that require

a lower bound on the injectivity radius (our “uniformly discrete” assumption).

One novel aspect of the current section is a fine study of heat kernel estimates

in the thin parts of hyperbolic manifolds in dimension d ≥ 4. This will allow

us to get rid of the “uniform discreteness” assumption.

As in the preceding sections we let X = G/K be the symmetric space

associated to a connected center free semi-simple Lie group G.

7.1. The heat kernel on forms. We denote by e−t∆
(2)
k (x, y) the heat ker-

nel on square-integrable k-forms on X. The corresponding bounded integral

operator in End(Ωk(2)(X)) defined by

(e−t∆
(2)
k f)(x) =

∫

X
e−t∆

(2)
k (x, y)f(y) dy ∀f ∈ Ωk(2)(X)

is the fundamental solution of the heat equation (cf. [14]).

A standard result from local index theory (see, e.g., [24, Lemma 3.8])

implies

7.2. Lemma. Let m > 0. There exists a positive constant c = c(G,m)

such that

||e−t∆
(2)
k (x, y)|| ≤ ct−d/2e−d(x,y)

2/5t, 0 < t ≤ m.

Much of the content of the statement above is when t → 0. Here, we

are mostly interested in the case of fixed t, in which case Lemma 7.2 gives
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constants c1, c2 depending only on G, t such that

(7.2.1) ||e−t∆
(2)
k (x, y)|| ≤ c1e

−d(x,y)2/c2 .

Now let M = Γ\X be a compact X-manifold. Let ∆k be the Laplacian

on differentiable k-forms on M . It is a symmetric, positive definite, elliptic

operator with pure point spectrum. Write e−t∆k(x, y) (x, y ∈M) for the heat

kernel on k-forms on M . Then for each positive t, we have

(7.2.2) e−t∆k(x, y) =
∑

γ∈Γ

(γỹ)
∗e−t∆

(2)
k (x̃, γỹ),

where x̃, ỹ are lifts of x, y to X and by (γy)
∗, we mean pullback by the map

(x, y) 7→ (x̃, γỹ). The sum converges absolutely and uniformly for x̃, ỹ in

compacta; this follows from Lemmas 6.18 and 7.2. Given x ∈ M and a lift

x̃ ∈ X, we set

(7.2.3) ft(x) = ‖e−t∆k(x, x)− e−t∆
(2)
k (x̃, x̃)‖ =

∥∥∥∥
∑

γ∈Γ\{1}

e−t∆
(2)
k (x̃, γ · x̃)

∥∥∥∥.

Here, the middle part of the equation can be made well defined by identifying

the tangent spaces of TxM and Tx̃X. Let f̃t(x̃) = ft(x), and note that f̃t is

Γ-invariant. Recall that we denote by InjRadM (x) the injectivity radius of M

at x.

7.3. (L2-)Betti numbers. The trace of the heat kernel e−t∆
(2)
k (x, x) on the

diagonal is independent of x ∈ X, being G-invariant. We denote it by

Tr e−t∆
(2)
k := tr e−t∆

(2)
k (x, x).

It follows from Section 6.24 that

β
(2)
k (X) = lim

t→∞
Tre−t∆

(2)
k .

It is equal to zero unless δ(G) = 0 and k = 1
2 dimX, in which case

β
(2)
k (X) =

χ(Xd)

vol(Xd)
,

where Xd is the compact dual; see [93].

Recall also that the usual Betti numbers of M are given by

bk(M) = lim
t→∞

Tre−t∆k = lim
t→∞

∫

M
tr e−t∆k(x, x)dx

and that since Tr e−t∆k =
∑
i e

−tλi , where λi are the eigenvalues of ∆k, the

limit above is monotone decreasing in t.
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7.4. Lemma. Let t > 0 be a real number. There exists a constant C =

C(t, G) such that for any x ∈M ,

ft(x) ≤ C · InjRadM (x)−d.

Proof. Let x ∈ M , and let x̃ be a lift of x to X. Then by the definition

(7.2.3),

ft(x) ≤
∑

γ∈Γ\{1}

‖e−t∆
(2)
k (x̃, γ · x̃)‖.

≤
∑

γ∈Γ\{1}

ce−d(x,γx̃)
2/5t, by (7.2.1)

≤
∞∑

n=0

ce−n
2/5tN(x, n+ 1),

where in an overestimate, N(x;n + 1) = #{γ ∈ Γ \ {1} : d(x̃, γx̃) ≤ n + 1}.

But

N(x;n+ 1) ≤ c1InjRadM (x)−dec2(n+1)

by Lemma 6.18 for some c1, c2 depending only on G. So for some C = C(t, G),

ft(x) ≤
∞∑

n=0

cc1e
−n2/5t+c2(n+1)InjRadM (x)−d ≤ C · InjRadM (x)−d. �

7.5. Convergence of Betti numbers. We now explain how to use the heat

kernel estimates above to prove the following proposition, which implies Corol-

lary 6.26.

7.6. Proposition. Suppose (Mn) is a sequence of compact X-manifolds

that BS-converges to X . Then we have (1) =⇒ (2) =⇒ (3) =⇒ (4), where

(1) (Mn) is uniformly discrete;

(2)
1

vol(Mn)

∫

Mn

InjRadMn
(x)−ddx→ 0;

(3) lim
n→+∞

bk(Mn)

vol(Mn)
≤ β

(2)
k (X) for k = 0, . . . , dim(X);

(4) lim
n→+∞

bk(Mn)

vol(Mn)
= β

(2)
k (X) for k = 0, . . . , dim(X).

Proof. (1) =⇒ (2). Since (Mn) is uniformly discrete, there is some ε > 0

such that the injectivity radius InjRadMn
(x) ≥ ε for all x, n. Fixing R > 0,

lim
n→∞

1

vol(Mn)

∫

Mn

InjRadMn
(x)−ddx ≤ lim

n→∞

Ç
R−d +

vol(Mn)≤R
vol(Mn)

ε−d
å

= R−d,

by integrating separately over (Mn)≤R and its complement, and then using

BS-convergence. Sending R→ ∞ proves (2).
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(2) =⇒ (3). Since β
(2)
k (X) = limt→∞Tr(e−t∆

(2)
k (x̃, x̃)), we may fix an

arbitrarily small ν > 0 and t large enough so that

β
(2)
k (X) < Tr(e−t∆

(2)
k (x̃, x̃)) + ν.

Then since bk(M) ≤
∫
M tr e−t∆k(x, x)dx for each fixed t, we have

bk(Mn)

vol(Mn)
− β

(2)
k (X) ≤

1

vol(Mn)

∫

Mn

tr e−t∆k(x, x)− β
(2)
k (X)dx

≤
1

vol(Mn)

∫

Mn

fnt (x)dx+ ν.

Now it follows from the hypothesis of the proposition and Lemma 7.4 that for

n large enough, the right-hand side is less than 2ν, so (3) follows.

(3) =⇒ (4). Unless dim(X) is even and k = dim(X)/2, the equality in

(4) is automatic since β
(2)
k (X) = 0. The equality when k = dim(X)/2 follows

since the Euler characteristic of Mn is the same as its L2-analogue. �

7.7. Heat kernel estimates in rank one. We now establish some prelimi-

nary estimates on the difference ft(x) between the heat kernel on a rank one

locally symmetric spaceM and the L2 heat kernel in the universal cover. While

we will apply these estimates only to real hyperbolic manifolds, we write them

up more generally here, since we anticipate they will be useful in the future

and the proof is not any simpler for X = Hn.

Let G = G(R) be a connected adjoint simple real algebraic group of real

rank one. We fix a Cartan decomposition g = k ⊕ p of g = Lie(G) and let

K ≤ G be the maximal compact subgroup of G corresponding to k.

Let x̃0 ∈ X = G/K be the point corresponding to K. Recall that p is

identified with the tangent space Tx̃0X and the Killing form on G induces an

inner product on p that determines the Riemannian structure on X. Fix an

Ad(K)-invariant inner product on k, and extend it to an Ad(K)-invariant inner

product on g so that k and p are orthogonal. Finally, let d = dim(X) and let

s = rankC(G) be the complex rank of G; e.g., if G = SO(d, 1), then s = [d+1
2 ].

We wish to establish estimates on ft within the “thin parts” of an X-mani-

fold, i.e., parts where the injectivity radius is small. The geometry of thin parts

is controlled by the classical Margulis lemma:

7.8. Theorem ([110, §4.1]). There is a constant ε = ε(X) > 0 such that if

Λ is a discrete, torsion-free subgroup of G consisting of semi-simple elements

and is generated by {γ ∈ Λ : d(γ · x̃, x̃) < ε} for some x̃ ∈ X , then Λ is

cyclic. Moreover, there is a unique geodesic, the axis of Λ, on which it acts by

translations.
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An important consequence of the Margulis lemma is the thick-thin de-

composition which, in our case, says that the thin part

M<ε =

ß
x ∈M : InjRadM (x) <

ε

2

™

consists of finitely many connected components, each of which is a tubular

neighborhood of a short closed geodesic.

For x̃ ∈ X, we shall denote by Σx̃,ε the set of elements in Γ that move x̃

by less than ε and by Γx̃,ε = 〈Σx̃,ε〉 the cyclic group it generates.

The following proposition gives an estimate on ft in terms of the number

of Γ-orbit points in a ball. It is easily deduced from the proof of Lemma 7.4,

more precisely from both Lemma 7.2 and the fact that X has exponential

growth.

7.9. Proposition. Given r > 0, there is D = D(r, t) such that for any

x ∈ X ,

ft(x) ≤ D · card(Γ · x ∩B(x, r)).

In view of Proposition 7.9, our goal is to estimate the number of orbit

points in a given ball and deduce bounds on ft. We will split this into two

estimates: one that is better close to the geodesic core of the thin part, and

one that is better at points far from the core.

7.10. Lemma (Near the core). Let x ∈ M be a point in an ε-thin tubular

neighborhood of a short geodesic, and suppose that the length of that short

geodesic is τ . Then ft(x) ≤ C1τ
−1, for some constant C1 = C1(X, t).

Proof. Let x be such a point in M , and let x̃ be a lift of x to X. In view

of Proposition 7.9 we should obtain an upper bound of the form const · τ−1 on

the cardinality of the set

E = Γ · x̃ ∩B(x̃, ε) = Γx̃,ε · x̃ ∩B(x̃, ε).

Let c be the axis of Γx̃,ε and πc : X → c be the nearest point projection.

Since c is convex and X is nonpositively curved, πc is 1-Lipschitz. Since Γx̃,ε is

torsion free and stabilizes c, it follows that the restriction of πc to a Γx̃,ε-orbit is

one-to-one and its image is again a Γx̃,ε-orbit. Moreover, since E has diameter

≤ 2ε, we deduce that πc(E) is contained in an interval of length 2ε in c. Thus

Card(E) ≤ 2ε
τ . �

Lemma 7.10 gives a sufficiently good bound on ft(x) when x is close to a

short geodesic. However when x is far from the geodesic, the injectivity radius

InjRadM (x) might be of several magnitude larger than the minimal displace-

ment τ , and the result of 7.10 will not be enough for our purpose, so we should

obtain a better estimate in terms of InjRadM (x). At first glance one may ex-

pect that the number of orbit points in a ball is controlled by InjRadM (x)−1
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(or by InjRadM (x)−r in general when r = rankR(X)). However the rotational

parts of the isometries may make the orbit denser at certain distances from the

submanifold of local minimal displacement. The true exponent is the absolute

rank s:

7.11. Lemma (Far from the core). If x lies in the ε-thin part of M , then

ft(x) ≤ C2InjRadM (x)−s

for some constant C2 = C2(X, t).

Proof. Let δ > 0 be sufficiently small so that for

Ux̃0 = exp({X ∈ g : ‖X‖ ≤ δ},

we have that U2
x̃0

forms a Zassenhaus neighborhood in G (see [98, Ch. XI] and

[110, §4.1]). Here, x̃0 ∈ X is the point corresponding to K ∈ G/K = X.

We shall call Ux̃0 the Zassenhaus neighborhood associated to x̃0. Since G

acts transitively, for any x̃ ∈ X we have some g ∈ G such that g · x̃0 = x̃. Set

Ux̃ = gUx̃0g
−1 and U2

x̃ as the Zassenhaus neighborhood associated to x̃. Since

Ux̃0 is invariant under conjugation by K, Ux̃ is well defined.

The orbit map X 7→ exp(X) · x̃0 restricted to {X ∈ g : ‖X‖ ≤ δ} is

α-bi-Lipschitz for some constant α and covers an open ball BX(x̃0, β) for some

1 ≥ β > 0. It follows that if V1, . . . , Vt ∈ g are of norm at most δ and

{exp(V1) · x̃0, . . . , exp(Vt) · x̃0} forms a ρ-discrete subset of X, then {V1, . . . , Vt}

is ρ
α discrete in g.

Now let x ∈ M≤ε be the point in question, and let x̃ ∈ X be a lift of x.

We may suppose that InjRadM (x) < β. Let

m =
µ(Ux̃ · {g ∈ G : d(g · x̃, x̃) ≤ 1})

µ(Ux̃)
+ 1.

Note that m is independent of x̃. In the proof of the Margulis lemma given in

[110, §4.1] it is shown that the Margulis constant ε can be chosen to be 1/m

or smaller. Since we have defined m and β independently of ε, we may assume

that ε ≤ β
2m . In that case, as follows easily from the argument in [110, §4.1],

N = 〈U2
x̃ ∩ Γx̃,ε〉 is a subgroup of index ≤ m in Γx̃,ε and one can choose coset

representatives within Σmx̃,ε. In particular, it follows that

card

Å
Γ · x̃ ∩B

Å
x̃,
β

2

ãã
≤ m · card(N · x̃ ∩B(x̃, β)).

Moreover, by the Zassenhaus–Kazhdan-Margulis theorem (see [98, Ch. XI]),

logN spans a connected nilpotent Lie sub-algebra n of the Lie algebra of the

stabilizer StabG(c), where c is the axis of Γx̃,ε. Note that StabG(c) is isomorphic

to a compact group times R∗ and hence admits no unipotent elements. It fol-

lows that n is abelian and semi-simple and its exponentiation exp(n) is a torus
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in G. In particular, dim n ≤ s. Finally, since N · x̃ ∩B(x̃, β) is InjRadM (x)/2

discrete, we get that log(N) is InjRadM (x)/(2α) discrete in n. Thus

card(N · x̃ ∩B(x̃, β)) ≤ card(log(N) ∩Bg(0, δ)) ≤ C ′

Ç
InjRadM (x)

α

ås
,

and the result follows from Proposition 7.9. �

7.12. Real hyperbolic manifolds. Given a symmetric spaceX of noncompact

type, Margulis has conjectured that the set of arithmetic compact X-manifolds

is uniformly discrete. If rank(X) ≥ 2 or if X is the symmetric space corre-

sponding to Sp(d, 1) or F−20
4 , then all irreducible X-manifolds are arithmetic,

by Margulis’s Arithmeticity Theorem [86] and the Corlette–Gromov–Schoen

Theorem [39], [67], respectively. For SU(d, 1) there are a few known examples

of nonarithmetic manifolds for d = 2, 3, and it is likely that most manifolds are

arithmetic. It is thus natural to conjecture that if X is not isometric to Hd,

then the family of all irreducible compact X-manifolds is uniformly discrete.

For X = Hd, it is known that for all d, there are closed hyperbolic

d-manifolds with arbitrarily short systoles, [9], [22], [16]. Our aim here is to

prove a strong generalization of Corollary 6.26 for Hd, not assuming uniform

discreteness.

7.13. Theorem. Let Mn = Γn\Hd be a sequence of compact hyperbolic

d-manifolds that BS-converges to Hd. Then for every k = 0, . . . , d,

lim
n→+∞

bk(Mn)

vol(Mn)
= β

(2)
k (Hd).

Remark. The analog of Theorem 7.13 holds in the greater generality where

Hd is replaced by a general rank one symmetric space. The proof of that,

however, uses different techniques and is much longer. This result will appear

in [1], where we will also treat higher rank symmetric spaces.

Note that for X = H2, the hyperbolic plane, Theorem 7.13 is a conse-

quence of the Gauss–Bonnet theorem, even under the weak assumption that

only vol(Mn) → ∞, without requiring BS-convergence. The cases d = 3 and

d ≥ 4 will be handled separately. When d ≥ 4, Theorem 7.13 will follow

from a fine analysis of the heat kernel in the thin parts of the Mn, which is

of independent interest. In dimension 3, the analogous statements about the

heat kernel are not true, as we will explain, but we can use a trick to reduce

the calculation of Betti numbers to estimates on the heat kernel only over the

thick part of Mn.
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We start with the case d ≥ 4. Fix k ∈ {1, . . . , d}, and let ft be the function

defined in 7.2.3. In view of Proposition 7.6, we need to prove

(7.13.1) lim
n

1

vol(Mn)

∫

Mn

ft(x) dx→ 0.

The crucial technical tool is the following.

7.14. Theorem. Given d ≥ 4 and t > 0, there is a constant C = C(d, t)

such that ∫

M≤ε/2

ft(x) dx ≤ C0 · vol(M≤ε)

for every compact hyperbolic d-manifold.

Assuming Theorem 7.14, let us prove (7.13.1). First, note that

lim
n

∫
Mn

ft(x) dx

vol(Mn)
= lim

n

∫
(Mn)≥ε

ft(x) dx

vol(Mn)
+

∫
(Mn)<ε

ft(x) dx

vol((Mn)<ε)
·
vol((Mn)<ε)

vol(Mn)

≤ lim
n

∫
(Mn)≥ε

c(t)InjRad(x)−d dx

vol(Mn)
+ C0 · lim

n

vol((Mn)<ε)

vol(Mn)
.

(7.14.1)

Here, c(t)InjRad(x)−d comes from Lemma 7.4 and the C0 is from Theorem 7.14.

On the far right, BS-convergence Mn → X implies that the limit is zero. So,

for any fixed r ≥ ε, splitting up the first term in (7.14.1) gives the upper bound

≤ lim
n

∫
(Mn)≥ε∩(Mn)<r

c(t)ε−d dx

vol(Mn)
+

∫
(Mn)≥r

c(t)r−d dx

vol(Mn)

≤ c(t)ε−d lim
n

vol((Mn)<r)

vol(Mn)
+ c(t)r−d

= c(t)r−d,

again by BS-convergence. Letting r → ∞, this proves (7.13.1).

7.15. The proof of Theorem 7.14. We shall work in radial horospherical

coordinates of the upper half space model of Hd

{(x1, . . . , xd ∈ Rd) : xd > 0}, ds2 =

∑
dx2i
x2d

.

Consider the vertical geodesic c = (0,∞) and the horizontal (intrinsically Eu-

clidean) horosphere Ed−1 passing through c at p = (0, . . . , 0, 1). We will con-

sider the coordinates (r, θ) for points on Ed−1 where r is the horospherical

radial distance to p and θ is the direction. (Note that the hyperbolic distance

of the point (r, θ) to p is roughly log r.) We can extend these coordinates

to the upper half space, letting (r, θ, a) denote the point a · x where x is the
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point on Ed−1 of coordinate (r, θ) and a is the isometric homothety corre-

sponding to a multiplication by a > 0 in Rn. Let Gc be the stabilizer of c in G,
Gc ∼= SO(d− 1)× R>0.

7.16. Lemma. There are R < ∞ and α > 1 such that if r1, r2 > R, then

for any two points points x1 = (r1, θ), x2 = (r2, θ) at the same direction θ and

any g ∈ Gc for which dg(x1), dg(x2) ≤ ε, we have

α−1 r1
r2
<
dg(x1)

dg(x2)
< α

r1
r2
.

Proof. Since the points x1, x2 are far from the invariant geodesic c =

(0,∞) and have small g-displacement, the distances d(g · xi, xi) are approxi-

mated, up to a bounded multiplicative error, by the intrinsic Euclidean distance

between the Euclidean projections of g ·xi and xi to the horosphere Ed−1. For

the projections (considered with the intrinsic distance), however, the ratio in

question is equal to r1
r2

by similarity of Euclidean triangles. �

Now let M◦
≤ε be a thin component that is a tubular neighborhood of a

short geodesic, and let M̃◦
≤ε be a connected component of its pre-image in the

upper half space. We may suppose that the short geodesic lifts to c = (0,∞).

Suppose that the length of the short geodesic is τ . Note that Gc = NG(Gc),

and hence it follows from the Margulis lemma that Γp,ε is contained in Gc.

Choose a fundamental domain for Γp,ε in M̃
◦
≤ε of the following form:

F = {(r, θ, a) : r ≤ ψ(θ), 1 ≤ a < eτ},

where ψ(θ) is defined to be the radial horospherical distance for which at

direction θ the minimal displacement is exactly ε, i.e.,

min{dγ(x) : γ ∈ Γp,ε \ {1}} = min{dγ(x) : γ ∈ Γ \ {1}} = ε

for x ∈ Ed−1 of coordinates (ψ(θ), θ).

7.17. Lemma. Given R > 0, there is some τ̃(R) > 0 such that if τ ≤ τ̃ ,

then

ψ(θ) > R ∀θ.

Proof. Let α > 0 be sufficiently small so that any two horocylic rays

r1(t) = (t, θ1, a) and r2(t) = (t, θ2, a) starting at an angle ≤ α stay at distance

≤ ε/2 from each other when t ≤ R. Since SO(d − 1) is compact, there is

some l ∈ N such that for any o ∈ SO(d − 1), there is j = j(o) ≤ l such that

∠(oj(v̂), v̂) < α for every v̂ ∈ Rd−1. Let λ > 0 be small enough so that any

two horocyclic rays orthogonal to c that start parallel to each other at distance

≤ λ stay at distance ≤ ε/2 for t ≤ T .

Take τT = λ
l . If g ∈ Gc is any isometry with displacement τ ≤ τ̃ and

rotational part o, it is easy to see that gj(o) has translational part ≤ λ on c
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and rotational part ≤ α. Thus its displacement is ≤ ε everywhere on the R

neighborhood of c. �

We may fix R > 0 and assume τ ≤ τ̃(R). To estimate the integral of

ft(x) over F , we divide the domain into two parts, F1 = {0 ≤ r ≤ R} and

F2 = {R < r < ψ(θ)}:
∫

F
ft(x)dx =

∫

F1

ft(x)dx+

∫

F2

ft(x)dx.

The first integral can be bounded using Lemma 7.10:
∫

F1

ft(x)dx ≤ vol(F1) ·C1τ
−1 ≤ τ · vol(Bd−1(R)) ·C1τ

−1 = vol(Bd−1(R)) ·C1,

where Bd−1(R) is a Euclidian (d − 1)-ball of radius R. So the first integral

is bounded by a constant. Recall that the volume of each thin component is

bounded below by a constant since one can inject an ε
2 ball tangent to the

boundary of the component.

Let us estimate the second integral. Note that by Lemma 7.16 the Γp,ε
minimal displacement at (r, θ) for r > R is at least α−1 εr

ψ(θ) . Therefore, using

Lemma 7.11 we deduce
∫

F2

ft(x)dx ≤ C2α
s
∫

θ∈Sd−2

∫ ψ(θ)

R

Ç
ε · r

ψ(θ)

å−s

· τ · rd−2drdθ

≤ Const · τ

∫

Sd−2

Ç
ψ(θ)s

∫ ψ(θ)

0
rd−s−2dr

å
dθ.

Here s =
î
d+1
2

ó
, and since d ≥ 4, we have d− s− 2 ≥ 0. It follows that
∫

F2

ft(x)dx ≤ Const

∫

Sd−2
τ · ψ(θ) · ψ(θ)d−2dθ.

The point is that the last term is, up to a constant, the volume of the thin

component. This concludes the proof of Theorem 7.14. �

7.18. The case d = 3. Equation (7.13.1) is false when d = 3, essentially

since ft has infinite integral when M has a cusp, and cusped manifolds can be

approximated by closed manifolds using hyperbolic Dehn surgery.

To discuss this in more detail, suppose thatM is a finite volume hyperbolic

d-manifold. When M is noncompact, the heat operators on k-forms e−t∆k are

not of trace class. In fact, following [90, eq. (3.3)], we may endow M with a

height function in the cusps. For Y big enough, the truncation M(Y ) of M at

height Y is diffeomorphic to the so-called Borel–Serre compactification of M .

Fixing t, it is a consequence of the Selberg trace formula (see, e.g., [58] for the

case of functions and [90, eq. (5.5)] for the general case) that
∫

M(Y )
tr e−t∆k(x, x)dx ∼ k0 log Y + c.
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Here, the notation A(Y ) ∼ B(Y ) means that A(Y )−B(Y ) → 0 as Y → +∞,

and k0 and c are positive constants that depends on t. (In the case of 0-forms,

k0 =
h
2π

∫+∞
0 e−t(1+s

2)ds, where h is the number of cusps.)

In particular, for Y big enough, we have
∫

M(Y )
tr e−t∆k(x, x)dx ≥ 2vol(M).

When M has dimension d = 3, hyperbolic Dehn surgery constructs from M a

closed hyperbolic manifold M ′ so that M≤Y is almost isometrically embedded

inside M ′ and vol(M ′) is close to vol(M). In particular, we may construct M ′

so that ∫

M ′
tr e−t∆k(x, x)dx ≥ vol(M ′).

Now take k = 1. Starting from a sequence of finite volume, noncompact,

hyperbolic manifolds that BS-converges toward Hd, the construction above

yields a sequence of closed hyperbolic manifolds (Mn) such that
∫

Mn

tr e−t∆1(x, x)dx ≥ vol(Mn).

On the other hand, the integral 1
vol(Mn)

∫
Mn

tre−t∆
(2)
1 (x, x)dx is finite, bounded

uniformly in n and approaches β
(2)
1 (H3) = 0 as t tends to infinity. In particular,

for t small enough, we may assume that
∫

Mn

tr e−t∆
(2)
1 (x, x)dx ≤

1

2
vol(Mn).

And it follows that (7.13.1) cannot hold (when d = 3).

We now prove Theorem 7.13 when d = 3. Suppose that (Mn) is a sequence

of finite volume9 hyperbolic 3-manifolds that BS-converges to H3. In light of

Proposition 7.6, we need to show that10

(7.18.1) lim
n→+∞

b1(Mn)

vol(Mn)
≤ β

(2)
1 (H3).

Fix ε less than the Margulis constant. When M is a finite volume hy-

perbolic 3-manifold, we let MT be the union of the ε-thick part of M and any

components of the ε-thin part on which the injectivity radius is bounded below

by ε/2.

7.19. Lemma. MT is a closed, 3-dimensional submanifold whose boundary

consists of tori or Klein bottles smoothly embedded in M , and the components

of M \MT are either solid tori or solid Klein bottles (i.e., disk bundles over

9This argument even works for nonuniform lattices, while the estimates in the d ≥ 4 case

are just for uniform lattices.
10Note that the right-hand side below is 0, but we will not make use of that.
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a circle) or are products T 2 × (0,∞) or K2 × (0,∞). Furthermore, MT has

“bounded geometry,” in the sense of [84, Def. 2.24].

As we will see below, “bounded geometry” requires that the boundary of

MT is not too distorted in M , which is why we take MT instead of just the

ε-thick part.

Proof. In dimension 3, the Margulis lemma implies that each component

of the thin part M \MT is the quotient of either a metric neighborhood of a

geodesic in H3 or of a horoball; this implies that the boundary is smooth, and

it gives the topological information above.11 See also [17] for details.

In [84, Def. 2.24], “bounded geometry” means the following. First, the

injectivity radius of MT should be bounded below, which is true by definition.

Second, the geodesic flow starting from the inward normal vector field on ∂MT

should give a collar neighborhood of the boundary with radius bounded be-

low; this follows since the injectivity radius of MT is bounded below and since

the components of the preimage of M \MT in H3 are convex. (This again is

a 3 dimensional phenomenon and is false in higher dimension.) Finally, the

derivatives of the metric tensor and its inverse should be bounded, both in ex-

ponential coordinates and the “boundary normal coordinates” on the collar of

∂MT above. In exponential coordinates, the bounds come from differentiating

the metric tensor on H3, while in boundary normal coordinates, one uses that

the second fundamental form of ∂MT ⊂ M has bounded derivatives, as it is

the quotient of a horosphere or of a metric neighborhood of a geodesic with

radius bounded below by ε/4. �

For all four topological types of components ofM \MT , the first cohomol-

ogy of the boundary surjects, so using Mayer–Vietoris sequence we see that

b1(M) ≤ b1(MT ).

Therefore, to prove (7.18.1) it suffices to estimate the Betti numbers of (Mn)T .

Let ∆ be the Laplacian operator on differential 1-forms on M , and let

e−t∆(x, x) be the corresponding heat kernel. We also let ∆T
1 be the Laplacian

operator on differential 1-forms onMT with absolute boundary conditions, and

11Isometries of H3 that translate along an axis c are compositions of pure translations

and 2-dimensional rotations in the orthogonal direction. So for a given r > 0, a loxodromic

isometry of H3 with geodesic axis c acts with the same translation distance on every point of

the boundary ∂Nr(c) of the r-neighborhood around c. This is not true in higher dimensions,

since the rotational part of an isometry can be more complicated, and in fact the components

of M \ MT that are (nonmetric) neighborhoods of closed geodesics may not have smooth

boundary.
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denote by e−t∆
T
1 (x, x) its integral kernel. It follows from [50, Th. 6.1] that

(7.19.1) b1(MT ) = lim
t→∞

Tr e−t∆
T
1 = lim

t→∞

∫

M≥ε

tr e−t∆
T
1 (x, x) dx;

note that since Tr e−t∆1 =
∑
i e

−tλi , where λi are the eigenvalues of ∆T
1 , the

expression above is monotone decreasing in t, so the limit exists.

Recall that β
(2)
1 (H3) = limt→∞ tr e−t∆

(2)
1 (x̃, x̃), where e−t∆

(2)
1 (x̃, x̃) is the

L2-heat kernel of H3. In light of (7.19.1), it suffices to fix t > 0 and show that

(7.19.2) lim sup
n→∞

1

vol(Mn)

∫

(Mn)T

tr e−t∆
T
1 (x, x) dx ≤ tr e−t∆

(2)
1 (x̃, x̃)

for some (arbitrary) x̃ ∈ H3. Then taking t→ ∞ proves (7.18.1).

Fix some large R � 1 > ε, and consider the subset (Mn)≥R ⊂ (Mn)T .

Then the boundary of (Mn)T is uniformly far from (Mn)≥R, and by a theorem

of Lück and Schick [84, Th. 2.26] we have that for all x ∈ (Mn)≥R,

||e−t∆
T
1 (x, x)− e−t∆1(x, x)|| ≤ C(t, R),

where C(t, R) → 0 as R → ∞. (Note: although their statement assumes that

Mn has bounded geometry, which in this case means the global injectivity

radius InjRadMn > 0, it suffices in their proof to assume a lower injectivity

radius bound on (Mn)≥R, which is automatic.) So, by Lemma 7.4, for all

x ∈ (Mn)≥R,

||e−t∆
T
1 (x, x)− e−t∆

(2)
1 (x̃, x̃)|| ≤ C(t, R) + C(t)R−3 = C ′(t, R),

where again C ′(t, R) → 0 as R → ∞. Hence, for all n, we have the average

value

(7.19.3)
1

vol(Mn)≥R

∫

(Mn)≥R

tr e−t∆
T
1 (x, x) dx ≤ tr e−t∆

(2)
1 (x̃, x̃) + C ′(t, R).

Next, if x ∈ Dn = (Mn)T \ (Mn)≥R, we have by [84, Th. 2.35] that

||e−t∆
T
1 (x, x)|| ≤ C(t),

since by Lemma 7.19 the manifold with boundary (Mn)T has bounded geom-

etry, in the sense of [84, Def. 2.24]. So, we also have the average value

(7.19.4)
1

volDn

∫

Dn

tr e−t∆
T
1 (x, x) dx ≤ C(t).
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Combining (7.19.3) and (7.19.4), we obtain that for all n,

lim sup
n→∞

1

vol(Mn)T

∫

(Mn)T

tr e−t∆
T
1 (x, x) dx

≤
vol (Mn)≥R

volMn

Å
tr e−t∆

(2)
1 (x̃, x̃) + C ′(t, R)

ã
+

volDn

volMn
C(t)

≤ tr e−t∆
(2)
1 (x̃, x̃) + C ′(t, R) +

volDn

volMn
C(t).

For a fixed R, by first letting n→ ∞, we deduce from BS-convergence that the

last term vanishes in the limit. Finally, by sending R → ∞, the term C ′(t, R)

disappears. �

8. Growth of torsion

In this last section we consider only those X = G/K for which all β
(2)
k (X)

vanish. It is then natural to consider the secondary invariant given by the

L2-torsion. We first review its definition and then consider the corresponding

approximation problems. We continue with the notation of the preceeding

sections. In particular, we let Γ be a cocompact torsion-free subgroup of G

and let M = Γ\X.

8.1. L2- and analytic torsion. We will work in the setting of [24]: here we

will be as brief as possible concerning definitions, etc., and refer to that paper

for all details.

Given a finite-dimensional representation ρ of GC on a vector space E

one can construct a canonical G-equivariant Hermitian bundle Eρ on X with

fiber E. The space of square-integrable k-forms with coefficients in Eρ is

then endowed with a Laplacian ∆
(2)
k and associated heat kernels e−t∆

(2)
k

(ρ)

which are bounded operators given by convolution with a G-equivariant kernel

e−t∆
(2)
k

(ρ)(x, y) (a section of a bundle over X×X). The trace tr e−t∆
(2)
k

(ρ)(x, x)

does not depend on x ∈ X. Let Γ(s) denote the Euler Gamma-function; the

determinant det∆
(2)
k is then defined by

log det∆
(2)
k =

d

ds

∣∣∣∣
s=0

Ç
1

Γ(s)

∫ 1

0
ts−1tr e−t∆

(2)
k (x, x)dt

å

+

∫ +∞

1
t−1tr e−t∆

(2)
k (x, x)dt

(see [85, Def. 3.128] for a justification) and the L2-torsion t
(2)
X (ρ) is defined by

(8.1.1) t
(2)
X (ρ) =

1

2

∑

k≥0

(−1)kk log det∆
(2)
k .
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The bundle Eρ descends to a bundle V on M , with Laplacians ∆k and

heat kernels e−t∆k ; similar to the L2-case one can define determinants of the

∆k and analytic torsion TM (ρ). We raise the following question/conjecture.

8.2. Conjecture. Let (Mn) be a uniformly discrete sequence of compact

X-manifolds that BS-converges to X . Then we have

log TMn(ρ)

vol(Mn)
→ t

(2)
X (ρ).

We note that t
(2)
X (ρ) is nonzero if and only if δ(G) = 1, i.e., if G is one

of the groups SL2(C), SL3(R), SOn,m, nm odd. In principle one can compute

an explicit value of t
(2)
X for all G and ρ; see [24, §5]. When G = SO2p+1,1, the

space X is the real hyperbolic space H2p+1. For trivial ρ [85, Th. 3.152], we

have

t
(2)
H3 = −

1

6π
, t

(2)
H5 =

31

45π2
, . . . .

8.3. Strongly acyclic coefficients. The representation ρ is said to be strongly

acyclic if there is a constant η such that for every cocompact Γ ⊂ G and for

every k, the spectrum of the Laplace operator ∆k on Γ\X is contained in

[η,+∞[. (In particular, this implies that H∗(M ;V ) = 0.) When ρ is strongly

acyclic, Conjecture 8.2 was proven for normal chains in [24, Th. 4.5]. The

proof of loc. cit. adapts immediately to the setting of Benjamini–Schramm

convergence, simply by replacing the main lemma there by Lemma 7.4. Thus

we obtain

8.4. Theorem. Assume that ρ : G→ GL(E) is strongly acyclic. Let (Mn)

be a uniformly discrete sequence of compact X-manifolds that BS-converges

toward X . Then we have

log(TMn(ρ))

vol(Mn)
→ t

(2)
X (ρ).

8.5. Example. Given any orientable compact hyperbolic 3-manifold M =

Γ\H3, we can consider the discrete faithful SL2(C)-representation αcan : Γ ↪→

SL2(C). It is strongly acyclic. (See Example (3) of [24, §5.9.3] with (p, q) =

(1, 0).) In particular, the corresponding twisted chain complex

C∗(M̃)⊗Z[Γ] C
2

is acyclic and it follows that the corresponding Reidemeister torsion τ(M,αcan)

∈ R∗ is defined. According to the Cheeger–Müller theorem extended to uni-

modular representation by Müller [89], we have TM (ρ) = |τ(M,αcan)|, and

Theorem 1.13 follows from Theorem 8.4.
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8.6. Torsion homology. In this (largely speculative) section we suppose

that ρ is trivial. According to the Cheeger–Müller theorem [35], [89], the

analytic torsion TM decomposes as a product of

dimX∏

k=0

(−1)k+1|Hk(M,Z)tors|

by a so-called regulator ; see [24, eq. (2.2.4)]. This relates Conjecture 8.2 to

the following question: Let Mn be a sequence of compact X-manifolds that

BS-converges to X. Do we have

log |Hk(Mn,Z)tors|

vol(Mn)
→




|t
(2)
X | if k = dimX−1

2 ,

0 otherwise

for every k ≤ dim(X)?

To avoid discussing the growth of Hk(Mn) for k 6= (dim(X) − 1)/2,

here we will restrict to the case X = H3 so that Hk(Mn) are torsion-free

if k 6= dimX−1
2 = 1 and t

(2)
X = −(6π)−1. In this setting there are extensive

computations by Şengun [43] for covers of a fixed manifold that suggest the

answer to the question above is negative, indicating that the contribution of the

regulator to the limit in Conjecture 8.2 should be nonzero in general. However

the same computations suggest that this is not the case when considering only

congruence covers of an arithmetic manifold. See [21] for a detailed discus-

sion on regulators and the differences between congruence and noncongruence

covers.

The following result of Brock–Dunfield [31] finally shows that Conjec-

ture 8.2 cannot hold for general (nonuniformly discrete) sequences.

8.7. Theorem. There exists a sequence of hyperbolic integer homology

3-spheres that BS-converges toward the hyperbolic 3-space.

According to the Cheeger-Müller theorem, if M is a homology sphere

then TM = 1. Thus the theorem above provides us with a sequence Mn that

converges to H3 in the Benjamini–Schramm sense but such that the conclusion

of the conjecture is violated in an extreme way.

8.8. Knot exteriors. Given a hyperbolic knot, Dunfield, Friedl and Jack-

son [51] have introduced an invariant TK(t) ∈ C[t±1] that is defined as the

normalized twisted Alexander polynomial of K corresponding to the discrete

and faithful SL2(C)-representation of the knot group. It follows from [77, Th. 4]

that the following holds. Let Mn be the n-th cyclic ramified cover of S3 along

K. Then for n large enough, Mn is hyperbolic and

(8.8.1) lim
n→+∞

1

n
log |τ(Mn, αcan)| = − logm(TK),
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where m is the exponential Mahler measure. On the other hand, Friedl and

Jackson [57] produce computations that suggest that logm(TK) correlates

strongly with vol(K): as vol(K) tends to infinity, the ratio logm(TK)/vol(K)

seems to tend to a constant ≈ 0.29.

Let Mn be the hyperbolic orbifold with underlying space S3 and n-th

cyclic singularity along K. Then Mn is a regular n-sheeted cover of Mn.

Now recalling that Mn BS-converges toward S3 −K (and, in particular, that

vol(Mn) → vol(K)) as n tends to infinity and that 11/12π ≈ 0.29, in view of

Theorem 1.13 and equation (8.8.1) it is natural to ask the following question

(compare [97]):

Question. Let (Kn) be a sequence of hyperbolic knots in S3 such that

vol(Kn) → +∞. Can it happen that the sequence of finite volume hyperbolic

manifolds S3 −Kn BS-converge toward H3?
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MTA Alfréd Rényi Institute of Mathematics, Budapest, Hungary

E-mail : abert.miklos@renyi.mta.hu

Sorbonne Universités, UPMC Université Paris 06, Institut
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