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Abstract: In this paper, we develop new methods to assess safety risks of an integrated 

GNSS/LiDAR navigation system for highly automated vehicle (HAV) applications. LiDAR 

navigation requires feature extraction (FE) and data association (DA). In prior work, we established 

an FE and DA risk prediction algorithm assuming that the set of extracted features matched the set 

of mapped landmarks. This paper addresses these limiting assumptions by incorporating a Kalman 

filter innovation-based test to detect unwanted object (UO). UO include unmapped, moving, and 

wrongly excluded landmarks. An integrity risk bound is derived to account for the risk of not 

detecting UO. Direct simulations and preliminary testing help quantify the impact on integrity and 

continuity of UO monitoring in an example GNSS/LiDAR implementation. 
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1. Introduction 

This paper describes the design, analysis, and preliminary testing of a new method to quantify 

safety in GNSS/LiDAR navigation systems. An integrity risk bound is derived, which accounts for 

failures to detect undesirable, unmapped and wrongly extracted obstacles. The paper describes an 

innovation-based method, which is an alternative to the solution separation approach used in [1]. In 

addition, the paper provides the means to quantify the impact of unwanted objects (UO) on the risk 

of incorrect association. This work is intended for driverless cars, or highly automated vehicles (HAV) 

[2,3], operating in changing environments where unknown, moving obstacles (cars, buses, and 

trucks) are not wanted as landmarks for localization, and may occlude other useful, mapped 

landmarks.  

This research leverages prior analytical work carried out in civilian aviation navigation where 

safety is assessed in terms of integrity and continuity [4]. These performance metrics are sensor- and 

platform-independent. Integrity is a measure of trust in sensor information: integrity risk is the 

probability of undetected sensor errors causing unacceptably large positioning uncertainty [4]. 

Continuity is a measure of the navigation system’s ability to operate without unscheduled 

interruption. Both loss of integrity and loss of continuity can place the HAV in hazardous situations 

[4,5]. 

Several methods have been established to predict integrity and continuity risks in GNSS-based 

aviation applications [6–8]. Unfortunately, the same methods do not directly apply to HAVs, because 

ground vehicles operate under sky-obstructed areas where GNSS signals can be altered or blocked 

by buildings and trees. 

HAVs require sensors in addition to GNSS, including LiDARs, cameras, or radars. This paper 

focuses on LiDARs because of their prevalence in HAVs, of their market availability, and of our prior 
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experience. A raw LiDAR scan is made of thousands of data points, each of which individually does 

not carry any useful navigation information. Raw measurements must be pre-processed before they 

can be used to estimate HAV positioning and orientation (or pose).  

A first class of algorithms establishes correlations between successive scans to estimate sensor 

changes in ‘pose’ (i.e., position and orientation) [9–12]. These procedures, including the Iterative 

Closest Point (ICP) approach [13], can become cumbersome when evaluating safety of HAVs moving 

over time. A second class of algorithms provides sensor localization by tracking recognizable, static 

features in the perceived environment (seminal references and survey papers can be found in [14–
19]). Features can include, for example, lines or planes corresponding to building walls in two- or 

three-dimensional scans, respectively. Previous knowledge of feature parameters can be provided 

either from a landmark map, or from past-time estimation in Simultaneous Localization and 

Mapping (SLAM) [15,20]. The resulting information can then be iteratively processed using 

sequential estimators in SLAM (e.g., Extended Kalman filter or EKF), which is convenient in practical 

implementations. To estimate the HAV’s pose starting from a raw LiDAR scan, two intermediary, 
pre-estimator procedures must be carried out: feature extraction (FE), and data association (DA).  

First, FE aims at finding the few most consistently recognizable, viewpoint-invariant, and 

mutually distinguishable landmarks in the raw sensor data. Second, DA aims at assigning the 

extracted features to the corresponding feature parameters assumed in the estimation process, i.e., at 

finding the ordering of mapped landmarks that matches the ordering of extracted features over 

successive observations. Incorrect association is a well-known problem that can lead to large 

navigation errors [21], thereby representing a threat to navigation integrity. FE and DA can be 

challenging in the presence of sensor uncertainty. This is why many sophisticated algorithms have 

been devised [17–19,21–23]. But, how can we prove whether FE and DA are safe for life-critical HAV 

navigation applications?  

This research question is mostly unexplored. Several publications on multi-target tracking 

describe relevant approaches to evaluate the probability of correct association in the presence of 

measurement uncertainty [24,25]. However, these algorithms are not well suited for safety-critical 

HAV applications due to their lack of prediction capability, to approximations that do not necessarily 

upper-bound risks, and to high computational loads. Also, the risk of FE is not addressed. Overall, 

research on integrity and continuity of FE and DA is sparse.  

This paper builds upon prior work in [1,26–28], where we developed an analytical integrity risk 

prediction method using a multiple-hypothesis innovation-based DA process. We established a 

compact expression for the integrity risk of LiDAR-based pose estimation over successive iterations. 

However, references [26–28] made simplifying assumptions that limit the applicability of these prior 

results. For example, we assumed that the set of landmarks in the a-priori map was exactly the same 

as the one being extracted. This assumption was relaxed in [1] where we developed an integrity-risk-

minimizing data-selection method. To achieve this, we derived a bound on the risk of incorrect 

association, with which a subset of measurements can be used while considering potential wrong 

associations with all landmarks surrounding the LiDAR. This bound was used in a preliminary 

approach to detect UO using solution separation tests. In practice, UO such as other vehicles passing 

by are likely to be extracted, and may even occlude other mapped landmarks. Obstacle detection 

methods have been developed to mitigate the impact of such UOs (example methods are described 

in [29,30]). But, the safety risks of using UOs as landmarks for navigation have yet to be fully 

quantified. 

In response, in this paper, we derive new methods to quantify the integrity risk caused by 

failures to detect unwanted obstacles (UO), while guaranteeing a predefined false alert risk 

requirement.  

Section 2 of the paper provides an overview of the risk evaluation methods developed in [1,26–
28], and of their limitations. These methods use a nearest-neighbor DA criterion [9], defined by the 

minimum normalized norm of the EKF innovation vectors over all possible landmark permutations. 

Sections 3 and 4 deal with the situation where a mapped landmark is not extracted, but another 

unknown obstacle is extracted instead (e.g., case of an obstacle masking a mapped landmark). This 
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k   is the standard deviation of the estimation error for the vehicle state of interest (or linear 

combination of states);  

2 { , }P dof T


 is the probability that a chi-squared-distributed random variable with “dof” degrees of 

freedom is lower than some value T; 

ln    is the number of measurements at time step l ; 

lm    is the number of estimated state parameters at time step l ; 

,FE lI   is an integrity risk budget allocation, i.e., a fraction of 
kREQI ,

 that we choose to satisfy: 

, ,FE k REQ kI I ; 
2

lL   is the minimum mean normalized separation between landmark features that can be 

guaranteed with probability larger than 
,1 FE lI− . The normalized feature separation 

metric is derived in [28]. 2

lL  is derived at FE using a map or database of landmarks or 

using landmark observations at previous time-steps in SLAM;  
2

l    is a mapping coefficient from separation space to EKF innovation space. This coefficient 

is determined by solving an eigenvalue problem in [28]. The minimum eigenvalue is 

taken to lower bound ( )KP CA , which is conservative; 
2 2

l lL     forms a probabilistic lower bound on the mean innovation’s norm, which is further 
described in the Section 2.2. 

The integrity risk bound in Equation (1) is refined in this paper to account for the presence of 

UOs and for failures to detect them. Equation (1) captures a key tradeoff in data association: on the 

one hand, using only few measurements can cause a large nominal estimation error and hence large 

( | )k KP HMI CA ; but on the other hand, few measurements from sparsely distributed landmarks can 

improve ( )KP CA  because features are “separated”, distinguishable, and therefore can be robustly 
associated. )( kHMIP  is unknown, but we can assess safety by comparing 

kREQI ,
 to the upper bound 

given in Equations (1)–(3), where all terms are known.  

2.2. Innovation-Based Data Association 

Equation (1) is derived for an innovation-based DA process, which is further described in the 

following paragraphs. Let Ln  be the total number of visible landmarks and Fn  the number of 

estimated feature parameters per landmark. Feature parameters can include landmark position, size, 

orientation, surface properties, etc. When using LiDAR only (we integrate GNSS in Section 5), the 

total number of feature parameters within the visible landmark set is: k L Fn n n . We can stack the 

actual (true) values of the extracted feature parameters for all landmarks in an 1kn   vector kz . Let 

kẑ  be an estimate of kz . We assume that the cumulative distribution function of kẑ  can be 

bounded by a Gaussian function with mean kz and covariance matrix kV  [31–33]. We use the 

notation: ˆ ~ ( , )k k kNz z V .  

The nonlinear measurement equation can be written in terms of the 1km   state parameter 

vector kx  as 

kkkk vxhz += )(ˆ  (4) 

where 

kx  includes vehicle pose parameters and may also include landmark feature parameters (for SLAM-

type approaches); 

kv  is the extracted measurement noise vector: ),(~ 1 knk N V0v  , where ba0  is an ba  matrix of 

zeros. 

The mean of kẑ  is )( kkk xhz = . Equation (4) can be linearized about an estimate kx  of kx :  
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  is a scalar search parameter (fault magnitude) that is varied to maximize the 

integrity risk at each time k ; 

,MAX kg  is the worst-case failure mode slope (FMS) over all UO hypotheses, determined 

using the method given in [35]; 

2

2{ , , }
NC
P dof T


  is the probability that a noncentrally chi-squared distributed random variable with 

“dof” degrees of freedom and noncentrality parameter 2  is lower than some value T; 
2

kT . is a detection threshold set in accordance to a continuity risk requirement 
REQC  in 

Equation (11); 

,MDE lI  is an integrity risk budget allocation, i.e., a fraction of 
kREQI ,

, chosen to satisfy 

, , .MDE k REQ kI I  

5. Performance Analysis 

In this section, example simulations and testing introduced in [26–28,40,41] are employed to 

compare the ( )kP HMI  bounds assuming no UOs in Equations (1)–(3) versus accounting for possible 

UOs in Equations (21)–(23).  

5.1. Direct Simulation: Vehicle Roving through a GNSS-Denied Area 

This analysis investigated the safety performance of a GPS/LiDAR navigation system onboard a 

vehicle roving through a forest-type environment. GPS signals were blocked by the tree canopy, and 

low-elevation satellite signals did not penetrate under the trees. Tree trunks served as landmarks for 

a two-dimensional LiDAR using a SLAM-type algorithm.  

The measurement vector kẑ  in Equation (4) was augmented with GPS code and carrier 

measurements. The state vector kx  was augmented to include an unknown GPS receiver clock bias 

and carrier phase cycle ambiguities. Time-correlated GPS signals and nonlinear LiDAR data were 

processed in a unified time-differencing EKF derived in [33,34]. The main simulation parameter 

values are listed in Table 1, and a differential GPS measurement error model was used, which is fully 

described in [41]. In this scenario, GPS and LiDARs essentially relayed each other with seamless 

transitions from open sky through GPS-denied areas where landmarks were modeled as poles with 

nonzero radii.  

Table 1. Simulation parameters. 

System Parameters Values 

Standard deviation of raw LiDAR ranging measurement  0.02 m 

Standard deviation of raw LiDAR angular measurement  0.5 deg 

LiDAR range limit  20 m 

GNSS and LiDAR data sampling interval 0.5 s 

Standard deviation of raw GNSS code ranging signal 1 m 

Standard deviation of raw GNSS carrier ranging signal 0.015 m 

GNSS multipath correlation time constant 90 s 

Vehicle speed 1 m/s 

Alert limit ℓ  0.5 m 

Integrity risk allocation for FE, IFE,k 10−9 

Integrity risk allocation for MDE, IMDE,k 10−10 

Continuity risk requirement, CREQ,k  10−3 

As shown in Figures 2–4 and 6, we consistently employed the following yellow-green-blue color 

code: the mission started with the vehicle operating in a GPS available area (yellow-shaded). Satellite 

signals available during initialization enabled accurate estimation of cycle ambiguities, so that vehicle 

positioning uncertainty did not exceed a few centimeters. Then, as the vehicle moved and crossed the 



Sensors 2018, 18, 2740 10 of 17 

 

GPS- and LiDAR-available area (green-shaded) and the LiDAR-only area (blue-shaded), seamless 

variations in covariance were achieved. A detailed description of this simulation is given in [41]. In 

this scenario, the likelihood of IA is high.  

First, as shown in Figure 2, we assumed that no UO was present but IAs occurred. One indicator 

of IA is displayed on the top of the upper left-hand-side (LHS) plot in Figure 2. It shows that the 

actual cross-track positioning error (thick black line) versus distance travelled exceeded the 

corresponding one-sigma covariance envelope (thin black line). This suggests that errors impacting 

positioning are not captured by the covariance. 

This is confirmed on the lower part of the upper LHS chart in Figure 2, where the black curve 

showing the ( | )k KP HI CA  bound stayed below 710− . This curve can directly be derived from the 

EKF covariance. It does not account for IA. In contrast, the red ( )kP HI -bound curve reached a first 

plateau of 
,FE kI = 10−9 as soon as two landmarks were visible by design of our risk evaluation method 

[28]. The ( )kP HI  curve then suddenly increased to 10−5 at approximately 29 m of travel distance.  

To explain this sudden jump, the top right-hand-side (RHS) chart in Figure 2 shows that, at the 

travel distance of 29 m (i.e., at travel time = 29 s) corresponding to the large increase in predicted 

integrity risk, landmark “1” was hidden behind landmark “4”. To the LiDAR, landmark “1” became 
visible again at the next time step, which made correct measurement association with either landmark 

“1” or “4” extremely challenging. The ( )kP HI  bound accounted for the risk caused by such events. 

This is consistent with other results presented in [1,26–28]. 

The bottom LHS chart in Figure 2 shows the simulated GPS satellite geometry on an azimuth 

elevation plot of the sky. At travel time 29 s, the tree canopy blocked all satellite signals. The bottom 

RHS chart displays the simulated LiDAR measurements showing again that landmark “1” was not 
visible from the LiDAR’s viewpoint. 

 
 

 

Figure 2. Simulation results assuming no unwanted objects (UO). (top left) On the upper plot, the 

thick black line represents the actual cross-track positioning error and the thin line is the one-sigma 

covariance envelope. The lower plot shows P(HIk) bounds for the GPS-denied area crossing scenario. 

(top right) Snapshot vehicle-landmark geometry at the time step corresponding to the large increase 
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in P(HIk) Bound (time = 29 s). (bottom left) Azimuth elevation sky plot showing GPS satellite 

geometry at time = 29 s. (bottom right) Snapshot LiDAR scan at time = 29 s when landmark “1” is 
hidden behind landmark “4”. 

In Figure 3, the risk of having a UO occluding a landmark is taken into account. Our new 

integrity risk evaluation method was implemented. We could quantify the impact on P(HMIk) of 

undetected UOs assuming systematic CA by measuring the difference between the dashed black line 

( | )k KP HI CA  derived using [28] and the solid black line )|( Kk CAHMIP . We noticed again that 

( | )k KP HI CA  (directly derived from the EKF covariance) was a poor safety metric because it stayed 

below 710− , whereas )|( Kk CAHMIP , accounting for UOs, exceeded 210− . In parallel, the red curves 

account for the risk of incorrect association (IA). The difference between the dashed red line and the 

solid red line, which respectively reached 510−  and above 210− , shows the impact on P(HMIk) of 

undetected UOs. 

To better understand the shape of the overall )( kHMIP  bound, Figure 4 shows the 

contributions of each single-UO hypothesis (assuming no UO, assuming a UO masking landmark 

“1”, assuming a UO masking landmark “2”, etc.). In Figure 4, the color code used in the LHS graph 
is also employed in the RHS plot to represent the landmark involved in the corresponding fault 

hypothesis. Peaks in )( kHMIP -bound contributions occurred when the landmark geometry and 

redundancy was too poor to ensure reliable detection of a given UO. The overall )( kHMIP  bound 

was the maximum of all the contributions at each time step and is represented with a thick green line. 

 

Figure 3. P(HMIk) bounds taking into account the possibility of IA and the potential presence of UOs. 

The difference between the dashed black line and the solid black line quantifies the impact on P(HMIk) 

of undetected UOs when assuming correct association (CA). The difference between the dashed red 

line and the solid red line measures the impact on P(HMIk) of undetected UOs when accounting for 

incorrect associations.  
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Figure 4. Simulation results accounting for UOs. (a) P(HMIk)-bound contributions under each UO 

hypothesis (H0 assumes no UO, H1 assumes a UO masks landmark “1”, etc.): the overall risk is the 
thick green line. (b) Color-coded landmark geometry: the color code identifies which landmark is 

masked by a UO under the corresponding hypothesis in the left-hand-side plot. 

5.2. Preliminary Testing in an Incorrect-Association-Free Environment 

Preliminary experimental testing was carried out using data collected in a structured 

environment shown in Figure 5. Static simple-shaped landmarks were located at locations sparse 

enough to ensure successful outcomes for FE and DA. Because the results presented here were free 

of incorrect associations, )( kHMIP  was expected to match )|( Kk CAHMIP . This test data was used 

to focus on the risk of UO misdetection. 

Measurements from carrier phase differential GPS (CPDGPS) as well as LiDAR scanners were 

synchronized and recorded. In order to obtain a full 360-degree LiDAR scan, two 180-degree LiDAR 

scanners were assembled back-to-back. The LiDAR scanners had a specified 15–80-m range limit, a 

0.5-degree angular resolution, a 5-Hz update rate, and a ranging accuracy of 1–5 cm (1 sigma) [42]. 

The GPS antenna was mounted on top of the front LiDAR. The lever-arm distance between the two 

LiDARs was accounted for. The two LiDARs and the GPS antenna were mounted on a rover also 

carrying the GPS receiver and data-link. An embedded computer onboard the vehicle recorded all 

measurements including the raw GPS data from the reference station transmitted via a wireless 

spread-spectrum data-link. Truth trajectory was obtained using a fixed CPDGPS solution.  

The upper LHS chart in Figure 6 confirms that this is an incorrect-association-free scenario 

because the actual error (thick line) fits within the covariance envelope (thin line) throughout the test. 

In addition, the lower LHS graph in Figure 6 shows )( kHMIP -bound contributions for each single-

UO hypothesis. The six )( kHMIP  bounds corresponding to UO hypotheses are shown using the 

same color code as in Figure 4, and the UO-free hypothesis is the dashed line. The color code is used 

on the RHS chart, which also shows the landmark geometry. In the LHS graph, )( kHMIP  increases 

substantially when accounting for undetected UO (thick black curve), as compared to ignoring their 

potential presence (dashed red line). UO occluding landmarks “1” and “2” cause by far the largest 
increase in )( kHMIP  bound. In this SLAM-type implementation where the map is built 

incrementally, landmarks observed early in the rover trajectory play a key role throughout the 

mission, which explains the method’s sensitivity to potential extraction faults on landmarks “1” and 

“2”. In future work, we will try to reduce the )( kHMIP  bound using redundant information from 

other sensors, from additional landmarks, and from additional landmark features. 
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Figure 5. Experimental setup of a forest-type scenario, where a GPS/LiDAR-equipped rover is driving 

by six landmarks (cardboard columns) in a GPS-denied area. GPS is artificially blocked by a simulated 

tree canopy and a precise differential GPS solution is used for truth trajectory determination.  

 

Figure 6. Experimental results accounting for UOs (a) P(HMIk)-bound contributions for each 

unmapped object (UO) hypothesis for the preliminary experimental dataset: the overall risk is the 

thick black line. (b) Color-coded subsets identifying which landmark is occluded by a UO under each 

one of the six single-UO hypotheses. 

6. Conclusions 

This paper presents a new approach to improve the safety of LiDAR-based navigation by 

quantifying the risks of missed detection of unwanted objects (UO). UOs can occlude useful 

landmarks, thereby causing large navigation errors. We established a bound on the integrity risk 

caused by UOs. First, we presented an innovation-based detector, and we established an analytical 

expression for the impact of undetected UO on the positioning error assuming correct association. 

Then, we derived a bound on the risk of incorrect association (IA) in the presence of UO. Direct 

simulation and preliminary testing in a structured environment demonstrated the proposed 

method’s ability to quantify safety risks in the presence of both UOs and IAs. It showed, for example, 

that the Kalman filter covariance is a poor metric of safety performance. The analysis of our 

preliminary experimental results suggests that additional redundant information from other sensors 

would be needed to safely detect UOs in the LiDAR’s surroundings.  
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Hence, Equation (20). 2

,MDE l  is the smallest value of the test statistic NCP that can cause no 

detection with probability lower than 
,MDE lI . Any error larger than that will be detected with 

probability larger than 1-
,MDE lI , which is considered safe. Substituting Equation (A4) into (A3), 

Equation (A3) becomes 

2 2

, , ,( ) ( | )l l l MIN l MDE l MDE lP ND IA P IA y I   +  (A6) 

As described in Section 2, the IA event may be expressed as 2 2

, 0,l MIN l lIA     when the “MIN ” 

differs from 0. We address the fact that the random variables 2

,MIN l  and 2

0,l  are correlated using the 

exact same steps as in [28]. The derivation in [28] shows that the following event includes 
lIA : 

1

, , , 4T T

MIN l MIN l MIN l l l

− y Y y q q  (A7) 

where 

,MIN ly  is defined in Equation (7) and is not zero because of IA (not due to UOs); 

,MIN lY  is defined in Equation (9); 

lq  is an ( ) 1l ln m+   vector such that ,~ ( , )
l l

l Q l n m
N

+
q μ I ; 

4 the factor four is derived in [28] by solving an eigenvalue problem involving a sum of two 

idempotent matrices. 

In this work, we distinguish the impacts of the IA and UO. Recall that the CA is the one where 

all landmarks that are not occluded by a UO are correctly associated, i.e., where the innovation vector 

would be zero mean if the UO was removed. The mean contribution due to IA is accounted for with 

,MIN ly  on the left-hand side of (A7). In contrast with [28], lq  is not zero mean because of the presence 

of a UO. Following the eigenvalue solution provided in [28], the maximum impact of UO on the right-

hand-side term is 2

,4 MDE l . After dividing both sides of Equation (A7) by 4, the probability of 

occurrence of the event in Equation (A7) is expressed in Equation (19). 
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