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Abstract

Stochastic simulation has been a powerful tool for studying the dynamics of gene regula-
tory networks, particularly in terms of understanding how cell-phenotype stability and fate-
transitions are impacted by noisy gene expression. However, gene networks often have
dynamics characterized by multiple attractors. Stochastic simulation is often inefficient

for such systems, because most of the simulation time is spent waiting for rare, barrier-
crossing events to occur. We present a rare-event simulation-based method for computing
epigenetic landscapes and phenotype-transitions in metastable gene networks. Our
computational pipeline was inspired by studies of metastability and barrier-crossing in pro-
tein folding, and provides an automated means of computing and visualizing essential sta-
tionary and dynamic information that is generally inaccessible to conventional simulation.
Applied to a network model of pluripotency in Embryonic Stem Cells, our simulations
revealed rare phenotypes and approximately Markovian transitions among phenotype-
states, occurring with a broad range of timescales. The relative probabilities of phenotypes
and the transition paths linking pluripotency and differentiation are sensitive to global
kinetic parameters governing transcription factor-DNA binding kinetics. Our approach sig-
nificantly expands the capability of stochastic simulation to investigate gene regulatory
network dynamics, which may help guide rational cell reprogramming strategies. Our
approach is also generalizable to other types of molecular networks and stochastic
dynamics frameworks.

Author summary

Cell phenotypes are controlled by complex interactions between genes, proteins, and
other molecules within a cell, along with signals from the cell’s environment. Gene
regulatory networks (GRNs) describe these interactions mathematically. In principle, a
GRN model can produce a map of possible cell phenotypes and phenotype-transitions,
potentially informing experimental strategies for controlling cell phenotypes. Such a
map could have a profound impact on many medical fields, ranging from stem cell
therapies to wound healing. However, analytical solution of GRN models is virtually
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impossible, except for the smallest networks. Instead, time course trajectories of GRN
dynamics can be simulated using specialized algorithms. However, these methods suffer
from the difficulty of studying rare events, such as the spontaneous transitions between
cell phenotypes that can occur in Embryonic Stem Cells or cancer cells. In this paper,
we present a method to expand current stochastic simulation algorithms for the sam-
pling of rare phenotypes and phenotype-transitions. The output of the computational
pipeline is a simplified network of a few stable phenotypes, linked by potential transi-
tions with quantified probabilities. This simplified network gives an intuitive represen-
tation of cell phenotype-transition dynamics, which could be useful for understanding
how molecular processes impact cellular responses and aid interpretation of experimen-
tal data.

This is a PLoS Computational Biology Methods paper.

Introduction

In multicellular organisms, differentiation of pluripotent stem cells into tissue-specific cells
was traditionally considered to be an irreversible process. The discovery of cell reprogramming
revealed that the identity of a cell is not irreversibly stable, but rather plastic and amenable to
control by perturbation of gene regulatory interactions—for example, through over-expression
of key transcription factors [1]. Cellular plasticity has also been observed in other contexts,
where cells appear to spontaneously transition among phenotypically distinct states. For exam-
ple, in embryonic stem cells, expression levels of key transcription factors show dynamic het-
erogeneity, which is thought to enable diversification of the population prior to lineage
commitment [2-6]. This heterogeneity may result at least in part from stochastic state-
transitions between functionally distinct, metastable subpopulations [4, 7-9]. Stochastic state-
transitions have also been proposed to play a role in cancer, by enabling cancer stem cells to
arise de novo from non-stem subpopulations [10], or by enabling cells to reversibly transition
to a drug-tolerant phenotype [11]. In microbial systems, stochastic phenotype switching has
been identified as a survival mechanism for populations subjected to fluctuating environments
[12, 13].

Mathematical modeling has provided a basis for understanding how gene regulatory mech-
anisms and network interactions control cellular identity, stability, and phenotype-transitions.
These approaches yield a quantitative means of reinterpreting the long-standing conceptual
framework known as Waddington’s epigenetic landscape [14-17]. In a mathematical frame-
work, the “valleys” in the landscape that stabilize cell identities within distinct lineages corre-
spond to attractor basins of a high-dimensional nonlinear dynamical system [18]. The
nonlinearity results from positive feedback in transcriptional regulation and epigenetic barri-
ers to chromatin remodeling, for example. These feedback mechanisms give rise to multiple,
stable (or metastable) phenotype-states accessible to a given genome. Given the “bursty” nature
of gene expression and ever-present molecular fluctuations in the cell [19, 20], an active area of
research is in modeling the effects of so-called intrinsic noise on gene regulatory network
(GRN) dynamics. These mathematical models support the idea that intrinsic noise can drive
stochastic phenotype-transitions [21-25], which, though likely to be exceedingly rare in gen-
eral cellular contexts, may explain the heterogeneity observed in embryonic stem cells where
epigenetic barriers appear to be lowered [26].
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Mathematical models of GRN dynamics that treat stochastic molecular processes are often
formulated as probabilistic Master Equations, in which the system evolves probabilistically
over a discrete state-space of molecular species and configurations according to a defined set
of biochemical reaction rules. Another common framework is that of a coupled system of
ODEs describing the expression levels of genes in the network, with the inclusion of additive
noise terms. The Master Equation framework is well-suited to studying how “local” stochastic
molecular events (e.g., transcription factors interacting with DNA or chromatin state-
transitions near promoters) impact “global” dynamics of phenotype stability and state-switch-
ing [23-25, 27, 28]. These molecular fluctuations affecting promoter activity have been shown
to significantly impact the structure of epigenetic landscapes, motivating the use of Master
Equation-based approaches. That is, the number and stability of phenotype-states accessible to
a given GRN varies depending on the kinetic parameters governing these fluctuations [23, 24,
29]. Furthermore, ODE or “mean-field” models that average over these fluctuations can show
qualitatively different landscape features [30-32].

Master Equation approaches face the well-known challenge of the “Curse-of-Dimensional-
ity”, as solving them requires enumeration of a state-space that grows exponentially with the
number of molecular species in the network. For this reason, discrete stochastic models of
GRNss are often studied by stochastic Monte Carlo simulation, via the Gillespie algorithm [33].
However, stochastic simulation can also be problematic: in systems with metastability, such as
GRNgs, stochastic simulation becomes highly inefficient. Transitions between metastable states
are rare events (i.e., rare relative to the timescale of fluctuations within a metastable attractor
basin), and thus difficult or impossible to observe. Often, these rare events are precisely the
events of interest, such as in GRNs where infrequent state-transitions represent critical cell-
fate transitions.

Rare-event sampling algorithms are designed to overcome these challenges, by redirecting
computational resources towards events of interest, while maintaining statistical accuracy to
global system dynamics [34, 35]. In this work, we present a rare-event simulation-based method
for computing and analyzing epigenetic landscapes of stochastic GRN models. We combine
rare-event methods with coarse-graining and analysis by Transition Path Theory—adopted
from the field of Molecular Dynamics of protein folding [36]-and show that this unified frame-
work provides an automated approach to map epigenetic landscapes and transition dynamics
in complex GRNs. The method quantifies the number of metastable phenotype-states accessible
to a GRN, calculates the rates of transitioning among phenotypes, and computes the likely paths
by which transitions among phenotypes occur. We apply the method to a model of pluripotency
in mouse Embryonic Stem Cells. Our results reveal rare sub-populations and transitions in the
network, demonstrate how global landscape structure depends on kinetic parameters, and
reveal irreversibility in paths of differentiation and reprogramming. Our approach is not limited
to gene regulatory networks; it is generalizable to other stochastic dynamics frameworks and
is thus a potentially powerful tool for computing global dynamic landscapes in areas such as
signal-transduction, population dynamics, and evolutionary dynamics.

Methods

A graphical overview of the computational pipeline presented in this paper can be found in
Fig 1.

Gene regulatory network models

We demonstrate the rare-event sampling method for two representative GRN models. A
small, two-gene network serves as a model system to validate the simulations. We then apply
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Model: Reaction Network

Weighted Ensemble Rare Event Sampling with Adaptive Binning

A
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Stochastic Simulation (SSA)
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Rate Estimation Global Transition
kxy between user-defined Matrix Estimation
regions X and Y Npins X Npins
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Transition Path
Theory ) Coarse-Graining . Network
Transition Paths among Metastable Phenotypes Visualization
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Validation: Numerical approximation of Chemical Master Equation and/or
Brute Force SSA simulation

Fig 1. Computational pipeline for rare-event sampling of epigenetic landscapes and phenotype transitions. The input to the computational
pipeline is a reaction network model of gene regulatory network dynamics. Stochastic simulations are performed using SSA [33] and Weighted
Ensemble rare-event sampling [45]. The WE method can be run in two modes: Rate Mode computes the rate of transitioning between two user-
defined regions of interest with high accuracy. Transitio n-Matrix Mode computes the pairwise transition probabilities among Ny, adaptively
defined sampling bins that span the system state-space. Further visualization and analysis of the transition-matrix can be performed, including
automatic designation of metastable phenotypes via the coarse-graining framework [42] and identification of likely transition paths [36].

https://doi.org/10.1371/journal.pchi.1006336.9001

the method to a more complex model of pluripotency in mouse Embryonic Stem Cells
(mESCs).

Exclusive mutual inhibition, self-activation model. The Exclusive Mutual Inhibition,
Self-Activation (ExMISA) model is a two-gene network representing an archetypal motif at
cell-fate branch points [37, 38]. Each gene, denoted generically as A or B, encodes a transcrip-
tion factor that activates its own transcription and represses transcription of the other gene.
We adopt previous conventions [22, 23, 39] for stochastic GRN dynamic models. The full list
of biochemical reactions and parameters can be found in the Supplement, S1 File and S1
Table. The model encompasses stochastic birth/death processes for transcription factor pro-
duction and degradation, and stochastic binding and unbinding of transcription factors to
DNA regulatory/promoter regions; the binding-states of these regions governs the production
rate. Each transcription factor is assumed to bind to DNA as a homodimer, giving cooperative
regulation (explicit dimerization reactions are neglected, such that the transcription-factor-
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binding reaction is modeled as tri-molecular). In the “exclusive” network variant, transcription
factors compete for binding sites on DNA (only one transcription factor dimer can be bound
to a gene’s promoter at a time). The discrete state-vector, which completely describes the state
of the system, is given by x = [Ajj By,
binding-states for each gene (i.e., A/Byg, A/Byo, A/By; denote unbound, activator-bound, or
repressor-bound states). The copy-numbers of expressed protein transcription factors are
denoted by 1, and n,, for products of gene A and B, respectively, and may in principle take any
nonnegative integer value. All processes related to transcription, translation, and assembly are

N4 1p). Ajjand B;; represent the three possible promoter

subsumed into a single protein birth reaction. For genes in state A/Bj;, this production occurs
with rate constant g;;. The production rate is high when the promoter is bound by the activator
(its own product). Otherwise, if unbound or repressor-bound, a low “basal” rate of expression
is assumed, i.e. goo = go1 < g10- Degradation of protein products occurs with rate k, and sto-
chastic binding/unbinding of transcription factors to DNA occur with 4 and f, respectively.
The model is symmetric, with equivalent parameters for the two genes.

We studied a parameter set (S1 Table) in the regime of slow DNA-binding kinetics, in con-
trast to the so-called “adiabatic” regime where binding/unbinding of regulators to promoters
occurs quickly relative to protein production and degradation. We adopt this regime here for
two reasons. First, it has recently been suggested that the slow- or moderate-binding regime is
likely to be more accurate in eukaryotic systems, where complex, slow-timescale changes in
chromatin structure accompany binding events [27, 28, 40]. Second, the number of metastable
states in GRN’s appears to generally increase in the slow-binding regime, due to distinct combi-
nations of relatively stable promoter configurations [41]. Therefore, this regime presents a
test-case to develop enhanced sampling techniques that can efficiently traverse multiple system
barriers and reconstruct complex, multi-modal dynamics.

Pluripotency network model. The pluripotency network model of mESCs was developed
by Zhang and Wolynes [28] on the basis of experimental literature and previous models. The
8-gene network shares the same stochastic reaction framework as the ExXMISA model. The
genes (NANOG, OCT4, SOX2, GCNF, KLF4, PBX1, GATA6, and CDX2) suppress and acti-
vate each other through homo- and heterodimers of their encoded transcription factors
(OCT4 and SOX2 form a heterodimer; all other regulatory interactions occur via homodi-
mers). Binding of transcription factors to promoters is not exclusive. The model has five
kinetic parameters: g, gofs 1> f, and k, corresponding to the rate of gene expression in the acti-
vated state, the rate of gene expression in the un-activated state, binding of transcription fac-
tors to DNA, unbinding of transcription factors from DNA, and transcription factor
degradation (or exit from the nucleus). Genes are expressed at the basal rate g, except when
bound by at least one activator and no repressor, in which case they are expressed with rate
Zon- The exception to this logic rule is NANOG, which must be bound by the the KLF4 and
PBX1 transcription factor homodimers and the heterodimer OCT4-SOX2 to be activated.
Opverall, these interactions lead to a total of 396 biochemical reactions, with a total of 88 “spe-
cies” (counting 80 distinct gene promoter configurations and 8 protein species). The complete
logic rules and list of reaction rate parameters can be found in the Supplement (S1 File, S2 and
S3 Tables).

Theoretical background: The chemical master equation and stochastic
transition-matrix

The mathematical framework of the network models is the discrete Chemical Master Equation
(CME) [33], which gives the time-evolution of the probability to observe the system in a given
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state. In vector-matrix form, the CME can be written

L) _ k(. 0 1)
where p(x, f) is the probability over the system state-space (x) at time ¢, and K is the reaction
rate-matrix containing stochastic reaction propensities (diagonal elements kj; = -3, k;; i.e., col-
umns sum to 0). Eq 1 assumes a well-mixed system of reacting species, and assumes that the
technically infinite state-space described by x (containing molecular species numbers/configu-
rations) may be limited to some finite number of “reachable” states, (i.e., with non-negligible
probability) for an enumeration of N states of the system, K € R"*". The steady-state proba-
bility 7(x) = p(x, t — 00) over N states satisfies

Kn(x) = 0. (2)

Thus, 71(x) can be obtained from K as the normalized right-eigenvector corresponding to the
zero-eigenvalue.

It is sometimes desirable to work with the time-dependent stochastic transition-matrix T(7)
rather than the time-independent stochastic rate matrix K [42]. For example, T(7) may be
more amenable to estimation by sampling (as we demonstrate in this work for the pluripo-
tency network, for which K is impractical to enumerate). For a CME with rate matrix K, T(7)
is given by

T(t) = exp(tK’) (3)
where exp denotes the matrix exponential. T(t) € R, | then gives the conditional probabil-
ity for the system to transition between each pair of states within a lagtime 7. That is, the ele-
ments Tj; give the probability that the system, if found in state i, will then be found in state j at
a time 7 later, and rows sum to 1. Using T(7), the evolution of probability over discrete inter-
vals of the lagtime 7 is given by the Chapman-Kolmogorov equation:

p (x,t +kt) = p"(x,t)T"(). (4)

Eigenvectors corresponding to dominant eigenvalues of the stochastic transition-matrix are
associated with slow system processes. By Perron-Frobenius, for an irreducible stochastic
matrix T(7) with eigenvalues A, there exists A, = 1, and all other eigenvalues satisfy |A;| < 1.
Analogous to Eq (2) for K, the steady-state probability can be obtained directly from T(7)
according to 7l (x) = 7 (x)T(7), i.e., as the normalized left-eigenvector corresponding to A;.
Eigenvalues A; are related to global system timescales ¢; by

T
f=— 5
TR E) ®
(with t; giving the infinite-time, stationary result) [42]. Additionally, the Mean First Passage
Time for transitions from an individual state i to a region Y (MFPT; y, where Y may be an indi-
vidual state or a set of states) can be computed using the matrix elements T;; by [43, 44]:

0 ey
MFPT,y =41+ Y T, MFPT,, i¢ Y- (6)
&Y

MFPT; y is defined as the expected time for the system to reach Y for the first time, having
started in state i. The MFPTs may be computed by solving the linear system in Eq 6. Eq 6 com-
putes the MFPT as a dimensionless quantity, the expected number of “steps” (of duration 7)
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required for the transition; multiplication by 7 gives the MFPT in units of time. The MFPT
starting from a region X (i.e., a set of states, rather than an individual state) and ending in a
region Y is given by the stationary-probability-weighted sum:

. MFPT,

]

ieX

Weighted ensemble stochastic simulation

Stochastic reaction kinetics can be simulated by the Stochastic Simulation Algorithm (SSA)
[33], which produces numerically exact realizations of the CME (Eq 1). Simulation circum-
vents the need for enumerating the exceedingly large system state-spaces typical of gene net-
work models, but suffers from inefficiency due to rare events. The Weighted Ensemble (WE)
rare-event sampling algorithm [45] redistributes computational resources from high-
probability regions of state-space to low-probability regions, which tend to be under-sampled
in conventional simulation. The method thereby reduces computational effort in sampling
rare transitions and improves accuracy of estimating probability density in, e.g., barrier-
regions or tails of distributions. The method can be applied to any stochastic dynamics frame-
work; in recent years, it has been widely applied to atom-scale Molecular Dynamics. Details of
the methodology are discussed in a recent review [35] and references therein. Both WE and a
related method, Forward Flux Sampling, have been applied previously to the study of 2-gene
networks [46, 47].

Briefly, the algorithm works as follows: state-space is divided up into bins that span transi-
tions of interest. The number of bins, Ny;p, is typically O(100), and a variety of binning proce-
dures can be used (we use an adaptive procedure described below). Initially, a single
simulation trajectory, or “replica”, is assigned a weight of 1 and allowed to freely move within
and between bins for a user-defined lagtime . After each iteration of Ty, a splitting and
culling procedure divides and/or combines replicas and their associated weights in such a way
as to reach and maintain an equal target number of weighted replicas, My, in each bin. Over
the course of the simulation, the combined weights of the replicas in a bin (averaged over suc-
cessive iterations) will evolve toward the probability of the system to reside in that bin. By
maintaining the same number of replicas in each bin (Mt,,), with weights proportional to
probability, the algorithm devotes comparable computational time to low- and high-
probability regions. Effectively, the algorithm computes long-time processes on the basis of
many short-time simulated trajectories.

Adaptive binning procedure. As with other enhanced sampling methods, the WE algo-
rithm requires dividing of state-space into defined sampling regions or “bins”. For high-
dimensional systems, discretization poses a challenge because, for an N-dimensional, evenly
spaced grid, the number of required sampling bins increases exponentially with the number of
degrees of freedom. To address this challenge, a variety of Voronoi-polyhedra-based proce-
dures have been developed [48-50]. These methods balance the need to focus simulation
toward regions with non-negligible probability, while still enabling capture of rare transitions
of interest. In addition to efficiently discretizing high-dimensional spaces, the methods have
the benefit of requiring little to no a priori knowledge of system dynamics (e.g., of the locations
of regions of interest, or of appropriate progress coordinates for transitions). We utilize an
adaptive binning procedure from ref. [50]. Each bin (of user-defined number Ny;,) is a Voro-
noi polyhedron with a generating node; the bin is defined as the region of state-space encom-
passing all points closer to the generating node than to nodes of any other region. After each
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lagtime 7w, new Voronoi regions are generated by successively selecting Ny,;,s node-positions
from the current replica positions in a way that maximizes the Euclidean distance between
them. By this procedure, over the course of the simulation, bins spread to encompass all areas
of state-space reached by any simulated trajectory. After sufficient iterations, the bin positions
stop spreading to new areas but continue to fluctuate. The procedure is shown by representa-
tive simulations in S1 Fig.

Computation of transition rates. One important output of WE sampling is the quantita-
tive rate of transitions between regions of interest, which may be difficult or impossible to esti-
mate from conventional simulation. WE sampling may be run in different modes, depending
on whether the sought-after information concerns a specific transition of interest, or a more
global picture of system dynamics, i.e., encompassing approximate rates of transitions among
many system states. We term the two modes “rate” mode and “global transition-matrix”
mode. The former can deliver a more accurate estimate for a particular state-transition, while
the latter can yield a more comprehensive, but approximate, measure of global system
dynamics.

In rate mode, the user specifies two regions of interest, X and Y, The flux of probability
into/out of regions of interest can be estimated by recording the amount of weight transferred
at the end of each simulation iteration. The mean first passage time of transitions from X to Y
(MFPTYy y) is given in general by the inverse of probability flux from X to Y. In practice, we
apply a “labeling” scheme [51, 52], where each replica is labeled as belonging to either set S
or S, according to its history, i.e., whether it most recently visited region X or Y, respectively.
The summed weight of all replicas in Sy is given by Ps ,and P+ P = 1 satisfies probabil-

ity conservation. Then,

T)SS

5
MFPTy , = 1Sy (8)
X

where @ (Y|Sy) is the average probability flux from Sy into Y at steady-state, which is
measured by the weight of Sy-labeled replicas entering Y during the simulation after conver-
gence to steady-state. The labeling scheme enables accurate estimates, including for non-
Markovian transitions. For Markovian transitions well-described by a single rate-constant,
kxy=1/MFPTxy.

Computation of network transition-matrix. Running WE in transition-matrix mode
enables visualization and analysis of global system dynamics on the basis of a single simulation,
and requires no designation of regions of interest. In this mode, the previously-converged
Voronoi bins are fixed, and simulations are used to estimate a coarse-grained stochastic
transition-matrix T(r) of size Npins X Npins. The coarse-grained T(T) approximates the true
dynamics over the full state-space, as given by T(7). Thus, the procedure enables estimation of
the global transition-matrix (and subsequent analysis) in systems where enumeration of states
is not feasible. To estimate T(t), the weight transferred between bins is recorded at each itera-
tion, and the elements of the transition-matrix are estimated according to [51]:

T, =2 (9)

where (w; ), is the average weight transferred from bin i to bin j over the iteration time 7y
(counting only after at least 2 transitions, and averaging over multiple iterations) and (w;) is
the average population (summed weight) in bin i. By construction, this is a row-stochastic
transition-matrix with state-space “resolution” determined by Ny, (each state in the full state-
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space sampled by the simulation is assigned to its nearest neighboring Voronoi node). The lag-
time 7 of the transition-matrix corresponds to the sampled WE-time 7vg. However, use of
T(t) to compute system dynamics imposes a Markovian approximation, by which equilibra-
tion of replicas within bins is assumed to be rapid on the timescale of 7, and hops between
states (i.e. bins) are memoryless. As such, while this mode of simulation has the advantage of
acquiring a holistic view of global system dynamics, it has the disadvantage of introducing a

Markovian approximation.

Coarse-graining procedure to classify phenotype-states

While the sampled Nyips X Npins transition-matrix provides a global approximation of the epi-
genetic landscape and state-transitions, we apply a method to further coarse-grain dynamics,
known as the Markov State Model framework [29, 36, 42]. This automated procedure pro-
duces a highly simplified representation of global dynamics in terms of a few (generally < 10)
clustered sets and the transitions among them. Such highly-reduced models can be beneficial
in terms of human intuition of system dynamics, comparison to experiments, and—in this
application—automated designation of dynamic phenotype-states. The method utilizes the
concept of metastability, i.e., system states that experience relatively fast transitions among
them are clustered together into the same coarse-grained set. Collectively, the coarse sets expe-
rience relatively rare inter-cluster transitions and frequent intra-cluster transitions. We
employ the metastability concept as a definition of cell phenotype, reasoning that a phenotype
should be a relatively stable attribute of a cell, and stochastic inter-phenotype transitions
should be relatively rare. In practice, we employ the Markov State Model framework to
further reduce the sampled row-stochastic transition-matrix T(r) from size Nypjng X Npins down
to C x C, where C is the number of coarse-grained clusters chosen by the user. As the Markov
State Model (MSM) is itself a stochastic transition-matrix on a coarse-grained space, it implies
a more severe Markovian approximation. It provides a way to describe global system dynamics
in a highly simplified way while maintaining high accuracy to the slowest system dynamics as
sampled by T (7). In previous work, we demonstrated the application of this coarse-graining
approach to automatically designate phenotypes in small gene networks [29]; here, we extend
the applicability of the coarse-graining to large, complex networks by combining it with rare-
event sampling.

The coarse-graining procedure is a spectral clustering method based on the Perron Cluster
Cluster Analysis (PCCA+) algorithm [53], which optimizes the (nearly)-block-diagonal struc-
ture of T(t) for systems with metastability. The signature of such metastability is a separation-
of-timescales for intra- and inter-basin dynamics, which may be seen as gaps in the eigenvalue
spectrum [42]. As noted above, T(z) (or its sampled counterpart, T (t)) has A; = 1, correspond-
ing to the infinite time-limit. If a set of 7 dominant eigenvalues exists, such that for decreasing
eigenvalues A; < 1,1 € {2,.. ., m}, and a gap is present, A; < A,, for j > m, this indicates the
presence of m slow-timescale processes in the system, and further indicates that T (7) may be
re-ordered to give m nearly-uncoupled blocks. In practice, the algorithm attempts to find a
coarse-graining onto C clusters, where C may be user-defined, or may be determined algorith-
mically, e.g., according to the spectral gap [53]. Here, we choose C clusters, where the last sig-
nificant gap in the spectrum is seen between Ac and Ac,;. For the GRNs studied here, this
corresponds to choosing C such that Ac/Ac,; > 10.

Transition path analysis. The coarse-grained model of system dynamics given by the
MSM enables estimation of the ensemble of dominant transition paths among phenotypes,
along with their relative probabilities. We adopt methods from Transition Path Theory
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according to Noe, et al. [36] (details therein). Briefly, T (t) can be used to compute the effective
flux of trajectories, along any edge in the coarse-grained network, contributing to transitions
between states X and Y (where these designated states correspond to one or more coarse-
grained phenotype-states produced by the MSM). A pathway decomposition algorithm on the
matrix of effective fluxes for X — Y transitions then yields a set of dominant pathways and the
relative contribution of each to the overall flux. Each state in the MSM is analogous to a cell
phenotype, and transition path analysis is used to identify parallel phenotype transition paths
and the relative rates of transitioning between phenotypes.

Visualization of epigenetic landscapes

Both the sampled transition-matrix T(t) and the coarse-grained MSM encode stationary and
dynamic information about global dynamics—that is, they quantify the epigenetic landscape.
For visualization, we use Gephi graph visualization software [54] using the Force Atlas algo-
rithm. Every circle (or node) in the graph corresponds to a sampling bin or to a coarse-grained
phenotype, and the area of a circle is proportional to its relative steady state probability accord-
ing to In(yPss), where Pg is the steady state probability of the node and y is a constant chosen
to improve visibility of low probability regions of the landscape. Lines between circles (edges)
correspond to transitions between sampling regions or coarse-grained phenotype. Their thick-
ness and coloring correspond to their relative transition probability and source state,
respectively.

Validation: Numerical solution of the chemical master equation

To validate the simulation method, we compare the simulated dynamics to the numerical solu-
tion to the CME. We choose the parameters of the EXMISA model in such a way as to restrict
the effective state-space, so that a numerical solution of the CME is tractable. Building the reac-
tion rate matrix K € RV*" requires enumeration of N system states. In general, if a system of
S molecular species has a maximum copy number per species of 7,4, then N &~ #n’ . In the

ExMISA model, the state-vector is given by x = [Aj;, Byj, 14, 13]. For enumeration, we neglect

ip
states with protein copy-numbers larger than a cutjoff value which exceeds g;0/k (correspond-
ing to the average number of transcription factors maintained in the system from a gene

while in its active state). For example, with model parameters g, = 18 and k = 1, we truncate at
Mg max = Npmax = 41 and assume that probability flux between states with n,, n;, < 41 and states
with n,, n, > 41 is assumed to be 0 (i.e., the boundaries of the state-space are reflective).
Including the gene-binding states, this gives N = 3 x 3 x 42 x 42 = 15876 states. This size is
tractable for complete solution of the CME using matrix methods in MATLAB [55]. This trun-
cation of the state-space introduces a small approximation error (see S2 Fig).

The pluripotency network has 8 genes with copy numbers of O(10”) (determined by
the parameters g,,/k = 3900). The number of distinct binding-promoter states for each
gene are 16, 32, 8, 8, 2, 8, 4, and 2 for GATA6, NANOG, CDX2, OCT4, SOX2, KLF4, GCNF,
PBXI, respectively (see S2 Table). Together these combinations enumerate a state-space of
N> 10" ~ 1000® x 16 x 32 x 8 x 8 x 2 x 8 x 4 x 2. This size precludes solution of the CME,
and we instead estimate the dynamics by WE sampling. Where possible, we validate the WE-
sampling results by “conventional”, i.e., by direct simulation using SSA.

Validation of coarse-grained models. To check the validity of the coarse-grained MSM
as a representation of the global dynamics, we use the Chapman-Kolmogorov test to compare
the relaxation curves of the coarse-grained system to those found through direct SSA following
Eq 4 [42]. If the coarse-graining is appropriate, the relaxation curves of the MSM probabilities
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will match the relaxation profile of long conventional (direct SSA) simulations initiated within
each coarse-grained phenotype. Transition paths through the coarse-grained phenotype net-
work are validated, where possible, against conventional SSA simulation.

Implementation and software

Stochastic Gillespie (SSA) simulations were carried out using BioNetGen [56]. WE sampling
was implemented with in-house software code written in MATLAB. Simulations were run on
the high performance computing cluster (HPC) at the University of California, Irvine, and
parallelization of BioNetGen SSA simulations was performed using the Sun Grid Engine
scheduler. The coarse-graining procedure and transition path analysis was implemented in
python scripts, adapted from MSMBuilder [57] and Pyemma [43], respectively. Transition-
matrix and MSM visualization was carried out using Gephi software and the Force Atlas layout
[54]. All simulation parameters can be found in the supplement S4 Table. Pseudo-code for the
adaptive binning procedure can be found in S2 File and software can be found in https://
github.com/Read-Lab-UCI/Rare-Event-Sampling-Gene-Networks.

Results

Rare states and transitions in gene regulatory networks are accessible by
rare-event sampling

We first apply the computational pipeline to a small two-gene model (the exclusive Mutual
Inhibition, Self-Activation model, EXMISA, see Methods), exhibiting an archetypal motif for
cell fate-decisions [37, 38]. The model is tractable for computation of full, discrete stochastic
dynamics to within a small approximation error using matrix methods. Thus, the model pro-
vides a numerical benchmark for assessing the accuracy of the simulation method, before
extension to larger systems where solution of the Chemical Master Equation (CME) is intrac-
table. For the chosen parameters, the ExXMISA model shows four peaks in the steady-state
probability distribution (projected onto protein copy numbers, 1, and ;). Peaks in probability
correspond to basins in the so-called quasipotential landscape, defined by U = —In(n(x))

(Fig 2). The four peaks/basins corresponds to four possible combinations of binarized A/B
gene expression: hi/hi, hi/lo, lo/hi, and lo/lo. These four phenotype-states arise due to the com-
bination of balanced repression and self-activation in the network, and the slow kinetic param-
eters (Supplementary S1 Table) for transcription factor binding and unbinding to promoters
that effect changes in individual gene-activity states between low and high expression rates

[29, 58].

The WE-based simulation method enabled estimation of global dynamics of the EXMISA
model. By redistributing computational resources from relatively high-probability to low-
probability regions (see Methods), the WE method enabled uniform sampling of the quasipo-
tential landscape, i.e., mapping basins (high-probability regions) along with high barriers
(low probability regions) (Fig 2a). The simulation estimated individual steady-state bin-
probabilities as low as 1.3 x 10~° and showed good global agreement with the numerical CME
benchmark (see Fig 2 and Supplement, S3 Fig).

In addition to sampling global dynamics, the WE method can be used to estimate rate con-
stants for individual, rare transitions of interest. The Mean First Passage Time of the global
network switch from the center of one polarized phenotype-state to another, i.e., MFPTy .y
from protein a/b expression level hi/lo to lo/hi was estimated from WE to be 1.82 x 10° (units
of k') (see S6 Table), in agreement with the CME result.
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Fig 2. Simulation results show good agreement with a theoretical benchmark for the 2-gene ExXMISA (mutual inhibition, self-activation)
cell-decision circuit. The Chemical Master Equation for the 2-gene model, EXMISA, was solved numerically (see Methods) (top) and compared
to simulation results from the computational pipeline presented in this paper (bottom). Shown for each are the Quasipotential Landscape (A),
Eigenvalue Spectrum (B), and Markov State Model (C). (A) Quasipotential landscapes of the EXMISA network projected onto the two protein
coordinates. Deep blue regions denote low potential (high probability) and yellow denote high potential (low probability). The four visible
basins in both correspond to combinations of lo/hi expression for the two genes A and B. (For both rows, quasipotential surfaces estimated over
discrete states/bins are smoothed for visualization). WE sampling captured both the basin structure and low probability edge and barrier
regions. (B) Eigenvalue spectra and corresponding computed global transition timescales. Gaps in the eigenvalue spectrum indicate separation
of timescales, i.e., the presence of metastability. C) Four-phenotype coarse-grained models automatically generated from the clustering
algorithm (see Methods). Each colored circle represents a cell phenotype, sized proportionally to its probability. Edges are inter-phenotype
transitions (colored by source-state, with width proportional to probability). The full CME and simulation pipeline identify similar metastable
phenotype networks (see S11 Fig for details).

https://doi.org/10.1371/journal.pcbi.1006336.9002

Phenotype transitions can be approximated by Markovian jumps,
enabling construction of coarse-grained models

A network transition-matrix 'i“(r) over sampled bins (Np;,s = 300) was constructed from WE
sampling for EXMISA and used for subsequent analysis of global system dynamics. By compar-
ison, a full network transition-matrix T(z) over the enumerated system state-space was con-
structed from the CME (N = 15876, see Methods). The full, computed (T(7)) and simulated

(T(r)) transition-matrices showed qualitatively similar eigenvalue spectra with four dominant
eigenvalues, indicating the presence of metastability (separation-of-timescales between intra-
basin and inter-basin transitions) (Fig 2b). The slow system-timescales predicted by the full
CME model corresponding to eigenvalues A,, A3, Ay were t, 3, £, = 6.8 X 10% 4.2 x 10%,

1.0 x 10 respectively, in units of k™' where k is the protein degradation rate (the Perron eigen-
value A; = 1 is associated with the infinite-time (stationary) distribution). The corresponding

values given by the WE-simulated T (t) were 6.1 x 10%, 3.5 x 10%, 9.4 x 10%, respectively. These

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 12/28


https://doi.org/10.1371/journal.pcbi.1006336.g002
https://doi.org/10.1371/journal.pcbi.1006336

©'PLOS

COMPUTATIONAL

BIOLOGY

Rare-event sampling of epigenetic landscapes and phenotype transitions

numbers demonstrate how the sampled T () enables global approximation of slow system
timescales to < 20% relative error. Error in these values (relative to the slowest timescales
implied by the true eigenvalues) depends on both “spectral” (lagtime) and discretization error,
i.e., improvements can be achieved only with a larger number of bins (finer discretization)
and/or longer lagtime [42] (see S4 Fig). In contrast, WE sampling in “rate mode” (see Meth-
ods) enabled highly accurate estimation of MFPT .y to within 2% error (56 Table).
According to the Markov State Model framework, the presence of timescale separation indi-
cates that a simplified model, retaining a few coarse-grained metastable states with Markovian
transitions among them, can reasonably approximate the full system dynamics. Using this
approach, we label the metastable sets as phenotypes accessible to the network, reasoning that a
useful classification of cell phenotypes should be one that gives relatively stable, rather than
transient, cell types. We apply the Markov State Model coarse-graining procedure to both the
full T(7) and simulated T(t), yielding similar results. The coarse sets (or metastable pheno-
type-states) in the reduced models for both cases are generated automatically, and map directly
onto the four basins seen in the quasipotential landscape (i.e., the gene A/B expression hi/hi,
hi/lo, lo/hi, and lo/lo cell phenotypes). The reduced models are visualized by network graphs,
in which node sizes are proportional to steady-state probability, and the thicknesses and
lengths of edges are proportional to the transition probability between them (on lagtime 1)
(Fig 2c). Some discrepancies can be seen visually in the network graphs. These discrepancies
likely result in part from the slightly different mappings of the full state-space onto the four
clusters (see S11 Fig for details), which could in turn result from the distance-metric-based bin-
ning, which is relatively insensitive to changes in promoter configuration. Numerical values for
the reduced models can be found in S5 Table. The network graph can be considered to be an
alternative representation of the global epigenetic landscape, which contains both stationary
and dynamic information. (In contrast, the epigenetic landscape plotted as a quasipotential
function does not explicitly contain dynamic information, due to non-gradient dynamics [16]).
Validation of the coarse-grained model can be carried out according to the Chapman-
Kolmogorov test [42], which tests how well the relaxation dynamics initialized in the metasta-
ble phenotypes approximate the dynamics that are predicted either by the full model (CME) or
simulated trajectories. According to this test, relaxation dynamics out of metastable pheno-
types from WE sampling was predicted with relative error values between 0.02 and 0.12 for all
phenotypes (S5 Fig). Together, these results indicate (i) that a Markovian model of phenotype
transitions is a good approximation of the full system dynamics for the ExXMISA model, and
(ii) that the WE-simulation based computational pipeline predicts a quantitatively similar
coarse-grained phenotype-network to the full CME model.

The method maps the epigenetic landscape and identifies dominant
phenotypes in a pluripotency network model

We apply the computational pipeline to a pluripotent fate-decision network from mouse
Embryonic Stem Cells (mESCs) introduced by Zhang et al. [28] (Fig 3A). The network com-
prises eight interacting genes: NANOG, GATA6, CDX2, SOX2, OCT4, GCNF, and PBXI1.
Three of these genes, NANOG, SOX2, and OCT4 have been suggested to maintain pluripo-
tency [59], and NANOG inhibits the expression of differentiation markers [60]. The GATA6
and CDX2 genes have been used in experiments as markers of differentiation, with the
GATAG transcription factor being a marker of the primitive endoderm cell lineage, and the
CDX2 transcription factor being a marker of the trophectoderm lineage [61].

Using the WE-based computational pipeline, we estimate T () with a resolution of
Nbins = 250. To visualize the global landscape as a graph network at this resolution, we plot the
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Fig 3. Pluripotency network model and simulation results (Parameter Set I). A)Wiring diagram for the eight-gene pluripotency
network model, adapted from [28]. Arrowheads represent positive interactions, while flat lines denote repression. B) Simulation
results: state-transition graph of sampled network states. Circles represent aggregate gene-expression states sampled during the
Weighted Ensemble simulation. Circle areas are proportional to the steady-state probability 7; in each state according to In(ym;) with
scaling factor y = 3.4. States are colored according to the gene expression levels of three of the genes; red, green, and blue correspond
to high NANOG, GATAG6, and CDX2 expression respectively, while black corresponds to low or no gene expression. Edges
connecting the states indicate possible state-transitions, colored according to the originating state. The graph is produced using
Gephi [54] using a force-directed layout algorithm (Force Atlas), therefore short inter-state distances reflect higher probability of
transitioning. C) Full protein compositions of two representative states, with either high CDX2 expression (blue) or high NANOG
expression (red). States in (C) correspond to yellow circles in (B).

https://doi.org/10.1371/journal.pchi.1006336.g003

converged T (t) using a force-directed automated graph layout [54] (Fig 3B). The barbell
shape of the network reflects the broad antagonism between pluripotency and differentiation
genes, which is a general feature of the overall network topology. At the same time, each “pole”
comprises multiple distinct patterns of gene expression (seen in the graph as different colors
with full compositions in Fig 3C), hinting at the existence of multiple phenotypes associated
with both pluripotency and lineage-specification. Moreover, the network representation
reveals numerous links between pluripotent and differentiated states, pointing to both direct
and indirect transitions, through a network of relatively transient intermediate states.

To further analyze the global dynamics of the pluripotency network, we apply the Markov
State Model coarse-graining framework. The simulated T (t) shows gaps in the eigenvalue
spectrum after four and after six eigenvalues (Fig 4a). The corresponding approximate time-
scales are given by t,, t3, t4, ts, ts = 1.1 X 10°,95, 51,12, 12 (k™"), respectively. These values,
though only approximate, indicate the presence of a single long timescale process (t,) corre-
sponding to transfer between differentiated and pluripotent states, while transitions within
those basins (3, etc.) occur at least four orders of magnitude more quickly. Applying the
coarse-graining algorithm to achieve six clusters results in a reduced model (Fig 4b), with the
clusters representing metastable phenotypes. The phenotypes can largely be distinguished in
the subspace of NANOG, GATAS6, and CDX2 expression levels; the differentiated phenotypes
show expression of either GATAG6 (primitive endoderm, PE), CDX2 (trophectoderm, TE), or
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Fig 4. Simulation results for the pluripotency network (Parameter Set I). The Computational Pipeline Uncovers Six Metastable Phenotypes and Irreversible
Phenotype Transitions. A) Computed eigenvalue spectrum and global timescales indicating the presence of metastability in the network. The gap in the eigenvalue
spectrum after the sixth eigenvalue suggests that a partitioning can be found into six metastable phenotypes. B) The coarse-grained network showing six
algorithmically-identified phenotypes designated as Low NANOG 1 (LN1), Low NANOG 2 (LN2), Stem Cell (SC), Primitive Endoderm (PE), Trophectoderm (TE),
and the Intermediate Cell (IM) state. C) The averaged gene expression levels (copy numbers) of each transcription factor for each phenotype and their respective
steady-state probabilities. D) The four most probable transition pathways from the SC state to the TE state (differentiation) and from the TE state to the SC state
(dedifferentiation). E) The highest probability transition paths projected onto three protein coordinates, NANOG, GATAS6, and CDX2. Differentiation from SC to TE
is visibly irreversible, i.e., the system returns by a separate route.

https://doi.org/10.1371/journal.pchi.1006336.9g004
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both (denoted an intermediate cell type, IM). Phenotypes associated with pluripotency do not
express high levels of GATA6 or CDX2, and may express high levels of NANOG (stem cell,
SC). The coarse-grained model reveals two separate pluripotent phenotypes that are low in
NANOG expression: one which expresses other pluripotent factors OCT4, SOX2, and KLF4
(“Low NANOG 1” LN1), and one which has low expression of all factors (“Low NANOG 2”
LN2) (Fig 4c). Overall, these phenotypes broadly match experimentally-determined categories,
coincide with steady-states of the stochastic model computed previously by a CME-approxi-
mation method [28], and coincide with phenotype-states identified in related pluripotency
GRN models [62]. The steady-state probabilities associated with the phenotypes are highly
nonuniform, with 95% of the population divided nearly evenly between the IM and LNI1 phe-
notypes, which are associated with differentiation and pluripotency, respectively. The LN2
state is rarest, comprising only 8 x 10~%% of the population, and was not identified previously
[28]. Together, these results indicate that the clustering method identifies both common and
exceedingly rare phenotypes in the in silico cell population modeled by simulation trajectories.
Furthermore, the automated method identifies both expected phenotypes and one novel
(albeit low probability) phenotype.

The method reveals multiple, irreversible pathways for phenotype
transitions in the pluripotency network

Previously, Markov State Models constructed on the basis of Molecular Dynamics simulations
were used to analyze the ensemble of distinct pathways of protein-folding [36]. Here, we utilize
the coarse-grained model of phenotype transitions in the pluripotency GRN in a similar man-
ner, to analyze pathways of cell differentiation and dedifferentiation. Using Transition Path
Theory, the method identifies the pathways that carry the greatest fraction of net probability
flux, among sequences associated with successful SC—TE transitions (and reverse) (Fig 4d
and 4e). Transition paths between the stem cell (SC) and PE phenotypes can be found in S6
Fig. For Parameter Set I, the method identifies three pathways encompassing > 98% of the
probability flux for both forward and reverse transitions. While the SC— TE transition is most
likely to occur directly through the LNI1 state (i.e., NANOG expression will shut off, followed
by turning on CDX2), the reverse transition shows a different route through the IM and PE
states (i.e., GATAG expression turns on, then CDX2 turns off, then GATAG6 turns off, and
finally NANOG turns on).

Dynamic analysis of the coarse-grained model, including analysis of transition paths, relies
on the Markovian approximation for inter-phenotype transitions. In the pluripotency net-
work, stochastic transitions between pluripotency (SC, LN1, LN2) and differentiation (TE, IM,
PE) basins are infrequent relative to transitions within those basins, justifying the Markovian
assumption, since the system equilibrates within those basins much more rapidly than inter-
basin transitions occur. However, the Markovian assumption may be less accurate for describ-
ing intra-basin transitions between phenotypes, which occur much more frequently. Despite
the coarse-grained model encompassing transitions on highly disparate timescales, the qualita-
tive results of transition path analysis were validated by collected conventional simulation tra-
jectories (not subject to any Markovian assumption), which identified the same dominant
transition paths (57 Fig). Overall, these results indicate that a stochastic excursion of a cell
from the SC to TE phenotypes and back maps a cycle in gene-expression space, echoing previ-
ous studies indicating nonequilibrium dynamics in GRNs [16, 23]. The results further indicate
that the Markov State Model, while a highly coarse-grained approximation, can provide an
accurate estimation of inter-phenotype transition dynamics.
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Table 1. Computed mean first passage times (MFPTs) of phenotype transitions in the pluripotency network. MFPTs are shown for transitions between the pluripo-
tency (high NANOG) state (SC) and low NANOG expression states (LN(1)) (left columns) and for transitioning between the pluripotency state (SC) and the trophecto-
derm state (TE) (right columns), in units of the inverse transcription factor decay rate, k. Transitions for Parameter Set I were computed using the WE method in rate
mode while transitions for Parameter Set II were estimated from the sampled transition matrix. The definitions of SC and LN(1) are analogous to the high NANOG pro-
duction (N") and low NANOG production (N™) transitions measured in experiments [8, 9]. Increasing the adiabaticity (i.e., the rates of DNA-(un)binding, h, f), leads to
rarer inter-phenotype transitions. The simulations also show that, within the same gene network for a given parameter set, inter-phenotype transition times span four
orders of magnitude.

Transition SC — LN(1) LN(1) — SC SC —TE TE — SC
Parameter Set I(f = 10) 1.71 x 10 1.94 x 10* 1.36 x 10° 2.70 x 10°
Parameter Set II(f = 50) 7.71 x 10* 1.28 x 10* 8.13 x 10® 5.82 x 10°

https://doi.org/10.1371/journal.pchi.1006336.t001

Cell phenotype landscape and transition dynamics are sensitive to kinetic
parameters

We applied the computational pipeline to the pluripotency network using two different rate
parameters sets (see S1 File), which differ in rates of transcription factor binding and unbind-
ing to DNA. In line with previous studies [23, 24, 29], we found that increasing the so-called
adiabaticity (i.e., increasing / and f, or the rates of TF-binding relative to protein production
and degradation, Parameter Set IT) led generally to rarer inter-phenotype transitions (see
Table 1). For example, in Parameter Set I, the Mean First Passage Time (MFPT) for transitions
from SC — TE was calculated to be 1.36 x 10° in units of k™', as compared to 8.13 x 10® for
Parameter Set IT. The MFPTs of the reverse transition TE — SC for each set were 2.70 x 10°
and 5.82 x 10°, respectively (see Table 1 and S7 Table). These differences in magnitude broadly
reflect that moving toward the adiabatic regime leads to increased epigenetic barriers between
phenotypes.

In addition to generally slowing transitions, the increased adiabaticity of Parameter Set II
gives rise to an epigenetic landscape structure that is distinct from that of Parameter Set I, with
altered steady-state phenotype probabilities (Fig 5a). The eigenvalue spectrum shows qualita-
tively distinct features as well, with a gap after five values (Fig 6a). As such, the Markov State
Model framework identifies five dominant phenotypes in the network, which correspond
broadly to those of Parameter Set I, except that only a single Low-NANOG (LN) phenotype is
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Fig 5. The rare-event sampling pipeline makes rare states and transitions accessible to simulation. A) The global
state-transition graph computed with the computational pipeline for the Pluripotency Network with rare transitions
(Parameter Set II). The states are colored according to the coarse-grained (algorithmically-identified) phenotypes. In
this parameter regime (f = 50) the differentiated (TE, PE, IM) and pluripotent phenotypes are cleanly separated,
reflecting exceedingly rare transitions between the two phenotypes (0(10%), see Table 1). (B) States visited in
conventional SSA simulation (using the same initialization, definitions, and placement as in (A)). In the conventional
simulation, a transition out of the IM phenotype was never observed.

https://doi.org/10.1371/journal.pcbi.1006336.9005
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Fig 6. Simulation results for the pluripotency network (Parameter Set IT). Changing DNA-Binding Kinetics Alters the Epigenetic
Landscape. A) Computed eigenvalue spectrum and global timescales. B) The coarse-grained Markov State Model showing five phenotypes
corresponding to the LN1, SC, PPE, TE, and IM phenotypes of Parameter Set I. The majority of the steady state probability is in the IM
phenotype (0.98). C) The gene expression levels for each phenotype and their respective steady-state probabilities. D) The four most probable
differentiation pathways between SC and TE phenotypes. E)The dominant pathways of (de)differentiation projected onto the GATA6, CDX2,
and NANOG coordinates. The change in DNA-binding kinetics shows different transition dynamics from Parameter Set I. Here, the forward
and reverse paths are the same.

https://doi.org/10.1371/journal.pchi.1006336.9006

identified (Fig 6b). Most of the steady-state probability is contained in the IM state (Fig 6¢).

In addition to altering the transition rates and relative phenotype probabilities, the kinetic
parameters altered the dynamics of differentiation and dedifferentiation. The two likeliest
pathways of forward (and reverse) SC — TE transitions follow the same route through LN and
IM phenotypes (Fig 6d and 6e). Alternative differentiation pathways of forward (and reverse)
SC — PE transitions can be found in S9 Fig. These results indicate that, while the same GRN
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model with different kinetic parameters may give rise to qualitatively similar phenotypes, they
differ in quantitative stationary and dynamic features, including relative steady-state probabili-
ties, transition times, and likeliest transition pathways.

Efficiency of rare-event sampling compared to conventional SSA

Rare phenotype transitions can be difficult to observe with conventional SSA simulation. We
compared simulated landscapes (based on estimated T (7)) from the computational pipeline
for the Pluripotency network (Parameter Set II) to those obtained from an equivalent (large)
number of SSA simulation steps (Fig 5a and 5b). This comparison revealed that the WE-based
method uncovers multiple phenotypes and associated transitions that are effectively invisible
to conventional simulation due to the rarity of exiting metastable basins.

Quantitative estimates of efficiency gains for WE have been based on comparing the num-
ber of simulation steps required to estimate a desired quantity (such as a rate constant) using
WE versus conventional simulation [47]. Treating T (t) as the desired output (as it contains
holistic dynamic information for the system), we estimate the efficiency gain of our pipeline by
computing:

B Sim. steps to estimate T(t), Conv.
Sim. steps to estimate T(t), WE

(10)

The denominator of Eq 10 is given by Nyins X Niterations X T X Miqrg, thus accounting for all
individual replica-steps in the total WE simulation time. The numerator is computed by asking
how many steps of a conventional simulated trajectory are required to estimate T (7). It is gen-
erally prohibitive to collect enough conventional simulation steps to estimate T (1) to a similar
resolution as WE. However, given a T(t) estimated from WE, it is in principle possible to esti-
mate how many steps would be necessary to achieve the same T (t) by conventional simula-
tion. We used an approximate, conservative estimate given by:

[Sim. steps to estimate T(z), Conv.] X 12:(P50/0.,.{Ti}.})717 (11)

where Pso, ; denotes the 5th percentile over nonzero elements of row i. Justification of Eq 11 is
given in the Supplement, S3 File. Briefly, Eq 11 reflects the fact that the required simulation
time should be dominated by the rare transitions (i.e., the smaller elements of T(t)), while
attempting to avoid over-dependence on individual estimates of small T}, which generally
have unknown error. The error versus simulation time in WE- and Conv.-estimated T () are
plotted in S12 Fig.

According to Eq 11, we estimate that our pipeline provided efficiency gains of 2 for ExMISA
(Fig 2), 900 for Pluripotency Parameter Set I (Fig 3), and 1 x 10° for Parameter Set II (Fig 6).
These numbers show that the pipeline can afford a significant speedup over conventional
simulation in providing global dynamic information. The numbers further show that the effi-
ciency gain is most pronounced for the Pluripotency network with exceedingly rare inter-
phenotype transitions.

Discussion

In this work, we present a method for efficient, automated computation of epigenetic land-
scapes, metastable phenotypes, and phenotype-transition dynamics of stochastic GRN models.
Our computational pipeline was inspired by studies of metastability and barrier-crossing in
Molecular Dynamics, and our application of the pipeline to cell-scale networks addresses a
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number of current challenges for stochastic GRN dynamics. First, it overcomes the curse-of-
dimensionality of complex models, by leveraging available rule-based modeling tools for sto-
chastic biochemical networks [56]. Second, it overcomes the challenge of efficiently simulating
stochastic systems with rare events, by using enhanced Weighted Ensemble rare-event sam-
pling [45]. Third, it addresses the challenge of extracting and interpreting essential dynamics
of complex systems on the basis of simulated trajectories, by using the Markov State Model
framework [36] to automatically generate a compact, approximate representation of global sys-
tem dynamics. Combining these tools into a unified pipeline provides an automated means of
computing and visualizing essential stationary and dynamic properties of stochastic GRNs,
including the number and identities (i.e. state-space mapping) of metastable phenotypes, their
steady-state probabilities, and most-likely pathways of inter-phenotype transitions and their
transition rates. By advancing the capability to compute and interpret hypothesized or experi-
mentally-derived stochastic GRN models, the method can yield insight into how “local” sto-
chastic, molecular processes involved in epigenetic regulation affect “global” dynamics such as
phenotypic stability and fate-transitions in cells. Moreover, it can help close the gap between
dynamic, molecular-detailed models of gene regulation and cell-population level experimental
data, to inform rational cell reprogramming strategies.

Insights from the pluripotency network simulations

We used the pluripotency network as a model system to develop and demonstrate the simula-
tion approach, but the results also yielded biological insights. For example, the simulations
revealed a hierarchical structure of the epigenetic landscape. The network—exhibiting 5-

6 metastable phenotypes—occupies a limited subspace from the vast possible gene combina-
tions (e.g., 2° = 256 possible distinct on/off combinations of gene expression states). The domi-
nant feature of the global landscape is a high barrier/slow timescale between pluripotent and
differentiated phenotypes. Within each of these categories, further sub-states were identified.
The model revealed multi-timescale dynamics of phenotype transitions; the pluripotency net-
work showed relatively rapid transitions between phenotype-states that differed in the expres-
sion-level (high vs. low) of a single gene, e.g. the high NANOG to low NANOG transition,
whereas phenotype transitions involving a change in expression level of seven genes, e.g. the
SC macrostate to the TE macrostate, occurred five orders of magnitude more slowly on
average.

While the accessible phenotypes appear broadly similar across parameter sets, the relative
stability and transition dynamics among phenotypes were sensitive to kinetic parameters gov-
erning transcription factor binding/unbinding. A global change in these parameters (affecting
all individual transcription factor-DNA interactions equally) changed the shape of the land-
scape, altering the relative steady-state probabilities of different phenotypes and the likely tran-
sition pathways linking them. The DNA binding parameters capture the local epigenetic
mechanisms that enable/disable transcription factors from accessing regulatory elements. A
global rate change nevertheless has a varying influence on different genes because the number
of regulators differs, as does the molecular logic by which activators and repressors exert com-
binatorial control on different genes. These results echo findings that global modification of
chromatin regulators often have lineage-specific effects [63]. These results highlight both the
need for, and the challenge of, informing cell reprogramming strategies with quantitative net-
work models, as they suggest that the dynamic response of cellular networks to perturbations
is governed by the detailed kinetics of molecular regulatory mechanisms, which are generally
difficult to parameterize.
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Dynamic definition of cell phenotype

The Markov State Model framework implicitly imposes a dynamic definition of cell pheno-
types; the number of phenotypes was determined using spectral gap-analysis, and the coarse-
graining algorithm automatically identified metastable aggregates (i.e., grouped sampled net-
work states into larger clusters). This is different from the classifications of phenotypes that are
generally used in analyzing experimental data, where gene expression or marker levels are
often used to categorize cells. However, experiments have also revealed the potential need for a
dynamic definition of cell phenotype, based not only on single-timepoint measurements of
gene expression or phenotype-markers, but also on information from past or future timepoints
[4, 8]. For example, Filipczyk et al. [8] identified distinct subpopulations within a compart-
ment of NANOG-negative cells in mESCS, which differed in their propensity to re-express
NANOG. At the same time, fluctuations between low- and high-NANOG expressing cells
were not necessarily associated with any functional state change. The Markov State Model
approach, based on kinetic/dynamic coarse-graining, thus provides a quantitative approach
for classifying phenotype-states that is both completely generalizable rather than ad hoc (it
requires no a priori knowledge or designation of markers/genes) and is in line with these
recent experiments revealing the need for a dynamic definition of phenotype.

Timescales of stochastic phenotype transitions

Markovian transitions (i.e., memoryless “hops”) among cell phenotypes have been observed
experimentally: examples include transitions among phenotypes in cancer cells, as measured
by flow cytometry [10], and among pluripotency-states in mESCs, as measured by time-lapse
microscopy of fluctuating gene expression [7-9]. The compact nature of these data-inferred
networks—showing hops among a limited set of broad phenotypes—suggests that the com-
puted MSM framework advanced in this study provides an appropriate level of resolution at
which to analyze GRN dynamics and may serve as a useful tool for comparing models to
experimental data.

Experimental studies have quantified the timescales of Markovian transitions between
NANOG-high and NANOG-low states in mESCs [8, 9]. From Hormoz et al., the probability
of transitioning from NANOG-high to NANOG-low in mESCs is 0.02 per cell cycle, while that
of the reverse transition is 0.08. These values represent a relatively rapid transition rate, since
NANOG expression is known to be particularly dynamic [60]. Similarly, plasticity has been
observed in cancer cells where quantitative estimates of stochastic cell transitions between a
stem cell cancer cell phenotype to a basal cancer cell phenotype were observed to be roughly
on the order of 0.01 to 0.1 per cell cycle [10]. We can translate our model results to approxi-
mate biological timescales: the degradation rate, which sets the timeunit for model results (i.e.,
k is taken to be 1) was experimentally determined to be on the order of a few hours (in the E14
mouse embryonic stem cell line, the half-lives of NANOG, OCT4, and SOX2 are approxi-
mately 4.7, > 6, and 1.6 hours, respectively [64]). Assuming that degradation is unimolecular,
k = In(2)/t;yanog)1/2> and the half-life of NANOG, t{nanog)1/2 = 5 hours, the degradation rate
is k = 0.1. Using a mESC cell cycle time of 12 hours [65], the simulations for Parameter Set I
then predict NANOG-high to NANOG-low transitions occurring with a rate of 0.03 per cell
cycle, and of 3 x 107 for the reverse. For Parameter Set II, the computed rates were 8 x 10~
and 5 x 107, respectively. Comparison of these computed and experimental rates of NANOG
transitions indicates that Parameter Set I (f=10) is more in line with experimental observa-
tions, while Parameter Set II (f = 50) gives transition rates that are three orders of magnitude
too slow. These results are in agreement with previous findings from theoretical studies that
GRNss in pluripotency networks operate in a so-called “weakly-adiabatic” regime [24, 27, 28],
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in which the timescale of DNA-binding by transcription factors is on the order of transcription
factor production and degradation.

Comparison to other models and computational approaches

A number of theoretical studies have elucidated dynamics of stochastic molecular-detailed
GRN models (i.e., models that include molecular fluctuations and regulatory mechanisms, in
contrast to Boolean models [66]). These studies have largely focused on small 1- or 2-gene
motifs[[21-25, 32, 39]]. In the limit of slow DNA-binding/unbinding, it was shown that the
stationary distribution of the stochastic model can be solved exactly [41]. Recent years have
seen extension of stochastic methods to studies of more complex, experimentally derived GRN
models encompassing O(10) genes. For example, determination of global dynamic properties
of such networks has been achieved by combining information from long stochastic simula-
tions of discrete models [27, 62], or of continuum SDE models, in combination with path inte-
gral approaches [58, 67]. The pluripotency network studied herein was developed by Zhang
and Wolynes [28]; in their work, the authors developed a continuum approximation to the
Chemical Master Equation that enabled quantitative construction of the epigenetic landscape.
Here, we present an alternative approach that is unique in two major aspects: (1) the use of sto-
chastic simulations (i.e., SSA [33]), which is enabled by use of the WE rare-event sampling
algorithm, and (2) the automated Markov State Model framework for designating phenotypes
and constructing a coarse-grained view of the epigenetic landscape. While we utilize a different
framework (that of coarse-grained, discrete stochastic models) from Zhang and Wolynes to
approximate and interpret dynamics, our results are broadly consistent with theirs. For exam-
ple, the dominant identified phenotypes we found are the same as in their work (the only
exception being the exceedingly rare LN2 phenotype identified by the coarse-graining algo-
rithm for Parameter Set I).

Current challenges and future directions

Our approach is uniquely suited to extracting global dynamics information for stochastic sys-
tems with metastability, using simulations. An advantage of this approach is that both the WE
and coarse-graining algorithms are“dynamics-agnostic” [47], meaning that they can be applied
to any type of stochastic dynamics framework. In the context of computational biology, our
pipeline could be extended to other types of stochastic biochemical systems, such as systems
with hybrid discrete-continuum dynamics [68], systems with spatial heterogeneity [69], or
multi-level models [70]. In addition to this flexibility, simulation-based methods have the
advantage of being able to leverage existing, widely-used open-source packages, which in turn
facilitate model specification and model sharing. For example, BioNetGen [56] can interpret
models specified in the Systems Biology Markup Language [71].

Several challenges and potential weaknesses with the pipeline exist, both with regard to
sampling rare events, and in determining an appropriate coarse-grained model. Potential chal-
lenges with the WE algorithm itself have been described elsewhere [35, 69], and include the
difficulty of determining a binning that captures slow degrees of freedom and the existence of
time-correlations between sampled iterations of the simulation, which can impede unbiased
sampling. The Voronoi-based binning procedure we employ here is related to a number of
similar approaches [24, 48-50], and has the advantage of effectively tiling a high-dimensional
space without the need for a priori knowledge. However, in practice, according to others and
our own studies, the method is effective up to about 10 degrees of freedom. Therefore, in larger
gene networks (as in other complex systems) an ongoing challenge will be to identify optimal
binning methods to effectively partition slow degrees of freedom and thus enable efficient
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enhanced sampling. New adaptive partitioning methods could also have the effect of improv-
ing the accuracy of coarse-grained Markov models, as finer partitioning of transition regions
has been found to reduce errors in the Markovian approximation [42]. Additional improve-
ments to efficiency, which could aid in scaling the method to larger networks, could be
achieved in the future by using alternatives to the direct SSA algorithm (see e.g., [72]) or
improved parallelization techniques.

Supporting information

S1 File. Description of network models, kinetic parameters, and weighted ensemble
parameters.
(PDF)

S2 File. Pseudo-code for the computational pipeline.
(PDF)

S3 File. Details of efficiency gain estimate.
(PDF)

S1 Table. EXMISA network parameters.
(PDF)

S2 Table. Pluripotency network.
(PDF)

S3 Table. Pluripotency network parameters.
(PDF)

S$4 Table. Weighted ensemble simulation parameters.
(PDF)

S5 Table. Transition matrices of metastable phenotype clusters (MSMs).
(PDF)

S6 Table. Computed mean first passage times in the EXMISA network—Comparison of
different methods.
(PDF)

§7 Table. Computed mean first passage times of inter-phenotype transitions in the pluri-
potency network (Parameter Set I).
(PDF)

S1 Fig. Movement of Voronoi Centers during weighted ensemble sampling.
(PDF)

S2 Fig. Error in computed steady-state probability as a function of N, the number of pro-
tein states retained in the state-space truncation.
(PDF)

S3 Fig. Convergence of the flux of the transition between the polarized phenotype-states in
the EXMISA network.
(PDF)

S4 Fig. Convergence of the slowest implied timescale £, with increasing number of sam-
pling regions (bins) and increasing lagtime 7.
(PDF)

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 23/28


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s014
https://doi.org/10.1371/journal.pcbi.1006336

©PLOS

COMPUTATIONAL

BIOLOGY

Rare-event sampling of epigenetic landscapes and phenotype transitions

S5 Fig. The Chapman-Kolmogorov test on the four Markov State Model phenotypes of the
sampled ExXMISA network.
(PDF)

S6 Fig. Pathway decomposition for the SC — PE transition for f = 10.
(PDF)

S7 Fig. Validation of the SC — TE transition pathway calculated through weighted ensem-
ble simulation.
(PDF)

S8 Fig. Reproducibility of the weighted ensemble sampling of the pluripotency network.
(PDF)

S9 Fig. Pathway decomposition for the SC — PE transition for f = 50.
(PDF)

$10 Fig. Convergence of the flux of the TE — SC transition in the pluripotency network
with f= 10.
(PDF)

S11 Fig. Difference in Coarse-Grained clustering for the 2-gene ExXMISA cell decision net-
work studied through the numerical benchmark (top) and the WE sampling pipeline (bot-
tom).

(PDF)

S12 Fig. Plotted errors in sampled T (t) for ExMISA.
(PDF)

Acknowledgments

We thank the administrators of the University of California, Irvine High-Performance Com-
puting Cluster and we thank Jun Allard for helpful discussions.

Author Contributions

Conceptualization: Margaret J. Tse, Elizabeth L. Read.

Data curation: Margaret J. Tse.

Formal analysis: Margaret J. Tse, Brian K. Chu, Elizabeth L. Read.
Investigation: Margaret J. Tse, Brian K. Chu.

Methodology: Margaret J. Tse.

Project administration: Elizabeth L. Read.

Resources: Elizabeth L. Read.

Software: Margaret J. Tse, Brian K. Chu, Cameron P. Gallivan, Elizabeth L. Read.
Supervision: Elizabeth L. Read.

Validation: Margaret ]. Tse, Cameron P. Gallivan.

Visualization: Margaret J. Tse.

Writing - original draft: Margaret J. Tse, Elizabeth L. Read.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 24/28


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s015
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s016
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s017
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s018
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s019
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1006336.s022
https://doi.org/10.1371/journal.pcbi.1006336

©-PLOS | Sotoer o

Rare-event sampling of epigenetic landscapes and phenotype transitions

Writing - review & editing: Margaret J. Tse, Brian K. Chu, Elizabeth L. Read.

References

1.

10.

1.

12

13.

14.
15.

16.

17.

18.

19.

20.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem
Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007; 131(5):861-872. https://doi.org/10.
1016/j.cell.2007.11.019 PMID: 18035408

Abranches E, Guedes AMV, Moravec M, Maamar H, Svoboda P, Raj A, et al. Stochastic NANOG fluctu-
ations allow mouse embryonic stem cells to explore pluripotency. Development. 2014; 141(14):
2770-2779. https://doi.org/10.1242/dev.108910 PMID: 25005472

Dietrich JE, Hiiragi T. Stochastic patterning in the mouse pre-implantation embryo. Development. 2007;
134(23):4219-4231. https://doi.org/10.1242/dev.003798 PMID: 17978007

Kalmar T, Lim C, Hayward P, Mufioz-Descalzo S, Nichols J, Garcia-Ojalvo J, et al. Regulated Fluctua-
tions in Nanog Expression Mediate Cell Fate Decisions in Embryonic Stem Cells. PLoS Biology. 2009;
7(7):e1000149. https://doi.org/10.1371/journal.pbio.1000149 PMID: 19582141

Singh AM, Hamazaki T, Hankowski KE, Terada N. A heterogeneous expression pattern for Nanog in
embryonic stem cells. Stem Cells (Dayton, Ohio). 2007; 25(10):2534—-2542. https://doi.org/10.1634/
stemcells.2007-0126

Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P, Kurimoto K, et al. Cell-to-cell expression vari-
ability followed by signal reinforcement progressively segregates early mouse lineages. Nature cell biol-
ogy. 2014; 16(1):27-37. https://doi.org/10.1038/ncb2881 PMID: 24292013

Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, et al. Dynamic Heterogeneity and DNA
Methylation in Embryonic Stem Cells. Molecular Cell. 2014; 55(2):319-331. https://doi.org/10.1016/j.
molcel.2014.06.029 PMID: 25038413

Filipczyk A, Marr C, Hastreiter S, Feigelman J, Schwarzfischer M, Hoppe PS, et al. Network plasticity
of pluripotency transcription factors in embryonic stem cells. Nature Cell Biology. 2015; 17(10):
1235-1246. https://doi.org/10.1038/ncb3237 PMID: 26389663

Hormoz S, Singer ZS, Linton JM, Antebi YE, Shraiman BI, Elowitz MB. Inferring Cell-State Transition
Dynamics from Lineage Trees and Endpoint Single-Cell Measurements. Cell Systems. 2016; 3(5):
419-433.€8. https://doi.org/10.1016/j.cels.2016.10.015 PMID: 27883889

Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, et al. Stochastic State Transitions
Give Rise to Phenotypic Equilibrium in Populations of Cancer Cells. Cell. 2011; 146(4):633—-644. https://
doi.org/10.1016/j.cell.2011.07.026 PMID: 21854987

Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, et al. A Chromatin-Mediated
Reversible Drug-Tolerant State in Cancer Cell Subpopulations. Cell. 2010; 141(1):69-80. https://doi.
org/10.1016/j.cell.2010.02.027 PMID: 20371346

Acar M, Mettetal JT, van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating envi-
ronments. Nature Genetics. 2008; 40(4):471-475. https://doi.org/10.1038/ng.110 PMID: 18362885

Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial Persistence as a Phenotypic Switch. Sci-
ence. 2004; 305(5690):1622—1625. https://doi.org/10.1126/science.1099390 PMID: 15308767

Waddington C, Kacser H. The Strategy of the Genes. Routledge; 1957.

Bhattacharya S, Zhang Q, Andersen ME. A deterministic map of Waddington’s epigenetic landscape
for cell fate specification. BMC Systems Biology. 2011; 5:85. https://doi.org/10.1186/1752-0509-5-85
PMID: 21619617

Wang J, Zhang K, Xu L, Wang E. Quantifying the Waddington landscape and biological paths for devel-
opment and differentiation. Proceedings Of The National Academy Of Sciences Of The United States
Of America. 2011; 108(21536909):8257—62. https://doi.org/10.1073/pnas.1017017108 PMID:
21536909

Huang S. The molecular and mathematical basis of Waddington’s epigenetic landscape: a framework
for post-Darwinian biology? BioEssays: News and Reviews in Molecular, Cellular and Developmental
Biology. 2012; 34(2):149-157. https://doi.org/10.1002/bies.201100031

Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex
gene regulatory network. Physical Review Letters. 2005; 94(12):128701. https://doi.org/10.1103/
PhysRevLett.94.128701 PMID: 15903968

Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic Gene Expression in a Single Cell. Science.
2002; 297(5584):1183-1186. https://doi.org/10.1126/science. 1070919 PMID: 12183631

Keern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to pheno-
types. Nature Reviews Genetics. 2005; 6(6):451-464. https://doi.org/10.1038/nrg1615 PMID:
15883588

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 25/28


https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1016/j.cell.2007.11.019
http://www.ncbi.nlm.nih.gov/pubmed/18035408
https://doi.org/10.1242/dev.108910
http://www.ncbi.nlm.nih.gov/pubmed/25005472
https://doi.org/10.1242/dev.003798
http://www.ncbi.nlm.nih.gov/pubmed/17978007
https://doi.org/10.1371/journal.pbio.1000149
http://www.ncbi.nlm.nih.gov/pubmed/19582141
https://doi.org/10.1634/stemcells.2007-0126
https://doi.org/10.1634/stemcells.2007-0126
https://doi.org/10.1038/ncb2881
http://www.ncbi.nlm.nih.gov/pubmed/24292013
https://doi.org/10.1016/j.molcel.2014.06.029
https://doi.org/10.1016/j.molcel.2014.06.029
http://www.ncbi.nlm.nih.gov/pubmed/25038413
https://doi.org/10.1038/ncb3237
http://www.ncbi.nlm.nih.gov/pubmed/26389663
https://doi.org/10.1016/j.cels.2016.10.015
http://www.ncbi.nlm.nih.gov/pubmed/27883889
https://doi.org/10.1016/j.cell.2011.07.026
https://doi.org/10.1016/j.cell.2011.07.026
http://www.ncbi.nlm.nih.gov/pubmed/21854987
https://doi.org/10.1016/j.cell.2010.02.027
https://doi.org/10.1016/j.cell.2010.02.027
http://www.ncbi.nlm.nih.gov/pubmed/20371346
https://doi.org/10.1038/ng.110
http://www.ncbi.nlm.nih.gov/pubmed/18362885
https://doi.org/10.1126/science.1099390
http://www.ncbi.nlm.nih.gov/pubmed/15308767
https://doi.org/10.1186/1752-0509-5-85
http://www.ncbi.nlm.nih.gov/pubmed/21619617
https://doi.org/10.1073/pnas.1017017108
http://www.ncbi.nlm.nih.gov/pubmed/21536909
https://doi.org/10.1002/bies.201100031
https://doi.org/10.1103/PhysRevLett.94.128701
https://doi.org/10.1103/PhysRevLett.94.128701
http://www.ncbi.nlm.nih.gov/pubmed/15903968
https://doi.org/10.1126/science.1070919
http://www.ncbi.nlm.nih.gov/pubmed/12183631
https://doi.org/10.1038/nrg1615
http://www.ncbi.nlm.nih.gov/pubmed/15883588
https://doi.org/10.1371/journal.pcbi.1006336

©-PLOS | Sotoer o

Rare-event sampling of epigenetic landscapes and phenotype transitions

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Aurell E, Sneppen K. Epigenetics as a First Exit Problem. Physical Review Letters. 2002; 88(4). https://
doi.org/10.1103/PhysRevLett.88.048101 PMID: 11801174

Sasai M, Wolynes PG. Stochastic gene expression as a many-body problem. Proceedings of the
National Academy of Sciences. 2003; 100(5):2374—2379. https://doi.org/10.1073/pnas.2627987100

Feng H, Wang J. A new mechanism of stem cell differentiation through slow binding/unbinding of regu-
lators to genes. Sci Rep. 2012; 2:550. https://doi.org/10.1038/srep00550 PMID: 22870379

Tse MJ, Chu BK, Roy M, Read EL. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced
Switching in Gene Networks. Biophysical Journal. 2015; 109(8):1746—1757. https://doi.org/10.1016/j.
bpj.2015.08.035 PMID: 26488666

Ge H, Qian H, Xie XS. Stochastic Phenotype Transition of a Single Cell in an Intermediate Region of
Gene State Switching. Physical Review Letters. 2015; 114(7):078101. https://doi.org/10.1103/
PhysRevLett.114.078101 PMID: 25763973

Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. Transcriptome-wide noise controls lineage
choice in mammalian progenitor cells. Nature. 2008; 453(7194):544-547. https://doi.org/10.1038/
nature06965 PMID: 18497826

Sasai M, Kawabata Y, Makishi K, Itoh K, Terada TP. Time Scales in Epigenetic Dynamics and Pheno-
typic Heterogeneity of Embryonic Stem Cells. PLOS Computational Biology. 2013; 9(12):e1003380.
https://doi.org/10.1371/journal.pcbi.1003380 PMID: 24348228

Zhang B, Wolynes PG. Stem cell differentiation as a many-body problem. Proceedings of the National
Academy of Sciences. 2014; 111(28):10185-10190. https://doi.org/10.1073/pnas.1408561111

Chu BK, Tse MJ, Sato RR, Read EL. Markov State Models of gene regulatory networks. BMC Systems
Biology. 2017; 11:14. https://doi.org/10.1186/s12918-017-0394-4 PMID: 28166778

Lipshtat A, Loinger A, Balaban NQ, Biham O. Genetic Toggle Switch without Cooperative Binding.
Physical Review Letters. 2006; 96(18):188101. https://doi.org/10.1103/PhysRevLett.96.188101 PMID:
16712399

Schultz D, Walczak AM, Onuchic JN, Wolynes PG. Extinction and resurrection in gene networks. Pro-
ceedings of the National Academy of Sciences of the United States of America. 2008; 105(49):
19165-19170. https://doi.org/10.1073/pnas.0810366105 PMID: 19033463

Ma R, Wang J, Hou Z, Liu H. Small-Number Effects: A Third Stable State in a Genetic Bistable Toggle
Switch. Physical Review Letters. 2012; 109(24):248107. https://doi.org/10.1103/PhysRevLett.109.
248107 PMID: 23368390

Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chem-
istry. 1977; 81(25):2340—-2361. https://doi.org/10.1021/j100540a008

Allen R, Valeriani C, ten Wolde P. Forward flux sampling for rare event simulations. Journal Of Physics-
Condensed Matter. 2009; 21(000271268400004):463102. https://doi.org/10.1088/0953-8984/21/46/
463102

Zuckerman DM, Chong LT. Weighted Ensemble Simulation: Review of Methodology, Applications, and
Software. Annual Review of Biophysics. 2017; 46(1):43-57. https://doi.org/10.1146/annurev-biophys-
070816-033834 PMID: 28301772

Noé F, Schiitte C, Vanden-Eijnden E, Reich L, Weikl TR. Constructing the equilibrium ensemble of fold-
ing pathways from short off-equilibrium simulations. Proceedings of the National Academy of Sciences.
2009; 106(45):19011-19016. https://doi.org/10.1073/pnas.0905466106

Huang S. Reprogramming cell fates: reconciling rarity with robustness. BioEssays: News and Reviews
in Molecular, Cellular and Developmental Biology. 2009; 31(5):546-560. https://doi.org/10.1002/bies.
200800189

Graf T, Enver T. Forcing cells to change lineages. Nature. 2009; 462(7273):587-594. https://doi.org/10.
1038/nature08533 PMID: 19956253

Kepler TB, Elston TC. Stochasticity in Transcriptional Regulation: Origins, Consequences, and Mathe-
matical Representations. Biophysical Journal. 2001; 81(6):3116-3136. https://doi.org/10.1016/S0006-
3495(01)75949-8 PMID: 11720979

Lin YT, Buchler NE. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using
piecewise deterministic Markov processes. Journal of The Royal Society Interface. 2018; 15(138).
https://doi.org/10.1098/rsif.2017.0804

Al-Radhawi MA, Del Vecchio D, Sontag ED. Multi-modality in gene regulatory networks with slow gene
binding. arXiv preprint arXiv:170502330. 2017;.

Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, et al. Markov models of molecular kinetics: Gen-
eration and validation. The Journal of Chemical Physics. 2011; 134(17):174105. https://doi.org/10.
1063/1.3565032 PMID: 21548671

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 26/28


https://doi.org/10.1103/PhysRevLett.88.048101
https://doi.org/10.1103/PhysRevLett.88.048101
http://www.ncbi.nlm.nih.gov/pubmed/11801174
https://doi.org/10.1073/pnas.2627987100
https://doi.org/10.1038/srep00550
http://www.ncbi.nlm.nih.gov/pubmed/22870379
https://doi.org/10.1016/j.bpj.2015.08.035
https://doi.org/10.1016/j.bpj.2015.08.035
http://www.ncbi.nlm.nih.gov/pubmed/26488666
https://doi.org/10.1103/PhysRevLett.114.078101
https://doi.org/10.1103/PhysRevLett.114.078101
http://www.ncbi.nlm.nih.gov/pubmed/25763973
https://doi.org/10.1038/nature06965
https://doi.org/10.1038/nature06965
http://www.ncbi.nlm.nih.gov/pubmed/18497826
https://doi.org/10.1371/journal.pcbi.1003380
http://www.ncbi.nlm.nih.gov/pubmed/24348228
https://doi.org/10.1073/pnas.1408561111
https://doi.org/10.1186/s12918-017-0394-4
http://www.ncbi.nlm.nih.gov/pubmed/28166778
https://doi.org/10.1103/PhysRevLett.96.188101
http://www.ncbi.nlm.nih.gov/pubmed/16712399
https://doi.org/10.1073/pnas.0810366105
http://www.ncbi.nlm.nih.gov/pubmed/19033463
https://doi.org/10.1103/PhysRevLett.109.248107
https://doi.org/10.1103/PhysRevLett.109.248107
http://www.ncbi.nlm.nih.gov/pubmed/23368390
https://doi.org/10.1021/j100540a008
https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1088/0953-8984/21/46/463102
https://doi.org/10.1146/annurev-biophys-070816-033834
https://doi.org/10.1146/annurev-biophys-070816-033834
http://www.ncbi.nlm.nih.gov/pubmed/28301772
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1002/bies.200800189
https://doi.org/10.1002/bies.200800189
https://doi.org/10.1038/nature08533
https://doi.org/10.1038/nature08533
http://www.ncbi.nlm.nih.gov/pubmed/19956253
https://doi.org/10.1016/S0006-3495(01)75949-8
https://doi.org/10.1016/S0006-3495(01)75949-8
http://www.ncbi.nlm.nih.gov/pubmed/11720979
https://doi.org/10.1098/rsif.2017.0804
https://doi.org/10.1063/1.3565032
https://doi.org/10.1063/1.3565032
http://www.ncbi.nlm.nih.gov/pubmed/21548671
https://doi.org/10.1371/journal.pcbi.1006336

©-PLOS | Sotoer o

Rare-event sampling of epigenetic landscapes and phenotype transitions

43.

44,
45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

60.

61.

62.

63.

Scherer MK, Trendelkamp-Schroer B, Paul F, Pérez-Hernandez G, Hoffmann M, Plattner N, et al.
PYyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. Journal of
Chemical Theory and Computation. 2015; 11(11):5525-5542. https://doi.org/10.1021/acs.jctc.5b00743
PMID: 26574340

Hoel PG, Port SC, Stone CJ. Introduction to Stochastic Processes. Waveland Press; 1986.

Huber G, Kim S. Weighted-ensemble Brownian dynamics simulations for protein association reactions.
Biophysical Journal. 1996; 70(8770190):97—110. https://doi.org/10.1016/S0006-3495(96)79552-8
PMID: 8770190

Allen RJ, Warren PB, ten Wolde PR. Sampling Rare Switching Events in Biochemical Networks. Physi-
cal Review Letters. 2005; 94(1). https://doi.org/10.1103/PhysRevLett.94.018104

Donovan R, Sedgewick A, Faeder J, Zuckerman D. Efficient stochastic simulation of chemical kinetics
networks using a weighted ensemble of trajectories. The Journal of chemical physics. 2013;
139(24070313):115105. https://doi.org/10.1063/1.4821167 PMID: 24070313

Dickson A, Warmflash A, Dinner AR. Nonequilibrium umbrella sampling in spaces of many order param-
eters. The Journal of Chemical Physics. 2009; 130(7):074104. https://doi.org/10.1063/1.3070677
PMID: 19239281

Dickson A, Brooks CL. WExplore: Hierarchical Exploration of High-Dimensional Spaces Using the
Weighted Ensemble Algorithm. The Journal of Physical Chemistry B. 2014; 118(13):3532-3542.
https://doi.org/10.1021/jp411479c PMID: 24490961

Zhang B, Jasnow D, Zuckerman D. The “weighted ensemble” path sampling method is statistically
exact for a broad class of stochastic processes and binning procedures. The Journal of chemical phys-
ics. 2010; 132(20136305):054107. https://doi.org/10.1063/1.3306345 PMID: 20136305

Suarez E, Lettieri S, Zwier MC, Stringer CA, Subramanian SR, Chong LT, et al. Simultaneous Compu-

tation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories. Journal of
Chemical Theory and Computation. 2014; 10(7):2658-2667. https://doi.org/10.1021/ct401065r PMID:

25246856

Dickson A, Warmflash A, Dinner AR. Separating forward and backward pathways in nonequilibrium
umbrella sampling. The Journal of Chemical Physics. 2009; 131(15):154104. https://doi.org/10.1063/1.
3244561 PMID: 20568844

Roblitz S, Weber M. Fuzzy spectral clustering by PCCA+: application to Markov state models and data
classification. Advances in Data Analysis and Classification. 2013; 7(2):147-179. https://doi.org/10.
1007/s11634-013-0134-6

Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating
Networks; 2009. Available from: http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

MATLAB and Parallel Computing Toolbox Release 2012b;.

Faeder JR, Blinov ML, Hlavacek WS. Rule-Based Modeling of Biochemical Systems with BioNetGen.
In: Systems Biology. Methods in Molecular Biology. Humana Press; 2009. p. 113—167. Available from:
https://link.springer.com/protocol/10.1007/978-1-59745-525-1_5.

Harrigan MP, Sultan MM, Hernandez CX, Husic BE, Eastman P, Schwantes CR, et al. MSMBuilder:
Statistical Models for Biomolecular Dynamics. Biophysical Journal. 2017; 112(1):10-15. https://doi.org/
10.1016/j.bpj.2016.10.042 PMID: 28076801

Wang P, Song C, Zhang H, Wu Z, Tian XJ, Xing J. Epigenetic state network approach for describing cell
phenotypic transitions. Interface Focus. 2014; 4(3). https://doi.org/10.1098/rsfs.2013.0068

Chambers |, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency
and mediates germline development. Nature. 2007; 450(7173):1230-1234. https://doi.org/10.1038/
nature06403 PMID: 18097409

Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, et al. Nanog Is the Gateway
to the Pluripotent Ground State. Cell. 2009; 138(4):722—737. https://doi.org/10.1016/j.cell.2009.07.039
PMID: 19703398

Hay DC, Sutherland L, Clark J, Burdon T. Oct-4 Knockdown Induces Similar Patterns of Endoderm and
Trophoblast Differentiation Markers in Human and Mouse Embryonic Stem Cells. STEM CELLS. 2004;
22(2):225-235. https://doi.org/10.1634/stemcells.22-2-225 PMID: 14990861

Li C, Wang J. Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for dif-
ferentiation, reprogramming and transdifferentiation. Journal of The Royal Society Interface. 2013;
10(89):20130787. https://doi.org/10.1098/rsif.2013.0787

Constantinides PG, Jones PA, Gevers W. Functional striated muscle cells from non-myoblast precur-
sors following 5-azacytidine treatment. Nature. 1977; 267(5609):364—6. https://doi.org/10.1038/
267364a0 PMID: 68440

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 27/28


https://doi.org/10.1021/acs.jctc.5b00743
http://www.ncbi.nlm.nih.gov/pubmed/26574340
https://doi.org/10.1016/S0006-3495(96)79552-8
http://www.ncbi.nlm.nih.gov/pubmed/8770190
https://doi.org/10.1103/PhysRevLett.94.018104
https://doi.org/10.1063/1.4821167
http://www.ncbi.nlm.nih.gov/pubmed/24070313
https://doi.org/10.1063/1.3070677
http://www.ncbi.nlm.nih.gov/pubmed/19239281
https://doi.org/10.1021/jp411479c
http://www.ncbi.nlm.nih.gov/pubmed/24490961
https://doi.org/10.1063/1.3306345
http://www.ncbi.nlm.nih.gov/pubmed/20136305
https://doi.org/10.1021/ct401065r
http://www.ncbi.nlm.nih.gov/pubmed/25246856
https://doi.org/10.1063/1.3244561
https://doi.org/10.1063/1.3244561
http://www.ncbi.nlm.nih.gov/pubmed/20568844
https://doi.org/10.1007/s11634-013-0134-6
https://doi.org/10.1007/s11634-013-0134-6
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://link.springer.com/protocol/10.1007/978-1-59745-525-1_5
https://doi.org/10.1016/j.bpj.2016.10.042
https://doi.org/10.1016/j.bpj.2016.10.042
http://www.ncbi.nlm.nih.gov/pubmed/28076801
https://doi.org/10.1098/rsfs.2013.0068
https://doi.org/10.1038/nature06403
https://doi.org/10.1038/nature06403
http://www.ncbi.nlm.nih.gov/pubmed/18097409
https://doi.org/10.1016/j.cell.2009.07.039
http://www.ncbi.nlm.nih.gov/pubmed/19703398
https://doi.org/10.1634/stemcells.22-2-225
http://www.ncbi.nlm.nih.gov/pubmed/14990861
https://doi.org/10.1098/rsif.2013.0787
https://doi.org/10.1038/267364a0
https://doi.org/10.1038/267364a0
http://www.ncbi.nlm.nih.gov/pubmed/68440
https://doi.org/10.1371/journal.pcbi.1006336

©-PLOS | Sotoer o

Rare-event sampling of epigenetic landscapes and phenotype transitions

64.

65.

66.

67.

68.

69.

70.

71.

72.

Abranches E, Bekman E, Henrique D. Generation and Characterization of a Novel Mouse Embryonic
Stem Cell Line with a Dynamic Reporter of Nanog Expression. PLOS ONE. 2013; 8(3):€59928. https://
doi.org/10.1371/journal.pone.0059928 PMID: 23527287

Wakayama T, Rodriguez |, Perry ACF, Yanagimachi R, Mombaerts P. Mice cloned from embryonic
stem cells. Proceedings of the National Academy of Sciences of the United States of America. 1999;
96(26):14984—-14989. https://doi.org/10.1073/pnas.96.26.14984 PMID: 10611324

Chang R, Shoemaker R, Wang W. Systematic Search for Recipes to Generate Induced Pluripotent
Stem Cells. PLoS Computational Biology. 2011; 7(12). https://doi.org/10.1371/journal.pcbi. 1002300

Li C, Wang J. Quantifying the Landscape for Development and Cancer from a Core Cancer Stem Cell
Circuit. Cancer Research. 2015; 75(13):2607—-2618. https://doi.org/10.1158/0008-5472.CAN-15-0079
PMID: 25972342

Hepp B, Gupta A, Khammash M. Adaptive hybrid simulations for multiscale stochastic reaction net-
works. The Journal of Chemical Physics. 2015; 142(3):034118. https://doi.org/10.1063/1.4905196
PMID: 25612700

Donovan RM, Tapia JJ, Sullivan DP, Faeder JR, Murphy RF, Dittrich M, et al. Unbiased Rare Event
Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories.
PLoS Computational Biology. 2016; 12(2). https://doi.org/10.1371/journal.pcbi.1004611 PMID:
26845334

Maus C, Rybacki S, Uhrmacher AM. Rule-based multi-level modeling of cell biological systems. BMC
Systems Biology. 2011; 5:166. https://doi.org/10.1186/1752-0509-5-166 PMID: 22005019

Harris LA, Hogg JS, Tapia JJ, Sekar JA, Gupta S, Korsunsky |, et al. BioNetGen 2.2: advances in rule-
based modeling. Bioinformatics. 2016; 32(21):3366—3368. https://doi.org/10.1093/bicinformatics/
btw469 PMID: 27402907

Gillespie DT, Petzold LR. Improved leap-size selection for accelerated stochastic simulation. The Jour-
nal of Chemical Physics. 2003; 119(16):8229-8234. https://doi.org/10.1063/1.1613254

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006336  August 3, 2018 28/28


https://doi.org/10.1371/journal.pone.0059928
https://doi.org/10.1371/journal.pone.0059928
http://www.ncbi.nlm.nih.gov/pubmed/23527287
https://doi.org/10.1073/pnas.96.26.14984
http://www.ncbi.nlm.nih.gov/pubmed/10611324
https://doi.org/10.1371/journal.pcbi.1002300
https://doi.org/10.1158/0008-5472.CAN-15-0079
http://www.ncbi.nlm.nih.gov/pubmed/25972342
https://doi.org/10.1063/1.4905196
http://www.ncbi.nlm.nih.gov/pubmed/25612700
https://doi.org/10.1371/journal.pcbi.1004611
http://www.ncbi.nlm.nih.gov/pubmed/26845334
https://doi.org/10.1186/1752-0509-5-166
http://www.ncbi.nlm.nih.gov/pubmed/22005019
https://doi.org/10.1093/bioinformatics/btw469
https://doi.org/10.1093/bioinformatics/btw469
http://www.ncbi.nlm.nih.gov/pubmed/27402907
https://doi.org/10.1063/1.1613254
https://doi.org/10.1371/journal.pcbi.1006336

