
Neural Network-based Graph Embedding for Cross-Platform
Binary Code Similarity Detection

Xiaojun Xu
Shanghai Jiao Tong University

xuxj@apex.sjtu.edu.cn

Chang Liu
University of California, Berkeley

liuchang@eecs.berkeley.edu

Qian Feng
Samsung Research America
qian.feng1@samsung.com

Heng Yin
University of California, Riverside

heng@cs.ucr.edu

Le Song
Georgia Institute of Technology

lsong@cc.gatech.edu

Dawn Song
University of California, Berkeley

dawnsong@cs.berkeley.edu

ABSTRACT

The problem of cross-platform binary code similarity detection

aims at detecting whether two binary functions coming from dif-

ferent platforms are similar or not. It has many security applica-

tions, including plagiarism detection, malware detection, vulnera-

bility search, etc. Existing approaches rely on approximate graph-

matching algorithms, which are inevitably slow and sometimes

inaccurate, and hard to adapt to a new task. To address these issues,

in this work, we propose a novel neural network-based approach to

compute the embedding, i.e., a numeric vector, based on the control

flow graph of each binary function, then the similarity detection

can be done efficiently by measuring the distance between the

embeddings for two functions. We implement a prototype called

Gemini. Our extensive evaluation shows that Gemini outperforms

the state-of-the-art approaches by large margins with respect to

similarity detection accuracy. Further, Gemini can speed up prior

art’s embedding generation time by 3 to 4 orders of magnitude and

reduce the required training time from more than 1 week down to

30 minutes to 10 hours. Our real world case studies demonstrate

that Gemini can identify significantly more vulnerable firmware

images than the state-of-the-art, i.e., Genius. Our research show-

cases a successful application of deep learning on computer security

problems.

CCS CONCEPTS

· Security and privacy → Vulnerability scanners;

KEYWORDS

Binary Code, Similarity Detection, Neural Network

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACM CCS 2017, , Oct. 30śNov. 3, 2017, Dallas, TX, USA.

© 2017 Copyright is held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
http://dx.doi.org/10.1145/3133956.3134018

1 INTRODUCTION

Given two binary functions, we would like to detect whether they

are similar. This problem is known as łbinary code similarity detec-

tion,ž which has many security applications, such as plagiarism de-

tection, malware detection, vulnerability search, etc. Among these

security applications, vulnerability search in firmware images of

IoT devices is particularly critical and more crucial than ever. A

single bug at source code level may spread across hundreds or more

devices that have diverse hardware architectures and software plat-

forms. The study by Cui et al. showed that 80.4% of vendor-issued

firmware is released with multiple known vulnerabilities, and many

recently released firmware updates contain vulnerabilities in third-

party libraries that have been known for over eight years [12].

Security practitioners face an increasing need to quickly detect

similar functions directly in binaries across multiple platforms, e.g.,

x86, ARM, or MIPS. Only recently, researchers have started to tackle

the problem of cross-platform binary code similarity detection [16,

18, 31]. These efforts propose to extract directly from binary code

various robust platform-independent features for each node in the

control flow graph to represent a function. Then, to conduct a binary

code similarity detection, a graph matching algorithm is used to

check whether two functions’ control flow graph representations

are similar [16, 31]. On the other hand,Genius [18] learns high-level

feature representations from the control flow graphs and encodes

(i.e., embeds) the graphs into embeddings (i.e., high dimensional

numerical vectors). To compute the embedding of a binary function,

however, it also relies on graph matching algorithms to compute

the similarity between the target function and a codebook of binary

functions.

Unfortunately, such graph matching-based approaches have two

inevitable drawbacks. First, the similarity function approximated

by fixed graph matching algorithms is hard to adapt to different

applications. For example, given two pieces of binary code which

differ in only a few instructions, in the application of plagiarism de-

tection, they may be considered as similar, since the majority of the

code is identical; but in the application of vulnerability search, they

may be considered dissimilar, since a few instructions’ difference

may fix an important vulnerability. A manually designed similarity

function cannot fit in both scenarios by nature.

Second, the efficiency of all similarity detection approaches based

on graph matching is bounded by the efficiency of the graph match-

ing algorithms (such as bipartite graph matching). However, the

graph matching algorithms are slow, i.e., requiring super-linear

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

363

http://dx.doi.org/10.1145/3133956.3134018

runtime in the graph size. Thus such approaches are inevitably

inefficient.

In recent years, deep learning [28] has been applied to many

application domains, including binary analysis [42], and has shown

stronger results than other approaches. The advantage of deep

neural networks is that they can represent a binary analysis task,

e.g., generating embedding for a binary function, as a neural net-

work whose parameters can be trained end-to-end, so that it relies

on as little domain knowledge (e.g., graph matching in previous

approaches) as possible. Further, a deep neural network-based ap-

proach can be adaptive by design, since the neural network can

be trained with different data to fit into different application sce-

narios or tasks. Also, a deep neural network model can be com-

puted efficiently, i.e., with runtime linear to the input-size and the

network-size.

Inspired by these advantages, in this work, we propose a deep

neural network-based approach to generate embeddings for binary

functions for similarity detection. In particular, assuming a binary

function is represented as a control-flow graph with attributes at-

tached to each node, we use a graph embedding network to convert

the graph into an embedding. Previously, graph embedding net-

works have been proposed for classification and regression tasks in

domains such as molecule classification [13]. However, our work is

in similarity detection, which is different from classification, and

thus their approach does not apply to our task directly. Instead,

we propose a new approach to computing graph embedding for

similarity detection, by combining graph embedding networks into

a Siamese network [7] that naturally captures the objective that

the graph embeddings of two similar functions should be close to

each other and vice versa. This entire network model can then be

trained end-to-end for similarity detection.

Further, we design a new training and dataset creation method

using a default policy to pre-train a task-independent graph em-

bedding network. Our approach constructs a large-scale training

dataset using binary functions compiled from the same source code

but for different platforms and compiler optimization levels. Our

evaluation demonstrates that this task-independent model is more

effective and generalize better to unseen functions than the state-

of-the-art graph matching-based approach [18].

One advantage of the neural network-based approach is that

the pre-trained model can be retrained quickly in the presence

of additional supervision to adapt to new application scenarios.

Our evaluation shows that with such additional supervision, the

retrained model can efficiently adapt to novel tasks. Different from

previous approaches such as Genius, which would take more than

a week to retrain the model, training a neural network is very

efficient, and each retraining phase can be done within 30 minutes.

This efficiency property enables practical usage of the retraining to

improve the quality of similarity detection.

We have implemented a prototype called Gemini. Our evalu-

ations demonstrate that Gemini outperforms the state-of-the-art

approaches such as Genius [18] by large margins with respect to

both accuracy and efficiency. For accuracy, we apply Gemini to

the same tasks used by Genius to evaluate both task-independent

and task-specific models. For the former, the AUC (Area Under the

Curve) of our pre-trained task-independent model is 0.971, whereas

AUC for Genius is 0.913. For the latter, from a real-world dataset,

our task-specific models can identify on average 25 more vulnera-

ble firmware images than Genius among top-50 results. Note that

previous approaches do not provide the flexibility to incorporate

additional task-specific supervision efficiently. Thus the retraining

process is a unique advantage of our approach over previous work.

For efficiency, Gemini is more efficient than Genius in terms

of both embedding generation time and training time. For embed-

ding generation, Gemini is 2400× to 16000× faster than the Genius

approach. For training time, training an effective Gemini model

requires less than 30 minutes, while training Genius requires more

than one week.

In a broader scope, this work showcases a successful example

of how to apply deep learning to solve important and emerging

computer security problems and substantially improves over the

state-of-the-art results.

We summarize our contributions as follows:

• We propose the first neural network-based approach to

generating embeddings for binary functions;

• We propose a novel approach to train the embedding net-

work using a Siamese network so that a pre-trained model

can generate embedding to be used for similarity detection;

• We propose a retraining approach so that the pre-trained

model can take additional supervision to adapt to specific

tasks;

• We implement a prototype called Gemini. Our evaluation

demonstrates that on a test set constructed from OpenSSL,

Gemini can achieve a higher AUC than both Genius and

other state-of-the-art graph matching-based approach;

• Our evaluation shows that Gemini can compute the em-

bedding 3 to 4 orders of magnitude faster than prior art,

i.e., Genius;

• We conduct case studies using real-world firmware images.

We show that using Gemini we can find significantly more

vulnerable firmware images than Genius.

2 BINARY CODE SIMILARITY DETECTION

In this section, we first use cross-platform binary code search as

an example to explain the problem to design a similarity detection

function. We then explain existing approaches, while providing a

demonstration on how an efficient embedding function can help

with designing a similarity function. In the end, we present our

approach to use a neural network as the embedding function, and

the benefits of such an approach.

2.1 Motivation Problem: Cross-Platform
Binary Code Search

Consider the problem of cross-platform binary code similarity de-

tection. Given a binary function of interest (e.g., one that contains

the Heartbleed vulnerability), we would like to examine a large

corpus of binary functions (e.g., ones extracted from firmware im-

ages of various IoT devices) and quickly and accurately identify

a list of candidates that are semantically equivalent or similar to

the function of interest. We call the binary function of interest the

query function, and the corpus of binary functions the target corpus.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

364

A technique for this problem can be applied to many security ap-

plications, such as bug search in firmware images and plagiarism

detection in binary code, etc.

The core of this problem is the design of a function to detect

whether two functions are similar or not. An effective approach for

this problem needs to achieve the following design goals:

• Binary only. In practice, we often do not have access to

the source code of the binary functions. As a result, an

effective similarity detection and code search technique

must work on binary code directly.

• Cross-platform support. Since the query function and

the functions in the target corpus may come from different

hardware architectures and software platforms, an effec-

tive binary search technique must tolerate the syntactic

variations introduced by different platforms and capture

the intrinsic characteristics of these binary functions.

• High precision. An effective binary code similarity detec-

tor should be able to assign a high score to a pair of similiar

functions, and a low score to a pair of irrelevant ones.

• High efficiency. The similarity function should be com-

puted efficiently for the vulnerability search system and

other applications to scale to a large target corpus.

• Adaptive. When domain experts can provide similar or

dissimilar examples, the similarity function should be able

to be adapted quickly to these examples for the domain-

specific application.

2.2 Existing Techniques

While there has been a series of efforts on binary code matching

and search, most of them only work on binary code for a single

platform [14, 32].

Only recently, researchers have started to tackle this problem in

a cross-platform setting. These efforts propose to extract various

features from binary code directly that are robust enough to persist

across different architectures and compiler optimization options.

Pairwise Graph Matching. The approach by Pewny et al. [31]

extracts inputśoutput pairs for each basic block as its feature (or

label) in the control flow graph, and then it performs graph match-

ing. Unfortunately, this is a very expensive process: the calculation

of inputśoutput pairs and the graph matching are both expensive.

To improve efficiency, discovRE [16] is proposed to extract more

lightweight syntax level features (e.g., the number of arithmetic

instructions and the number of call instructions) instead to speed up

the feature extraction and to apply pre-filtering by simple function-

level features before graph matching to improve the search effi-

ciency. However, according to Feng et al. [18], this pre-filtering

approach is not reliable and may cause significant degradation in

search accuracy. Fundamentally, both approaches rely on pairwise

graph matching to detect similarity, which are inevitably inefficient.

Graph Embedding. In order to achieve scalability and high accu-

racy simultaneously, we would like to learn an indexable feature

representation from the control flow graph. In other words, we need

to encode (i.e., embed) a graph representation into an embedding,

i.e., a numeric feature vector. In doing so, the similarity function

can be computed as an easy-to-compute distance function between

Raw Feature

Extraction

Embedding

Network

Firmware

Database

Vulnerability

Database

Firmware

images
Vulnerability

ACFG

Embeddings

for images

Embeddings

for vulnerability

Vulnerability Search

EmbeddingSuspicious

image

Binary Checking Search

Suspicious

vulnerabilities

Threshold

Embedding

LSH-based DB

Figure 1: Cross-platform Binary Code Search Workflow

Type Attribute name

Block-level attributes

String Constants

Numeric Constants

No. of Transfer Instructions

No. of Calls

No. of Instructions

No. of Arithmetic Instructions

Inter-block attributes
No. of offspring

Betweenness

Table 1: Basic-block attributes

two vectors, which is thus efficient. Also, the feature vectors can

be indexed using a locality sensitive hashing (LSH) based database

so that a search query can be executed in O(1) time.

Feng et al. [18] were the first to apply this approach to the vulner-

ability search problem. They proposed Genius, a graph embedding

workflow, illustrated in Figure 1. Given a binary function (from

either a firmware image or a known vulnerability), Genius first

extracts raw features in the form of an attributed control flow graph

(ACFG). In an ACFG, each vertex is a basic block labeled with a

set of attributes. Table 1 lists six block-level attributes and two

inter-block attributes used in Genius. Figure 2 illustrates an ACFG

for a function in OpenSSL containing the Heartbleed vulnerability.

Each ACFG is then converted into a high-level embedding, which

is stored into a hash table using locality sensitive hashing (LSH).

Consequently, to identify a set of binary functions that are similar

to the query function, we just need to find the corresponding em-

bedding of the query function and find the nearby embeddings in

the target corpus.

The key component is how to convert ACFGs into their embed-

dings. Genius takes a codebook-based approach to embedding an

ACFG. It uses a clustering algorithm to train a codebook consisting

of a number of representative ACFGs identified for each cluster.

Then, to convert an ACFG to a feature vector, Genius measures

the similarity between the specified ACFG and each representative

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

365

Figure 2: An example of a code graph on Function

dtls1_process_heartbeat (Heartbleed vulnerability)

ACFG in the codebook using the bipartite graph matching algo-

rithm. Consequently, these similarity measures form the feature

vector of the specified ACFG.

While the idea of graph embedding is inspiring and convincing,

the use of a codebook and graph matching has several limitations.

First, codebook generation is a very expensive process, as pairwise

graph matching has to be conducted for each pair of control flow

graphs in the training dataset, and then spectral clustering needs

to be performed. As a result, the quality of the generated codebook

is limited by the scale of the training dataset. Second, the runtime

overhead of graph embedding increases linearly with the code-

book size (i.e., the number of control flow graphs in the codebook).

Therefore, the codebook size has to be small,1 which confines the

fidelity of graph encoding. Last but not least, the search accuracy

of this approach is ultimately bounded by the quality of bipartite

graph matching [35]. As an approximate algorithm, bipartite graph

matching may not always produce optimal matching results.

2.3 Neural Network-based Embedding
Generation

In this paper, we propose to take a neural network-based approach

to embedding an ACFG, to overcome the limitations in previous

graph matching-based approaches. Our approach employs a neural

network to transform an ACFG into an embedding. We will dis-

cuss the details in Section 3. In doing so, our approach has several

advantages over previous work:

Better accuracy.Our neural network-based embedding can achieve

significantly better accuracy than both bipartite graph matching

and Genius, for two main reasons. First, neural network-based

graph embedding does not rely on bipartite graph matching at all.

Instead, it evaluates the graphical representation as a whole, by

iteratively propagating embedding throughout the control flow

graph. Second, the parameters in the neural network are automati-

cally learned to maximize our embedding objective: the distance

between the embeddings of two similar ACFG should be minimized,

116 was chosen as the codebook size in the paper by Feng et al. [18]

whereas the distance between the embeddings of two dissimilar

ACFGs should be maximized. Further, the neural network-based

approach allows the model to be retrained with additional supervi-

sion from domain experts to better adapt to a new task/scenario,

so as to further improve the accuracy.

Higher embedding efficiency. The graph embedding in Genius

is very slow, as it has to perform bipartite graph matching with each

ACFG in the codebook. In comparison, our neural network model is

cheap to compute. Further, all computations in the neural network

can be parallelized to leverage the massively parallel computing

hardware (i.e., multi-core CPUs and GPUs). Another performance

boost comes from not requiring inter-block attributes. In order to

achieve good graph matching results, Genius extracts inter-block

attributes: the number of offspring and betweenness, which are

on average 8× more expensive to compute than the block-level

attributes. Our neural network model, on the other hand, requires

only basic block-level attributes and the number of offspring (which

is cheap to compute) to achieve high accuracy. The neural network

model already incorporates the inter-block relation information into

the embedding; thus these inter-block attributes (e.g., betweenness)

are not needed to achieve high accuracy.

Faster offline training. In order to compute a codebook, Genius

needs to compute a distance matrix for a large set of training ACFGs,

whose time complexity is quadratic in the number of training sam-

ples, and linear in the cost of the bipartite graphmatching algorithm.

In contrast, the neural network approach only requires training for

a constant number of epochs, each of which has a time complexity

linear in the size of the training data. As a result, Genius requires

more than 1 week to generate the codebook, while our approach

can train a neural network model within 30 minutes, which enable

practical applications using retraining.

3 NEURAL NETWORK-BASED MODEL FOR
EMBEDDING GENERATION

We first introduce the code similarity embedding problem in Sec-

tion 3.1 and then present an overview of our solution in Section 3.2.

We then explain two important modules of our approach, i.e.,

the graph embedding network and the overall architecture (Sec-

tion 3.3), and training approach (Section 3.4). How to acquire a task-

independent model through pre-training and task-specific models

through re-training are discussed in Section 3.5.

3.1 Code Similarity Embedding Problem

As aforementioned, this code similarity measure can be task depen-

dent. We assume there exists an oracle π determining the code simi-

larity metric for a given task, which is unknown that we would like

to learn. Given two binary program functions f1, f2, π (f1, f2) = 1

indicates that they are similar; otherwise, π (f1, f2) = −1 indicates

that they are dissimilar.

Here, the oracle π is specific to each task, and is typically un-

known. In certain tasks, a limited number of instances of ⟨f1, f2,

π (f1, f2)⟩ triple can be observed. For example, the domain experts

may be able to provide some ground truth data about the oracle π .

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

366

The objective of code similarity embedding problem is to find a

mapping ϕ which maps the ACFG of a function f to a vector repre-

sentation µ. Intuitively, such an embedding should capture enough

information for detecting similar functions. That is, given an easy-

to-compute similarity function Sim(·, ·), (e.g., cosine function of two

vectors), and two program binary functions f1, f2, Sim(ϕ(f1),ϕ(f2))

is large if π (f1, f2) = −1, and is small otherwise.

One advantage of learning the embedding (i.e., the mapping ϕ)

is that it enables efficient computation. The similarity between two

functions can be computed using an inexpensive similarity function

between two vectors, without incurring the cost of expensive graph

matching algorithms.

As aforementioned, using a neural network to approximate

the embedding function is particularly appealing, since it can be

quickly retrained to adapt to a given task easily when limited task-

dependent ground-truth data is provided. Also, computing a neural

network-based embedding does not rely on any expensive graph

matching algorithms, and thus can be implemented efficiently.

3.2 Solution Overview

In this section, we present the key ideas of our solution to the code

similarity embedding problem. In this work, we assume the binary

code of a function f is represented by its ACFG д. In the following,

we will use the terms łthe binary code [of a function]ž and łACFGž

interchangeably.

We design the embedding mapping ϕ as a neural network. Since

the input is an ACFG, we will leverage previous graph embedding

networks from the machine learning community to address the

problem [13]. However, in Dai et al.’s work [13], the graph em-

bedding network is designed for a classification problem, which

requires label information to train the model.

In contrast, our code similarity embedding problem is not a

classification problem. Thus existing approaches do not apply di-

rectly, and we need to design a novel approach to train the graph

embedding network for the similarity detection problem.

To tackle this challenge, we propose a new learning approach.

The idea is that instead of training the graph embedding network

ϕ to do well on a particular predictive task, we will train ϕ to do

well on differentiating the similarity between two input ACFGs.

In particular, we design a Siamese architecture [7] and embed the

graph embedding network Structure2vec [13] into it. A Siamese

architecture takes two functions as its input, and produces the sim-

ilarity score as the output. This enables the model to be trained

end-to-end with only supervision on a graph-pair д1,д2 as input

and the ground truth π (f1, f2) as output, without any additional

hand-crafted heuristics on how the embeddings should be gener-

ated. Thus, such an approach is more robust and easier to adapt to

different tasks. We explain more details on this overall architecture

and training in Section 3.4.

Training a Siamese architecture requires a large number of pairs

of similar functions, as well as pairs of dissimilar functions. How-

ever, in most tasks, the ground truth data is limited. To address this

issue, we use a default policy that considers equivalent functions

(i.e., binary functions compiled from the same source code) are

similar, and inequivalent functions are not, so that we can easily

generate a large training set given a collection of source code. We

can use this dataset to pre-train a task-independent model, that can

be effective for most tasks. Further, to incorporate the little available

ground truth data for a task-specific policy, our approach allows the

model to be retrained to incorporate task-specific data. We explain

task-independent pre-training and task-specific re-training in more

detail in Section 3.5.

3.3 Graph Embedding Network

Our graph embedding network is adapted from Structure2vec, by

Dai et al. [13]. Denote an ACFG as д = ⟨V , E⟩ where V and E are

the sets of vertices and edges respectively; furthermore, each vertex

v in the graph may have additional features xv which correspond

to basic-block features in an ACFG. The graph embedding network

will first compute a p dimensional feature µv for each vertexv ∈ V ,

and then the embedding vector µд of д will be computed as an

aggregation of these vertex embeddings. That is µд := Av ∈V (µv),

where A is an aggregation function, i.e., summation or average. In

this work, we choose µд =
∑

v ∈V (µv) and leave the exploration of

using other aggregation functions as future work.

In the following, we first explain more details about the generic

graph embedding network, and then present the variants instanti-

ated specifically for our ACFG embedding problem.

Basic Structure2vec Approach. Structure2vec is inspired by

graphical model inference algorithms where vertex-specific fea-

tures xv are aggregated recursively according to graph topology

д. After a few steps of recursion, the network will produce a new

feature representation (or embedding) for each vertex which takes

into account both graph characteristics and long-range interaction

between vertex features. More specifically, we denote N (v) as the

set of neighbors of vertex v in graph д. Then one variant of the

Structure2vec network will initialize the embedding µ
(0)
v at each

vertex as 0, and update the embeddings at each iteration as

µ
(t+1)
v = F

(

xv ,
∑

u ∈N (v)

µ
(t)
u

)

, ∀v ∈ V . (1)

In this fixed-point update formula, F is a generic nonlinear map-

ping which we will specify our choice later. Based on the update

formula, one can see that the embedding update process is carried

out based on the graph topology, and in a synchronous fashion. A

new round of embedding sweeping across the vertices will start

only after the embedding update for all vertices from the previous

round has finished. It is easy to see that the update also defines a

process where the vertex features xv are propagated to the other

vertices via the nonlinear propagation function F . Furthermore,

the more iterations one carries out the update, the farther away a

vertex feature will propagate to distant vertices and get aggregated

nonlinearly at distant vertices. In the end, if one terminates the

update process after T iterations, each vertex embedding µ
(T)
v will

contain information about its T -hop neighborhood determined by

both graph topology and the involved vertex features.

Instead of manually specifying the parameters in the nonlinear

mapping F , we learn these parameters. To train a Structure2vec

model which is originally designed for a classification problem,

previous work requires a ground truth label for every input graph д

to indicate which łclass" it belongs to. Then the model is linked with

a Softmax-layer, so that the entire model can be trained end-to-end

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

367

ACFG

…

+

ite
r
a
t
io
n
s

(a) Graph Embedding Network Overview

+

Current Vertex

Adjacent

Vertices

+

ReLU

ReLU

tanh

… layers

(b) One Layer (Iteration) of the Graph Embedding Network

Figure 3: Graph Embedding Network

by minimizing the cross-entropy loss. As discussed in Section 3.2,

this approach is not applicable to our case since our problem is not

a classification problem.

Instead, we train these parameters in F together with other

parameters end-to-end in the Siamese architecture which uses these

embeddings for computing similarity, as explained in Section 3.4.

Our Parameterization for F .We now discuss our paramemeteri-

zation ofF using a neural network. Figure 3 visualizes our network

architecture. In particular, we design F to have the following form

F (xv ,
∑

u ∈N (v)

µu) = tanh(W1xv + σ (
∑

u ∈N (v)

µu)) (2)

where xv is a d-dimensional vector for graph node (or basic-block)

level features,W1 is a d × p matrix, and p is the embedding size as

explained above. To make the nonlinear transformation σ (·) more

powerful, we will define σ itself as ann layer fully-connected neural

network:

σ (l) = P1 × ReLU(P2 × ...ReLU(Pnl))
︸ ︷︷ ︸

n levels

where Pi (i = 1, ...,n) is a p × p matrix. We refer to n as the embed-

ding depth. Here, ReLU is the rectified linear unit, i.e., ReLU(x) =

max{0,x}.

Our novel parameterization of the update function F together

with the iterative update scheme described in Section 3.5 com-

pletes our embedding network for ACFGs. The overall algorithm

for generating the embedding for each ACFG is summarized in Al-

gorithm 1. In the algorithm,W2 is another p×p matrix to transform

the embedding vector. We denote its output as ϕ(д).

3.4 Learning Parameters Using Siamese
Architecture

In this section, we explain our design of the overall network ar-

chitecture to train a graph embedding for similarity detection. In

particular, we use the Siamese architecture combinedwith the graph

Algorithm 1 Graph embedding generation

1: Input: ACFG д = ⟨V , E ,x⟩

2: Initialize µ
(0)
v = 0, for all v ∈ V

3: for t = 1 to T do

4: for v ∈ V do

5: lv =
∑

u ∈N (v) µ
(t−1)
u

6: µ
(t)
v = tanh(W1xv + σ (lv))

7: end for

8: end for{fixed point equation update}

9: return ϕ(д) :=W2(
∑

v ∈V µ
(T)
v)

embedding Structure2vec network. The Siamese architecture

uses two identical graph embedding networks, i.e., Structure2vec,

which join at the top. Each graph embedding network will take one

ACFG дi (i = 1, 2) as its input and outputs the embedding ϕ(дi).

The final outputs of the Siamese architecture is the cosine distance

of the two embeddings. Further, the two embedding networks share

the same set of parameters; thus during training the two networks

remain identical. The overall architecture is illustrated in Figure 4.

Given a set of K pairs of ACFGs ⟨дi ,д
′
i ⟩, with ground truth

pairing information yi ∈ {+1,−1}, where yi = +1 indicates that

дi and д′i are similar, i.e. π (дi ,д
′
i) = 1, or yi = −1 otherwise. We

define the Siamese network output for each pair as

Sim(д,д′) = cos(ϕ(д),ϕ(д′)) =
⟨ϕ(д),ϕ(д′)⟩

| |ϕ(д)| | · | |ϕ(д′)| |

where ϕ(д) is produced by Algorithm 1.

Then to train the the model parametersW1, P1, . . . , Pn , andW2,

we will optimize the following objective function

min
W1,P1, ...,Pn,W2

K∑

i=1

(Sim(дi ,д
′
i) − yi)

2
. (3)

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

368

Embedding

Network𝜙ሺ⋅ሻ Embedding

Network𝜙ሺ⋅ሻ
gଵ gଶ

𝐶𝑜𝑠𝑖𝑛𝑒 𝜇ଵ, 𝜇ଶ
{+1, −1}

𝜇ଵ 𝜇ଶ

Figure 4: Siamese Architecture

We can optimize the objective (3) with stochastic gradient descent.

The gradients of the parameters are calculated recursively accord-

ing to the graph topology. In the end, once the Siamese network

can achieve a good performance (e.g., using AUC as the measure),

the training process terminates, and the trained graph embedding

network can convert an input graph to an effective embedding

suiteable for similarity detection.

3.5 Task-independent Pre-training and
Task-specific Re-training

Training the model requires a large amount of data on the ground

truth about oracle π , which may be difficult to obtain. To tackle

this issue, we construct a training dataset using a default policy.

This dataset can be used to pre-train a task-independent model that

is effective for most common tasks. When additional task-specific

data becomes available, we allow the pre-trained model to be re-

trained quickly to acquire a task-specific model. We explain these

two approaches below.

Task-independent Pre-training. To pre-train a model applicable

to most common tasks, intuitively, the generated embedding of each

function should try to capture invariant features of the function

across different architectures and compilers. We implement this

intuition by constructing a dataset as follows using a default oracle.

Assuming a set of source code is collected, we can compile them

into program binaries for different architectures, using different

compilers, and with different optimizations. In doing so, the default

oracle determines that two binary functions are similar if they are

compiled from the same source code, or dissimilar otherwise. To

construct the training dataset, for each binary function д, one other

similar function д1 and one dissimilar function д2 are sampled to

construct two training samples, ⟨д,д1,+1⟩ and ⟨д,д2,−1⟩. In our

evaluation (Section 4.2), we demonstrate that the model pre-trained

using this training method performs better than the state-of-the-art

graph matching-based approach [18] using the same task evaluated

in [18].

Task-specific Re-training. Sometimes, the policy used by a spe-

cific task may deviate from the default policy used to pre-train the

model. In this case, we need an efficient way to fine-tune the learned

parameters in the graph embedding network by using a small num-

ber of additional data ⟨f , f ′,π (f , f ′)⟩ provided by domain experts.

The re-training procedure refines the graph embedding network

by incorporating the small number of additional data about the

task-specific policy provided by domain experts.

More specifically, assume we get a list of function pairs ⟨дi ,д
′
i ⟩,

and their ground truth label π (дi ,д
′
i) from human experts, we can

generate additional ACFG pairs to retrain the graph embedding

networkϕ(д). In particular, for each ACFG pairдi ,д
′
i in the provided

list, we augment the training set with a pair ⟨дi ,д
′
i ⟩ with pairing

information yi = π (дi ,д
′
i) which is the label from human experts.

Using this augmented dataset, we further train the graph em-

bedding network for a few more (e.g., 5) epochs. In each epoch, the

newly added pairs will be sampled more often than the old data

(e.g., 50 times more often). After the augmented training is finished,

the re-trained network ϕ(·) will be deployed for the similarity de-

tection task. Such a retraining procedure allows human experts to

provide feedback to the system and the model to be fine-tuned to

be adaptive to the task-specific oracle π , and thus improves the

similarity detection accuracy further.

4 EVALUATION

In this section, we evaluate Gemini with respect to its search ac-

curacy and computation efficiency. In particular, we evaluate the

accuracy of our task-independent pre-trained model using a dataset

containing ground truth. We further use real-world datasets to

study how well our model can be retrained to adapt to new tasks.

In all evaluations, our approach exhibits superior advantages over

the state-of-the-art approach [18]

4.1 Implementation and Setup

Our system consists of two main components: ACFG extractor,

neural network model for graph embedding. We obtain the ACFG

extractor, a plug-in to the disassembly tool IDA Pro [1], from the

authors of Genius [18], so we can make sure that the raw features

extracted from the binary code are consistent with those extracted

by Genius. We implement the neural network model in Tensor-

Flow [2] in Python.

Our experiments are conducted on a server equipped with two

Intel Xeon E5-2620v4 CPUs (32 cores in total) running at 2.1GHz, 96

GB memory, 1TB SSD, and 8 GeForce GTX 1080 GPU cards. During

both training and evaluation, only 1 GPU card was used.

Baseline. There have been several previous works addressing the

bug-search problem: discovRE [16], Multi-HM andMulti-k-HM [31],

a centroid-based search [10], and Genius [18]. Feng et al. have

demonstrated that the Genius approach is both more accurate and

efficient than the other approaches [18]. Therefore, in our evalua-

tion, we consider two baseline approaches evaluated in [18].

• Bipartite Graph Matching (BGM). Given two binary func-

tions, we directly compute their similarity score on their ACFGs

using the bipartite graph matching as described in Genius. This

approach provides a baseline to evaluate the accuracy of pairwise

graph matching approaches.

• Codebook-basedGraphEmbedding (Genius).This approach

provides a baseline for graph embedding. We contact the authors

of Genius [18], and obtain the ACFG extraction code and the

codebook used in their evaluation. We further implement the

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

369

Training Validation Testing

x86 30,994 3,868 3,973

MIPS 41,477 5,181 5,209

ARM 30,892 3,805 3,966

Total 103,363 12,854 13,148

Table 2: The number of ACFGs in Dataset I

codebook generation and embedding generation by ourselves

for comparison.

Datasets. In our evaluation, we collect four datasets: (1) Dataset I

for training the neural network and evaluating the accuracy of the

pre-trained model; (2) Dataset II for evaluating the performance

of the task-specific model; (3) Dataset III for efficiency evaluation;

and (4) a vulnerability dataset (Dataset IV) for case studies.

• Dataset I: This dataset is used for neural network training and

baseline comparison. It consists of binaries compiled from source

code, so that we have ground truth. That is, we consider two

ACFGs compiled from the same source code function to be simi-

lar, and those from different functions to be dissimilar. In partic-

ular, we compile OpenSSL (version 1.0.1f and 1.0.1u) using GCC

v5.4. The compiler is set to emit code in x86, MIPS, and ARM,

with optimization levels O0-O3. In total, we obtain 18,269 binary

files containing 129,365 ACFGs. We split Dataset I into three

disjoint subsets of functions for training, validation, and testing

respectively. The statistics are presented in Table 2. During the

split, we guarantee that no two binary functions compiled from

the same source function are separated into two different sets

among training, validation and testing sets. In doing so, we can

examine whether the pre-trained model can generalize to unseen

functions.

• Dataset II: We contact the authors of Genius [18] to get the

same large-scale dataset used in their paper [18] (referred to

as Dataset III in their paper), which includes 33,045 firmware

images. Among these images, 8,128 images can be successfully

unpacked. These images are from 26 different vendors and for

different products such as IP cameras, routers, access points, etc.

• Dataset III: To evaluate the efficiency, we construct a dataset

with ACFGs of various sizes (i.e., number of vertices in a graph).

In particular, we first randomly select 16 firmware images from

Dataset II. From these 16 firmware images, there are 82,100

ACFGs whose sizes range from 1 to 1,306. These ACFGs are

grouped into sets so that all ACFGs in the same set are the same

in size. For any set containing more than 20 ACFGs, we randomly

select 20 ones from the set and remove all other ACFGs. In the

end, we obtain 3,037 ACFGs in this dataset.

• Dataset IV: This dataset contains vulnerable functions obtained

from the vulnerability dataset in [18]. In total, it contains of 154

vulnerable functions.

Training details. Our neural network model is first pre-trained us-

ingDataset I as below.We use the Adam optimization algorithm [27]

and set the learning rate to be 0.0001. We train the Siamese model

for 100 epochs. At each epoch, we first construct the training data

used for this epoch as follows: for each ACFG д in the training

set, we randomly select one ACFG д1 from the set of all ACFGs

compiled from the same source function as д, and one ACFG д2
from the set of all other ACFGs in the training set. Then we gen-

erate two training samples: ⟨д,д1⟩ with ground truth label +1 and

⟨д,д2⟩ with label −1. Notice that since we randomly select д1 and

д2 for each д independently at each epoch, the training data often

vary at different epochs. After the training data is generated for

each epoch, it is randomly shuffled before being fed to the training

process. Each mini-batch contained 10 ACFG pairs. After every

epoch, we measure the loss and AUC on the validation set. During

the 100 training epochs, we save the model that achieved the best

AUC on the validation set.

By default, the embedding size p is 64 and the embedding depth n

is 2. The model runs forT = 5 iterations. The basic-block attributes

include block-level attributes and the number of offspring, i.e., 7

attributes in total.

4.2 Accuracy

In this section, we evaluate the accuracy of the pre-trained model

in Gemini. To this end, we construct a similarity testing dataset as

follows: from the testing set in Dataset I, for each ACFG д in the

set, we randomly select two ACFGs д1,д2 from the testing dataset,

such that the ground truth labels of ⟨д,д1⟩ and ⟨д,д2⟩ are +1 and

−1 (i.e., from the same source function vs. not) respectively. This

similarity testing dataset consists of 26,265 pairs of ACFGs. Note

that the testing set is constructed so that no two binary functions

compiled from the same source appear in both the training set and

the test set. In doing so, we are able to examine the performance of

Gemini on unseen functions. Figure 5a illustrates the ROC curves

for our neural network model (Gemini) as well as two baseline

approaches. We can see that that Gemini outperforms both BGM

and Genius by a large margin.

To further examine the performance of Gemini on graphs with

different sizes, we split the similarity-accuracy testing set into a

large-graph subset and a small-graph subset. The large-graph sub-

set contains only pairs of two ACFGs which both have at least 10

vertices. The small-graph subset contains the rest. The ROC curves

of different approaches evaluated over the large-graph subset and

the small-graph subset are plotted in Figure 5b and Figure 5c re-

spectively. From both figures, we have consistent observations: 1)

Gemini outperforms both BGM and Genius significantly; and 2)

Genius outperforms BGM on small graphs, the BGM performs bet-

ter than Genius on large graphs, and Gemini outperforms both

BGM and Genius on large as well as small graphs.

4.3 Hyperparameters

In this section, we evaluate the effectiveness of hyperparameters in

the Geminimodel. In particular, we examine the impact of the num-

ber of training epochs, embedding depth, embedding size, ACFG

attributes, and number of iterations. The examination of impact of

the number of training epochs is using the similarity validation set.

We examine other hyperparameters using the similarity testing set.

On the entire similiarty testing set, however, the AUC values are

almost identical. Since we are more interested in the performance

of our model on large graphs, the examinations of other hyper-

parameters are using the large-graph subset of the similarity test

set.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

370

0.0 0.5 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 p

os
iti

ve
 ra

te

Gemini
BGM
Genius

(a) Results on the similarity testing set

0.0 0.5 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Gemini
BGM
Genius

(b) Results on the large-graph subset

0.0 0.5 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Gemini
BGM
Genius

(c) Results on the small-graph subset

Figure 5: ROC curves for different approaches evaluated on the testing similarity dataset.

Number of epochs.We train the model for 175 epochs and eval-

uate the model over the validation set every 5 epochs for the loss

and the AUC. The results are plotted in Figure 7a and Figure 7b.

From the figures, we can observe that the loss drops to a low value

after 5 training epochs, and then almost remains the same. The

lowest loss appears after the model is trained for 100 epochs. We

make a similar observation for AUC values, although the highest

AUC value appears after the model is trained for 160 epochs. There-

fore, we conclude that the model can be quickly trained to achieve

reasonably good performance (after 5 epochs).

Embedding depth.We vary the number of layers in function σ in

the Gemini model. From Figure 7c, we observe that when embed-

ding depth is 2, the ROC curve has the largest AUC value. Notice

that the original Structure2vec [13] can be viewed as choosing

the embedding depth to be 1. We can observe a clear improvement

by increasing one more non-linear mapping layer to σ . However,

adding more layers does not help much.

Embedding size. In Figure 7d, we can observe that the embedding

size to achieve the outter-most ROC curve is 512. However, all

curves corresponding to the embedding sizes no smaller than 64

are close to each other. Since a large embedding size requires both

longer training time and longer evaluation time, choosing the em-

bedding size to be 64 is a good trade-off between the performance

and efficiency. It is worth to note that even when we choose the

embedding size to be 16, Gemini is still more effective than both

Genius (whose embedding dimensionality is also 16) and BGM.

ACFG attributes. We evaluate the accuracy using three different

ways to extract the attributes to construct ACFGs. In particular, we

consider the attributes to include (1) 6 block-level attributes only

(Block); (2) 6 block-level attributes plus the number of offspring

(Block+O); and (3) all 8 attributes (Block+O+B). From Figure 7e,

we observe that Block+O (7 attributes in total) achieves the best

performance. This is unexpected, since a model using the all at-

tributes (Block+O+B) should be more expressive than the model

using Block+O. We consider this as an overfitting scenario to the

training data. That is, the additional betweeness attribute misleads

the model when computing the embedding.

Number of iterations. From Figure 7f, we observe that the model

achieves the best performance when the number of iterationsT is 5

or larger. This is reasonable, since in this dataset all graphs have a

size larger than 10. It needs 5-hops to propagate local information

on one vertex to most part of the graph.

4.4 Efficiency

We evaluate the efficiency of Gemini and Genius for embedding

generation using Dataset III. In particular, we measure the latency

for the following three tasks: (1) The ACFG extraction time for one

function; (2) The embedding generation time from an ACFG; and (3)

the overall latency for embedding generation (which includes Task

1 and Task 2). Note that we exclude the disassembly time using

IDA pro, since it is the same for both approaches. It usually takes

on the order of seconds to disassemble a binary file, which can be

amortized over all functions in the binary file.

For embedding generation, we implement several versions for

Gemini and Genius respectively. We implement both the CPU and

GPU version of Gemini in Tensorflow. In doing so, we can maxi-

mally leverage the multi-core hardware to accelerate the perfor-

mance. For Genius, we implement a single-threaded version as well

as a multi-threaded version. Since Genius computes the embed-

ding of a ACFG as the similarity scores between this ACFG and

each graph in the codebook using bipartite graph matching, this

can be naturally parallelized such that each thread processes one

graph in the codebook. The multi-threaded version parallelizes

these computations.

ACFG extraction time. Figure 6a (one point for each sample) and

Figure 6b (average extraction time by different ACFG sizes) illus-

trate the results. We can observe that extracting only 6 basic-block

attributes and extracting 6 basic-block attributes along with the

number-of-offspring attribute require similar time, but if we ad-

ditionally extract the betweenness attribute, it takes on average

8× more time. From Figure 6b, we can observe that the extrac-

tion time in general increases along with the ACFG size, but the

variation is large. Notice that Genius requires all 8 attributes to

achieve its best performance. In contrast, Gemini can aggregate

the graph structural information through iterations of embedding

updates, and thus can achieve the best performance without the

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

371

0 200 400 600 800 1000
ACFG size

0

10−2

10−1

100

101

102
Ti

m
e

in
 se

co
nd

s

Block
Block+O
Block+O+B

(a) ACFG Extraction time

0 200 400 600 800 1000
ACFG size

0

10−2

10−1

100

101

102

Ti
m

e
in

 se
co

nd
s

Block
Block+O
Block+O+B

(b) Average ACFG extraction time

0 200 400 600 800 1000
ACFG size

0

10−2

10−1

100

101

102

Ti
m

e
in

 se
co

nd
s

Genius (S)
Genius (M)
Gemini (GPU)
Gemini (CPU)

(c) Feature vector generation time

0 200 400 600 800 1000
ACFG size

0

10−2

10−1

100

101

102

Ti
m

e
in

 se
co

nd
s

Genius (S)
Genius (M)
Gemini (GPU)
Gemini (CPU)

(d) Average feature vector generation time

Figure 6: Efficiency evaluation on Dataset III. Figure 6a and Figure 6c plot one point for each sample in Dataset III. In Figure 6b

and Figure 6d, we average the running time of all data points with the same ACFG size. Therefore, in these two figures, we

have one data point for each ACFG size. In Figure 6a and Figure 6b, łBlockž indicates the extraction time of 6 block-level

attributes; ł+Ož indicates that the extraction further includes the number-of-offspring attribute; and ł+Bž indicates the ex-

traction further includes the betweenness attribute. In Figure 6c and Figure 6d, Gemini (CPU) and Gemini (GPU) denote the

CPU and GPU implementations of the Gemini approach respectively. Genius (S) and Genius (M) denote the single-threaded

and multi-threaded implementation of Genius respectively.

costly betweenness-attribute computation. Therefore, Gemini can

improve upon Genius by 8× on average on ACFG extraction.

Embedding generation time. Embedding generation time is pre-

sented in Figure 6c and Figure 6d. We can observe that the CPU

implementation of Gemini runs 2400× to 16000× faster than the

multi-threaded version of Genius. On average, the speedup can be

as high as 7000×. We attribute this to several reasons. First, the

Gemini approach avoids the expensive graph matching algorithm

and reduces the time complexity to the number of edges in the

graph. Since ACFGs are sparse graphs, i.e., each vertex’s out-degree

is at most 2, the computation cost is almost linear to the graph

size. Second, most computations in the Gemini method can be

implemented as matrix operations: matrix multiplication, matrix

summation, and element-wise operations over a matrix. All these

operations can be parallelized to utilize the underlying multi-core

CPUs to achieve speedups with respect to the number of cores. On

the other hand, the graph matching algorithm in Genius cannot

be easily parallelized. The only speedup comes from processing

each element in the codebook in parallel, and thus this speedup is

bounded by the number of elements in the codebook. Later, our

analysis will show that it is hard to achieve the upper bound of this

theoretical speedup in Genius, i.e., the codebook size.

Nowwe compare the single-threaded version andmulti-threaded

version of Genius and show that it is hard to achieve the theoreti-

cal upper bound of the speedup, i.e., the codebook size. Although

the multi-threaded version can run up to 10× faster, the average

speedup is just 35%. One reason is that when the codebook used

in Genius contains a large graph with more than 500 vertices, the

time to process this element dominates the overall feature gen-

eration time when the ACFG being processed is small. Further,

synchronization of multi-threading introduces additional overhead.

Figure 6c and Figure 6d support this observation: (1) when the

ACFG is small, the multi-threaded version is similar or even slower

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

372

0 50 100 150
Epoch

0.50

0.75

1.00

1.25

1.50

Lo
ss

Similarity validation set
Large-scale subset

(a) Loss versus no. of epochs.

0 50 100 150
Epoch

0.80

0.85

0.90

0.95

1.00

AU
C

Similarity validation set
Large-scale subset

(b) AUC versus no. of epochs.

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te n = 1

n = 2
n = 3
n = 4
n = 5
n = 6
BGM
Genius

(c) ROC versus embedding depth n.

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te p = 16

p = 32
p = 64
p = 128
p = 256
p = 512
BGM
Genius

(d) ROC versus embedding size p .

0.00 0.25 0.50 0.75 1.00
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Block
Block+O
Block+O+B
BGM
Genius

(e) ROC versus ACFG attributes.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

T = 1
T = 2
T = 3
T = 4
T = 5
T = 6
T = 7
T = 8
BGM
Genius

(f) ROC versus no. of iterations T .

Figure 7: Effectiveness of different hyperparameters of NN. Figure 7a and Figure 7b are evaluated over the similarity validation

set. Figure 7c, 7d, 7e, and 7f are evaluated over large-graph subset of the similarity testing set.

than the single-threaded version; and (2) when the ACFG becomes

larger, the speedup of multi-threaded also increases.

We further examine the performance of Gemini on GPU. How-

ever, we observe that the GPU version is on average 10% slower than

the CPU version. This happens mostly on embedding generation

for small graphs. On larger graphs, the GPU version can run faster

than the CPU version by up to 70%. We attribute this observation

to the fact that the GPU version requires additional overhead, i.e.,

allocating GPU memory and copying data from the main memory

to the GPU memory, before the computation. Therefore, as the

ACFG becomes larger, this overhead becomes insignificant when

compared with the overall time for computing the embedding.

Overall latency of embedding generation. The embedding gen-

eration time for Genius includes ACFG extraction time for both

block-level and inter-block features (i.e., Block+O+B in Figure 6a)

as well as the multi-threaded CPU implementation of feature en-

coding (i.e., Genius (M) in Figure 6c). For Gemini, the embedding

generation time includes ACFG extraction time for block-level fea-

tures and the number of offspring (i.e., Block+O in Figure 6a) as

well as the CPU implementation of graph embedding (i.e., Gemini

(CPU) in Figure 6c). We observe that Gemini can achieve a speedup

ranging from 27.7× to 11625.5×. On average, Gemini runs 386.4×

faster than Genius.

4.5 Training time

Although offline training time will be amortized over a large num-

ber of online queries, the release of new firmware images may

require the learning model to be updated on a monthly-basis or

even weekly-basis to more accurately model the data. Therefore,

we briefly compare the training time of Genius and Gemini.

The Genius approach needs to compute a codebook using an

unsupervised learning algorithm called spectral clustering. This

algorithm requires constructing a distance matrix which requires

quadratic time complexity on the size of the training data. As a

result, when the training data contains 100,000 functions (which

is used to construct the codebook in our previous experiments),

Genius takes more than one week to construct the codebook.

In contrast, since Gemini model runs only a fixed number of

epochs, its running time is linear to the number of epochs and also

linear to the number of samples in each epoch, i.e., the training

dataset. In our experiment, each epoch contains around 206,000

training samples and takes less than 5 minutes to run. Earlier we

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

373

v2i_POLICY_MAPPINGS
genrsa_main
priv_decode_gost
prompt_info
ssl3_get_message

Figure 8: Visualizing the embeddings of the different func-

tions using t-SNE. Each color indicates one source functions.

The legend provides the source function names.

have shown that the Gemini model requires only 5 epochs of train-

ing to achieve a reasonable performance, while running for 100

epochs gives the best performance. That means, Gemini requires

less than 30 minutes (5 epochs) to train a model to outperform

Genius, while achieving the best performance requires less than 10

hours. Therefore, our neural network-based approach allows the

model to be updated more frequently than Genius. This property is

crucial to make retraining and model update practical.

4.6 Understanding the Embeddings

Wevisualize the embeddings computed using the task-independently

pre-trained embedding network to understand its effectiveness. In

particular, we randomly select 5 source functions, and compute the

embeddings of the corresponding binary functions compiled us-

ing different compilers, different target architectures, and different

optimization-levels. We then use t-SNE [46] to project the high-

dimensional embeddings onto a 2-D plane. We plot the projected

points in Figure 8, and different source functions are presented

in different colors. We can observe that (1) binary functions com-

piled from the same source function are close to each other; and

(2) binary functions compiled from different source functions are

far from each other. Therefore, this visualization illustrates that

our task-independent pre-trained embedding function can preserve

the information of the source function in the embeddings regard-

less of the target architectures, the compilers being used, and the

optimization levels.

4.7 Accuracy of Task-specific Retrained Model
using Real-world Dataset

In this section, we evaluate the effectiveness of our task-specific

retraining approach using real-world firmware images. The evalua-

tion is setup in the same way as in [18]. We extract the ACFGs of

functions in Dataset II, which in total result in 420,558,702 functions.

We further choose two vulnerabilities from Dataset IV, which are

the same as used in [18]. For each vulnerability, we consider it as a

specific task to search for as many functions as possible in Dataset I

that contain the same vulnerability. To achieve this, we retrain the

model from the one pre-trained on Dataset I.

To compare with [18], which inspects only the top-50 most simi-

lar results, we also evaluate the precision among the top-50 func-

tions. We show that Gemini, through retraining, can achieve over

80% accuracy for each task among top 50 results, which is signifi-

cantly better than prior art [18] whose accuracy is around 20% to

50%. We present the details below. In total, our approach allows

identifying more than 25 novel vulnerable firmware images on

average from than Genius among the top-50 results.

Retraining effectiveness.We perform retraining in an iterative

manner. At the beginning, we have a pre-trained model, and use

it to compute the embeddings of all functions in the target corpus

to build an index. In this case, each query can be handled within

3 seconds. We manually inspect the top-K (e.g., K = 50) results,

and assign ground truth labels for each of them so that the top-K

results are used for retraining. After each iteration of retraining,

we re-compute the embeddings for a subset (e.g., 10%) randomly

sampled from the entire target corpus to get a new list of top-K

results. We repeat this process for several iterations. In practice,

our experiments show that we only need very few iterations of

retraining. Note that the Genius approach does not provide the

flexibility to incorporate such additional supervision efficiently.

Thus the retraining process is a unique advantage of our approach

over Genius and allows our approach to achieve higher accuracy

with additional supervision from domain experts.

In particular, we use the same two vulnerabilities as used in

Genius, i.e., CVE-2015-1791 and CVE-2014-3508, since Genius [18]

provides reference results. For CVE-2015-1791, we find that af-

ter only 1 iteration of retraining, our approach discovers 42 true

positives from four vendors such as D-Link, ZyXEL, DD-wrt, and

Tomato by Shibby, among top-50 results. Further, among top-100

results, our approach discovers 85 true positives. These results show

that one retraining iteration helps improve the precision to over

84%. As a reference, Genius can detect only 14 vulnerable firmware

images (a precision at 28%), and they are only from D-Link and

Belkin.

CVE-2014-3508 is harder, since the control flow graphs do not

change before or after the patch, but only one more instruction, i.e.,

storing a zero value into the memory buffer, is inserted as the patch.

Using our approach, after 3 iterations of retraining, our approach

identifies 41 firmware images among the top-50 results that are

vulnerable, which results in a 82% precision. In comparison, Genius

can identify only 24 vulnerable firmware images (a precision at

48%) among the top-50 results.

Retraining time. In terms of time consumption, for each itera-

tion, we retrain the model for 5 epochs, and sample 10% of the

entire dataset for evaluation (as discussed earlier). Notice that in

the second step, the ACFGs did not need to be regenerated, and

thus we only need to pay the cost for embedding computation. The

overall time of these two automated steps can be done within 2

hours for each iteration. In terms of manual investigation time, we

find that an experienced expert can finish the manual investigation

of 50 candidates within 2 hours. This time can be even shorter for

later iterations, since the vulnerable code is already familiar to the

experts after the first iteration of investigation. In total, a human

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

374

expert spend less than 12 hours in going through three iterations to

train an effective model for a given vulnerability. Once the model is

deployed to the entire dataset, it took around 12 hours to generate

the embeddings for the entire dataset.

Therefore, we conclude that the retraining capability of our

approach enables practical usage of feedback from human experts

to increase the search accuracy within a reasonable amount of time,

i.e., within one day.

5 RELATEDWORK

We have discussed closely related work throughout the paper. In

this section, we briefly survey additional related work. We focus on

approaches using code similarity for known bugs search without

source code. Other approaches for finding unknown bugs [3, 8, 9,

34, 42ś44] will not be discussed in this section. For learning-based

bug search [18], we have already discussed the comparison earlier

in the paper.

Raw feature based bug search. Many researchers have already

worked on the problem of bug search in binaries, and made great

contribution towards this direction. Fundamentally, they rely on

various raw features directly extracted from binary for code simi-

larity matching. N-grams or N-perms [26] are two early approaches

for the bug search. They adopt the binary sequence or mnemonic

codematchingwithout understanding the semantics of code [25], so

they cannot tolerate the opcode reordering issue caused by different

compilations. To further improve the accuracy, the tracelet-based

approach [14] captures execution sequences as features for code

similarity checking, which can address the opcode changes issue.

TEDEM [32] captures semantics using the expression tree for each

basic block. However, the opcode and register names are different

across architectures, so these two approaches are not suitable for

finding bugs cross architectures.

Many other approaches can be used for bug search in the cross-

architecture setting, but they are expensive to be applied for large

scale firmware bug search. Zynamics BinDiff[15] and BinSlayer [6]

adopt the expensive graph isomorphism algorithm to quantify the

similarity between control flow graphs for code search. The sym-

bolic execution and theorem prover used in BinHunt[20] and iBin-

Hunt [29] are by design expensive, since they need to extract the

equations and conduct the equivalent checking.

Although Pewny et al. [31] use MinHash to reduce code similar-

ity computation, their graph matching algorithm is still too expen-

sive to handle millions of graph pairs. DiscovRE [16] utilizes the

pre-filtering to boost CFG based matching process by eliminating

unnecessary matching pairs, but the pre-filtering is unreliable and

outputs tremendous false negatives [18]. Many other approaches,

such as Costin et al. [11], are indeed efficient when searching bugs

at large scale, but they are only designed for specific bugs with

obvious artifacts, and cannot handle more general cases.

Graph embedding. Graph analysis has its significance in various

real-world application, such as biology [13] and social network [19].

Typically, there are two different meaning of graph embedding that

are used in graph analysis. The first one is to embed the nodes of a

graph. This means finding a map from the nodes to a vector space,

so that the structural information of the graph is preserved [21].

Among early approaches, LLE[36] finds the embedding vectors so

that the embedding of a node is a linear combination of the nodes

near it. In [4], the embedding of two nodes are close to each other

when the weight of the edge between them is large. Recently, deep-

learning-based method is adopted to deal with large scale graph

dataset.

Another meaning of graph embedding, which is adopted in this

paper, is to find a embedding vector that represents the whole graph.

After that, people can perform machine learning methods on it to

deal with tasks like protein design and gene analysis [39]. Currently,

kernel method [38] is a widely used technique for processing struc-

tural data like sequences[17] and graphs[5].

The key to the kernel method is a carefully designed kernel func-

tion (a positive semidefinite function between pairs of nodes). A

class of kernels are designed by counting the elementary structures

that appears in the graph. For example, [33] counts specific sub-

tree patterns in a graph; [41] counts the appearance of subgraph

with specific sizes; in [40], different structures will be counted in

a process named Weisfeiler-Lehman algorithm. However, in these

methods the kernels are fixed before learning, so the embedding

space may have very large dimensions.

Another class of kernels leverages the fact that graphical models

can take into account structured data with noise and variations.

Two representative examples are the Fisher kernel [23] and the

probability product kernel [24]. These kernels fit graphical models

for input graphs and use some form of inner product between the

distributions as the kernel function. The model applied in our pa-

per, Structure2vec[13], also construct graphical models for input

graphs, and parameterize the inference algorithms of graphical

models by neural network to define features for the corresponding

kernel function.

Deep learning-based graph embedding approaches. Scarselli

et al. proposed the first graph neural network to compute embed-

dings of a graph [37]. Li et al. extend [37] by using Gated Recurrent

Unit (GRU) to generate features. Dai et al. generalize both works

using principled graphical model thinking which allows more flex-

ible embedding functions to be defined [13]. Therefore, we use a

variant of [13] as our embedding generation function.

There is another line of research to generate graph embeddings

from large networks such as social-networks [22, 30, 45, 47]. These

works focus on unsupervised learning or semi-supervised learning

and generating features of different nodes in a graph rather than the

embeddings of the entire graph. Using these approaches, it is also

not easy to incorporate the additional training data into retraining,

and thus they are not suitable for our problem.

6 CONCLUSION

In this paper, we present a deep neural network-based approach to

generate embeddings for binary functions. We implement a proto-

type called Gemini. Our extensive evaluation shows that Gemini

outperforms the the state-of-the-art approaches by large margins

with respect to similarity detection accuracy, embedding generation

time, and overall training time. Our real world case studies demon-

strate that using retraining Gemini can identify significantly more

vulnerable firmware images than the state-of-the-art, i.e., Genius.

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

375

Our research showcases a successful application of deep learning

on computer security problems.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for the helpful comments. We

thank Xinyun Chen for her help to write this paper. This mate-

rial is in part based upon work supported by the National Science

Foundation under Grant No. TWC-1409915, 1664315, 1719175, IIS-

1350983, IIS-1639792, and SaTC-1704701, ONR under N00014-15-

1-2340, DARPA under FA8750-15-2-0104 and FA8750-16-C-0044,

Berkeley Deep Drive, NVIDIA, Intel and Amazon AWS. Any opin-

ions, findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

REFERENCES
[1] 2015. The IDA Pro Disassembler and Debugger. http://www.datarescue.com/

idabase/. (2015).
[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: A system for large-scale machine learning.

[3] Thanassis Avgerinos, Sang Kil Cha, Alexandre Rebert, Edward J Schwartz, Mav-
erick Woo, and David Brumley. 2014. Automatic exploit generation. Commun.
ACM 57, 2 (2014), 74ś84.

[4] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in neural information
processing systems. 585ś591.

[5] Karsten Michael Borgwardt. 2007. Graph kernels. Ph.D. Dissertation. lmu.
[6] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: accurate

comparison of binary executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop.

[7] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Sickinger, and Roopak Shah.
1993. Signature Verification Using A łSiamese" Time Delay Neural Network. In
NIPS.

[8] Sang Kil Cha, Maverick Woo, and David Brumley. 2015. Program-adaptive
mutational fuzzing. In Oakland.

[9] Daming D. Chen, Manuel Egele, Maverick Woo, and David Brumley. 2016. To-
wards Automated Dynamic Analysis for Linux-based Embedded Firmware. In
NDSS.

[10] Kai Chen, PengWang, Yeonjoon Lee, XiaoFengWang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds: Mass
Vetting for New Threats at the Google-Play Scale. In USENIX Security.

[11] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A large-scale analysis of the security of embedded firmwares. InUSENIX Security.

[12] Ang Cui, Michael Costello, and Salvatore J Stolfo. 2013. When Firmware Modifi-
cations Attack: A Case Study of Embedded Exploitation.. In NDSS.

[13] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent
Variable Models for Structured Data. In International Conference on Machine
Learning.

[14] Yaniv David and Eran Yahav. 2014. Tracelet-based code search in executables.
In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation.

[15] Thomas Dullien and Rolf Rolles. 2005. Graph-based comparison of executable
objects (English version). SSTIC 5 (2005), 1ś3.

[16] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. dis-
covRE: Efficient Cross-Architecture Identification of Bugs in Binary Code. In
Symposium on Network and Distributed System Security (NDSS).

[17] Eleazar Eskin, Jason Weston, William S Noble, and Christina S Leslie. 2003.
Mismatch string kernels for SVM protein classification. In Advances in neural
information processing systems. 1441ś1448.

[18] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable Graph-based Bug Search for Firmware Images. In ACM
Conference on Computer and Communications Security (CCS’16).

[19] Linton C Freeman. 2000. Visualizing social networks. Journal of social structure
1, 1 (2000), 4.

[20] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automatically find-
ing semantic differences in binary programs. In Information and Communications
Security.

[21] Palash Goyal and Emilio Ferrara. 2017. Graph Embedding Techniques, Applica-
tions, and Performance: A Survey. arXiv preprint arXiv:1705.02801 (2017).

[22] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855ś864.

[23] Tommi S Jaakkola, Mark Diekhans, and David Haussler. 1999. Using the Fisher
kernel method to detect remote protein homologies.. In ISMB, Vol. 99. 149ś158.

[24] Tony Jebara, Risi Kondor, and AndrewHoward. 2004. Probability product kernels.
Journal of Machine Learning Research 5, Jul (2004), 819ś844.

[25] Md Enamul Karim, Andrew Walenstein, Arun Lakhotia, and Laxmi Parida. 2005.
Malware phylogeny generation using permutations of code. Journal in Computer
Virology 1, 1-2 (2005), 13ś23.

[26] Wei Ming Khoo, Alan Mycroft, and Ross Anderson. 2013. Rendezvous: A search
engine for binary code. In Proceedings of the 10th Working Conference on Mining
Software Repositories.

[27] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436ś444.

[29] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: binary hunting with
inter-procedural control flow. In Information Security and Cryptology. Springer,
92ś109.

[30] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701ś710.

[31] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-Architecture Bug Search in Binary Executables. In 2015 IEEE
Symposium on Security and Privacy (Oakland’15). IEEE.

[32] Jannik Pewny, Felix Schuster, Lukas Bernhard, Thorsten Holz, and Christian
Rossow. 2014. Leveraging semantic signatures for bug search in binary programs.
In ACSAC.

[33] Jan Ramon and Thomas Gärtner. 2003. Expressivity versus efficiency of graph
kernels. In Proceedings of the first international workshop on mining graphs, trees
and sequences. 65ś74.

[34] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David
Warren, Gustavo Grieco, and David Brumley. 2014. Optimizing Seed Selection
for Fuzzing. In USENIX Security.

[35] Kaspar Riesen and Horst Bunke. 2009. Approximate graph edit distance compu-
tation by means of bipartite graph matching. Image and vision computing 27, 7
(2009), 950ś959.

[36] Sam T Roweis and Lawrence K Saul. 2000. Nonlinear dimensionality reduction
by locally linear embedding. science 290, 5500 (2000), 2323ś2326.

[37] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. 2009. The graph neural network model. IEEE Transactions
on Neural Networks 20, 1 (2009), 61ś80.

[38] Bernhard Schölkopf and Alexander J Smola. 2002. Learning with kernels. 2002.
(2002).

[39] Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. 2004. Kernel methods in
computational biology. MIT press.

[40] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539ś2561.

[41] Nino Shervashidze, SVNVishwanathan, Tobias Petri, KurtMehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial Intelligence and Statistics. 488ś495.

[42] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
Functions in Binaries with Neural Networks.. In USENIX Security. 611ś626.

[43] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-Automatic Detection of Authentication Bypass
Vulnerabilities in Binary Firmware.. In NDSS.

[44] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, and Ruoyu
Wang. 2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.
In NDSS.

[45] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1067ś1077.

[46] Laurens Van Der Maaten. 2014. Accelerating t-SNE using tree-based algorithms.
Journal of machine learning research 15, 1 (2014), 3221ś3245.

[47] Zhilin Yang, WilliamW Cohen, and Ruslan Salakhutdinov. 2016. Revisiting semi-
supervised learning with graph embeddings. arXiv preprint arXiv:1603.08861
(2016).

Session B3: Investigating Attacks CCS’17, October 30-November 3, 2017, Dallas, TX, USA

376

http://www.datarescue.com/idabase/
http://www.datarescue.com/idabase/

	Abstract
	1 Introduction
	2 Binary Code Similarity Detection
	2.1 Motivation Problem: Cross-Platform Binary Code Search
	2.2 Existing Techniques
	2.3 Neural Network-based Embedding Generation

	3 Neural Network-based Model for Embedding Generation
	3.1 Code Similarity Embedding Problem
	3.2 Solution Overview
	3.3 Graph Embedding Network
	3.4 Learning Parameters Using Siamese Architecture
	3.5 Task-independent Pre-training and Task-specific Re-training

	4 Evaluation
	4.1 Implementation and Setup
	4.2 Accuracy
	4.3 Hyperparameters
	4.4 Efficiency
	4.5 Training time
	4.6 Understanding the Embeddings
	4.7 Accuracy of Task-specific Retrained Model using Real-world Dataset

	5 Related Work
	6 Conclusion
	References

