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Abstract

A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors
of irreducible representations of O(5) D O (3) ® Oar(2) from those in the canonical O(5) D SUA (2) ®
SU;(2) basis is outlined. The expansion coefficients are components of null space vectors of the projection
matrix with four nonzero elements in each row in general. Explicit formulae for evaluating Or (3)-reduced
matrix elements of O(5) generators are derived.
© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the proton—neutron quasi-spin group generated by an O(5) algebra is
very useful in dealing with nucleon pairing problems in a shell model framework [1-8]. Due
to its importance in the nuclear spectroscopy, irreducible representations (irreps) of O(5) have
been studied in various ways. The most natural basis for irreps of O(5) may be the branch-
ing multiplicity-free canonical one with O(5) D O(4), where O(4) is locally isomorphic to
SUA(2) ® SU;(2), of which the construction of the basis vectors was presented in [9—11]. The
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matrix representations of O (5) D SUA (2) ® SU;(2) were provided in [9—12]. Since the isospin is
approximately conserved in the charge-independent isovector pairing problem, it is more conve-
nient to adopt the non-canonical O(5) D O (3) ® Os(2) basis for this case, where O7(3) is the
isospin group, and Oar(2) ~ Uas(1) is related with the number of nucleons in the system. The
main problem is the reduction O (5) | O71(3) ® Oar(2) is no longer branching multiplicity-free in
general. Basis vectors of O (5) irreps in the O(5) D O7(3) ® Or(2) basis can be either expanded
in terms of those in the O(5) D SUA (2) ® SU;(2) or constructed by using tensor coupling meth-
ods directly, for which various attempts were made [9,13-18]. A recent survey on the subject
with relevant references is provided in [19,20]. Though various procedures for the construction
of basis vectors of O(5) irreps in the O(5) D Or(3) ® Onr(2) were provided in these works,
only cases up to the branching multiplicity three were obtained explicitly in the past. Moreover,
though there are closed expressions of the expansion coefficients (overlaps) [16] of the basis vec-
tors of O(5) D O7(3) ® Oar(2) in terms of those of O(5) D SUA(2) ® SU;(2) for any irrep of
O (5), atriple sum is involved. Especially, the basis vectors of O(5) D O7(3) ® Oas(2) obtained
in all previous works [9,13—18] are non-orthogonal with respect to the branching multiplicity
label, of which direct computation will be CPU time consuming.

Very recently, we have proposed a simple and effective angular momentum projection pro-
cedure to construct the non-canonical O(5) D O(3) basis vectors from those in the O(5) D
01(3) ® U(1) basis for the symmetric irreps of O(5) based on the group chain U(5) D
UB3)® U(2) [21]. The same technique has also been used to construct basis vectors of SU (3) D
SO@3) D SOQ2) fromthose of U(3) D U(2) D U (1) for any irrep of SU (3) [22]. It will be shown
in this paper that the technique is also efficient for construction of orthonormal basis vectors of
0 (5) irreps in the O(5) D O7(3) ® Opr(2) basis from those of O(5) D SUA(2) ® SU;(2).

In Sec. 2, the relevant canonical and non-canonical basis of O(5) will be briefly reviewed.
In Sec. 3, based on the results shown in Sec. 2, the basis vectors for irreps of O(5) in the non-
canonical O(5) D O7(3) ® Oar(2) basis will be expanded in terms of those in the canonical
O0(5) D SUA(2) ® SU[(2) basis, from which a four-term relation among the expansion coeffi-
cients are explicitly derived. In Sec. 4, explicit formulae for evaluating the O7(3)-reduced matrix
elements of O (5) generators are derived. In Sec. 5, these formulae are used to evaluate the known
eigenvalues of the pure isovector pairing Hamiltonian to check the validity of the results shown
in Sec. 3 and 4.

2. O(5) inthe SU, (2) ® SU;(2) and the O1(3) ® Oar(2) basis

The generators of O(5) can be expressed by linear combinations of a set of operators {E;;}
(1 <1, j <4) satisfying
[Eij, Eir]l =01Eix — ik Eij, (Eij)T=Eji~ (D
In the SUA (2) ® SU;(2) basis, the generators of O(5) may be expressed as
vy =Ep, v_=Ey, w=%(En — En),

1
T4 = E34, T-=E43, 10=75(E33 — Ea4),

Ui =\/;(E14+E32), Ui 1 =\/;(E42—E13), @)
22 272
U 11 =\/g(E24—E31), Ui =—\/;(E41 + En3),
22 272
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Fig. 1. Root diagram of O(5) in the SU (2) ® SU;(2) basis, where m 5 and mj are the quantum number of vy and
that of 7(, respectively, which is also the same diagram of O(5) in the O7(3) ® Or(2) basis with the correspondence:

U+=AI, v— = Ay, ‘E+=A11, - =A_1,U1, :AS, U1 1=-4Ap,U 11 :—\/gT_, Uiy 1 :_\/gT-F’
. 22 2 2 22 2 2
To = vp — 19, and N = vy + ¢ shown in (2) and (10).

where {v4, v_, vp} and {74, T_, 19} generate the subgroup SUx (2) and SU;(2), respectively, and
the double tensor operators {U,,,} satisfy the following Hermitian conjugation relation:

(U;w)T = ()tr U—pi—p: 3)
which satisfy the following commutation relations:

[UO’ vi] == :i:vi? [v+a \)_] = 2])07

[t0, T+l =%714, [14, T-]1=1210,

[vo, U/Lp]ZMU/,Lp, [0, U//,p]ZIOU/j,pa “4)

i Uppl = A F 0G4 DUs1pe T2, Ul =/ G F )L % p+ DU,
Wi, Uy al=Fve, [Up, 1, U 1 il==Fw, W 11, U1 1]1=~0o ).

1
32 272 2t T2*2 22 F2172
The root diagram of O (5) in the SUA (2) ® SU;(2) basis is illustrated in Fig. 1.

An irrep of O(5) may be denoted by (vy, v2) with v; > v > 0, where vy and v, should be
positive integers or positive half-integers simultaneously. Since O (5) | O (4) is simply reducible
and O(4) is locally isomorphic to SU, (2) ® SU;(2), the orthonormal basis vectors of O(5) D
SUAR2)® SU(2) D U(1) ® Ur(1) may be labeled as

(v1,v2)
A=5i+uz), =% —u) ), (5)
mp, mjp
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where (11, us) labels possible irrep of O(4) within the given irrep (vi, v2) of O(5) restricted
by vy <u; <v; and —vy < uy < vy. Due to the fact that O(5) | SUA(2) ® SU;(2) is simply
reducible, O(5) D SUA(2) ® SUr(2) D Up(1) ® Uy(1) is called the canonical basis of O(5).

For a given irrep (v1, v2) of O(5), the matrix representations of O(5) D SUA(2) ® SU;(2)
are well-known with the SU (2) ® SU;(2) reduced matrix elements given by [9,12]

A-13 A
<1+% UH1>
[T+ A+ D@ - T+ A0 = A+ T+ —A+1+ DT
h 22M) 21 +2) ’
A—1 A
(7 v 7)

| (6)
[T+ A+ T A+ D= A =T+ D(A+T—-) ]2
_[ 22A)(21) } ’

and
1

A A\ _TQI+DRA DN poppa—a [ A A
<1 HUH1’>_[(21+1)<2A+1>} ) <1’ UH1>' @

According to the branching rule of O(5) | O(4), the branching rule of O(5) | SUA(2)® SU;(2)
can be expressed as

oGy | SUA2) @ SUI(2)

(1) L @IS (A= L@+ v —p—q). [=1w1—w+p-9). ®)
with which one gets the following sum rule:
v —v 2up
DIM[O(5), (vi.v)]= Y > (wi+m—p—qg+D@i—vn+p—g+1) o
q=0 p=0

= ¢ Qi+ 31 — v+ D1+ v2+2)Qua+ 1),
where Dim[O (5), (v1, vp)] is the dimension of the O(5) irrep (vi, va) with vy > vy > 0.
Alternatively, after a linear transformation, the generators of O(5) in the O(5) D Or(3) x
O,/ (2) basis may be expressed as
AI =Ep=vy, AT_I =Ex=14,
Ar=Ey=v., AL1=Eg=1_,

A= L Eu+En=Uy1, Ao=2En+En)=-U |
22 2

Ti=E;—En=—V2U) 1. T-=E3 —Exn=-v2U ;.
272
To=3(En1 — Ex — E33 + E44) = vo — 10,

N =Y(En - En+ Es3s — Ew) = v + 1.

’

1
2 (10)

S]]
S]]

where {Ty, T_, Tp} generate the subgroup Or(3), and N generates the Oar(2). N = % - Q,
where Q =) j(J +1/2), in which the sum runs over all single-particle orbits considered,
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and 7 is the total number operator of valence nucleons, which is used in the isovector pairing
model [1-8]. Additionally, {v; = AL, v_= Ay, vg=7,/2 - Q/2) and {ry = A" |, ©_ =
A_1, 190 =n,/2 — /2}, where n, and n, are valence neutron and proton number operator, re-
spectively, generate the SUA (2) ® SU;(2) related to the quasispin of protons and neutrons with
A=(Q—vy)/2and I = (2 —v,)/2, where v, and v, are proton and neutron seniority number,
respectively.

The Casimir (invariant) operator of O(5) can be expressed as

C2oO(5) =20 v 42T T+ Y (~D)*PU,,U_
1274

A (1)
= (AhAu+A4ua)) +T T+ A2,
"

wherel-1= %(l+l_ +1_10)+ l%. Eigenvalues of C2(0O(5)), v - v, and 7 - T under (5) are given
by

C2(0(5)) (vi, v2)
LERY A=%(ul+u2),1=%(ul—uz) =
T-T ma, m
A I (12)
vi(v1 +3) + (v +1) (v1, v2)
A(A+1) A=t +ur), I=%w —u) ),
I1(I1+1) ma, mj
where uy =vi —gand up =vy — pwith p=0,1,--- ,2vpandg =0, 1,--- , v; — v3.

3. The basis vectors of O(5) D 07(3) ® Oar(2)

As can be observed from (10), the basis vector (5) is also an eigenstate of Ty and N with
eigenvalues

Mr=mp—m;, N=mp+mj. (13)

For a given irrep (vy, v2) of O(5), all possible basis vectors of O(5) D SUA(2) ® SU(2) D
Ua(1) ® Ur(1) shown in (5) restricted by the conditions (13) form a complete set for the fixed
My and V. Therefore, the basis vectors of O(5) D O7(3) ® Oar(2) can be expanded in terms
of them with the restriction on the quantum numbers m = %(N + Mr)and m; = %(N — Mryp).
The possible basis vectors of O(5) D SUA(2) @ SU;(2) D Up(1) ® Uy (1) spanning the subspace
withmp = % N+Mr7)andm; = %(N — M7) can be illustrated in the weight projection diagram
for the irrep (3, 1) of O(5) as an example shown in Fig. 2. In this example, the dimension of (3,1)
irrep of O(5) is Dim[O(5), (3, 1)] = 81, which involves (A =2,1=1),(A=1,1=2), (A=
LI=1),(A=11=0),(A=0I=1),(A=31=, A=451=3, A=31=1),
and (A = %, I = %) irreps of SUA(2) ® SU(2). In Fig. 2, the degeneracy equals to the number
of possible (A, I) pairs determined from the branching rule of O(5) | SUA(2) ® SU;(2) with
the same m  and m; values, which thus equals to the number of O(5) D SUA(2) ® SU;(2) D
Ua(1) ® Uy(1) basis vectors involved in the projection with fixed M7 and N. For example, as
shown in Fig. 2, there should be 5 terms involved in the projection for M7 = 0 and N = 0, while
the number of terms involved for mr =1 and N =3 is 2.

Similar to the SU (3) case [22], in constructing the basis vectors of O(5) D O7(3) ® Oar(2)
for the irrep (v1, v2) of O(5) with fixed N, there is a freedom to choose a specific basis vector
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mpy
A
1 1 N
1 2 2 1
3 3
lo ° 4 1
2 4 4 2
4 5 4 JIA
o 4 w4 .
2 P
3 3
1o x4 . 1
1< S . i
2 2
1 1 My

Fig. 2. The weight projection diagram for O(5) D O7(3) ® Oar(2) for the irrep (vy, v2) = (3, 1), where the solid dots
and open circles are the corresponding O (5) weights in the O(5) D SUA (2) ® SU;(2) D Up (1) ® Uy (1) basis labeled
by the quantum numbers m o and m; with the corresponding degeneracy (the number near the dots or circles) clearly
shown, in which only the weights denoted by the solid dots connected by the dashed lines are involved in the projection
with fixed My > 0 for My =0,1,---,3and -3 <N <3.

of O(5) D O7(3) ® Opr(2) with isospin T and the quantum number of the third component of
the isospin M7. Practically, it is convenient to choose the highest or the lowest weight state of
Or3) with My =T or My = —T. In this work, we choose the highest weight state of Or(3)
with My =T as a reference state with

(v1,v2)

§T=MT,N>’ (19
where ¢ is the multiplicity label needed in the reduction (v, v2) | (T, N) of O(5) D 07(3) ®
Opr(2). Thus, (14) should satisfy

(v1,v2) _

¢ T =Mp N =0. (15)
Once the basis vector (14) for the highest weight state of Or(3) with M7 = T is known, the

basis vector of O(5) D O7(3) ® Oar(2) for any M7 can be expressed in the standard way as

(v, v) \ (T + Mp)! T—M (v1, v2)
¢T, MT,N>‘\/ QT)(T — Mr)! (T > (16)

(T, My =T, N
where T > 0 should be satisfied.

In order to find all basis vectors of O(5) D SUA(2) ® SU;(2) with fixed M7 > 0 and A in
the irrep (v1, v2) of O(5), one suffices to consider possible irreps (A, I) of SUA(2) @ SU;(2)
embedded in the canonical chain satisfying the condition (13) for this case. According to the
restrictions M7 = mp — m;, N =mu + m;, and the reduction rules shown in (8), we find

I,
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that the following basis vectors are all possible within the O(5) irrep (v, v2) with M7 > 0 for

fixed N:

(v1, v2)

A, I > o))
TN+ Mrp), SV —Mp)

with the restrictions:
IN+Mrl<A<i+uv), SIN=-Mr<I<i@-v). (18)
Hence, the basis vectors of O(5) D O7(3) ® Oar(2) may be expanded in terms of (17) as

DR SR

g=0 p=Max[0, g—v;+v2+|N—-T]]

(v1,v2)
¢ T=Mr, N

> vi—vy Min[vi+vy—g—|N+T|, 202]

l\)l'—‘

(v1, v2)

x| A=5Wi+v2—p—q), 1—21(v1—v2+p q) (19)
TN +T1), SN =T)

where the summations should also be restricted by the condition that vi + vy — p —q — [N + T

are even numbers, ¢ is the multiplicity label needed in the reduction (v, v2) { (N, T), and

{clffq) = c‘sf,; ((v1,v2), N, T)} are the expansion coefficients, which must satisfy
1 (v1, v2) (v1, v2)
-T ’ 2
Vol er=mr V)T = mp N | T (20)

As shown in (19), the sum over possible values of p and ¢ in the expansion is equivalent to
expand the basis vector of O(5) D Or(3) ® Oar(2) with fixed N and M7 =T > 0 in terms of
the basis vectors of O(5) D SUA(2)® SU;(2) D U (1) ® Uy (1) corresponding to the degenerate
weight states at fixed A" and M7 = T > 0 as shown in Fig. 2. Since we choose the highest weight
state of O7(3) with M7 =T > 0 as a reference state, only the degenerate weights on the lower
right plane shown in Fig. 2 may be involved in the projection.

The action of U; 1 onto the basis vector of O(5) D SUA(2) @ SU;(2) shown in (17) useful

for (20) can be sumzm;rized as follows:

(v1,v2)
Ui 1 A, 1 >=
2 2
IW+1n), fW-1)
(v1,v2) (v1,v2) (v1,v2)
< A+, I+% U%i% A, I > A+ I+% >
SN+ + 5, 3N =T) % JW+T), %(N— VW +T) + 5. 5NV =T) = §
(v1,v2) (v1, 12 (v1,v2)
+< A+t 1= Uiy A, > A+L 1= >
JN+T) + 3, 5N =T) -3 JW+T), 2(/\/ JWN+T)+ 3, 3N =T)—§
(v1, v2) (1, v2 (vy,v2)
+< A-% T+ Ui_1 A, > A-3 T+ >
JWNHD+ 3,5V -T) -1 TW+1), 2(N n{iv+n+iiwv-n-1
(v1,v2) (vy, vz (1, v2)
+< A-% 1=} Uiy A, > A% I-1% > (21)
JW+D+ 53NV -1T)-] JW 1), 2(N IW+D+ 53NV -1T)—]
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By using (21) and (19), and the explicit matrix elements shown in (6) and (7), Eq. (20) can be

written as
(v1, v2) >

1
fT+§T Mr, N

Z{ (fer( I)ZN 2g+2v1—1
q.p

(4+9)Qu1—g+2) W1 4+v2—g+D W1+ —p—g+T+N+1D) (01 = +T—N~+p—g+D (w1 —11—¢)
8(vi+v2—p—g+1)(vi+v2—p—q) (V1 —v2+p—q) (Vi —v2+p—q+1)
©) vi+v+ N —p—g+T—-1
+ CP-H,q(_l) e

X

i
(1+p) Qua=p) Wi +v2—p+D (W1 +v2+T+N —p—g+ D (v —v2+p+2) (V1 —v2—T+N+p—g+1) |2
B(i+v2—p—g+D)Wi+va—p—q)(Vi—v2+p—g+1) (V1 —v2+p—g+2)
©) vi—n+N+p—g-T-1

+c Cp lq( 1)

1
x [ PQU2—p+ D1 +v2—p+2) Wi+v2 =T -N—p—g+D)@1=v2+p+ D@1 —v2+T—N+p—g+1) :| 2
8(v1+v2—p—g+2)(vi+v2—p—g+1)(vi—v2+p—q) (Vi —v2+p—q+1)
_ (;“)
Cpg—1
_ 1
x 4u1—g+3) W1+v =g+ Wi+ —T-N—p—g+ D@1 —v—T+N+p—g+D (v *v2*(1+1):| 2
8(v1+v2—p—g+2)(v1+v2—p—g+1)(vi—v2+p—g+1)(vi—v2+p—g+2)
(v1,v2)
x|A=Jwi+vn—p—q), =3 —n+p—q) )=0, (22)
INHT+D,  JW-=T-1

which leads to the following four-term relation to determine the expansion coefficients {c@)

({2]4’_1( 1)2N 2q+2v1

1
[ (1+¢) Qv1 —g+2) (v +v2 =g+ D) (V1 +v2—p—g+T+N+D (1 —v2+T -N+p—g+ D) (v1—v2—¢) ]2
(i+v2—p—q)(vi—v2+p—q)

+ 57;4)_1,,( 1)v1+v2+N—p—q+T

[ (14 p) Qua—p) (1 +v2— p+ D) W +v24+T+N —p—g+ 1D (v1 —v3+p+2) (V] —v2 —T+N+p—g+1) ] 2
(v1+v2—p—q)(vi—v2+p—g+2)

© vi—+N+p—q-T

+c)21 (=D

1
5 [ P@u2=p D@11 = p+2) ity =T =N = p—g+ D@1 —v2+p+ D1 =02 +T-Ntp—g+1) |2
(vitv2—p—q+2)(vi—v2+p—q)
(()
e Cpg—1
1
« [ qQvi—q+3) W1 +v2—g+2) W1 +v2—T—N—p—g+1) (W1 =12 —T+N+p—g+1D) (v —v2—q+1) ] 2 -0
L Wi+v2—p—q+2)(vi—v2+p—q+2) -

(23)

Similar to the projection procedure for O (5) D O(3) shown in [21], one can construct a matrix
equation of (23) with

P((v1,v2), N, T)e®® = Ac®, (24)
where ¢©) = ¢© ((v1, v2), N, T), of which the transpose is arranged as (c(C))T = (c(()%, i%, ;%,

c((ff, cﬁ, -++). Possible nonzero components of ¢) for some specific cases are shown in
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Table 1

Allowed (p, g) combinations in the basis vectors (19) of O(5) D O7(3) ® Oar(2) for some specific (vy, vy) cases
with fixed A and T expanded in terms of those of O(5) D SUA(2) ® SU;(2) with the corresponding multiplicity
Multi((vy, v2), N, T), where d(N/, T) is the total number of terms needed in the expansion, in which only some specific
(N, T) combinations with A > 0 are shown.

(v1,v2) N, T »,q) dN,T) Multi((vy, v2), N, T)
6,0) 0,0 (0,0),(0,2),(0,4), (0,06)
(0,0),(0,2),(0,4)

(1,0), (0, 1), (1,2),(0,3),(1,4),(0,5)
0,0),(1,1),(0,2),(1,3),(0,4)

(1,0), (0, 1), (1,2),(0,3)
0,0),(2,0),(1,1),(0,2),(2,2),(1,3),(0,4), (2,4)
(1,0), (0, 1), (2, 1), (1,2),(0,3), (2,3), (1,4)
(0,0),(2,0),(1,1),(0,2),(2,2),(1,3)

(1,0), (0, 1), (2,1),(1,2)
0,0),(2,0),(1,1),(0,2),(2,2),(1,3),(0,4)
(1,0), (0, 1), (2,1),(1,2), (0, 3)
0,0),(2,0),(4,0),(1,1),(3,1),(0,2),(2,2), (4,2)
(0,0),(2,0),(4,0),(1,1),(3,1),(2,2)
(1,0),(3,0),(2, 1)
0,0),(2,0),(4,1),(1,1),(3,1),(0,2),(2,2)
(1,0),(3,0), (0, 1), (2,1),(1,2)

(0,0),(2,0), (4,0), (6,0)

(1,0),(3,0),(5,0)

(2,0), (4,0)

(3,0

(0,0),(2,0), (4,0)

(1,0), (3,0)

(2,0), (4,0)

1,0)

—

AL L

o
D=

(GRY)

4.2)

(3.3

PN, 0000~ 000 - - OO0 SummN— =
wl\)l\)'—WN'—ON'—WNON'—‘WN'—Owlwwl_N‘

—_— NN W= N0 W R ON]WLWAANOWNDI PN TIOERE N ONW R
SN G G GRS UG WG NS T O 1 T T S Sy NG YOy N Y Gy U G GG VU

Table 1. Entries of the isospin projection matrix P((vy, v3), N, T) can easily be read out from
Eq. (23). The components of eigenvector ¢(¢) corresponding to A = 0 provide the expansion
coefficients {cgf’)q} shown in (19). Once the matrix P((vy, v2), N, T) is constructed, it can be
verified that the number of A = 0 solutions of Eq. (24) equals exactly to the number of rows
of P((vy, v2), N, T) with all entries zero. Actually, the eigenvectors c@)((vl, ), T, N) belong
to the null space of P((vy, v2), N, T). Since there are many ways to find null space vectors

of a matrix, to find solutions of Eq. (24) with A = 0 becomes practically easy. Furthermore,

AT
(c@ )) - ¢®) =£ 0 when the multiplicity is greater than 1 mainly because the projection matrix

P((v1,v2), N, T) is nonsymmetric. Therefore, the O(5) D Or(3) ® Oar(2) basis vectors (19)
constructed from the expansion coefficients obtained according to (23) are also non-orthogonal
with respect to the multiplicity label ¢ in general. The Gram—Schmidt process may be adopted
in order to construct orthonormalized basis vectors of O(5) D Or(3) ® Oar(2). Nevertheless,
in the Wolfram Mathematica after version 10, the built-in function NullSpace of a matrix with
non-integer entries generates orthonormalized null space vectors automatically, with which the
Gram-Schmidt orthogonalization can be avoided. In the following, we use ¢© to denote the
orthonormalized null space vectors of N[P((vy, v3), N, T)] with respect to the multiplicity label
¢ obtained from the Wolfram Mathematica (version 10.3) numerically, where N[P] means to
take P with numerical valued entries with a default precision.
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It is known that CPU time cost and memory space needed for a computer to solve the null
space problem (24) depend mainly on the number of terms d(N, T) needed in the expansion
(19), which equals to the number of columns of P((v1, v2), NV, T). Generally, it would take CPU
time on the order of O(d>) with a unit inversely proportional to the CPU frequency and memory
space on the order of O(dz) bytes. When vy and v, are integers, for example, we observe from
Eq. (19) that the maximal number of terms occurs in 7 = N = 0 case. In such extreme case, the
upper bound of the number of terms involved in the expansion can be estimated by

vi—vy Min[vi+vy—q, 2v7]
dN=0T=0< ) > l=14v—»)Qu+1), (25)
q=0 p=Max[0, g—vi+v2]
which shows that Max[d(N, T)] < d(N =0, T = 0) increases with vy linearly and with v,
quadratically.
When v, =0, only p =0 is allowed. There are only two terms involved in (23) for this case
with

1
(©) ()N =2g+2u [(1+q)(2v|—q+2)(v1—q+T+N+1)(v.+T—N—q+1)]z n

€0,q+1 (v1—9)
1
©) gQui—g+3) (1 —T-N—g+ D@ —-T+N—g+D |2 _
€0,9-1 [ 1 ERTETE =0. (26)

For the special case considered in [9] for the symmetric irrep of O (5) with the parameters
v =2Jp, A=1=J, —u, N=2J, —-2b—a, T=a,
where u = q/2, the O(5) D Or(3) ® Onr(2) basis vector with My =T =a and N = 2J,,, —
2b — a is expanded in terms of the O(5) D SUA(2) ® SU;(2) D Ux (1) ® U; (1) basis vectors as

(2Jm. 0) >

b
24,0
)] 0
N =0 Jp—b, Jy—b—a

where the multiplicity label ¢ is omitted because the reduction O (5) | O7(3) ® Oar(2) for sym-
metric irreps of O(5) in this case is multiplicity-free, according to (19), in which the expansion
coefficients

@7

Qo+ DRIy — DB —a—b)! 2
AJ + DNy + Dl + b)) (2 — b)!}

|:(2M - DA +1 =2 a+b—w)!Q2Jp —b—)!Q2Jyp +1— 2M)i|é
w(h — )2y +1 = w)!2Jy —a—b—p)!
derived from (26) are, up to a normalization constant, equivalent to the expansion coefficients
derived in [9] for this case.
The possible N and T values for an arbitrary irrep (v1, v2) of O(5) were obtained by several
techniques previously [6—8]. Specifically, for a given irrep (vq, v2) of O(5), the allowed values
T are given by the following isospin couplings

o, = co,0(—D* [

(28)

Tu®v2 ‘L TSUla
T,=u,u—2,u—4,---,
u=011727"'sumaX§U17 (29)
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Table 2
0(5) | 01r(3) ® Opnr(2) for (v, vp) withvy =6—v/2and vy =t for v=0,r=0), v=1,r=1/2), v=2,t=1),
(v=4,t=2),and (v =6, = 3). For given \/, the multiplicity of T, if greater than 1, is shown by the superscript of T .

(vi,v) [N, T] Dimension[(v], v3)]

(6,0) [£6, 0] [£5, 1] [4, 0] [£4, 2] [£3, 1] [£3, 3] [£2, 0] [£2, 2] [£2, 4] [£1, 1] 140
[£1, 3] [£1, 5] [0, 0] [0, 2] [0, 4] [0, 6]
) S IS S 3L L 3T S 3. 103, 313,31 224
(£3. 21023 3113, 3123, 3113, 11£3. 3118, M (5. 3114, 3
ESRIES S IES Y
5, 1) [£5, 1] [24, 0] [£4, 1] [£4, 2] [£3, 12] [£3, 2] [£3, 3] [£2, 0] [£2, 1] [£2, 22] 260
[£2, 3] [£2, 4] [£1, 12] [£1, 2] [£1, 3%] [£1, 4] [£1, 5] [0, 0] [0, 1] [0, 22] [0, 3]
[0,42] [0, 5]

4,2) [£4, 2] [£3, 1] [£3, 2] [£3, 3] [£2, 0] [£2, 1] [£2, 22] [£2, 3] [£2, 4] [£1, 12] 220
[£1,22] [+1, 3%] [+1, 4] [0, 0] [0, 1] [0, 23] [0, 32] [0, 4]

3,3) [£3,3] [£2, 2] [£2, 3] [£1, 1] [£1, 2] [*£1, 3] [0, 0] [0, 1] [0, 2] [0, 3] 84

B —

1
S

I\)l'_N‘“"‘

with which the corresponding A" = =+|v; — u|. If the possible couplings of T, ® v, lead to
a specific T more than once, the specific T occurs at most Min[v; — T + 1,v; — vy + 1]
times [13]. Table 2 shows some examples of the reduction obtained in this way. Usually, the
above branching rules should be checked by the dimension formula of O(5) and that of O7(3)
to determine the multiplicity of T in some cases. However, for given A/ and T, the number
of solutions, Multi((vq, v2), NV, T), of Eq. (24) with ¢ =1, 2, ---, Multi((vy, v2), N, T) equals
exactly to the multiplicity in the reduction O (5) | Or(3) ® Or(2) for the O(5) irrep (vq, v2).
Multi((vy, v2), NV, T) of some examples determined by Eq. (24) is also shown in the last column
of Table 1. Therefore, in the new isospin projection, it is not necessary to know the branching
rule of O(5) | O7(3) ® Oar(2) beforehand. For a given A and T, the solutions of the projec-
tion matrix P shown in (24) not only provide the expansion coefficients cO (v, v2), T, N), but
also determine the branching multiplicity of 7', which is just the number of null space vectors
obtained according to (24). Moreover, when no nontrivial null space vector of P((v, v2), N, T)
exists, the only solution for this case is ¢((v1, v2), T, N) = 0, which occurs, for example, when
N =1and T =0 for the O(5) irrep (4, 2). Therefore, a state with N'=1 and T = 0 for the
O (5) irrep (4, 2) does not exist as shown in Table 1.

In solving the four-term relation (23), there is always a freedom in choosing the global phase.
In our calculation, we always set c((fg > 0, while the relative phase is completely determined by
the eigen-equation (24). The multiplicity label ¢ will be omitted if Multi((vy, v2), N, T) = 1.
One can verify that the multiplicity Multi((vq, v2), N, T) in the reduction O(5) | O7(3) ®
O/ (2) for the irrep (v, v2) | (N, T) determined by Eq. (24) is indeed consistent with the
branching rule calculated according to the rules provided in (29). The advantage of the projec-
tion (24) lies in the fact that the null space vectors of the projection matrix P can now be obtained
easily, e.g., by using the built-in function NullSpace[ N [P]] in Wolfram Mathematica, from which
the null space vectors {¢(“)} have already been orthonormalized with respect to ¢. Therefore, the
matrix projection (24) is more suitable to be used in numerical calculations, which is useful, for
example, in the isovector pairing problems [8].

In the following, we provide the P((vq, v2), N, T) matrix and the corresponding expansion
©)
p.q

coefficients {c},} for the branching multiplicity four case with the smallest v}, vz, ||, and
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The orthonormalized expansion coefficients
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~(¢)

Cp, q((vl 1), N, T) of (19) for (vy,vp) =

T = 3, which is a branching multiplicity four case with ¢ = 1,2, 3, and 4.

6,3), N =0, and

0

Cp.q
o= 0049645, &)= 0470707, &) =-0.633030, &) =-0268207, &'} = 0244431,
d=—o112461, &) =—0436399, &) =-0010915, &) =-0177676, &) = ~0.093713
G = 0280671, &) =-0044311, &)= 044212, G0)=-0735426, &)= 0.129513,
a7 = 0275610, &)= -0.18844, &)= 0220414, &) =-0069694, )= 0.035434
3 _ ) _ 3) _ 3 _ 3) _

a= 0743249, &)= 0057792, &) =-0058706, o= 0349662, &)= 0.424036,
&) =-0000633, &)= 0150727, &)= 0236929, &)= 0106101, &)= 0214051
o= 0342470, &Y =-0623821, & =-0127977, & =—0.126084, &{H) =-0.105715,
@ iy @ @ W _

& =-0520861, &' =-0.126637, &) =-0.184859, &) =-0302202, &) = ~0.193074

T as a non-trivial example. Using the branching rules (29), one can verify that the branching
multiplicity four case occurs at least when (vy, v2) = (6, 3) for N =0 and T = 3. According to
(23), the corresponding P matrix is 10 dimensional with

P((6,3),0,3)
18 0 o —JI o 0 0 0o 0
10 10 125
0o JR® JO o o /B o 0 0 0
0 0 100 0 —J3 o0 0 0
1 27 2 39
0 -1 o JH & 0o /2 o o 30)
= 1 2 27 39
o 0 -1 o0 o = JE 0o =¥ o0
325 56 56 12
0 0 0 0 0 —/Z 9 3 % 12
00 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Since there are four rows with all entries zero in (30), the multiplicity of T =3 for N =0
is Multi((6, 3), 0, 3) = 4, which is consistent with the multiplicity provided by (29). The nor-
malized expansion coefficients O, v), T, N) corresponding to A = 0 shown in (24) are
provided in Table 3.

4. Matrix representations of O(5) > O7r(3) ® Onr(2)

Once the orthonormalized expansion coefficients ¢) are obtained according to the isospin
projection shown in the previous section, one can easily calculate matrix elements of O(5) gen-

erators {AL w N} (uw=—1, 0, 1) given in (10) in the O7(3) ® Or(2) basis. Since
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matrix elements of {7, N } are well-known, which only depend on T or A/, and are irrelevant
to the irrep of O (5) and the multiplicity label ¢, only formulae of matrix elements of AL and A,
in the O(5) D O7(3) ® Oar(2) basis will be provided.

In the O(5) D Or(3) ® Opar(2) basis, the pair creation operators AZ with {Ai1 =

—AI_I, Ag = Ag, .Afl = Ail} and the pair annihilation operators A4, with {441 =A_1, Ao =

—Ag, A_1 = —A4 1} are T =1 irreducible tensor operators of Or(3) satisfying the following
conjugation relation [23]:

Ay = (=D (At (31)

These T = 1 irreducible tensor operators shift A/ by one unit, while AI =y, AS =U 1 and

AT_1 =14 inthe O(5) D SUA (2)® SU(2) basis shown in (2). Using the Wigner—Eckart theorem
for matrix elements of O(5) D O7(3) ® Oar(2), we have

(v1,v2) A+ (vi, v2)
¢ T My N |7H | ¢ T M, N
(vi, v2) (vi, v2)
. . (v1, v2) (v1,v2) \ .
where (T M7, 1u|T’ M7) is the CG coefficient of O7(3), and <§, N AT p T,N> is

the O7(3)-reduced matrix element. In the calculation, we ensure that 7’ is always involved
in the O7(3) coupling T ® 1, and M} = Mr + p is always satisfied. By using (19) and the
expressions of AL in terms of the generators of O(5) in the SUA (2) ® SU;(2) basis shown in
(2), the left-hand-side of (32) can be expressed in terms of expansion coefficients ¢© and the
matrix elements of O(5) generators in the SUx (2) ® SU;(2) basis. In the following, we list
nonzero Or (3)-reduced matrix elements of A" derived in this way:

<€’T(li’1v2/)V+IHA+ Ef"T"ﬁ/)>=—§ op SV LT + DEL W, Thx

Joirtv—p—qg-N-T)wi+vu—p—q+N+T+2),

T+1 :
< (v, v2) HA+ EUIT”X/)>=‘/_8J; ZE;fE(N,T)<5§f;_1(N+1,T)
q,p

TN +1

(33)

X (_l)ZN—2q+2v1+l

X

_ 1
q(2v1—q+3) W1 =2+ p—q+N =T+2)(v1+v2— p—q+T+N+2) (v —v—q+1) (V1 +v2—q+2) |2
W1—v2+p—g+D)@i—v2+p—q+2)(vi+v2—p—gq+1D) (V1 +v2—p—q+2)

+5§7§—/)l JN A+ T)(—1)V1TvetN=p=q+T

% [ pQua—p+2) (v 7U2+p7q7./\/’+T)(v1+v27pfq+T+N+2)(U17v2+p+1)(v1+vzfp+2)] 2

(1=v2+p—g+1)(v1—v2+p—q) (V1 +v2—p—g+1) (V1 +v2—p—g+2)

+5§;§+)1,q(~/\/+ 1, T)(—I)UI—U2+N+p—q_T

[ (p+1D)Quy—p) (W1~ +N =T +p—g+2) (V1 +v3—T =N —p—q) (v —v2+p+2) (v +v2—p+1) | 2
(v1=v2+p—q+1) (v —v2+p—g+2)(vi+v2—p—q) V1 +Vv2—p—g+1)
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+&) W H1,T)
1
[<q+1>(2v. —q+D @1 =0 —T+N+p—q) Wi+ -T-N—p—g) (V1 =v2— q)(v1+vz—q+1)]7 (34)
(i—v24p—q)(v1—v2+p—g+D)(vi+v2—p— q)(v1+vz p—q+D

for T > % and

<§/T(lf’1v2/)V+1HA+ EU%% VLS SN LT — DES, (WL T)x

x/(vl—vz-l-P—q—N-l-T)(vl—v2+p—CI+N—T+2)

(35)

for T > 1.
By using (33)—(35), non-zero reduced matrix elements of .4 can be obtained by the conjuga-
tion relation:

(v1, v2) (Wi v2)\ _ (g 1T+ 2T +1 [ (vi,v2) (v1, v2) (36)
g—/ T/,N/ é— T,N - 2T/+1 ;- T,N ;-/ T/,N/ .

Thus, the matrix representations of O(5) D O7(3) D Oas(2) are obtained completely.

A

«

5. Applications to the pairing model for nuclei

In the spherical shell model, we consider n valence nucleons with J/ =0 and 7 = 1 pairing
interactions in p single-particle orbits. In general, the spherical shell model mean-field plus the
isovector pairing interaction Hamiltonian may be written as [8]

H=>Y €jnj—GrAl A1 — GryAfAg— G, AT (A, 37)

j
where ¢€; is the single particle energy of the j-orbit, G, > 0, G, > 0, and G, > 0 are
proton—proton (pp), neutron—neutron (nn), and neutron—proton (np) pairing interaction strength,
respectively, nj= me’ a;m,mta jm,m, 1 the valence nucleon number operator in the j-orbit, in

which af o (@jm,m,) is the creation (annihilation) operator for a valence nucleon in the state
with angular momentum j, angular momentum projection m, and isospin projection m; with
m; =1/2, —1/2. When G, = G, = G, = G, the isospin is a good quantum number. In this
isospin conserved case, the Hamiltonian (37) is exactly solvable [23,29]. Since neutron and pro-
ton single-particle energy of the j-orbit are the same, it is expected that G, = G, = G may be
approximately satisfied, while, in general, G, # G, for which the Bethe ansatz method used
in [23,29] will no longer be useful. In such a case, the Hamiltonian (37) may be diagonalized in
the O(5) D O7(3) ® Onr(2) basis [24-27]. For the sake of simplicity, in the following, we con-
sider the degenerate case with €; =€ V j, with which the first term of (37) becomes a constant
for fixed number of nucleons n, and is neglected. Thus, the Hamiltonian can be expressed as

Hp=—-GA". A, (38)

where G, = G, = G, = G is assumed.
According to (11), the Hamiltonian (38) is O7(3) invariant, and can be expressed as

Ao, =Hp=—GAT - A= —%G (CQ(O(S)) ~NWN=-3)-T. T) : (39)
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which is diagonal under the O(5) D Or(3) ® Oas(2) basis with

foro | 151y |
1
=—3G Wi +3) + 0+ D) = NW =3) =TT +1) ‘ ¢ }UIM';Z)N> (40)

In this case, the labels of the O (5) irrep (v, v2) are related with the seniority number of nucleons
v and the reduced isospin ¢ with vy = Q — v/2 and v, = ¢, where v and ¢ indicate that there are
v nucleons coupled to the isospin ¢, which are free from J =0 and T = 1 pairs.

In order to check the validity of the results shown in previous sections, the matrix elements of
AT . A for some specific O(5) D O7(3) ® Onr(2) states will be calculated by using the results
shown in Sec. 3 and 4 directly, which can be expressed as

< W, v2) | 4] W) >=

¢ T, My, N T, My, N
2
(v, v2) | 4+ (v, v2)\ (v, ) | 4+ (v1,v2)
<§T,N ‘A 'AHgT,N >_Z<§T,N ‘A ;’T’,N—1> “D

é-/T/

by using the Racah—Wigner calculus, in which the relation (36) is used. Since there is the analyt-
ical result shown in (40) for this case, it can be used to check the results shown in the previous
sections via Eq. (41). In the following, the matrix element of A™ - A for (v, v2) = (6,0), (5, 1),
and (4, 2) with A= T = 0 will be calculated by using (41) with the method shown in the previ-
ous sections as examples.

For (v, v2) = (6,0) and N' = T = 0, the corresponding projection matrix P shown in (24) is

4 dimensional with
3 /39
-/3 V3 0 0

0o -3/ - /Z o

P((6,0),0,0) = 5 3 . (42)
5 3
0 o - —3\/;
0 0 0 0

In order to calculate the matrix element of AT - A for this case, one also needs the expansion
coefficients ¢, 4 for N'=—1 and T = 1 according to (41), for which the projection matrix P is
3 dimensional with

GE o
P((6,0),-1.D)=] o —% —J/11 | - (43)
0 0 0

For (v1, v2) = (5, 1) and N = T = 0, the corresponding projection matrix P is 8 dimensional
with
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—1 and T =1, the corresponding projection matrix P is 7 dimen-

For (v, v2) = (5,1) and N

sional with
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P(G5, 1),

0, the corresponding projection matrix P is 8 dimensional

T =

For (v1, v2) = (4,2) and N

with

P(4,2),0,0)

(46)

?J_z
el glls)
S O O 0[ S
_

()

=2

o
o

oS O

S

o O

,W_G ol | T2 =2
(== S [ S =)
| |
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|
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>2J_3

—1 and T =1, the corresponding projection matrix P is 7 dimen-

For (v, v2) = (4,2) and N

sional with
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1 Jz 0 =/ o0 0 0
o J¢& 3 o /¥ o 0
7 3 NE) 3
P tno| Ym0 o ) @7
Y e 0 -8 0 (/% o0 -8
0 0 0 0 —/» V2 L
0 0 0 0 0 0 0
0 0 0 0 0 0 0

One can check that the multiplicity of 7 in an O(5) irrep equals exactly to the number
of rows with all entries zero in P for fixed . The null space of P((vi, v2), N, T) provides
the corresponding orthonormalized expansion coefficients E(C) ((v1, v2), N, T) of (19). The or-
thonormalized expansion coefficients c({) (w1, v2), N, T) for (vi, v2) = (6,0), (5,1), and (4,2)
with N =0,T=0and N =—1,T = 1 needed in the evaluation of the matrix elements of A - A
according to (41) for these cases are shown in Table 4. In addition, as shown in [21,22,28], there
is an arbitrary SO (Multi((v1, v2), N, T)) rotational transformation with respect to the multiplic-
ity labels ¢ = 1,2, --- , Multi((vy, v2), NV, T). When Multi((vy, v2), N, T) = 2 for example, let

(v1,v2) (v1, v2)
'42”2‘;:1 T,MT,/\/>and C=2=\ a1 Mr v
tors of O(5) D 0O7(3) ® Oar(2). New basis vectors {|)} after an arbitrary SO (2) rotation with
respect to the multiplicity labels with

be orthonormalized basis vec-

| =1) =cos@|¢ = 1) —sinf|¢ =2),
| =2) =sinf|¢ = 1) +cosO|; =2) (48)

are also an orthonormalized basis vectors of O(5) D Or(3) ® Oar(2) of the same irrep of O (5)
with T and N unchanged, where 0 < 6 < 27. As a result, matrix elements of A" and A in
the O(5) D O7(3) ® Or(2) basis may be numerically different when they are derived by using
different methods for non-multiplicity-free cases.

Using the expansion coefficients shown in Table 4 and Eq. (35), we have

6,00 ) 44| 6,00\ _
< 0.0 |4 1’_1>_5.19615. (49)
GO 4+ GD _ GO 4+ 6D -
<0’0 AN D 1’_1>_3.32942, < HA r—2 1’_1>_3.14880.
(50)
@42 4l 42 _ @42 4+l 42 _
<o,o AN 1’_1>_4.06054, < HA r=2 1’_1>_ 0.715557.
(51

Substituting these values into Eq. (41), one can check that each result of Eq. (41) is exactly
the same as the corresponding one shown by (40), which validates the isospin projection shown
in the previous sections.

Moreover, besides the O7(3) isospin dynamical symmetry limit case shown above, there is
the well known SUx (2) ® SU;(2) quasispin dynamical symmetry limit for any value of G
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Table 4
The orthonormalized expansion coefficients c((;) ((v1,v2), N, T) of (19) for (vq,vp) = (6,0), (5,1), and (4,2) with
N=0,T=0and N=-1,T=1.

(vy,v2) LN, T Ep,q
6.0) 1, 0,0 30,0 = 0.782852, ) 2 = —0.485504, &) 4 = 0.340168, & ¢ = —0.188982
1,—1,1 0.0 = 0.90396, & » = —0.396412, &4 = 0.160357
) 1, 0,0 G0,0 = 0.574456, & 0 = —0.574456, &1 | =0, & 2 = —0.34641,
2= 034641, ¢ 3 = 0, & 4 = 0.223607, & 4 = —0.223607
L-1, 1 2o ) =00797736, 85" = 0.893054, &1 = 0300561, &5 =0.0341335,
*(5 D= 0273573, = 0170371, & *“ D = 0.0268284
2,-1, 1 *50 2 = 0.858363, 25y 2 _ ~0.150337, &\¢ 2 =0.317803, &y ) = —0.233385,
&5 — 0177481, 657 = —0.180144, cf TP = —0.145579
,2) 1,0, 0 30,0 = 0519615, & 0 = —0.447214, & 0 = 0.519615, & | =0,
¢3,1 =0, ¢pp =—0.288675, ¢ » = 0.305505, ¢4 » = —0.288675
1,—1, 1 2 =0373586, 655 ) = —0.52682, & = 0.663391, &1 ) = 0.0152581,
*(5 D _ —0.108114, 5 b _o, 160619, 55 = ~0.32417
2,-1, 1 ~<¢ 2 2034123, 857 = ~0337929, 6 ) = —0.592498, " = 0.0865847,
*5 Y = 061351, zgz ) _ —0.134344, &5 D _ 0 127955

and G, when G, =0, where A and [ are the quasi-spin of the proton and neutron pairing,
respectively. In this case, the pairing interaction part of (37)

Hsu, 0osu,@) = _GnA11A+1 - GVA-’;IA*] (52)
is diagonal under the O (5) D SUA (2) ® SU;(2) basis with

. (v1, v2)
Hsu,esu;) | A, 1
mA5mI
(v1, v2)
=Gz (AA+1) —mpampa+1) -G, UUT+1) —mim;+D)| A, T ), (53)
ma,mj

where A = (2 —vy;)/2 and I = (2 — v,)/2, in which v; (v,) is the proton (neutron) seniority
number, ma =ny, /2 — /2, and my =n,, /2 — /2, in which n; (n,) is the number of valence
protons (neutrons), which shows, though the interpretation of (vq, v2) in terms of v and 7 is no
longer appropriate in this case due to the fact that the isospin symmetry is broken, (52) is still
block diagonal with respect to the O(5) irreps labeled by (v, v2).

For other values of the pairing interaction strengths, the pairing interaction part of (37) can
only be diagonalized under any basis of O (5), of which the eigenstates may be expanded in terms
of either the basis vectors of O(5) D O7(3) ® Oar(2) orthose of O(5) D SUA(2)® SU;(2). The
parameter rectangle of the pure isovector pairing Hamiltonian is illustrated in Fig. 3, which shows
the pure isovector pairing Hamiltonian may be diagonalized in the O(5) D O7(3) ® On(2)
basis, except the G, = 0 case indicated by the left leg of the rectangle with the SUA(2) ®
SU;(2) quasispin dynamical symmetry.
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G, #G,
N |
S :
) |
® |
N |
D |
2] |
777777777777777777 ® Or(3)
—
Gr=G, G,y G =G,=G,

Fig. 3. The parameter rectangle of the isovector pairing Hamiltonian, where the left leg marked by the solid line represents
the Hamiltonian with arbitrary values of G; and G, and Gy, = 0 corresponding to the SUA (2) ® SU;(2) quasispin
dynamical symmetry, and the vertex marked by the solid dot represents the Hamiltonian with G; = G, = Gy corre-
sponding to the O7 (3) isospin dynamical symmetry. The Hamiltonian for other values of the parameters shown by the
other area of the rectangle may be diagonalized in either the O(5) D SUA (2) ® SU;(2) orthe O(5) D O7(3) ® OpAr(2)
basis.

6. Summary

A simple and effective algebraic isospin projection procedure for constructing basis vectors of
irreducible representations of the non-canonical O (5) D Or(3) ® Oas(2) basis from those in the
canonical O(5) D SUA(2) ® SU;(2) basis is proposed. We show that the expansion coefficients
can be obtained as components of the null-space vectors of the projection matrix, of which,
similar to the SU(3) D SO(3) projection shown in [22], there are only four nonzero elements
in each row in general. There are currently available well-optimized algorithms for computing
the null-space vectors of a matrix, for example, the Wolfram Mathematica, from which the null
space vectors obtained are orthonormalized. Hence, to evaluate the expansion coefficients of the
orthonormal basis vectors of O(5) D O71(3) ® Oar(2) in terms of the basis of the canonical chain
becomes straightforward. The advantage of this work lies in the fact that the basis vectors of
0(5) D 07r(3) ® Opr(2) thus obtained are orthnormalized with respect to the O(5) | Or(3) ®
O/ (2) branching multiplicity label ¢ for any irrep of O(5). Explicit formulae for evaluating
O (3)-reduced matrix elements of O (5) generators are derived, of which the validity is checked
in the evaluation of some matrix elements of the pure isovector pairing Hamiltonian. For the
non-degenerate case of (37), one needs to diagonalize it in the f: 1 Oi(5) subspace when there
are p non-degenerate orbits, which will be a part of our future work.
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