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Abstract

A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors 

of irreducible representations of O(5) ⊃ OT (3) ⊗ ON (2) from those in the canonical O(5) ⊃ SU�(2) ⊗
SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection 

matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced 

matrix elements of O(5) generators are derived.

 2018 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the proton–neutron quasi-spin group generated by an O(5) algebra is 

very useful in dealing with nucleon pairing problems in a shell model framework [1–8]. Due 

to its importance in the nuclear spectroscopy, irreducible representations (irreps) of O(5) have 

been studied in various ways. The most natural basis for irreps of O(5) may be the branch-

ing multiplicity-free canonical one with O(5) ⊃ O(4), where O(4) is locally isomorphic to 

SU�(2) ⊗ SUI (2), of which the construction of the basis vectors was presented in [9–11]. The 
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matrix representations of O(5) ⊃ SU�(2) ⊗SUI (2) were provided in [9–12]. Since the isospin is 

approximately conserved in the charge-independent isovector pairing problem, it is more conve-

nient to adopt the non-canonical O(5) ⊃ OT (3) ⊗ON (2) basis for this case, where OT (3) is the 

isospin group, and ON (2) ∼ UN (1) is related with the number of nucleons in the system. The 

main problem is the reduction O(5) ↓ OT (3) ⊗ON (2) is no longer branching multiplicity-free in 

general. Basis vectors of O(5) irreps in the O(5) ⊃ OT (3) ⊗ON (2) basis can be either expanded 

in terms of those in the O(5) ⊃ SU�(2) ⊗SUI (2) or constructed by using tensor coupling meth-

ods directly, for which various attempts were made [9,13–18]. A recent survey on the subject 

with relevant references is provided in [19,20]. Though various procedures for the construction 

of basis vectors of O(5) irreps in the O(5) ⊃ OT (3) ⊗ ON (2) were provided in these works, 

only cases up to the branching multiplicity three were obtained explicitly in the past. Moreover, 

though there are closed expressions of the expansion coefficients (overlaps) [16] of the basis vec-

tors of O(5) ⊃ OT (3) ⊗ ON (2) in terms of those of O(5) ⊃ SU�(2) ⊗ SUI (2) for any irrep of 

O(5), a triple sum is involved. Especially, the basis vectors of O(5) ⊃ OT (3) ⊗ON (2) obtained 

in all previous works [9,13–18] are non-orthogonal with respect to the branching multiplicity 

label, of which direct computation will be CPU time consuming.

Very recently, we have proposed a simple and effective angular momentum projection pro-

cedure to construct the non-canonical O(5) ⊃ O(3) basis vectors from those in the O(5) ⊃
O1(3) ⊗ U(1) basis for the symmetric irreps of O(5) based on the group chain U(5) ⊃
U(3) ⊗U(2) [21]. The same technique has also been used to construct basis vectors of SU(3) ⊃
SO(3) ⊃ SO(2) from those of U(3) ⊃ U(2) ⊃ U(1) for any irrep of SU(3) [22]. It will be shown 

in this paper that the technique is also efficient for construction of orthonormal basis vectors of 

O(5) irreps in the O(5) ⊃ OT (3) ⊗ ON (2) basis from those of O(5) ⊃ SU�(2) ⊗ SUI (2).

In Sec. 2, the relevant canonical and non-canonical basis of O(5) will be briefly reviewed. 

In Sec. 3, based on the results shown in Sec. 2, the basis vectors for irreps of O(5) in the non-

canonical O(5) ⊃ OT (3) ⊗ ON (2) basis will be expanded in terms of those in the canonical 

O(5) ⊃ SU�(2) ⊗ SUI (2) basis, from which a four-term relation among the expansion coeffi-

cients are explicitly derived. In Sec. 4, explicit formulae for evaluating the OT (3)-reduced matrix 

elements of O(5) generators are derived. In Sec. 5, these formulae are used to evaluate the known 

eigenvalues of the pure isovector pairing Hamiltonian to check the validity of the results shown 

in Sec. 3 and 4.

2. O(5) in the SU�(2) ⊗ SUI (2) and the OT (3) ⊗ ON (2) basis

The generators of O(5) can be expressed by linear combinations of a set of operators {Eij }
(1 ≤ i, j ≤ 4) satisfying

[Eij , Elk] = δj lEik − δikElj ,
(

Eij

)† = Eji . (1)

In the SU�(2) ⊗ SUI (2) basis, the generators of O(5) may be expressed as

ν+ = E12, ν− = E21, ν0 = 1
2
(E11 − E22),

τ+ = E34, τ− = E43, τ0 = 1
2
(E33 − E44),

U 1
2

1
2

=
√

1
2
(E14 + E32), U 1

2
− 1

2

=
√

1
2
(E42 − E13),

U− 1
2

1
2

=
√

1
2
(E24 − E31), U− 1

2
− 1

2

= −
√

1
2
(E41 + E23),

(2)
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Fig. 1. Root diagram of O(5) in the SU�(2) ⊗ SUI (2) basis, where m� and mI are the quantum number of ν0 and 

that of τ0 , respectively, which is also the same diagram of O(5) in the OT (3) ⊗ ON (2) basis with the correspondence: 

ν+ = A
†
1

, ν− = A1 , τ+ = A
†
−1

, τ− = A−1, U 1
2

1
2

= A
†
0
, U− 1

2
− 1

2
= −A0 , U− 1

2
1
2

= −
√

1
2
T− , U 1

2
− 1

2
= −

√

1
2
T+ , 

T0 = ν0 − τ0, and N̂ = ν0 + τ0 shown in (2) and (10).

where {ν+, ν−, ν0} and {τ+, τ−, τ0} generate the subgroup SU�(2) and SUI (2), respectively, and 

the double tensor operators {Uμρ} satisfy the following Hermitian conjugation relation:

(

Uμρ

)† = (−)μ+ρU−μ−ρ, (3)

which satisfy the following commutation relations:

[ν0, ν±] = ±ν±, [ν+, ν−] = 2ν0,

[τ0, τ±] = ±τ±, [τ+, τ−] = 2τ0,

[ν0, Uμρ] = μUμρ, [τ0, Uμρ] = ρUμρ, (4)

[ν±, Uμρ] =
√

( 1
2

∓ μ)( 1
2

± μ + 1)Uμ±1ρ, [τ±, Uμρ] =
√

( 1
2

∓ ρ)( 1
2

± ρ + 1)Uμρ±1,

[U± 1
2

1
2

, U± 1
2
− 1

2

] = ±ν±, [U 1
2
± 1

2

, U− 1
2
± 1

2

] = ±τ±, [U± 1
2

1
2

, U∓ 1
2
− 1

2

] = −(ν0 ± τ0).

The root diagram of O(5) in the SU�(2) ⊗ SUI (2) basis is illustrated in Fig. 1.

An irrep of O(5) may be denoted by (v1, v2) with v1 ≥ v2 ≥ 0, where v1 and v2 should be 

positive integers or positive half-integers simultaneously. Since O(5) ↓ O(4) is simply reducible 

and O(4) is locally isomorphic to SU�(2) ⊗ SUI (2), the orthonormal basis vectors of O(5) ⊃
SU�(2) ⊗ SUI (2) ⊃ U�(1) ⊗ UI (1) may be labeled as

∣

∣

∣

∣

∣

∣

(v1, v2)

� = 1
2
(u1 + u2), I = 1

2
(u1 − u2)

m�, mI

〉

, (5)
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where (u1, u2) labels possible irrep of O(4) within the given irrep (v1, v2) of O(5) restricted 

by v2 ≤ u1 ≤ v1 and −v2 ≤ u2 ≤ v2. Due to the fact that O(5) ↓ SU�(2) ⊗ SUI (2) is simply 

reducible, O(5) ⊃ SU�(2) ⊗ SUI (2) ⊃ U�(1) ⊗ UI (1) is called the canonical basis of O(5).

For a given irrep (v1, v2) of O(5), the matrix representations of O(5) ⊃ SU�(2) ⊗ SUI (2)

are well-known with the SU�(2) ⊗ SUI (2) reduced matrix elements given by [9,12]
〈

� − 1
2

I + 1
2

∥

∥

∥

∥

U

∥

∥

∥

∥

�

I

〉

= −
[

(v1 − I + � + 1)(v2 − I + �)(v1 − � + I + 2)(v2 − � + I + 1)

2(2�)(2I + 2)

]
1
2

,

〈

� − 1
2

I − 1
2

∥

∥

∥

∥

U

∥

∥

∥

∥

�

I

〉

=
[

(v1 + I + � + 2)(v2 + I + � + 1)(v1 − � − I + 1)(� + I − v2)

2(2�)(2I )

]
1
2

,

(6)

and

〈

�

I

∥

∥

∥

∥

U

∥

∥

∥

∥

�′

I ′

〉

=
[

(2I ′ + 1)(2�′ + 1)

(2I + 1)(2� + 1)

]
1
2

(−)I
′−I+�′−�

〈

�′

I ′

∥

∥

∥

∥

U

∥

∥

∥

∥

�

I

〉

. (7)

According to the branching rule of O(5) ↓ O(4), the branching rule of O(5) ↓ SU�(2) ⊗SUI (2)

can be expressed as

O(5) ↓ SU�(2) ⊗ SUI (2)

(v1, v2) ↓
⊕v1−v2, 2v2

q=0, p=0

(

� = 1
2
(v1 + v2 − p − q), I = 1

2
(v1 − v2 + p − q)

)

,
(8)

with which one gets the following sum rule:

Dim[O(5), (v1, v2)] =
v1−v2
∑

q=0

2v2
∑

p=0

(v1 + v2 − p − q + 1)(v1 − v2 + p − q + 1)

= 1
6
(2v1 + 3)(v1 − v2 + 1)(v1 + v2 + 2)(2v2 + 1),

(9)

where Dim[O(5), (v1, v2)] is the dimension of the O(5) irrep (v1, v2) with v1 ≥ v2 ≥ 0.

Alternatively, after a linear transformation, the generators of O(5) in the O(5) ⊃ OT (3) ×
ON (2) basis may be expressed as

A
†
1 = E12 = ν+, A

†
−1 = E34 = τ+,

A1 = E21 = ν−, A−1 = E43 = τ−,

A
†
0 =

√

1
2
(E14 + E32) = U 1

2
1
2

, A0 =
√

1
2
(E41 + E23) = −U− 1

2
− 1

2

,

T+ = E13 − E42 = −
√

2U 1
2
− 1

2

, T− = E31 − E24 = −
√

2U− 1
2

1
2

,

T0 = 1
2
(E11 − E22 − E33 + E44) = ν0 − τ0,

N̂ = 1
2
(E11 − E22 + E33 − E44) = ν0 + τ0,

(10)

where {T+, T−, T0} generate the subgroup OT (3), and N̂ generates the ON (2). N̂ = n̂
2

− �, 

where � =
∑

j (j + 1/2), in which the sum runs over all single-particle orbits considered, 
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and n̂ is the total number operator of valence nucleons, which is used in the isovector pairing 

model [1–8]. Additionally, {ν+ = A
†
+1, ν− = A1, ν0 = n̂π/2 − �/2} and {τ+ = A

†
−1, τ− =

A−1, τ0 = n̂ν/2 − �/2}, where n̂π and n̂ν are valence neutron and proton number operator, re-

spectively, generate the SU�(2) ⊗ SUI (2) related to the quasispin of protons and neutrons with 

� = (� − vπ )/2 and I = (� − vν)/2, where vπ and vν are proton and neutron seniority number, 

respectively.

The Casimir (invariant) operator of O(5) can be expressed as

C2(O(5)) = 2ν · ν + 2τ · τ +
∑

μρ

(−1)μ+ρUμρU−μ−ρ

=
∑

μ

(

A†
μAμ + AμA†

μ

)

+ T · T + N̂
2,

(11)

where l · l = 1
2
(l+l− + l−l+) + l2

0 . Eigenvalues of C2(O(5)), ν · ν, and τ · τ under (5) are given 

by
⎛

⎝

C2(O(5))

ν · ν
τ · τ

⎞

⎠

∣

∣

∣

∣

∣

∣

(v1, v2)

� = 1
2
(u1 + u2), I = 1

2
(u1 − u2)

m�, mI

〉

=

⎛

⎝

v1(v1 + 3) + v2(v2 + 1)

�(� + 1)

I (I + 1)

⎞

⎠

∣

∣

∣

∣

∣

∣

(v1, v2)

� = 1
2
(u1 + u2), I = 1

2
(u1 − u2)

m�, mI

〉

,

(12)

where u1 = v1 − q and u2 = v2 − p with p = 0, 1, · · · , 2v2 and q = 0, 1, · · · , v1 − v2.

3. The basis vectors of O(5) ⊃ OT (3) ⊗ ON (2)

As can be observed from (10), the basis vector (5) is also an eigenstate of T0 and N̂ with 

eigenvalues

MT = m� − mI , N = m� + mI . (13)

For a given irrep (v1, v2) of O(5), all possible basis vectors of O(5) ⊃ SU�(2) ⊗ SUI (2) ⊃
U�(1) ⊗ UI (1) shown in (5) restricted by the conditions (13) form a complete set for the fixed 

MT and N . Therefore, the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) can be expanded in terms 

of them with the restriction on the quantum numbers m� = 1
2
(N + MT ) and mI = 1

2
(N − MT ). 

The possible basis vectors of O(5) ⊃ SU�(2) ⊗SUI (2) ⊃ U�(1) ⊗UI (1) spanning the subspace 

with m� = 1
2
(N +MT ) and mI = 1

2
(N −MT ) can be illustrated in the weight projection diagram 

for the irrep (3, 1) of O(5) as an example shown in Fig. 2. In this example, the dimension of (3,1) 

irrep of O(5) is Dim[O(5), (3, 1)] = 81, which involves (� = 2, I = 1), (� = 1, I = 2), (� =
1, I = 1), (� = 1, I = 0), (� = 0, I = 1), (� = 3

2
, I = 3

2
), (� = 1

2
, I = 3

2
), (� = 3

2
, I = 1

2
), 

and (� = 1
2
, I = 1

2
) irreps of SU�(2) ⊗ SUI (2). In Fig. 2, the degeneracy equals to the number 

of possible (�, I ) pairs determined from the branching rule of O(5) ↓ SU�(2) ⊗ SUI (2) with 

the same m� and mI values, which thus equals to the number of O(5) ⊃ SU�(2) ⊗ SUI (2) ⊃
U�(1) ⊗ UI (1) basis vectors involved in the projection with fixed MT and N . For example, as 

shown in Fig. 2, there should be 5 terms involved in the projection for MT = 0 and N = 0, while 

the number of terms involved for mT = 1 and N = 3 is 2.

Similar to the SU(3) case [22], in constructing the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2)

for the irrep (v1, v2) of O(5) with fixed N , there is a freedom to choose a specific basis vector 
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Fig. 2. The weight projection diagram for O(5) ⊃ OT (3) ⊗ ON (2) for the irrep (v1, v2) = (3, 1), where the solid dots 

and open circles are the corresponding O(5) weights in the O(5) ⊃ SU�(2) ⊗ SUI (2) ⊃ U�(1) ⊗ UI (1) basis labeled 

by the quantum numbers m� and mI with the corresponding degeneracy (the number near the dots or circles) clearly 

shown, in which only the weights denoted by the solid dots connected by the dashed lines are involved in the projection 

with fixed MT > 0 for MT = 0, 1, · · · , 3 and −3 ≤ N ≤ 3.

of O(5) ⊃ OT (3) ⊗ ON (2) with isospin T and the quantum number of the third component of 

the isospin MT . Practically, it is convenient to choose the highest or the lowest weight state of 

OT (3) with MT = T or MT = −T . In this work, we choose the highest weight state of OT (3)

with MT = T as a reference state with
∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

, (14)

where ζ is the multiplicity label needed in the reduction (v1, v2) ↓ (T , N ) of O(5) ⊃ OT (3) ⊗
ON (2). Thus, (14) should satisfy

T+

∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

= 0. (15)

Once the basis vector (14) for the highest weight state of OT (3) with MT = T is known, the 

basis vector of O(5) ⊃ OT (3) ⊗ ON (2) for any MT can be expressed in the standard way as

∣

∣

∣

∣

(v1, v2)

ζ T ,MT ,N

〉

=
√

(T + MT )!
(2T )!(T − MT )! (T−)T −MT

∣

∣

∣

∣

(v1, v2)

ζ T ,MT = T ,N

〉

, (16)

where T ≥ 0 should be satisfied.

In order to find all basis vectors of O(5) ⊃ SU�(2) ⊗ SUI (2) with fixed MT > 0 and N in 

the irrep (v1, v2) of O(5), one suffices to consider possible irreps (�, I ) of SU�(2) ⊗ SUI (2)

embedded in the canonical chain satisfying the condition (13) for this case. According to the 

restrictions MT = m� − mI , N = m� + mI , and the reduction rules shown in (8), we find 
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that the following basis vectors are all possible within the O(5) irrep (v1, v2) with MT ≥ 0 for 

fixed N :
∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + MT ), 1

2
(N − MT )

〉

(17)

with the restrictions:

1
2
|N + MT | ≤ � ≤ 1

2
(v1 + v2),

1
2
|N − MT | ≤ I ≤ 1

2
(v1 − v2). (18)

Hence, the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) may be expanded in terms of (17) as

∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

=
v1−v2
∑

q=0

Min[v1+v2−q−|N+T |, 2v2]
∑

p=Max[0, q−v1+v2+|N−T |]
c(ζ )
p,q

×

∣

∣

∣

∣

∣

∣

(v1, v2)

� = 1
2
(v1 + v2 − p − q), I = 1

2
(v1 − v2 + p − q)

1
2
(N + T ), 1

2
(N − T )

〉

, (19)

where the summations should also be restricted by the condition that v1 + v2 −p − q − |N + T |
are even numbers, ζ is the multiplicity label needed in the reduction (v1, v2) ↓ (N , T ), and 

{c(ζ )
pq ≡ c

(ζ )
pq ((v1, v2), N , T )} are the expansion coefficients, which must satisfy

−
√

1

2
T+

∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

= U 1
2 − 1

2

∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

= 0. (20)

As shown in (19), the sum over possible values of p and q in the expansion is equivalent to 

expand the basis vector of O(5) ⊃ OT (3) ⊗ ON (2) with fixed N and MT = T > 0 in terms of 

the basis vectors of O(5) ⊃ SU�(2) ⊗SUI (2) ⊃ U�(1) ⊗UI (1) corresponding to the degenerate 

weight states at fixed N and MT = T > 0 as shown in Fig. 2. Since we choose the highest weight 

state of OT (3) with MT = T > 0 as a reference state, only the degenerate weights on the lower 

right plane shown in Fig. 2 may be involved in the projection.

The action of U 1
2 − 1

2
onto the basis vector of O(5) ⊃ SU�(2) ⊗ SUI (2) shown in (17) useful 

for (20) can be summarized as follows:

U 1
2
− 1

2

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + T ), 1

2
(N − T )

〉

=

〈 (v1, v2)

� + 1
2
, I + 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

∣

∣

∣

∣

∣

∣

∣

U 1
2
− 1

2

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + T ), 1

2
(N − T )

〉

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

� + 1
2
, I + 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

〉

+
〈 (v1, v2)

� + 1
2
, I − 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

∣

∣

∣

∣

∣

∣

∣

U 1
2
− 1

2

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + T ), 1

2
(N − T )

〉

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

� + 1
2
, I − 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

〉

+
〈 (v1, v2)

� − 1
2
, I + 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

∣

∣

∣

∣

∣

∣

∣

U 1
2
− 1

2

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + T ), 1

2
(N − T )

〉

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

� − 1
2
, I + 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

〉

+
〈 (v1, v2)

� − 1
2
, I − 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

∣

∣

∣

∣

∣

∣

∣

U 1
2
− 1

2

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I
1
2
(N + T ), 1

2
(N − T )

〉

∣

∣

∣

∣

∣

∣

∣

(v1, v2)

� − 1
2
, I − 1

2
1
2
(N + T ) + 1

2
, 1

2
(N − T ) − 1

2

〉

. (21)
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By using (21) and (19), and the explicit matrix elements shown in (6) and (7), Eq. (20) can be 

written as

−
√

1

2
T+

∣

∣

∣

∣

(v1, v2)

ζ T = MT ,N

〉

=
∑

q,p

{

c
(ζ )
p,q+1(−1)2N−2q+2v1−1

×
[

(1+q)(2v1−q+2)(v1+v2−q+1)(v1+v2−p−q+T +N+1)(v1−v2+T −N+p−q+1)(v1−v2−q)
8(v1+v2−p−q+1)(v1+v2−p−q)(v1−v2+p−q)(v1−v2+p−q+1)

]
1
2

+ c
(ζ )
p+1,q(−1)v1+v2+N−p−q+T −1

×
[

(1+p)(2v2−p)(v1+v2−p+1)(v1+v2+T +N−p−q+1)(v1−v2+p+2)(v1−v2−T +N+p−q+1)
8(v1+v2−p−q+1)(v1+v2−p−q)(v1−v2+p−q+1)(v1−v2+p−q+2)

]
1
2

+ c
(ζ )
p−1,q(−1)v1−v2+N+p−q−T −1

×
[

p(2v2−p+1)(v1+v2−p+2)(v1+v2−T −N−p−q+1)(v1−v2+p+1)(v1−v2+T −N+p−q+1)
8(v1+v2−p−q+2)(v1+v2−p−q+1)(v1−v2+p−q)(v1−v2+p−q+1)

]
1
2

− c
(ζ )
p,q−1

×
[

q(2v1−q+3)(v1+v2−q+2)(v1+v2−T −N−p−q+1)(v1−v2−T +N+p−q+1)(v1−v2−q+1)
8(v1+v2−p−q+2)(v1+v2−p−q+1)(v1−v2+p−q+1)(v1−v2+p−q+2)

]
1
2

}

×

∣

∣

∣

∣

∣

∣

(v1, v2)

� = 1
2
(v1 + v2 − p − q), I = 1

2
(v1 − v2 + p − q)

1
2
(N + T + 1), 1

2
(N − T − 1)

〉

= 0, (22)

which leads to the following four-term relation to determine the expansion coefficients {c(ζ )
p,q}:

c
(ζ )
p,q+1(−1)2N−2q+2v1

×
[

(1+q)(2v1−q+2)(v1+v2−q+1)(v1+v2−p−q+T +N+1)(v1−v2+T −N+p−q+1)(v1−v2−q)
(v1+v2−p−q)(v1−v2+p−q)

]
1
2

+ c
(ζ )
p+1,q(−1)v1+v2+N−p−q+T

×
[

(1+p)(2v2−p)(v1+v2−p+1)(v1+v2+T +N−p−q+1)(v1−v2+p+2)(v1−v2−T +N+p−q+1)
(v1+v2−p−q)(v1−v2+p−q+2)

]
1
2

+ c
(ζ )
p−1,q(−1)v1−v2+N+p−q−T

×
[

p(2v2−p+1)(v1+v2−p+2)(v1+v2−T −N−p−q+1)(v1−v2+p+1)(v1−v2+T −N+p−q+1)
(v1+v2−p−q+2)(v1−v2+p−q)

]
1
2

+ c
(ζ )
p,q−1

×
[

q(2v1−q+3)(v1+v2−q+2)(v1+v2−T −N−p−q+1)(v1−v2−T +N+p−q+1)(v1−v2−q+1)
(v1+v2−p−q+2)(v1−v2+p−q+2)

]
1
2 = 0.

(23)

Similar to the projection procedure for O(5) ⊃ O(3) shown in [21], one can construct a matrix 

equation of (23) with

P((v1, v2),N , T )c(ζ ) = �c(ζ ), (24)

where c(ζ ) ≡ c(ζ )((v1, v2), N , T ), of which the transpose is arranged as 
(

c(ζ )
)T = (c

(ζ )
0,0, c

(ζ )
1,0, c

(ζ )
2,0,

· · · , c
(ζ )
0,1, c

(ζ )
1,1, · · · ). Possible nonzero components of c(ζ ) for some specific cases are shown in 
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Table 1

Allowed (p, q) combinations in the basis vectors (19) of O(5) ⊃ OT (3) ⊗ ON (2) for some specific (v1, v2) cases 

with fixed N and T expanded in terms of those of O(5) ⊃ SU�(2) ⊗ SUI (2) with the corresponding multiplicity 

Multi((v1, v2), N , T ), where d(N , T ) is the total number of terms needed in the expansion, in which only some specific 

(N , T ) combinations with N > 0 are shown.

(v1, v2) N , T (p, q) d(N , T ) Multi((v1, v2),N , T )

(6,0) 0,0 (0,0), (0,2), (0,4), (0,6) 4 1

1,1 (0,0), (0,2), (0,4) 3 1

( 11
2

, 1
2

) 1
2
, 1

2
(1,0), (0,1), (1,2), (0,3), (1,4), (0,5) 6 1

3
2
, 1

2
(0,0), (1,1), (0,2), (1,3), (0,4) 5 1

3
2
, 3

2
(1,0), (0,1), (1,2), (0,3) 4 1

(5,1) 0,0 (0,0), (2,0), (1,1), (0,2), (2,2), (1,3), (0,4), (2,4) 8 1

0,1 (1,0), (0,1), (2,1), (1,2), (0,3), (2,3), (1,4) 7 1

0,2 (0,0), (2,0), (1,1), (0,2), (2,2), (1,3) 6 2

0,3 (1,0), (0,1), (2,1), (1,2) 4 1

1,1 (0,0), (2,0), (1,1), (0,2), (2,2), (1,3), (0,4) 7 2

1,2 (1,0), (0,1), (2,1), (1,2), (0,3) 5 1

(4,2) 0,0 (0,0), (2,0), (4,0), (1,1), (3,1), (0,2), (2,2), (4,2) 8 1

0,2 (0,0), (2,0), (4,0), (1,1), (3,1), (2,2) 6 3

0,3 (1,0), (3,0), (2,1) 3 2

1,1 (0,0), (2,0), (4,1), (1,1), (3,1), (0,2), (2,2) 7 2

1,2 (1,0), (3,0), (0,1), (2,1), (1,2) 5 2

(3,3) 0,0 (0,0), (2,0), (4,0), (6,0) 4 1

0,1 (1,0), (3,0), (5,0) 3 1

0,2 (2,0), (4,0) 2 1

0,3 (3,0) 1 1

1,1 (0,0), (2,0), (4,0) 3 1

1,2 (1,0), (3,0) 2 1

2,2 (2,0), (4,0) 2 1

2,3 (1,0) 1 1

Table 1. Entries of the isospin projection matrix P((v1, v2), N , T ) can easily be read out from 

Eq. (23). The components of eigenvector c(ζ ) corresponding to � = 0 provide the expansion 

coefficients {c(ζ )
p,q} shown in (19). Once the matrix P((v1, v2), N , T ) is constructed, it can be 

verified that the number of � = 0 solutions of Eq. (24) equals exactly to the number of rows 

of P((v1, v2), N , T ) with all entries zero. Actually, the eigenvectors c(ζ )((v1, v2), T , N ) belong 

to the null space of P((v1, v2), N , T ). Since there are many ways to find null space vectors 

of a matrix, to find solutions of Eq. (24) with � = 0 becomes practically easy. Furthermore, 
(

c(ζ ′)
)T

· c(ζ ) 
= 0 when the multiplicity is greater than 1 mainly because the projection matrix 

P((v1, v2), N , T ) is nonsymmetric. Therefore, the O(5) ⊃ OT (3) ⊗ ON (2) basis vectors (19)

constructed from the expansion coefficients obtained according to (23) are also non-orthogonal 

with respect to the multiplicity label ζ in general. The Gram–Schmidt process may be adopted 

in order to construct orthonormalized basis vectors of O(5) ⊃ OT (3) ⊗ ON (2). Nevertheless, 

in the Wolfram Mathematica after version 10, the built-in function NullSpace of a matrix with 

non-integer entries generates orthonormalized null space vectors automatically, with which the 

Gram–Schmidt orthogonalization can be avoided. In the following, we use c̃(ζ ) to denote the 

orthonormalized null space vectors of N [P((v1, v2), N , T )] with respect to the multiplicity label 

ζ obtained from the Wolfram Mathematica (version 10.3) numerically, where N [P] means to 

take P with numerical valued entries with a default precision.
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It is known that CPU time cost and memory space needed for a computer to solve the null 

space problem (24) depend mainly on the number of terms d(N , T ) needed in the expansion 

(19), which equals to the number of columns of P((v1, v2), N , T ). Generally, it would take CPU 

time on the order of O(d3) with a unit inversely proportional to the CPU frequency and memory 

space on the order of O(d2) bytes. When v1 and v2 are integers, for example, we observe from 

Eq. (19) that the maximal number of terms occurs in T =N = 0 case. In such extreme case, the 

upper bound of the number of terms involved in the expansion can be estimated by

d(N = 0, T = 0) ≤
v1−v2
∑

q=0

Min[v1+v2−q, 2v2]
∑

p=Max[0, q−v1+v2]
1 = (1 + v1 − v2)(2v2 + 1), (25)

which shows that Max[d(N , T )] ≤ d(N = 0, T = 0) increases with v1 linearly and with v2

quadratically.

When v2 = 0, only p = 0 is allowed. There are only two terms involved in (23) for this case 

with

c
(ζ )
0,q+1(−1)2N−2q+2v1

[

(1+q)(2v1−q+2)(v1−q+T +N+1)(v1+T −N−q+1)
(v1−q)

]
1
2 +

c
(ζ )
0,q−1

[

q(2v1−q+3)(v1−T −N−q+1)(v1−T +N−q+1)
(v1−q+2)

]
1
2 = 0. (26)

For the special case considered in [9] for the symmetric irrep of O(5) with the parameters

v1 = 2Jm, � = I = Jm − μ, N = 2Jm − 2b − a, T = a,

where μ = q/2, the O(5) ⊃ OT (3) ⊗ ON (2) basis vector with MT = T = a and N = 2Jm −
2b − a is expanded in terms of the O(5) ⊃ SU�(2) ⊗ SUI (2) ⊃ U�(1) ⊗ UI (1) basis vectors as

∣

∣

∣

∣

(2Jm,0)

T = MT ,N

〉

=
b
∑

μ=0

c0,μ

∣

∣

∣

∣

∣

∣

(2Jm,0)

Jm − μ, Jm − μ

Jm − b, Jm − b − a

〉

, (27)

where the multiplicity label ζ is omitted because the reduction O(5) ↓ OT (3) ⊗ON (2) for sym-

metric irreps of O(5) in this case is multiplicity-free, according to (19), in which the expansion 

coefficients

c0,μ = c0,0(−1)μ
[

(2Jm + 1)!(2Jm − 1)!!b!(2Jm − a − b)!
(4Jm + 1)!!(2Jm + 1)!!(a + b)!(2Jm − b)!

]
1
2

×
[

(2μ − 1)!!(4Jm + 1 − 2μ)!!(a + b − μ)!(2Jm − b − μ)!(2Jm + 1 − 2μ)

μ!(b − μ)!(2Jm + 1 − μ)!(2Jm − a − b − μ)!

]
1
2

(28)

derived from (26) are, up to a normalization constant, equivalent to the expansion coefficients 

derived in [9] for this case.

The possible N and T values for an arbitrary irrep (v1, v2) of O(5) were obtained by several 

techniques previously [6–8]. Specifically, for a given irrep (v1, v2) of O(5), the allowed values 

T are given by the following isospin couplings

Tu ⊗ v2 ↓ T ≤ v1,

Tu = u,u − 2, u − 4, · · · ,

u = 0,1,2, · · · , umax ≤ v1, (29)
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Table 2

O(5) ↓ OT (3) ⊗ ON (2) for (v1, v2) with v1 = 6 − v/2 and v2 = t for (v = 0, t = 0), (v = 1, t = 1/2), (v = 2, t = 1), 

(v = 4, t = 2), and (v = 6, t = 3). For given N , the multiplicity of T , if greater than 1, is shown by the superscript of T .

(v1, v2) [N , T ] Dimension[(v1, v2)]

(6,0) [±6, 0] [±5, 1] [±4, 0] [±4, 2] [±3, 1] [±3, 3] [±2, 0] [±2, 2] [±2, 4] [±1, 1]
[±1, 3] [±1, 5] [0, 0] [0, 2] [0, 4] [0, 6]

140

( 11
2

, 1
2

) [± 11
2

, 1
2
] [± 9

2
, 1

2
] [± 9

2
, 3

2
] [± 7

2
, 1

2
] [± 7

2
, 3

2
] [± 7

2
, 5

2
] [± 5

2
, 1

2
] [± 5

2
, 3

2
] [± 5

2
, 5

2
]

[± 5
2
, 7

2
] [± 3

2
, 1

2
] [± 3

2
, 3

2
] [± 3

2
, 5

2
] [± 3

2
, 7

2
] [± 3

2
, 9

2
] [± 1

2
, 1

2
] [± 1

2
, 3

2
] [± 1

2
, 5

2
]

[± 1
2
, 7

2
] [± 1

2
, 9

2
] [± 1

2
, 11

2
]

224

(5,1) [±5, 1] [±4, 0] [±4, 1] [±4, 2] [±3, 12] [±3, 2] [±3, 3] [±2, 0] [±2, 1] [±2, 22]
[±2, 3] [±2, 4] [±1, 12] [±1, 2] [±1, 32] [±1, 4] [±1, 5] [0, 0] [0, 1] [0, 22] [0, 3]
[0, 42] [0, 5]

260

(4,2) [±4, 2] [±3, 1] [±3, 2] [±3, 3] [±2, 0] [±2, 1] [±2, 22] [±2, 3] [±2, 4] [±1, 12]
[±1, 22] [±1, 32] [±1, 4] [0, 0] [0, 1] [0, 23] [0, 32] [0, 4]

220

(3,3) [±3, 3] [±2, 2] [±2, 3] [±1, 1] [±1, 2] [±1, 3] [0, 0] [0, 1] [0, 2] [0, 3] 84

with which the corresponding N = ±|v1 − u|. If the possible couplings of Tu ⊗ v2 lead to 

a specific T more than once, the specific T occurs at most Min[v1 − T + 1, v1 − v2 + 1]
times [13]. Table 2 shows some examples of the reduction obtained in this way. Usually, the 

above branching rules should be checked by the dimension formula of O(5) and that of OT (3)

to determine the multiplicity of T in some cases. However, for given N and T , the number 

of solutions, Multi((v1, v2), N , T ), of Eq. (24) with ζ = 1, 2, · · · , Multi((v1, v2), N , T ) equals 

exactly to the multiplicity in the reduction O(5) ↓ OT (3) ⊗ ON (2) for the O(5) irrep (v1, v2). 

Multi((v1, v2), N , T ) of some examples determined by Eq. (24) is also shown in the last column 

of Table 1. Therefore, in the new isospin projection, it is not necessary to know the branching 

rule of O(5) ↓ OT (3) ⊗ ON (2) beforehand. For a given N and T , the solutions of the projec-

tion matrix P shown in (24) not only provide the expansion coefficients c(ζ )((v1, v2), T , N ), but 

also determine the branching multiplicity of T , which is just the number of null space vectors 

obtained according to (24). Moreover, when no nontrivial null space vector of P((v1, v2), N , T )

exists, the only solution for this case is c((v1, v2), T , N ) = 0, which occurs, for example, when 

N = 1 and T = 0 for the O(5) irrep (4, 2). Therefore, a state with N = 1 and T = 0 for the 

O(5) irrep (4, 2) does not exist as shown in Table 1.

In solving the four-term relation (23), there is always a freedom in choosing the global phase. 

In our calculation, we always set c
(ζ )
0,0 > 0, while the relative phase is completely determined by 

the eigen-equation (24). The multiplicity label ζ will be omitted if Multi((v1, v2), N , T ) = 1. 

One can verify that the multiplicity Multi((v1, v2), N , T ) in the reduction O(5) ↓ OT (3) ⊗
ON (2) for the irrep (v1, v2) ↓ (N , T ) determined by Eq. (24) is indeed consistent with the 

branching rule calculated according to the rules provided in (29). The advantage of the projec-

tion (24) lies in the fact that the null space vectors of the projection matrix P can now be obtained 

easily, e.g., by using the built-in function NullSpace[N [P]] in Wolfram Mathematica, from which 

the null space vectors {c̃(ζ )} have already been orthonormalized with respect to ζ . Therefore, the 

matrix projection (24) is more suitable to be used in numerical calculations, which is useful, for 

example, in the isovector pairing problems [8].

In the following, we provide the P((v1, v2), N , T ) matrix and the corresponding expansion 

coefficients {c(ζ )
p,q} for the branching multiplicity four case with the smallest v1, v2, |N |, and 
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Table 3

The orthonormalized expansion coefficients c̃
(ζ )
p,q ((v1, v2), N , T ) of (19) for (v1, v2) = (6, 3), N = 0, and 

T = 3, which is a branching multiplicity four case with ζ = 1, 2, 3, and 4.

c̃
(ζ )
p,q

c̃
(1)
0,0

= 0.049645, c̃
(1)
2,0

= 0.470707, c̃
(1)
4,0

=−0.633030, c̃
(1)
6,0

= −0.268207, c̃
(1)
1,1

= 0.244431,

c̃
(1)
3,1

=−0.112461, c̃
(1)
5,1

=−0.436399, c̃
(1)
2,2

=−0.010915, c̃
(1)
4,2

= −0.177676, c̃
(1)
3,3

= −0.093713

c̃
(2)
0,0

= 0.280671, c̃
(2)
2,0

=−0.044311, c̃
(2)
4,0

= 0.44212, c̃
(2)
6,0

= −0.735426, c̃
(2)
1,1

= 0.129513,

c̃
(2)
3,1

= 0.275610, c̃
(2)
5,1

= −0.18844, c̃
(2)
2,2

= 0.220414, c̃
(2)
4,2

= −0.069694, c̃
(2)
3,3

= 0.035434

c̃
(3)
0,0

= 0.743249, c̃
(3)
2,0

= 0.057792, c̃
(3)
4,0

=−0.058706, c̃
(3)
6,0

= 0.349662, c̃
(3)
1,1

= 0.424036,

c̃
(3)
3,1

=−0.000633, c̃
(3)
5,1

= 0.159727, c̃
(3)
2,2

= 0.236929, c̃
(3)
4,2

= 0.106101, c̃
(3)
3,3

= 0.214051

c̃
(4)
0,0

= 0.342470, c̃
(4)
2,0

=−0.623821, c̃
(4)
4,0

=−0.127977, c̃
(4)
6,0

= −0.126084, c̃
(4)
1,1

=−0.105715,

c̃
(4)
3,1

=−0.520861, c̃
(4)
5,1

=−0.126637, c̃
(4)
2,2

=−0.184859, c̃
(4)
4,2

= −0.302202, c̃
(4)
3,3

= −0.193074

T as a non-trivial example. Using the branching rules (29), one can verify that the branching 

multiplicity four case occurs at least when (v1, v2) = (6, 3) for N = 0 and T = 3. According to 

(23), the corresponding P matrix is 10 dimensional with

P((6,3),0,3)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
√

3
2

0 0 −
√

7
2

0 0 0 0 0

0

√

10
7

√

10
7

0 0 −
√

125
42

0 0 0 0

0 0

√

3
2

1 0 0 −
√

7
2

0 0 0

0 − 1
2

0 0

√

27
14

2√
3

0 −
√

39
7

0 0

0 0 − 1
2

0 0 2√
3

√

27
14

0 −
√

39
7

0

0 0 0 0 0 −
√

325
2

0

√

56
25

√

56
25

− 12
5

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(30)

Since there are four rows with all entries zero in (30), the multiplicity of T = 3 for N = 0

is Multi((6, 3), 0, 3) = 4, which is consistent with the multiplicity provided by (29). The nor-

malized expansion coefficients c(ζ )((v1, v2), T , N ) corresponding to � = 0 shown in (24) are 

provided in Table 3.

4. Matrix representations of O(5) ⊃ OT (3) ⊗ ON (2)

Once the orthonormalized expansion coefficients c̃(ζ ) are obtained according to the isospin 

projection shown in the previous section, one can easily calculate matrix elements of O(5) gen-

erators {A†
μ, Aμ, Tμ, N } (μ = −1, 0, 1) given in (10) in the OT (3) ⊗ ON (2) basis. Since 
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matrix elements of {Tμ, N̂ } are well-known, which only depend on T or N , and are irrelevant 

to the irrep of O(5) and the multiplicity label ζ , only formulae of matrix elements of A†
μ and Aμ

in the O(5) ⊃ OT (3) ⊗ ON (2) basis will be provided.

In the O(5) ⊃ OT (3) ⊗ ON (2) basis, the pair creation operators A+
μ with {A+

+1 =
−A

†
+1, A

+
0 = A

†
0, A

+
−1 = A

†
−1} and the pair annihilation operators Aμ with {A+1 = A−1, A0 =

−A0, A−1 = −A+1} are T = 1 irreducible tensor operators of OT (3) satisfying the following 

conjugation relation [23]:

Aμ = (−1)1−μ
(

A
+
−μ

)†
. (31)

These T = 1 irreducible tensor operators shift N by one unit, while A
†
1 = ν+, A

†
0 = U 1

2
1
2
, and 

A
†
−1 = τ+ in the O(5) ⊃ SU�(2) ⊗SUI (2) basis shown in (2). Using the Wigner–Eckart theorem 

for matrix elements of O(5) ⊃ OT (3) ⊗ ON (2), we have

〈

(v1, v2)

ζ ′ T ′ M ′
T ,N ′

∣

∣

∣

∣

A
+
μ

∣

∣

∣

∣

(v1, v2)

ζ T MT ,N

〉

= δN ′,N+1

〈

T MT ,1μ|T ′ M ′
T

〉

〈

(v1, v2)

ζ ′ T ′,N + 1

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

, (32)

where 
〈

T MT ,1μ|T ′ M ′
T

〉

is the CG coefficient of OT (3), and 

〈

(v1, v2)

ζ ′ T ′,N ′

∥

∥

∥

∥

A+
∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

is 

the OT (3)-reduced matrix element. In the calculation, we ensure that T ′ is always involved 

in the OT (3) coupling T ⊗ 1, and M ′
T = MT + μ is always satisfied. By using (19) and the 

expressions of A†
μ in terms of the generators of O(5) in the SU�(2) ⊗ SUI (2) basis shown in 

(2), the left-hand-side of (32) can be expressed in terms of expansion coefficients c̃(ζ ) and the 

matrix elements of O(5) generators in the SU�(2) ⊗ SUI (2) basis. In the following, we list 

nonzero OT (3)-reduced matrix elements of A† derived in this way:

〈

(v1, v2)

ζ ′ T + 1,N + 1

∥

∥

∥

∥

A+
∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

= − 1
2

∑

q,p c̃
(ζ ′)
p,q (N + 1, T + 1)c̃

(ζ )
p,q(N , T )×

√
(v1 + v2 − p − q −N − T )(v1 + v2 − p − q +N + T + 2),

(33)

〈

(v1, v2)

ζ ′ T ,N + 1

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

=
√

T + 1

8T

∑

q,p

c̃
(ζ )
q,t (N , T )

(

c̃
(ζ ′)
p,q−1(N + 1, T )

×(−1)2N−2q+2v1+1

×
[

q(2v1−q+3)(v1−v2+p−q+N−T +2)(v1+v2−p−q+T +N+2)(v1−v2−q+1)(v1+v2−q+2)
(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q+1)(v1+v2−p−q+2)

]
1
2

+c̃
(ζ ′)
p−1,q(N + 1, T )(−1)v1+v2+N−p−q+T

×
[

p(2v2−p+2)(v1−v2+p−q−N+T )(v1+v2−p−q+T +N+2)(v1−v2+p+1)(v1+v2−p+2)
(v1−v2+p−q+1)(v1−v2+p−q)(v1+v2−p−q+1)(v1+v2−p−q+2)

]
1
2

+c̃
(ζ ′)
p+1,q(N + 1, T )(−1)v1−v2+N+p−q−T

×
[

(p+1)(2v2−p)(v1−v2+N−T +p−q+2)(v1+v2−T −N−p−q)(v1−v2+p+2)(v1+v2−p+1)
(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q)(v1+v2−p−q+1)

]
1
2
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+c̃
(ζ ′)
p,q+1(N + 1, T )

×
[

(q+1)(2v1−q+2)(v1−v2−T +N+p−q)(v1+v2−T −N−p−q)(v1−v2−q)(v1+v2−q+1)
(v1−v2+p−q)(v1−v2+p−q+1)(v1+v2−p−q)(v1+v2−p−q+1)

]
1
2

)

(34)

for T ≥ 1
2

, and

〈

(v1, v2)

ζ ′ T − 1,N + 1

∥

∥

∥

∥

A+
∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

= 1
2

√

2T +1
2T −1

∑

q,p c̃
(ζ ′)
p,q (N + 1, T − 1)c̃

(ζ )
p,q(N , T )×

√
(v1 − v2 + p − q −N + T )(v1 − v2 + p − q +N − T + 2)

(35)

for T ≥ 1.

By using (33)–(35), non-zero reduced matrix elements of A can be obtained by the conjuga-

tion relation:
〈

(v1, v2)

ζ ′ T ′,N ′

∥

∥

∥

∥

A

∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

= (−1)T
′−T +1

√

2T + 1

2T ′ + 1

〈

(v1, v2)

ζ T ,N

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(v1, v2)

ζ ′ T ′,N ′

〉

. (36)

Thus, the matrix representations of O(5) ⊃ OT (3) ⊃ ON (2) are obtained completely.

5. Applications to the pairing model for nuclei

In the spherical shell model, we consider n valence nucleons with J = 0 and T = 1 pairing 

interactions in p single-particle orbits. In general, the spherical shell model mean-field plus the 

isovector pairing interaction Hamiltonian may be written as [8]

Ĥ =
∑

j

εjnj − GπA
†
+1A+1 − GπνA

†
0A0 − GνA

†
−1A−1, (37)

where εj is the single particle energy of the j -orbit, Gπ > 0, Gν > 0, and Gπν > 0 are 

proton–proton (pp), neutron–neutron (nn), and neutron–proton (np) pairing interaction strength, 

respectively, nj =
∑

mmt
a

†
jm,mt

ajm,mt is the valence nucleon number operator in the j -orbit, in 

which a
†
jm,mt

(ajm,mt ) is the creation (annihilation) operator for a valence nucleon in the state 

with angular momentum j , angular momentum projection m, and isospin projection mt with 

mt = 1/2, − 1/2. When Gπ = Gν = Gπν = G, the isospin is a good quantum number. In this 

isospin conserved case, the Hamiltonian (37) is exactly solvable [23,29]. Since neutron and pro-

ton single-particle energy of the j -orbit are the same, it is expected that Gπ = Gν = G may be 

approximately satisfied, while, in general, Gπν 
= G, for which the Bethe ansatz method used 

in [23,29] will no longer be useful. In such a case, the Hamiltonian (37) may be diagonalized in 

the O(5) ⊃ OT (3) ⊗ ON (2) basis [24–27]. For the sake of simplicity, in the following, we con-

sider the degenerate case with εj = ε ∀ j , with which the first term of (37) becomes a constant 

for fixed number of nucleons n, and is neglected. Thus, the Hamiltonian can be expressed as

ĤP = −GA
+ ·A, (38)

where Gπ = Gν = Gπν = G is assumed.

According to (11), the Hamiltonian (38) is OT (3) invariant, and can be expressed as

ĤOT (3) = ĤP = −GA+ ·A= −1

2
G
(

C2(O(5)) − N̂ (N̂ − 3) − T · T
)

, (39)
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which is diagonal under the O(5) ⊃ OT (3) ⊗ ON (2) basis with

ĤOT (3)

∣

∣

∣

∣

(v1, v2)

ζ T ,MT ,N

〉

= −1

2
G(v1(v1 + 3) + v2(v2 + 1) −N (N − 3) − T (T + 1))

∣

∣

∣

∣

(v1, v2)

ζ T ,MT ,N

〉

. (40)

In this case, the labels of the O(5) irrep (v1, v2) are related with the seniority number of nucleons 

v and the reduced isospin t with v1 = � − v/2 and v2 = t , where v and t indicate that there are 

v nucleons coupled to the isospin t , which are free from J = 0 and T = 1 pairs.

In order to check the validity of the results shown in previous sections, the matrix elements of 

A+ ·A for some specific O(5) ⊃ OT (3) ⊗ ON (2) states will be calculated by using the results 

shown in Sec. 3 and 4 directly, which can be expressed as

〈

(v1, v2)

ζ T ,MT ,N

∣

∣

∣

∣

A
+ ·A

∣

∣

∣

∣

(v1, v2)

ζ T ,MT ,N

〉

=

〈

(v1, v2)

ζ T ,N

∥

∥

∥

∥

A
+ ·A

∥

∥

∥

∥

(v1, v2)

ζ T ,N

〉

=
∑

ζ ′T ′

∣

∣

∣

∣

〈

(v1, v2)

ζ T ,N

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(v1, v2)

ζ ′ T ′,N − 1

〉∣

∣

∣

∣

2

(41)

by using the Racah–Wigner calculus, in which the relation (36) is used. Since there is the analyt-

ical result shown in (40) for this case, it can be used to check the results shown in the previous 

sections via Eq. (41). In the following, the matrix element of A+ ·A for (v1, v2) = (6, 0), (5, 1), 

and (4, 2) with N = T = 0 will be calculated by using (41) with the method shown in the previ-

ous sections as examples.

For (v1, v2) = (6, 0) and N = T = 0, the corresponding projection matrix P shown in (24) is 

4 dimensional with

P((6,0),0,0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−
√

3
2

−
√

39
10

0 0

0 −3

√

2
5

−
√

22
3

0

0 0 − 5√
6

−3

√

3
2

0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (42)

In order to calculate the matrix element of A+ · A for this case, one also needs the expansion 

coefficients cp,q for N = −1 and T = 1 according to (41), for which the projection matrix P is 

3 dimensional with

P((6,0),−1,1) =

⎛

⎜

⎝

−1 −
√

26
5

0

0 − 3√
5

−
√

11

0 0 0

⎞

⎟

⎠
. (43)

For (v1, v2) = (5, 1) and N = T = 0, the corresponding projection matrix P is 8 dimensional 

with
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P((5,1),0,0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

3
10

√

3
10

−
√

42
25

0 0 0 0 0

−
√

6
5

0

√

21
50

−
√

33
10

0 0 0 0

0 −
√

6
5

√

21
50

0 −
√

33
10

0 0 0

0 0 −3

√

11
50

√

7
10

√

7
10

−
√

25
6

0 0

0 0 0 −
√

5
2

0

√

7
6

−
√

6 0

0 0 0 0 −
√

5
2

√

7
6

0 −
√

6

0 0 0 0 0 −
√

2

√

7
2

√

7
2

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(44)

For (v1, v2) = (5, 1) and N = −1 and T = 1, the corresponding projection matrix P is 7 dimen-

sional with

P((5,1),−1,1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2
5

√

1
5

−2

√

14
25

0 0 0 0

−
√

3
5

0
√

21
10

−3

√

11
20

0 0 0

0 −
√

2
5

√

14
25

0 −
√

22
5

0 0

0 0 −3
√

11
10

√

21
20

√

7
20

− 5
2

0

0 0 0 0 −
√

5
4

√

7
4

−3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (45)

For (v1, v2) = (4, 2) and N = T = 0, the corresponding projection matrix P is 8 dimensional 

with

P((4,2),0,0)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2
3

√

9
10

0 −
√

7
6

0 0 0 0

0

√

9
10

√

2
3

0 −
√

7
6

0 0 0

−
√

5
6

0 0

√

14
15

0 −3

√

3
10

0 0

0 −
√

7
10

0

√

3
2

√

3
2

0 −
√

3
2

0

0 0 −
√

5
6

0

√

14
15

0 0 −3

√

3
10

0 0 0 −
√

9
10

0

√

14
5

√

5
2

0

0 0 0 0 −
√

9
10

0

√

5
2

√

14
5

0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (46)

For (v1, v2) = (4, 2) and N = −1 and T = 1, the corresponding projection matrix P is 7 dimen-

sional with
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P((4,2),−1,1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1

√

9
20

0 −
√

7
4

0 0 0

0

√

6
5

2
3

0 −
√

14
9

0 0

0 −
√

7
20

0 3
2

√
3

2
− 3

2
0

0 0 −
√

5
3

0

√

56
45

0 −
√

18
5

0 0 0 0 −
√

9
20

√

15
4

√

7
5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (47)

One can check that the multiplicity of T in an O(5) irrep equals exactly to the number 

of rows with all entries zero in P for fixed N . The null space of P((v1, v2), N , T ) provides 

the corresponding orthonormalized expansion coefficients c̃
(ζ )
p,q((v1, v2), N , T ) of (19). The or-

thonormalized expansion coefficients c̃
(ζ )
p,q((v1, v2), N , T ) for (v1, v2) = (6, 0), (5, 1), and (4, 2)

with N = 0, T = 0 and N = −1, T = 1 needed in the evaluation of the matrix elements of A+ ·A
according to (41) for these cases are shown in Table 4. In addition, as shown in [21,22,28], there 

is an arbitrary SO(Multi((v1, v2), N , T )) rotational transformation with respect to the multiplic-

ity labels ζ = 1, 2, · · · , Multi((v1, v2), N , T ). When Multi((v1, v2), N , T ) = 2 for example, let 

|ζ = 1〉 =
∣

∣

∣

∣

(v1, v2)

ζ = 1 T ,MT ,N

〉

and |ζ = 2〉 =
∣

∣

∣

∣

(v1, v2)

ζ = 2 T ,MT ,N

〉

be orthonormalized basis vec-

tors of O(5) ⊃ OT (3) ⊗ ON (2). New basis vectors {|ζ̄ 〉} after an arbitrary SO(2) rotation with 

respect to the multiplicity labels with

|ζ̄ = 1〉 = cos θ |ζ = 1〉 − sin θ |ζ = 2〉,
|ζ̄ = 2〉 = sin θ |ζ = 1〉 + cos θ |ζ = 2〉 (48)

are also an orthonormalized basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) of the same irrep of O(5)

with T and N unchanged, where 0 ≤ θ ≤ 2π . As a result, matrix elements of A+ and A in 

the O(5) ⊃ OT (3) ⊗ ON (2) basis may be numerically different when they are derived by using 

different methods for non-multiplicity-free cases.

Using the expansion coefficients shown in Table 4 and Eq. (35), we have

〈

(6,0)

0,0

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(6,0)

1,−1

〉

= 5.19615. (49)

〈

(5,1)

0,0

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(5,1)

ζ = 1, 1,−1

〉

= 3.32942,

〈

(5,1)

0,0

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(5,1)

ζ = 2, 1,−1

〉

= 3.14880.

(50)
〈

(4,2)

0,0

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(4,2)

ζ = 1, 1,−1

〉

= 4.06054,

〈

(4,2)

0,0

∥

∥

∥

∥

A
+
∥

∥

∥

∥

(4,2)

ζ = 2, 1,−1

〉

= −0.715557.

(51)

Substituting these values into Eq. (41), one can check that each result of Eq. (41) is exactly 

the same as the corresponding one shown by (40), which validates the isospin projection shown 

in the previous sections.

Moreover, besides the OT (3) isospin dynamical symmetry limit case shown above, there is 

the well known SU�(2) ⊗ SUI (2) quasispin dynamical symmetry limit for any value of Gπ
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Table 4

The orthonormalized expansion coefficients c̃
(ζ )
p,q ((v1, v2), N , T ) of (19) for (v1, v2) = (6, 0), (5, 1), and (4, 2) with 

N = 0, T = 0 and N = −1, T = 1.

(v1, v2) ζ, N , T c̃p,q

(6,0) 1, 0, 0 c̃0,0 = 0.782852, c̃0,2 = −0.485504, c̃0,4 = 0.340168, c̃0,6 = −0.188982

1,−1,1 c̃0,0 = 0.90396, c̃0,2 = −0.396412, c̃0,4 = 0.160357

(5,1) 1, 0, 0 c̃0,0 = 0.574456, c̃2,0 = −0.574456, c̃1,1 = 0, c̃0,2 = −0.34641,

c̃2,2 = 0.34641, c̃1,3 = 0, c̃0,4 = 0.223607, c̃2,4 = −0.223607

1,−1, 1 c̃
(ζ=1)
0,0

= 0.0797736, c̃
(ζ=1)
2,0

= 0.893054, c̃
(ζ=1)
1,1

= 0.300561, c̃
(ζ=1)
0,2

= 0.0341335,

c̃
(ζ=1)
2,2

= −0.273573, c̃
(ζ=1)
1,3

= −0.170371, c̃
(ζ=1)
2,4

= 0.0268284

2,−1, 1 c̃
(ζ=2)
0,0

= 0.858363, c̃
(ζ=2)
2,0

= −0.150337, c̃
(ζ=2)
1,1

= 0.317803, c̃
(ζ=2)
0,2

= −0.233385,

c̃
(ζ=2)
2,2

= 0.177481, c̃
(ζ=2)
1,3

= −0.180144, c̃
(ζ=2)
2,4

= −0.145579

(4,2) 1, 0, 0 c̃0,0 = 0.519615, c̃2,0 = −0.447214, c̃4,0 = 0.519615, c̃1,1 = 0,

c̃3,1 = 0, c̃0,2 = −0.288675, c̃2,2 = 0.305505, c̃4,2 = −0.288675

1,−1, 1 c̃
(ζ=1)
0,0

= 0.373586, c̃
(ζ=1)
2,0

= −0.52682, c̃
(ζ=1)
4,0

= 0.663391, c̃
(ζ=1)
1,1

= 0.0152581,

c̃
(ζ=1)
3,1

= −0.108114, c̃
(ζ=1)
2,2

= 0.160619, c̃
(ζ=1)
4,2

= −0.32417

2,−1, 1 c̃
(ζ=2)
0,0

= 0.34123, c̃
(ζ=2)
2,0

= −0.337929, c̃
(ζ=2)
4,0

= −0.592498, c̃
(ζ=2)
1,1

= 0.0865847,

c̃
(ζ=2)
3,1

= −0.61351, c̃
(ζ=2)
2,2

= −0.134344, c̃
(ζ=2)
4,2

= −0.127955

and Gν when Gπν = 0, where � and I are the quasi-spin of the proton and neutron pairing, 

respectively. In this case, the pairing interaction part of (37)

ĤSU�(2)⊗SUI (2) = −GπA
†
+1A+1 − GνA

†
−1A−1 (52)

is diagonal under the O(5) ⊃ SU�(2) ⊗ SUI (2) basis with

ĤSU�(2)⊗SUI (2)

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I

m�,mI

〉

= (−Gπ (�(� + 1) − m�(m� + 1)) − Gν (I (I + 1) − mI (mI + 1)))

∣

∣

∣

∣

∣

∣

(v1, v2)

�, I

m�,mI

〉

, (53)

where � = (� − vπ )/2 and I = (� − vν)/2, in which vπ (vν ) is the proton (neutron) seniority 

number, m� = nπ/2 − �/2, and mI = nν/2 − �/2, in which nπ (nν ) is the number of valence 

protons (neutrons), which shows, though the interpretation of (v1, v2) in terms of v and t is no 

longer appropriate in this case due to the fact that the isospin symmetry is broken, (52) is still 

block diagonal with respect to the O(5) irreps labeled by (v1, v2).

For other values of the pairing interaction strengths, the pairing interaction part of (37) can 

only be diagonalized under any basis of O(5), of which the eigenstates may be expanded in terms 

of either the basis vectors of O(5) ⊃ OT (3) ⊗ON (2) or those of O(5) ⊃ SU�(2) ⊗SUI (2). The 

parameter rectangle of the pure isovector pairing Hamiltonian is illustrated in Fig. 3, which shows 

the pure isovector pairing Hamiltonian may be diagonalized in the O(5) ⊃ OT (3) ⊗ ON (2)

basis, except the Gπν = 0 case indicated by the left leg of the rectangle with the SU�(2) ⊗
SUI (2) quasispin dynamical symmetry.
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Fig. 3. The parameter rectangle of the isovector pairing Hamiltonian, where the left leg marked by the solid line represents 

the Hamiltonian with arbitrary values of Gπ and Gν and Gπν = 0 corresponding to the SU�(2) ⊗ SUI (2) quasispin 

dynamical symmetry, and the vertex marked by the solid dot represents the Hamiltonian with Gπ = Gν = Gπν corre-

sponding to the OT (3) isospin dynamical symmetry. The Hamiltonian for other values of the parameters shown by the 

other area of the rectangle may be diagonalized in either the O(5) ⊃ SU�(2) ⊗ SUI (2) or the O(5) ⊃ OT (3) ⊗ ON (2)

basis.

6. Summary

A simple and effective algebraic isospin projection procedure for constructing basis vectors of 

irreducible representations of the non-canonical O(5) ⊃ OT (3) ⊗ON (2) basis from those in the 

canonical O(5) ⊃ SU�(2) ⊗ SUI (2) basis is proposed. We show that the expansion coefficients 

can be obtained as components of the null-space vectors of the projection matrix, of which, 

similar to the SU(3) ⊃ SO(3) projection shown in [22], there are only four nonzero elements 

in each row in general. There are currently available well-optimized algorithms for computing 

the null-space vectors of a matrix, for example, the Wolfram Mathematica, from which the null 

space vectors obtained are orthonormalized. Hence, to evaluate the expansion coefficients of the 

orthonormal basis vectors of O(5) ⊃ OT (3) ⊗ON (2) in terms of the basis of the canonical chain 

becomes straightforward. The advantage of this work lies in the fact that the basis vectors of 

O(5) ⊃ OT (3) ⊗ ON (2) thus obtained are orthnormalized with respect to the O(5) ↓ OT (3) ⊗
ON (2) branching multiplicity label ζ for any irrep of O(5). Explicit formulae for evaluating 

OT (3)-reduced matrix elements of O(5) generators are derived, of which the validity is checked 

in the evaluation of some matrix elements of the pure isovector pairing Hamiltonian. For the 

non-degenerate case of (37), one needs to diagonalize it in the 
⊗p

i=1 Oi(5) subspace when there 

are p non-degenerate orbits, which will be a part of our future work.
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