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An extended pairing Hamiltonian that describes multi-pair interactions among isospin T =1 and angular
momentum | = 0 neutron-neutron, proton-proton, and neutron-proton pairs in a spherical mean field,
such as the spherical shell model, is proposed based on the standard T = 1 pairing formalism. The
advantage of the model lies in the fact that numerical solutions within the seniority-zero symmetric
subspace can be obtained more easily and with less computational time than those calculated from the

mean-field plus standard T =1 pairing model. Thus, large-scale calculations within the seniority-zero
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symmetric subspace of the model is feasible. As an example of the application, the average neutron-
proton interaction in even-even N ~ Z nuclei that can be suitably described in the fs5pgg shell is
estimated in the present model, with a focus on the role of np-pairing correlations.
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1. Introduction

The pairing interaction is known to be very important for
mean-field descriptions of ground-state and low-energy properties
of nuclei [1,2]. It has been shown that either spherical or deformed
mean-field plus the standard (orbit-independent) pairing interac-
tion among angular momentum J = 0 like-nucleon pairs can be
solved exactly by using the Gaudin-Richardson method [3-5]. The
deformed and spherical mean-field plus the extended pairing in-
teraction among J = 0 like-nucleon pairs have also been proposed,
which can be solved more easily than the standard pairing model,
especially when both the number of like-nucleon pairs and the
number of single-particle orbits are large [6,7]. It is also known
that the ground-state properties and some properties of low-lying
states of a chain of isotopes or isotones can be well described
by these exactly solvable models [6-12]. Furthermore, as shown
in [13], the extended multi-pairing interaction among like-nucleon
pairs [6] can be obtained from the standard pairing interaction
with an approximation, in which only the lowest eigenstate and
the eigen-energy of the standard pairing interaction are taken into
account. Actually, as shown in [13], this part of the standard pair-
ing interaction, expressed as the extended multi-pairing interaction
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form, plays a dominant role for low-lying states, while the remain-
ing part of the standard pairing interaction is less important to
the low-lying states, especially when the number of nucleon pairs
is small, which elucidates the origin of the extended pairing in-
teraction. Hence, properties of low-lying states described by the
extended pairing model are essentially the same as those described
by the standard pairing model.

Extensions to equal strength neutron-neutron (nn), proton-
proton (pp), and neutron-proton (np) isospin T = 1 (charge-
independent) pairing interactions has also been formulated
[14-18], in which the total isospin T is a conserved quantity.
Specifically, it has been shown that the T =1 pairing Hamiltonian,
which will be called the standard T = 1 pairing in the follow-
ing, can be built from generators of the quasi-spin O(5) group.
However, a practical algorithm for diagonalizing a model with the
T =1 pairing interaction in coupled or uncoupled basis of 0(5)
irreducible representations (irreps) is still lacking. It should also
be stated that, similar to the pairing model for like-nucleon pairs,
approximate numerical solutions of the mean-field plus standard
T =1 pairing Hamiltonian can also be obtained by using the BCS
or HFB formalism [19-21], while simplified but reasonable exact
solutions can be achieved by using an average energy (centroid) of
the p orbits (e.g., see [22] for the simplest seniority-zero case). Ex-
act solution of the mean-field plus standard T =1 pairing model
was considered previously [23,24]. The common feature lies in the
fact that a set of coupled multi-variable polynomial equations are
involved, in which the order of the polynomials increases with in-
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creasing number of orbits and total number of nucleon-pairs as
demonstrated in [25] for applications of [23] for up to three nu-
cleon pairs around the cores of 60, 40Ca, and *®Ni. Though there
is no practical limitations for the application of the exact solution
of the standard T =1 pairing in nuclei, it will be helpful if there is
a reasonably simplified model to the problem that can be solved
more easily.

2. An extended T = 1 pairing model and its exact solution

For a p-orbit system, the standard T =1 pairing Hamiltonian is
given by

Asp=—G> Al A, (1)

n

where G > 0 is the overall pairing interaction strength,
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are nucleon-pair creation operators, in which aj mim; (aj;,m;, m) is
the creation (annihilation) operator for a nucleon in the i-th orbit
of a mean-field with angular momentum j;, angular momentum
projection m;, and isospin projection m; with my =1/2 or —1/2. As
shown in [14-17], {AL, Ay}, together with the number operator
of total nucleons N = Zle I(in and the isospin operators T, =

lpzl T, (ji) (w =+, —, 0), generate the quasi-spin O(5) algebra,
of which the commutation relations can be found, for example, in
[23].

Let |p) be the orthonormalized basis vectors of 0(5) D 071(3)®
O (2), in which p = {(w1, w2) BN T Mt; n}, where (w1, w2) =
(2 —v/2,t) is an irrep of O(5) occurring in the reduction of the
Kronecker product of p copies of O(5) irreps ®f’=l(a)1',-, wy,;) of
015)®---®0,(5)]0(5), Q= Zle Qi=);(i+1/2), v is the
total seniority number, t is the reduced isospin of unpaired nu-
cleons, B is the branching-multiplicity label needed in the O(5) |
07(3) ® OAr(2) reduction, T and M7 are quantum number of to-
tal isospin and that of its projection, respectively, A" = Q — N/2
with N being the total number of nucleons, and 7 stands for a
set of other quantum numbers related to the total angular mo-
mentum. Thus, {|p)} is a complete set of basis vectors needed in
the 0(5) D 071(3) ® Or(2) basis. The standard T =1 pairing in-
teraction Hamiltonian (1) can then be expressed in terms of its
complete set of eigenvalues and the corresponding eigenstates as

Hsp = E?|p)(pl, (3)
P

where the sum runs over all possible p. Since the eigenstates
with v =0 are the lowest in eigen-energy, similar to the extended

quasi-spin SU(2) pairing interaction [13], only the v = 0 sector
involved in (3) will be adopted, with the other sectors that lie
higher in energy and therefore less important than the v =0 sec-
tor neglected as an approximation. To do so, one may equivalently
introduce a projected T =1 pairing interaction with

Hsp = Py—o Hsp Py—o, (4)

where

Pv—o= ) |(Q 0)NTMrp){(R, 0O)NTMr]| (5)
NT My

is a projection operator, in which the label 8 can be omitted be-
cause the reduction (€2, 0) | (N, T) is branching-multiplicity-free.
It can be proven directly that

[C2(0(5)), Hspl =0, [N, Hsp] =0
[Ty, Hspl =0 for =+, —, 0 (6)

still hold, so that the projected Hamiltonian (4) preserves the
0(5) D 01(3) ® OAr(2) symmetry.

In the second quantization picture, for given ; (i=1,---,p),
the Hamiltonian (4) is

Hep = Z E@0nT Z
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where E@OnT — _Set (n2Q +3 —n) — T(T +1)), in which n
is the total number of nucleon-pairs, while the overall pairing
strength G of the standard T =1 pairing interaction is replaced by
Gext, the additional quantum numbers 7; can be omitted in this
case with p; = {n; T; Mt ;} and p; = {; T; 1\71”}. in which n; or n;
is the number of nucleon-pairs in the i-th orbit, Z(n0> [AT] is the

polynomial of {A } given by [18]
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where x should be positive integer, and [y] denotes the integer
part of y.
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is the 0(5) D (01(3) D 07(2))® 0 Ar(2) multi-coupling coefficient.

According to the vector coherent state theory [18], in general, the

™
overlap F" Tpp can be expressed as
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where <T1 Mr1 - TyMr., |T. My is the Ur(3) > 01(3) D

O07(2) multi-coupling coefficient, Z(T",\(/),)T [bf] is a polynomial of
{bT} which is of the same form as that shown in ( ) with the
replacement AJr = b, bL =37, bT (j, and {bﬂ(],) bu(in)}
(i=1,---,p) are p copies of boson creatlon and annihilation op-
erators satisfying (b, (). bL, (ji)] = 88, The expression (11)
is extremely useful since the boson-calculus can be mapped to the
differential form with bL (ji) = zi, . and b, (j;) = 8/9z;, ,,, which
can then be calculated by using symbolic computation tools, such
as Maple or Mathematica. Since bL = Z,P:1 bL (ji) is a symmetric
function of {bL(ji)}, the Ur(3) D 07 (3) D 071 (2) multi-coupling
coefficient involved in (11) can effectively be simplified as

(n1, 0) (np, 0) | (n,0) \ _
T1Mrt 1 T,Mr p, | T, Mt
K_
T 0|]'[Z§”A3)T [b1Z{"}) b1]]0). (12)
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which greatly simplifies the computation process in comparison to
the expression used in (11). It can be verified after the expansion
that (7) not only contains the original standard T =1 pairing inter-
action Hsp = —Gext ZM ALA,L among nucleon-pairs, but also con-
tains multi-body T =1 pairing interactions with the overall pairing
interaction strength Gex: up to infinite order when € — oo similar
to the extended quasi-spin SU(2) pairing interaction among like-
nucleon pairs [6,7].

By using the procedure similar to that provided in [6,7], it can
be shown that a spherical mean-field plus the extended pairing
Hamiltonian

P
Hext=Z€j,-Nj,-+H5P, (13)
i=1
where €, (i=1,2,---,p) are single-particle energies generated
from any mean-field, is exactly solvable within the seniority-zero
symmetric subspace, namely, with v; =0V i, and for a given num-
ber of nucleon-pairs n with T =n — 2k for k=0,1,---,[n/2],
where [r] is the integer part of r, which is sufficient to describe
ground state of most even-even and odd-odd nuclei. However, di-
rect diagonalization of (13) in the general case seems not to be
simple. Moreover, since (7) is still invariant under the O (3) trans-
formation, eigenvalues of (13) should also be independent of the
quantum number Mr.
Similar to [6,7], in the seniority-zero case, the eigenstate of
(13), up to a normalization constant, may be written as

FTITMT

Z P17 Pp y
nT)
- En'?

P
priapp 2 izt €jilli

-1 (n/O)
1_[ I<ﬂ/ T/ ZT/M
i'=1

|eaT, N T Mr) =

LIATGinl0), (14)

where N = Q —n, E,(f;” is an eigenvalue of I:Iext, in which ¢, 7 la-
bels the ¢-th excitation state for fixed quantum numbers n and T.
It should be noted that the eigenstate expressed in (14) is only
valid with T =n — 2k for k=0,1,2,---,[n/2] because the over-
lap F"TMTpp is involved in (14), which is zero for other T values,
namely, the solution is within the seniority-zero symmetric sub-
space.

One can directly check that

p
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Thus, the eigen-equation I:Iext|§n . NTMr) = Eff;” [CnT,

N TMr) results in the following equation in determining the
eigenvalue E,(f;”:

1- G ext
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and ES2°=" =0 for n=0. Once (17) is solved, in which E&™ is
the only variable of the equation, one obtains excitation energies
Eff;” and the corresponding eigenstates (14). When all single-
particle energies are degenerate with €;, =€ V i, there is only a
unique solution of (17) with

T(T +1)) x

=0 for n#0, (17)

ext

nr=1) _
E T =2en—

n2L+3—-—n)—-T(T+1)), (18)
which is exactly the ground-state eigenvalue of the standard
isovector pairing model with degenerate single-particle ener-
gies [17] for given number of pairs n and isospin T. The corre-

sponding normalized ground state is given by

(2, O)NTMr) =

As shown in (8), besides the T pairs with the third projection of
the isospin M, (19) involves a condensate of | =0 and T =0
quartet AT- AT, Therefore, it is obvious that the ground state of the
extended isovector pairing model with degenerate single-particle
energies is dominated by the «-like quartets when T =0 for even
n cases and T =1 for odd n cases as shown in (8) and concluded
in [26]. In addition, as shown recently in [27,28], the «-like quar-
tets are also very important ingredients in the ground state of
isovector pairing Hamiltonians with non-degenerate single-particle
energies. As shown in (14), the ground state of the extended
model with non-degenerate single-particle energies is a superposi-
tion of [, Z(T"’,\(,),)T [AT(j»)], in which the J =0 and T =0 quartets

AT(j;) - AT(j;) are also important. Since the ground state is sym-
metric with respect to the orbit permutations, it can be expected

Kyt 2§31 [AT][0). (19)
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that the overlap of the ground state with an approximate one with
J =0 and T =0 quartet condensate should also be significant. Due
to the complicated multi-pair coupling structure of (14), a quan-
titative analysis of the | =0 and T = 0 quartet content in the
ground state of the model with non-degenerate single-particle en-
ergies may be made in our future work.

In order to show the difference and similarity of the mean-
field plus standard T =1 pairing model (SP) and the mean-field
plus extended T =1 pairing model (EXT), energy levels and eigen-
states of the EXT Hamiltonian (13) were compared to those of
the SP one [23] with the number of pairs n <3 and other quan-
tum numbers to be the same within the seniority-zero symmetric
subspace. In our analysis, we take Gext = G = 1.0 MeV, and con-
sider p = 4 orbitals with single-particle energies to be those in
the fspgo-shell deduced in [29] with €3/, = 0.000 MeV, €5/, =
1.1193 MeV, €1/, = 1.9892 MeV, and €9/, = 3.5663 MeV, where
a constant €g = —9.828 MeV has been subtracted from each origi-
nal single-particle energy provided in [29]. All level energies of the
two models in the seniority-zero symmetric subspace for n <2 and
the T =3 case for n =3 are shown in Table 1. The T =1 case for
n =3 is not provided because to solve the related equations for
this case given in [23] is not easy, which may be analyzed in our
future work.

It can be verified that the number of pairing excitation states
for given n and T in the two models within the seniority-zero
symmetric subspace is exactly the same, but there are obvious dif-
ference of the level energies from the two models when n > 2,
especially in excited levels, because the pairing interaction term of
the two models is different when n > 2. In the extended T =1
pairing Hamiltonian there are high order terms involved, while
there is only two-body term in the standard T =1 pairing one.
As shown in Table 1, the eigenstates and the corresponding eigen-
energies of the two models are exactly the same when n =1 and
T =1 if Gext = G is taken, which is understandable because the
high order terms vanish except the standard two-body one when
the extended T =1 pairing Hamiltonian is applied to an one-pair
state. Since the pairing interaction of the two models is different,
an eigenstate of the one model can be expanded in terms of those
of the other. However, our calculation shows that the overlap of
the lowest eigenstate of the two models is significant, where the
overlap is defined by

O, T,¢)={¢, nTMr[¢, nT Mr)sp| (20)

for given n, T, My with ¢ =1, 2, ---, where |, nT Mr)sp is the
corresponding eigenstate of the mean-field plus standard T =1
model, which is greater than 70% in the lowest eigenstate for
given n and T, but is typically smaller for increasing excitation
energy and the number of pairs, while overlaps for some higher-
lying states are also significant. Though at present we do not know
which model is better in describing excited states with 8 MeV
higher in excitation energy than that of the ground state of N ~ Z
nuclei in this region, the ground state of the two models is ba-
sically similar in nature. The ground-state energy difference can
be diminished by adjusting the pairing interaction strength. There-
fore, it is expected that the extended T =1 pairing model (EXT),
like the standard T =1 pairing model (SP), can be used to describe
ground state of N ~ Z nuclei with similar fitting quality.

3. An example of application
As an example of an application, we use the exact solution

of the EXT within the seniority-zero symmetric subspace to esti-
mate np-pairing contribution in even-even N ~ Z nuclei suitably

Table 1

Eigen-energies of the mean-field plus extended T =1 pairing model (EXT) and those of the standard T =1 pairing model (SP) obtained by using the exact solution provided in [23] in the seniority-zero symmetric subspace

with single-particle energies of the f5pgg-shell and Gext

the two models is defined by (20).

(see text), where “~” denotes that the corresponding level does not exist. The overlap of the corresponding eigenstates of

<3

1.0 MeV for the number of pairs n

=G=

15

3.56528 5.45351

0.867038
0.867038

100%

—7.53623
—7.53623

100%

1

SP

5.45351 -

100%

3.56528
100%

EXT

Overlap
SP

11.1669
13.4172
89.96%

8.3344

6.2417
8.1939
79.54%

4.5081
6.4203
42.91%
4.3968

1.4522
5.0180
9.90%

1.8126

—0.63758

41425
27.21%

—2.2039

2.9793
55.06%

—4.1491
0.16425
66.39%

—12.9216
—12.3311

98.90%

2

10.7869
85.34%

EXT

Overlap
SP

10.8254
13.1952
16.26%
6.2377

9.12783
10.7813
82.34%

6.96743

6.35437
7.86375
61.06%

—2.8597

4.09608
11.38%

—4.89564

2.89732
27.80%

—7.84463
0.337164
63.28%

—16.1364
—15.3366

70.32%

0

8.29938
15.28%

6.42473
4417%
1.0709
6.7633
12.92%

5.18967
12.34%

EXT

Overlap
SP

17.4442
21.0409
84.49%

13.5953
18.0005
79.81%

117519
15.6437
68.58%

8.8449

6.9312

5.5207

3.7915
8.5280
36.80%

2.4890
7.3955
30.19%

0.50469
6.44238
42.42%

—4.5175
481954
33.59%

—5.7113

4.0157
31.44%

—6.7326

2.4473
50.09%

—16.1532
—15.1038

97.36%

3

13.8132
52.06%

113204 12.5754
21.84%

10.97%

10.3652
13.46%

EXT

Overlap
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to be described in the fs5pgo-shell outside the *®Ni core with the
single-particle energies shown above. In our calculation, interac-
tion between the core and valence nucleon-pairs is neglected. For
even-even N ~ Z nuclei, the average np-interaction energy defined
as [31-33]

SVE(A=Z+N)=8VE(Z, N)=

1
2 (B(Z, N)+B(Z—-2,N—2)—

B(Z, N—-2)—B(Z—-2, N)), (21)
where B(Z, N) is the binding energy of the even-even nucleus,
is used to estimate the np-interaction, which is considered to be
the np-pairing contribution approximately, in the even-even N ~ Z
nuclei.

Since °6Ni is taken to be the core, the binding energy of a nu-
cleus considered is defined as

B(28 + N5, 28 + N,) = B(28, 28) + Ec(28, 28) —
Ec(28 + Ny, 28+ Ny) — Esym(28 + Ny, 28 + N,)) +

(N7r+NU)E0_E8\])ﬂ+NV)/23 (22)
where
Z(Z -1
Ec(Z, N)=0.7173 %(1 — Z7213) Mev (23)
and, with I = [N — Z|/A,
29.2876
Eqym(Z, N) = =——— N — Z|* x
2—|I|  1.4492
1+ ) MeV, (24)

2+[[|[A A3

are the Coulomb and symmetry energy [34], respectively, where A
is the mass number A=N + Z, N; and N,, are the number of va-
lence protons and neutrons, respectively, Eg is the average binding
energy per valence nucleon in the f5pgg-shell, which is almost a
constant, and E,gl) with n = (N, +N,)/2 is the lowest eigen-energy
calculated from the mean-field plus extended T =1 pairing model.
The I correction term introduced in the symmetry energy (24) ap-
proximately describes the Wigner effect [34]. Using (22), we fit
the even-even N =Z and N = Z £ 2 nuclei with mass number
A = 58-80 in this region. The constant Ey was chosen such that
the extended pairing interaction strength Gext ~ 1.0 MeV for the
n =1 case is comparable to the orbit-dependent pairing interaction
parameters of the ] =0 and T =1 pairing interactions determined
in [29] for the fspgg-shell. Hence, we set Eqg = 7.5 MeV which
is very close to the empirical binding energy per particle in nuclei.
The results for the even-even N ~ Z nuclei concerned are provided
in Table 2. The pairing interaction strength Gex: can be adjusted
accurately to fit the binding energy of even-n nuclei with isospin
T =0 at the ground state. The deviation occurs in fitting the bind-
ing energy of odd-n nuclei with a T =1 ground state because there
is a less than 0.475 MeV difference in the actual pairing energy
contribution to the binding energies of the mirror nuclei due to
a small isospin asymmetry. The calculated average np-interaction
energies for mass number A = 60-80 in comparison to the corre-
sponding experimental data are shown in Fig. 1.

It should be noted that the isovector pairing energy contri-
bution to the total binding energy considered in this work is
different from that considered previously [27,28,35,36]. In [27,
28], the Coulomb, symmetry, and Winer energy contribution are
not considered, with which the charge-independent pairing inter-
action strength G follows the simple mass-dependent law with

Table 2

The pairing interaction strength Gex: (in MeV) for some even-even N ~ Z
nuclei with valence nucleons confined to the fspgg-shell deduced from
the mean-field plus extended T =1 pairing Hamiltonian (13) according
to (22), where n is the number of valence nucleon-pairs in the corre-
sponding nucleus, E,(,l) (in MeV) is the lowest eigen-energy of the mean-
field plus extended T =1 Hamiltonian (13) with total isospin T =0 for
the even-even N = Z nuclei or T =1 for the even-even N =Z + 2 nu-
clei, Bty (in MeV) is the binding energy calculated according to (22), and
the experimental binding energy Bexp (in MeV) of these nuclei is taken

from [30].
Nucleus n EW Gext Bt Bexp
38 Niso 1 -8.6317 11060 506498  506.459
38Zngs 1 —8.6317 11060  486.878  486.962
$0Zn3g 2 —17.5138 0.9871 514.982 514.982
$27n3; 3 —26.4140 12010  537.989 538119
$2Gesp 3 —26.4140 12010  517.384 517266
4Ges; 4 —35.7222 12376 545844 545844
% Gey 5 —44.6005 13290  569.045  569.279
$Sesy 5 —44.6005 13290 547477 547470
BSesq 6 —54.4656 13900 576439  576.439
19Sesq 7 —63.8158 1.4974 600.312 600.322
10Kr34 7 —63.8158 14974 577801  577.780
12Kr3g 8 —73.8718 15756 606911  606.911
T8Krsg 9 —83.8873 17100 631636 631445
J8Sr36 9 —83.8873 17100 608199  608.354
15Sr3s 10 —94.6019 18182 637936  637.936
8Sr40 11 —105.2193 1.9905 663.475 663.000
Sz 11 -105.2193 19905 639130  639.600
807140 12 -117.047 21450  669.920  669.920
145
1.4 &
8Vpn 1.35 *
13
1.25

60 64 68 72 76 80
A

Fig. 1. (Color online.) avg; values (in MeV) derived from binding energies of even-
even N = Z and N = Z +2 nuclei with mass number A =60+4k for k=0,1,---,5,
where the solid diamonds are the experimental data [30], and the open squares,
linked with the solid line to guide the eye, are the results calculated according to
the mass formula (22) using the mean-field plus extended T =1 Hamiltonian (13).

G ~24/A MeV shown in [27,28]. In [35], besides the pure sym-
metry energy contribution, the Wigner energy contribution to the
binding energy was also considered, but the Coulomb energy is
treated as a constant for a given isobaric chain, with which the
simple mass-dependent law becomes G ~ 12/A3/# MeV as shown
in [35]. While, besides Wigner energy contribution, Coulomb and
symmetry energy are treated to be a constant in [36], with which
a similar mass-dependent law with G ~ 13.9/A3/4 MeV was ob-
tained. In (22), however, both the Coulomb and symmetry energy
are mass number dependent, in which the Wigner energy contri-
bution is also included approximately. As shown in Table 2, the
total binding energy of each nucleus considered is fitted much
more accurately with the inclusion of the Coulomb and symme-
try energies in (22). We observe that the inclusion of the Coulomb
and symmetry energies in the binding energy (22) affects the
mass-dependent law of the pairing strength Gex:. The fitting qual-
ity of (22) for the 18 nuclei shown in Table 2 is measured by
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3.0
25
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Gext 1.5
1.0 —

0.5
0.0

60 65 70 75 80
A

Fig. 2. (Color online.) The extended isovector pairing interaction strength Gex (in
MeV) fitted by a quadratic function of the mass number A for A = 58-80, from
which we get Gex = 4.262 — 0.1308A + 0.0013A2 MeV (solid line), where the solid
dots are obtained from the exact fitting to the binding energy shown in Table 2.

x2 =!8 (Bexp.i — Bmn,1)?/17 with x? = 0.0354 (MeV)?, where
Bexp and B are experimental binding energy and the corre-
sponding result of this theory, respectively. As shown in Fig. 1,
SVSS(N, Z) with A=N+Z =60+4k for k=0,1,---,5 calculated
from the mean-field plus extended T =1 pairing model is in good
agreement with the experimental data. It should be stated that the
average np-pairing interaction energy SVSS mainly depends on the
pairing interaction strength Gex of the four nuclei involved, and is
independent of the constant Eg, while the Coulomb and symmetry
energy terms used in (22) also affect § Vgﬁ a little. As stated previ-
ously, deviation from the experimental data, especially for A = 64
and 68, is mainly due to the small isospin asymmetry in the mir-
ror nuclei concerned. Generally speaking, Gex: is a smooth function
of the number of pairs n, which slightly increases with increasing
number of nucleon-pairs, except a small decrease for the n =2
case. The mass-dependent law of the extended isovector pairing
interaction strength Gex: can then be obtained by using a polyno-
mial of A fitting to Gex. The fitting result of a quadratic function
of the mass number A with A =58-80 is shown in Fig. 2. Though
Gext Seems fitted by the quadratic function of the mass number
A quite well, there will be more than 0.5 MeV deviation in the
average np-pairing interaction energy VS5 if the degree of the
polynomial Gex(A) is less 8, which is quite similar to the situa-
tion shown in [35,36], where only a reasonable overall agreement
of the mass differences with experimental data can be provided
with the simple mass-dependent law G « A—3/4 MeV, indicating
the average np-pairing interaction energy is very sensitive to the
isovector pairing interaction strength. The difference of the mass
dependent law of Gex from that of the standard isovector pairing
indicates the two models are quite different for n > 3. A small de-
crease in Gex: for the n =2 case is mainly due to the two models
are quite the same for n < 2.

4. Conclusions

In this work, an extended pairing Hamiltonian that describes
multi-pair interactions among isospin T =1 and angular momen-
tum J =0 nn-, pp-, and np-pairs in a spherical mean-field, such as
the spherical shell model, is proposed based on the standard T =1
pairing formalism. Since only a single-variable polynomial equa-
tion is involved, large-scale calculations within the seniority-zero
symmetric subspace of the model should be feasible, though the
calculation of the example provided is only within the f5pgg-shell.
By using the exact solution within the seniority-zero symmetric
subspace of the model, the average np-pairing interaction ener-
gies in even-even N ~ Z nuclei with mass number A = 58-80 are
estimated. Due to the special Bethe ansatz used, only symmetric
solution of the model with seniority zero can be solved exactly,
while other solutions of the model still need to be obtained from

direct diagonalizations, in which the matrix elements of the Hamil-

tonian needed are considerably more complicated than those of
the standard T =1 pairing Hamiltonian. Therefore, an algorithm
based on the quasi-spin O(5) algebra is in demand for investigat-
ing N ~ Z nuclei systematically, which will be a part of our future
work. A detailed investigation of the Wigner energy contribution
to the binding energy and a detailed comparison of the extended
with the standard isovector pairing model can then be made.
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