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An extended pairing Hamiltonian that describes multi-pair interactions among isospin T = 1 and angular 
momentum J = 0 neutron–neutron, proton–proton, and neutron–proton pairs in a spherical mean field, 
such as the spherical shell model, is proposed based on the standard T = 1 pairing formalism. The 
advantage of the model lies in the fact that numerical solutions within the seniority-zero symmetric 
subspace can be obtained more easily and with less computational time than those calculated from the 
mean-field plus standard T = 1 pairing model. Thus, large-scale calculations within the seniority-zero 
symmetric subspace of the model is feasible. As an example of the application, the average neutron–
proton interaction in even–even N ∼ Z nuclei that can be suitably described in the f5pg9 shell is 
estimated in the present model, with a focus on the role of np-pairing correlations.
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1. Introduction

The pairing interaction is known to be very important for 
mean-field descriptions of ground-state and low-energy properties 
of nuclei [1,2]. It has been shown that either spherical or deformed 
mean-field plus the standard (orbit-independent) pairing interac-
tion among angular momentum J = 0 like-nucleon pairs can be 
solved exactly by using the Gaudin–Richardson method [3–5]. The 
deformed and spherical mean-field plus the extended pairing in-
teraction among J = 0 like-nucleon pairs have also been proposed, 
which can be solved more easily than the standard pairing model, 
especially when both the number of like-nucleon pairs and the 
number of single-particle orbits are large [6,7]. It is also known 
that the ground-state properties and some properties of low-lying 
states of a chain of isotopes or isotones can be well described 
by these exactly solvable models [6–12]. Furthermore, as shown 
in [13], the extended multi-pairing interaction among like-nucleon 
pairs [6] can be obtained from the standard pairing interaction 
with an approximation, in which only the lowest eigenstate and 
the eigen-energy of the standard pairing interaction are taken into 
account. Actually, as shown in [13], this part of the standard pair-
ing interaction, expressed as the extended multi-pairing interaction 
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form, plays a dominant role for low-lying states, while the remain-

ing part of the standard pairing interaction is less important to 
the low-lying states, especially when the number of nucleon pairs 
is small, which elucidates the origin of the extended pairing in-
teraction. Hence, properties of low-lying states described by the 
extended pairing model are essentially the same as those described 
by the standard pairing model.

Extensions to equal strength neutron–neutron (nn), proton–
proton (pp), and neutron–proton (np) isospin T = 1 (charge-

independent) pairing interactions has also been formulated

[14–18], in which the total isospin T is a conserved quantity. 
Specifically, it has been shown that the T = 1 pairing Hamiltonian, 
which will be called the standard T = 1 pairing in the follow-

ing, can be built from generators of the quasi-spin O (5) group. 
However, a practical algorithm for diagonalizing a model with the 
T = 1 pairing interaction in coupled or uncoupled basis of O (5)

irreducible representations (irreps) is still lacking. It should also 
be stated that, similar to the pairing model for like-nucleon pairs, 
approximate numerical solutions of the mean-field plus standard 
T = 1 pairing Hamiltonian can also be obtained by using the BCS 
or HFB formalism [19–21], while simplified but reasonable exact 
solutions can be achieved by using an average energy (centroid) of 
the p orbits (e.g., see [22] for the simplest seniority-zero case). Ex-
act solution of the mean-field plus standard T = 1 pairing model 
was considered previously [23,24]. The common feature lies in the 
fact that a set of coupled multi-variable polynomial equations are 
involved, in which the order of the polynomials increases with in-
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creasing number of orbits and total number of nucleon-pairs as 
demonstrated in [25] for applications of [23] for up to three nu-
cleon pairs around the cores of 16O, 40Ca, and 56Ni. Though there 
is no practical limitations for the application of the exact solution 
of the standard T = 1 pairing in nuclei, it will be helpful if there is 
a reasonably simplified model to the problem that can be solved 
more easily.

2. An extended T = 1 pairing model and its exact solution

For a p-orbit system, the standard T = 1 pairing Hamiltonian is 
given by

ĤSP = −G
∑

μ

A
†
μAμ, (1)

where G > 0 is the overall pairing interaction strength,

A
†
μ =

p
∑

i=1

A
†
μ( ji) =

p
∑

i=1

∑

mi>0

(−) ji−mia
†
ji ,mi , μ/2

a
†
ji ,−mi , μ/2

for μ = 1 or − 1,

A
†
0 =

p
∑

i=1

A
†
0( ji) =

√

1

2

p
∑

i=1

∑

mi>0

(−) ji−mi (a
†
ji ,mi , 1/2

a
†
ji ,−mi , −1/2

+

a
†
ji ,mi , −1/2

a
†
ji ,−mi , 1/2

) (2)

are nucleon-pair creation operators, in which a†
ji ,mi ,mt

(a ji ,mi ,mt
) is 

the creation (annihilation) operator for a nucleon in the i-th orbit 
of a mean-field with angular momentum ji , angular momentum 
projection mi , and isospin projection mt with mt = 1/2 or −1/2. As 
shown in [14–17], {A†

μ, Aμ}, together with the number operator 

of total nucleons N̂ =
∑p

i=1 N̂ ji and the isospin operators Tμ =
∑p

i=1 Tμ( ji) (μ = +, −, 0), generate the quasi-spin O (5) algebra, 
of which the commutation relations can be found, for example, in 
[23].

Let |ρ〉 be the orthonormalized basis vectors of O (5) ⊃ O T (3) ⊗
ON (2), in which ρ ≡ {(ω1, ω2) βN T MT ; η}, where (ω1, ω2) =
(� − v/2, t) is an irrep of O (5) occurring in the reduction of the 
Kronecker product of p copies of O (5) irreps ⊗p

i=1(ω1,i, ω2,i) of 
O 1(5) ⊗ · · · ⊗ O p(5) ↓ O (5), � =

∑p

i=1
�i =

∑

i( ji + 1/2), v is the 
total seniority number, t is the reduced isospin of unpaired nu-
cleons, β is the branching-multiplicity label needed in the O (5) ↓
O T (3) ⊗ ON (2) reduction, T and MT are quantum number of to-
tal isospin and that of its projection, respectively, N = � − N/2

with N being the total number of nucleons, and η stands for a 
set of other quantum numbers related to the total angular mo-

mentum. Thus, {|ρ〉} is a complete set of basis vectors needed in 
the O (5) ⊃ O T (3) ⊗ ON (2) basis. The standard T = 1 pairing in-
teraction Hamiltonian (1) can then be expressed in terms of its 
complete set of eigenvalues and the corresponding eigenstates as

ĤSP =
∑

ρ

Eρ |ρ〉〈ρ|, (3)

where the sum runs over all possible ρ . Since the eigenstates 
with v = 0 are the lowest in eigen-energy, similar to the extended 

quasi-spin SU (2) pairing interaction [13], only the v = 0 sector 
involved in (3) will be adopted, with the other sectors that lie 
higher in energy and therefore less important than the v = 0 sec-

tor neglected as an approximation. To do so, one may equivalently 
introduce a projected T = 1 pairing interaction with

H̃SP = P v=0 ĤSP P v=0, (4)

where

P v=0 =
∑

N T MT

|(�, 0)N T MT 〉〈(�, 0)N T MT | (5)

is a projection operator, in which the label β can be omitted be-
cause the reduction (�, 0) ↓ (N , T ) is branching-multiplicity-free. 
It can be proven directly that

[C2(O (5)), H̃SP] = 0, [N̂ , H̃SP] = 0,

[Tμ, H̃SP] = 0 for μ = +, −, 0 (6)

still hold, so that the projected Hamiltonian (4) preserves the 
O (5) ⊃ O T (3) ⊗ ON (2) symmetry.

In the second quantization picture, for given �i (i = 1, · · · , p), 
the Hamiltonian (4) is

H̃SP =
∑

n T MT

E(�, 0) n T
∑

ρ1,··· ,ρp ,ρ̃1,··· ,ρ̃p

Fn T MT
ρ1,··· ,ρp

×

F
n T MT

ρ̃1,··· ,ρ̃p

p
∏

i=1

K−1
ni T i

Z
(ni 0)
T i MT , i

[A†( ji)]×

p
∏

i′=1

K−1

ñi′ T̃ i′
Z

(ñi′ 0)

T̃ i′ M̃T , i′
[A( ji′)], (7)

where E(�, 0) n T = − Gext

2
(n(2� + 3− n) − T (T + 1)), in which n

is the total number of nucleon-pairs, while the overall pairing 
strength G of the standard T = 1 pairing interaction is replaced by 
Gext , the additional quantum numbers ηi can be omitted in this 
case with ρi ≡ {ni T i MT ,i} and ρ̃i ≡ {ñi T̃ i M̃T ,i}, in which ni or ñi
is the number of nucleon-pairs in the i-th orbit, Z (n 0)

TMT
[A†] is the 

polynomial of {A†
μ} given by [18]

Z
(n 0)
TMT

[A†] =

[

2T+MT (2T + 1)!!(T + MT )!(T − MT )!T !

(n − T )!!(n + T + 1)!!(2T )!

]

1
2

×

(

2 A
†
1 A

†
−1 − A

† 2
0

)
n−T
2

×

[(T+MT )/2]
∑

x=Max[0,MT ]

A
† x
1 A

† T+MT −2x
0 A

† x−MT

−1

2x(x− MT )!x!(T + MT − 2x)!
, (8)

where x should be positive integer, and [y] denotes the integer 
part of y.

K−1
n T =

[

2
1
2
(n−T )(� − (n + T )/2)!(2� + 1− n + T )!!

�i !(2� + 1)!!

]
1
2

, (9)

and

Fn T MT
ρ1,··· ,ρp

= 〈ρ1, · · · ,ρp|(�, 0)N T MT 〉 (10)

is the O (5) ⊃ (O T (3) ⊃ O T (2)) ⊗ON (2) multi-coupling coefficient. 
According to the vector coherent state theory [18], in general, the 
overlap Fn T MT

ρ1,··· ,ρp
can be expressed as



F. Pan et al. / Physics Letters B 780 (2018) 1–6 3

Fn T MT
ρ1,··· ,ρp

=
K−1
n T

∏p
i=1 K−1

ni T i

×

〈

(n1, 0) · · · (np, 0)

T1 MT , 1 · · · T p MT , p

∣

∣

∣

∣

(n, 0)

T , MT

〉

=

K−1
n T

∏p

i=1
K−1
ni T i

〈0|

p
∏

i=1

Z
(ni 0)
T i MT , i

[b( ji)]Z
(n 0)
T MT

[b†]|0〉, (11)

where 
〈

(n1, 0) · · · (np, 0)

T1 MT , 1 · · · T p MT , p

∣

∣

∣

∣

(n, 0)

T , MT

〉

is the U T (3) ⊃ O T (3) ⊃

O T (2) multi-coupling coefficient, Z
(n 0)
T MT

[b†] is a polynomial of 

{b
†
μ}, which is of the same form as that shown in (8) with the 

replacement: A
†
μ ⇒ b

†
μ , b†μ =

∑p

i=1 b
†
μ( ji), and {b

†
μ( ji), bμ( ji)}

(i = 1, · · · , p) are p copies of boson creation and annihilation op-
erators satisfying [bμ( ji), b

†

μ′ ( ji′ )] = δii′δμμ′ . The expression (11)
is extremely useful since the boson-calculus can be mapped to the 
differential form with b†μ( ji) ⇒ zi, μ and bμ( ji) ⇒ ∂/∂zi, μ , which 
can then be calculated by using symbolic computation tools, such 
as Maple or Mathematica. Since b†μ =

∑p

i=1
b
†
μ( ji) is a symmetric 

function of {b†μ( ji)}, the U T (3) ⊃ O T (3) ⊃ O T (2) multi-coupling 
coefficient involved in (11) can effectively be simplified as
〈

(n1, 0) · · · (np, 0)

T1 MT , 1 · · · T p MT , p

∣

∣

∣

∣

(n, 0)

T , MT

〉

=

K−1
n T

∏p

i=1
K−1
ni T i

〈0|

p
∏

i=1

Z
(ni 0)
T i MT , i

[b]Z
(n 0)
T MT

[b†]|0〉, (12)

which greatly simplifies the computation process in comparison to 
the expression used in (11). It can be verified after the expansion 
that (7) not only contains the original standard T = 1 pairing inter-
action ĤSP = −Gext

∑

μ A
†
μAμ among nucleon-pairs, but also con-

tains multi-body T = 1 pairing interactions with the overall pairing 
interaction strength Gext up to infinite order when � → ∞ similar 
to the extended quasi-spin SU (2) pairing interaction among like-
nucleon pairs [6,7].

By using the procedure similar to that provided in [6,7], it can 
be shown that a spherical mean-field plus the extended pairing 
Hamiltonian

Ĥext =

p
∑

i=1

ε ji N̂ ji + H̃SP, (13)

where ε ji (i = 1, 2, · · · , p) are single-particle energies generated 
from any mean-field, is exactly solvable within the seniority-zero 
symmetric subspace, namely, with v i = 0 ∀ i, and for a given num-

ber of nucleon-pairs n with T = n − 2k for k = 0, 1, · · · , [n/2], 
where [r] is the integer part of r, which is sufficient to describe 
ground state of most even–even and odd–odd nuclei. However, di-
rect diagonalization of (13) in the general case seems not to be 
simple. Moreover, since (7) is still invariant under the O T (3) trans-

formation, eigenvalues of (13) should also be independent of the 
quantum number MT .

Similar to [6,7], in the seniority-zero case, the eigenstate of 
(13), up to a normalization constant, may be written as

|ζn T ,N T MT 〉 =
∑

ρ1,··· ,ρp

F
n T MT
ρ1,··· ,ρp

2
∑p

i=1
ε jini − E

(ζn T )
n T

×

p
∏

i′=1

K−1
ni′ T i′

Z
(ni′ 0)

T i′ MT ,i′
[A†( ji′)]|0〉, (14)

where N = � −n, E(ζn T )
n T is an eigenvalue of Ĥext , in which ζn T la-

bels the ζ -th excitation state for fixed quantum numbers n and T . 
It should be noted that the eigenstate expressed in (14) is only 
valid with T = n − 2k for k = 0, 1, 2, · · · , [n/2] because the over-
lap Fn T MT

ρ1,··· ,ρp
is involved in (14), which is zero for other T values, 

namely, the solution is within the seniority-zero symmetric sub-
space.

One can directly check that

p
∑

i=1

ε ji N̂ ji |ζn T ,N T MT 〉 = E
(ζ )
n T |ζn T ,N T MT 〉 +

∑

ρ1,··· ,ρp

Fn T MT
ρ1,··· ,ρp

p
∏

i′=1

K−1
ni′ T i′

Z
(ni′ 0)

T i′ MT ,i′
[A†( ji′)]|0〉 (15)

and

H̃SP|ζn T ,N T MT 〉 =

E(�,0) n T
∑

ρ1,··· ,ρp

(F
n T MT
ρ1,··· ,ρp

)2

2
∑p

i=1
ε jini − E

(ζn T )
n T

×

∑

ρ̃1,··· ,ρ̃p

F
n T MT

ρ̃1,··· ,ρ̃p

p
∏

i′=1

K−1

ni′ T̃ i′
Z

(ni′ 0)

T̃ i′ M̃T ,i′
[A†( ji′)]|0〉. (16)

Thus, the eigen-equation Ĥext|ζn T , N T MT 〉 = E
(ζn T )
n T |ζn T ,

N T MT 〉 results in the following equation in determining the 
eigenvalue E(ζn T )

n T :

1−
Gext

2
(n(2� + 3− n) − T (T + 1)) ×

∑

ρ1,··· ,ρp

(

F
n T MT
ρ1,··· ,ρp

)2

2
∑p

i=1 ε jini − E
(ζn T )
n T

= 0 for n �= 0, (17)

and E
(ζ0,0=1)

0 0 = 0 for n = 0. Once (17) is solved, in which E(ζn T )
n T is 

the only variable of the equation, one obtains excitation energies 
E

(ζn T )
n T and the corresponding eigenstates (14). When all single-

particle energies are degenerate with ε ji = ε ∀ i, there is only a 
unique solution of (17) with

E
(ζn T =1)
n T = 2ε n −

Gext

2
(n(2� + 3− n) − T (T + 1)) , (18)

which is exactly the ground-state eigenvalue of the standard 
isovector pairing model with degenerate single-particle ener-

gies [17] for given number of pairs n and isospin T . The corre-
sponding normalized ground state is given by

|(�, 0)N T MT 〉 = K−1
n T Z

(n 0)
TMT

[A†]|0〉. (19)

As shown in (8), besides the T pairs with the third projection of 
the isospin MT , (19) involves a condensate of J = 0 and T = 0

quartet A† · A† . Therefore, it is obvious that the ground state of the 
extended isovector pairing model with degenerate single-particle 
energies is dominated by the α-like quartets when T = 0 for even 
n cases and T = 1 for odd n cases as shown in (8) and concluded 
in [26]. In addition, as shown recently in [27,28], the α-like quar-
tets are also very important ingredients in the ground state of 
isovector pairing Hamiltonians with non-degenerate single-particle 
energies. As shown in (14), the ground state of the extended 
model with non-degenerate single-particle energies is a superposi-
tion of 

∏p

i=1 Z
(ni 0)
T i MT ,i

[A†( ji)], in which the J = 0 and T = 0 quartets 

A†( ji) · A†( ji) are also important. Since the ground state is sym-

metric with respect to the orbit permutations, it can be expected 
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that the overlap of the ground state with an approximate one with 
J = 0 and T = 0 quartet condensate should also be significant. Due 
to the complicated multi-pair coupling structure of (14), a quan-
titative analysis of the J = 0 and T = 0 quartet content in the 
ground state of the model with non-degenerate single-particle en-
ergies may be made in our future work.

In order to show the difference and similarity of the mean-

field plus standard T = 1 pairing model (SP) and the mean-field 
plus extended T = 1 pairing model (EXT), energy levels and eigen-
states of the EXT Hamiltonian (13) were compared to those of 
the SP one [23] with the number of pairs n ≤ 3 and other quan-
tum numbers to be the same within the seniority-zero symmetric 
subspace. In our analysis, we take Gext = G = 1.0 MeV, and con-
sider p = 4 orbitals with single-particle energies to be those in 
the f5pg9-shell deduced in [29] with ε3/2 = 0.000 MeV, ε5/2 =

1.1193 MeV, ε1/2 = 1.9892 MeV, and ε9/2 = 3.5663 MeV, where 
a constant ε0 = −9.828 MeV has been subtracted from each origi-
nal single-particle energy provided in [29]. All level energies of the 
two models in the seniority-zero symmetric subspace for n ≤ 2 and 
the T = 3 case for n = 3 are shown in Table 1. The T = 1 case for 
n = 3 is not provided because to solve the related equations for 
this case given in [23] is not easy, which may be analyzed in our 
future work.

It can be verified that the number of pairing excitation states 
for given n and T in the two models within the seniority-zero 
symmetric subspace is exactly the same, but there are obvious dif-
ference of the level energies from the two models when n ≥ 2, 
especially in excited levels, because the pairing interaction term of 
the two models is different when n ≥ 2. In the extended T = 1

pairing Hamiltonian there are high order terms involved, while 
there is only two-body term in the standard T = 1 pairing one. 
As shown in Table 1, the eigenstates and the corresponding eigen-
energies of the two models are exactly the same when n = 1 and 
T = 1 if Gext = G is taken, which is understandable because the 
high order terms vanish except the standard two-body one when 
the extended T = 1 pairing Hamiltonian is applied to an one-pair 
state. Since the pairing interaction of the two models is different, 
an eigenstate of the one model can be expanded in terms of those 
of the other. However, our calculation shows that the overlap of 
the lowest eigenstate of the two models is significant, where the 
overlap is defined by

O(n, T , ζ ) = |〈ζ, n T MT |ζ, n T MT 〉SP| (20)

for given n, T , MT with ζ = 1, 2, · · · , where |ζ, n T MT 〉SP is the 
corresponding eigenstate of the mean-field plus standard T = 1

model, which is greater than 70% in the lowest eigenstate for 
given n and T , but is typically smaller for increasing excitation 
energy and the number of pairs, while overlaps for some higher-
lying states are also significant. Though at present we do not know 
which model is better in describing excited states with 8 MeV 
higher in excitation energy than that of the ground state of N ∼ Z

nuclei in this region, the ground state of the two models is ba-
sically similar in nature. The ground-state energy difference can 
be diminished by adjusting the pairing interaction strength. There-
fore, it is expected that the extended T = 1 pairing model (EXT), 
like the standard T = 1 pairing model (SP), can be used to describe 
ground state of N ∼ Z nuclei with similar fitting quality.

3. An example of application

As an example of an application, we use the exact solution 
of the EXT within the seniority-zero symmetric subspace to esti-
mate np-pairing contribution in even–even N ∼ Z nuclei suitably T
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to be described in the f5pg9-shell outside the 56Ni core with the 
single-particle energies shown above. In our calculation, interac-
tion between the core and valence nucleon-pairs is neglected. For 
even–even N ∼ Z nuclei, the average np-interaction energy defined 
as [31–33]

δV ee
pn(A = Z + N) ≡ δV ee

pn(Z , N) =

1

4
(B(Z , N) + B(Z − 2, N − 2)−

B(Z , N − 2) − B(Z − 2, N)) , (21)

where B(Z , N) is the binding energy of the even–even nucleus, 
is used to estimate the np-interaction, which is considered to be 
the np-pairing contribution approximately, in the even–even N ∼ Z

nuclei.

Since 56Ni is taken to be the core, the binding energy of a nu-
cleus considered is defined as

B(28+ Nπ , 28+ Nν) = B(28, 28) + EC(28, 28) −

EC(28 + Nπ , 28+ Nν) − Esym(28+ Nπ , 28+ Nν) +

(Nπ + Nν)E0 − E
(1)
(Nπ +Nν )/2, (22)

where

EC(Z , N) = 0.7173
Z(Z − 1)

A1/3
(1− Z−2/3) MeV (23)

and, with I = |N − Z |/A,

Esym(Z , N) =
29.2876

A
|N − Z |2 ×

(1+
2− |I|

2+ |I| A
−

1.4492

A1/3
) MeV, (24)

are the Coulomb and symmetry energy [34], respectively, where A
is the mass number A = N + Z , Nπ and Nν are the number of va-
lence protons and neutrons, respectively, E0 is the average binding 
energy per valence nucleon in the f5pg9-shell, which is almost a 
constant, and E(1)

n with n = (Nπ +Nν)/2 is the lowest eigen-energy 
calculated from the mean-field plus extended T = 1 pairing model. 
The I correction term introduced in the symmetry energy (24) ap-
proximately describes the Wigner effect [34]. Using (22), we fit 
the even–even N = Z and N = Z ± 2 nuclei with mass number 
A = 58–80 in this region. The constant E0 was chosen such that 
the extended pairing interaction strength Gext ∼ 1.0 MeV for the 
n = 1 case is comparable to the orbit-dependent pairing interaction 
parameters of the J = 0 and T = 1 pairing interactions determined 
in [29] for the f5pg9-shell. Hence, we set E0 = 7.5 MeV which 
is very close to the empirical binding energy per particle in nuclei. 
The results for the even–even N ∼ Z nuclei concerned are provided 
in Table 2. The pairing interaction strength Gext can be adjusted 
accurately to fit the binding energy of even-n nuclei with isospin 
T = 0 at the ground state. The deviation occurs in fitting the bind-
ing energy of odd-n nuclei with a T = 1 ground state because there 
is a less than 0.475 MeV difference in the actual pairing energy 
contribution to the binding energies of the mirror nuclei due to 
a small isospin asymmetry. The calculated average np-interaction 
energies for mass number A = 60–80 in comparison to the corre-
sponding experimental data are shown in Fig. 1.

It should be noted that the isovector pairing energy contri-
bution to the total binding energy considered in this work is 
different from that considered previously [27,28,35,36]. In [27,

28], the Coulomb, symmetry, and Winer energy contribution are 
not considered, with which the charge-independent pairing inter-
action strength G follows the simple mass-dependent law with 

Table 2

The pairing interaction strength Gext (in MeV) for some even–even N ∼ Z

nuclei with valence nucleons confined to the f5pg9-shell deduced from 
the mean-field plus extended T = 1 pairing Hamiltonian (13) according 
to (22), where n is the number of valence nucleon-pairs in the corre-
sponding nucleus, E(1)

n (in MeV) is the lowest eigen-energy of the mean-

field plus extended T = 1 Hamiltonian (13) with total isospin T = 0 for 
the even–even N = Z nuclei or T = 1 for the even–even N = Z ± 2 nu-

clei, BTh (in MeV) is the binding energy calculated according to (22), and 
the experimental binding energy BExp (in MeV) of these nuclei is taken 
from [30].

Nucleus n E
(1)
n Gext BTh BExp

58
28Ni30 1 −8.6317 1.1060 506.498 506.459

58
30Zn28 1 −8.6317 1.1060 486.878 486.962

60
30Zn30 2 −17.5138 0.9871 514.982 514.982

62
30Zn32 3 −26.4140 1.2010 537.989 538.119

62
32Ge30 3 −26.4140 1.2010 517.384 517.266

64
32Ge32 4 −35.7222 1.2376 545.844 545.844

66
32Ge34 5 −44.6005 1.3290 569.045 569.279

66
34Se32 5 −44.6005 1.3290 547.477 547.470

68
34Se34 6 −54.4656 1.3900 576.439 576.439

70
34Se36 7 −63.8158 1.4974 600.312 600.322

70
36Kr34 7 −63.8158 1.4974 577.801 577.780

72
36Kr36 8 −73.8718 1.5756 606.911 606.911

74
36Kr38 9 −83.8873 1.7100 631.636 631.445

74
38Sr36 9 −83.8873 1.7100 608.199 608.354

76
38Sr38 10 −94.6019 1.8182 637.936 637.936

78
38Sr40 11 −105.2193 1.9905 663.475 663.000

78
40Zr38 11 −105.2193 1.9905 639.130 639.600

80
40Zr40 12 −117.047 2.1450 669.920 669.920

Fig. 1. (Color online.) δV ee
pn values (in MeV) derived from binding energies of even–

even N = Z and N = Z ±2 nuclei with mass number A = 60 +4k for k = 0, 1, · · · , 5, 
where the solid diamonds are the experimental data [30], and the open squares, 
linked with the solid line to guide the eye, are the results calculated according to 
the mass formula (22) using the mean-field plus extended T = 1 Hamiltonian (13).

G ∼ 24/A MeV shown in [27,28]. In [35], besides the pure sym-

metry energy contribution, the Wigner energy contribution to the 
binding energy was also considered, but the Coulomb energy is 
treated as a constant for a given isobaric chain, with which the 
simple mass-dependent law becomes G ∼ 12/A3/4 MeV as shown 
in [35]. While, besides Wigner energy contribution, Coulomb and 
symmetry energy are treated to be a constant in [36], with which 
a similar mass-dependent law with G ∼ 13.9/A3/4 MeV was ob-
tained. In (22), however, both the Coulomb and symmetry energy 
are mass number dependent, in which the Wigner energy contri-
bution is also included approximately. As shown in Table 2, the 
total binding energy of each nucleus considered is fitted much 
more accurately with the inclusion of the Coulomb and symme-

try energies in (22). We observe that the inclusion of the Coulomb 
and symmetry energies in the binding energy (22) affects the 
mass-dependent law of the pairing strength Gext . The fitting qual-
ity of (22) for the 18 nuclei shown in Table 2 is measured by 
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Fig. 2. (Color online.) The extended isovector pairing interaction strength Gext (in 
MeV) fitted by a quadratic function of the mass number A for A = 58–80, from 
which we get Gext = 4.262 − 0.1308A + 0.0013A2 MeV (solid line), where the solid 
dots are obtained from the exact fitting to the binding energy shown in Table 2.

χ2 =
∑18

i=1(BExp, i − BTh, i)
2/17 with χ2 = 0.0354 (MeV)2 , where 

BExp and BTh are experimental binding energy and the corre-
sponding result of this theory, respectively. As shown in Fig. 1, 
δV ee

pn(N, Z) with A = N + Z = 60 +4k for k = 0, 1, · · · , 5 calculated 
from the mean-field plus extended T = 1 pairing model is in good 
agreement with the experimental data. It should be stated that the 
average np-pairing interaction energy δV ee

pn mainly depends on the 
pairing interaction strength Gext of the four nuclei involved, and is 
independent of the constant E0 , while the Coulomb and symmetry 
energy terms used in (22) also affect δV ee

pn a little. As stated previ-
ously, deviation from the experimental data, especially for A = 64

and 68, is mainly due to the small isospin asymmetry in the mir-

ror nuclei concerned. Generally speaking, Gext is a smooth function 
of the number of pairs n, which slightly increases with increasing 
number of nucleon-pairs, except a small decrease for the n = 2

case. The mass-dependent law of the extended isovector pairing 
interaction strength Gext can then be obtained by using a polyno-
mial of A fitting to Gext . The fitting result of a quadratic function 
of the mass number A with A = 58–80 is shown in Fig. 2. Though 
Gext seems fitted by the quadratic function of the mass number 
A quite well, there will be more than 0.5 MeV deviation in the 
average np-pairing interaction energy δV ee

pn if the degree of the 
polynomial Gext(A) is less 8, which is quite similar to the situa-
tion shown in [35,36], where only a reasonable overall agreement 
of the mass differences with experimental data can be provided 
with the simple mass-dependent law G ∝ A−3/4 MeV, indicating 
the average np-pairing interaction energy is very sensitive to the 
isovector pairing interaction strength. The difference of the mass 
dependent law of Gext from that of the standard isovector pairing 
indicates the two models are quite different for n ≥ 3. A small de-
crease in Gext for the n = 2 case is mainly due to the two models 
are quite the same for n ≤ 2.

4. Conclusions

In this work, an extended pairing Hamiltonian that describes 
multi-pair interactions among isospin T = 1 and angular momen-

tum J = 0 nn-, pp-, and np-pairs in a spherical mean-field, such as 
the spherical shell model, is proposed based on the standard T = 1

pairing formalism. Since only a single-variable polynomial equa-
tion is involved, large-scale calculations within the seniority-zero 
symmetric subspace of the model should be feasible, though the 
calculation of the example provided is only within the f5pg9-shell. 
By using the exact solution within the seniority-zero symmetric 
subspace of the model, the average np-pairing interaction ener-
gies in even–even N ∼ Z nuclei with mass number A = 58–80 are 
estimated. Due to the special Bethe ansatz used, only symmetric 
solution of the model with seniority zero can be solved exactly, 
while other solutions of the model still need to be obtained from 

direct diagonalizations, in which the matrix elements of the Hamil-

tonian needed are considerably more complicated than those of 
the standard T = 1 pairing Hamiltonian. Therefore, an algorithm 
based on the quasi-spin O (5) algebra is in demand for investigat-
ing N ∼ Z nuclei systematically, which will be a part of our future 
work. A detailed investigation of the Wigner energy contribution 
to the binding energy and a detailed comparison of the extended 
with the standard isovector pairing model can then be made.
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