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Abstract—Wireless Sensor-Actuator Networks (WSANs) tech-
nology is appealing for use in industrial IoT applications because
it does not require wired infrastructure. Battery-powered wireless
modules easily and inexpensively retrofit existing sensors and
actuators in industrial facilities without running cabling for
communication and power. IEEE 802.15.4 based WSANs operate
at low-power and can be manufactured inexpensively, which
makes them ideal where battery lifetime and costs are important.
Almost a decade of real-world deployments of WirelessHART
standard has demonstrated the feasibility of using its core
techniques including reliable graph routing and Time Slotted
Channel Hopping (TSCH) to achieve reliable low-power wireless
communication in industrial facilities. Today we are facing the
4th Industrial Revolution as proclaimed by political statements
related to the Industry 4.0 Initiative of the German Government.
There exists an emerging demand for deploying a large number
of field devices in an industrial facility and connecting them
through a WSAN. However, a major limitation of current WSAN
standards is their limited scalability due to their centralized
routing and scheduling that enhance the predictability and
visibility of network operations at the cost of scalability. This
paper decentralizes the network management in WirelessHART
and presents the first Distributed Graph routing and autonomous
Scheduling (DiGS) solution that allows the field devices to
compute their own graph routes and transmission schedules.
Experimental results from two physical testbeds and a simulation
study show our approaches can significantly improve the network
reliability, latency, and energy efficiency under dynamics.

Index Terms—Wireless Sensor-Actuator Networks, Industrial
Internet of Things, Graph Routing, Transmission Scheduling

I. INTRODUCTION

The Internet of Things (IoT) refers to a broad vision

whereby things such as everyday objects, places, and environ-

ments are interconnected with one another via the Internet [1].

Until recently, most of the IoT infrastructure and applications

development work by businesses have focused on smart homes

and wearables. However, it is “production and manufacturing”

cyber-physical system (CPS), underlying the 4th generation

of industrial revolution (or Industry 4.0), that presents one

of the largest economic impact potential of IoT [2] – up to

$47 trillion in added value globally by 2025 (according to

McKinsey’s report on future disruptive technologies) [3].

Industrial networks, the underlying support of Industrial IoT

(IIoT), typically connect hundreds or thousands of sensors and

actuators in industrial facilities, such as steel mills, oil refiner-

ies, chemical plants, and infrastructures implementing complex

monitoring and control processes. Although the typical process

applications have low data rates, they pose unique challenges

because of their critical demands for reliable and real-time

communication in harsh industrial environments. Failing to

achieve such performance can lead to production inefficiency,

safety threats, and financial loss. These requirements have

been traditionally met by specifically chosen wired solutions,

e.g., Highway Addressable Remote Transducer (HART) [4],

where cables connect sensors and forward sensor readings to a

control room where a controller sends commands to actuators.

However, wired networks are often costly to deploy and

maintain in industrial environments and difficult to reconfigure

to accommodate new production process requirements.

Wireless Sensor-Actuator Networks (WSANs) technology

is appealing for use in industrial process applications because

it does not require wired infrastructure. Battery-powered wire-

less modules easily and inexpensively retrofit existing sensors

and actuators in industrial facilities without running cabling

for communication and power. IEEE 802.15.4 based WSANs

operate at low-power and can be manufactured inexpensively,

which makes them ideal where battery lifetime and costs

are important. Almost a decade of real-world deployments of

WirelessHART standard [5] has demonstrated the feasibility of

using its core techniques including reliable graph routing and

Time Slotted Channel Hopping (TSCH) to achieve reliable

low-power wireless communication in industrial facilities.

Under graph routing, a packet is scheduled to reach its desti-

nation through multiple redundant paths to enhanced end-to-

end reliability. TSCH requires that all devices in the network

are time synchronized and hop channels to exploit frequency

diversity.

Today we are facing the 4th Industrial Revolution as

proclaimed by political statements related to the Industry

4.0 Initiative of the German Government [6]. There exists

an emerging demand for deploying a large number of field

devices in an industrial facility, e.g., hundreds of devices over

an oil field, and connecting them through a WSAN. However,

a major limitation of current WSAN standards such as Wire-

lessHART is their limited scalability due to their centralized

routing and scheduling that enhance the predictability and

visibility of network operations at the cost of scalability. For

instance, when encountering network dynamics (e.g., node

or link failure, topology change), the centralized Network



Manager (a software module) in a WirelessHART network

has to regenerate the routes and transmission schedule and

then distribute them to all devices, introducing long delay and

large overhead.

Recently, there has been an increasing interest in developing

new distributed scheduling on top of the distributed tree-based

routing protocols proposed in the wireless sensor networks

(WSNs) literature (e.g., RPL [7] and CTP [8]) to replace

the centralized routing and scheduling in industrial WSANs.

For instance, the IETF created the 6TiSCH working group to

standardize how to use an IPv6-enabled upper stack on top of

IEEE 802.15.4e TSCH networks [9]. Duquennoy et al. devel-

oped the Orchestra that allows nodes in the RPL networks to

compute their own schedules [10]. Unfortunately, the stringent

reliability and real-time requirements of industrial applications

distinguish traditional WSNs from industrial WSANs, that

packet lost must become an exception and redundant routes

between a source and a destination are essential to meet

with guaranteed service. Our study shows that the networks

relying on the tree-based routing suffer long repair time and

insufficient reliability when encountering external interference

and node failure.

This paper aims to address the stated scalability and relia-

bility challenges; to our knowledge, it represents the first Dis-

tributed Graph routing and autonomous Scheduling (DiGS)

solution that allows the field devices to compute their own

graph routes and transmission schedules. Specifically, this

paper makes the following contributions:

• We develop a distributed routing protocol that generates

and operates with graph routes by extending RPL, the

routing protocol for low-power IPv6 networks standard-

ized by the IETF ROLL working group, with minimal

changes;

• We design an autonomous scheduling approach that al-

lows the field devices to compute their own transmission

schedule autonomously based on the graph routes;

• We implement our proposed solution and evaluate it on

two physical testbeds located in different cities as well

as a simulator. Experimental results show our approaches

can significantly improve the network reliability and

latency under dynamics.

The remainder of the paper is organized as follows. Sec-

tion II reviews related work and Section III introduces the

background of WirelessHART networks. Section IV presents

our empirical study and Sections V and VI describe the design

of DiGS. Section VII presents the evaluation and Section VIII

concludes the paper.

II. RELATED WORKS

Routing for wireless mesh networks and WSNs have been

studied extensively in the literature. Multipath routing pro-

tocols (e.g., [11]–[15]) are proposed to enhance reliability

by providing a few either node-disjoint or link-disjoint paths

between source and destination. There also exist RPL based

multipath routing protocols (e.g, [16]–[20], which are designed

to balance the traffic load and energy consumption among

nodes in the network. Comparing to these protocols, the graph

routing specified in WirelessHART is designed to achieve high

reliability by providing a high degree of routing redundancy to

the TSCH networks. Its real-world deployments during the last

decade have demonstrated the feasibility of achieving reliable

low-power wireless communication in industrial facilities. Han

et al. [21] and Wu et al. [22] proposed to generate graph

routes in a centralized fashion, while Modekurthy et al.

developed a protocol that generates graph routes distributedly

based on the Bellman-Ford Algorithm [23]. In this paper, we

develop the distributed graph routing protocol by extending the

widely used RPL, integrate it with an autonomous scheduling

approach, and demonstrate their performance when encounter-

ing network dynamics through extensive experiments on two

physical testbeds.

There has been increasing interest in studying transmission

scheduling for time-critical process monitoring and control

applications over WirelessHART networks [24]–[27]. All these

scheduling solutions designed to work with graph routing

are centralized solutions which are designed to run on the

centralized Network Manager. There also exists research on

developing distributed scheduling for RPL networks [10],

[27]–[32]. For instance, Duquennoy et al. developed the Or-

chestra that allows nodes in the RPL networks to compute

their own schedules [10]. The IETF created the 6TiSCH

working group to standardize how to use an IPv6-enabled

upper stack on top of IEEE 802.15.4e TSCH networks [9].

However, our study shows that the network running RPL

suffers long repair time and unsatisfactory reliability when

encountering external interference and node failure. Another

recent research direction is synchronous transmissions [33]–

[37]. However, synchronous transmissions always require a

centralized node to manage the synchronous transmissions.

In contrast to the existing work, this paper presents the first

autonomous scheduling approach that allows the field devices

to compute their own schedule autonomously based on the

graph routes.

III. BACKGROUND OF WIRELESSHART NETWORKS

As shown in Figure 1, a WirelessHART network consists

of a gateway, multiple access points, and a set of field

devices (i.e., sensors and actuators) forming a multi-hop mesh

network. The access points and field devices are equipped

with half-duplex omnidirectional radio transceivers compatible

with the IEEE 802.15.4 physical layer [38]. The multiple

access points are wired to the gateway and provide redun-

dant paths between the wireless network and the gateway. A

WirelessHART network is managed by a centralized Network

Manager. The Network Manager, a software module running

on the gateway, is responsible for collecting the topology

information from the devices, determining the routes and

transmission schedule of the network, and disseminating them

to all devices. WirelessHART adopts the centralized routing

and scheduling that enhance the predictability and visibil-

ity of network operations at the cost of scalability. When

encountering dynamics (e.g., node or link failure, topology





Fig. 4. CDF of repair time when the network encounters interference.

Fig. 5. PDR during the repair when the network encounters interference with
different number of jammers.

all devices triggered by the events such as network topology

changes and node/link failure. As showed in Figure 3, the

Network Manager, running on a Dell Linux laptop with a

2.8 GHz Intel Core E3-1505M, spends 203s and 506s for

Half Testbed A and Full Testbed A and 191s and 443s for

Half Testbed B and Full Testbed B on reacting to network

dynamics. These results illustrate the centralized routing and

scheduling adopted by WirelessHART are insufficient for fast

response to network dynamics since the network during the

update has to operate under compromised routes and schedule

leading to degraded performance.

Orchestra runs on top of RPL and schedules the transmis-

sions in a distributed fashion. Figure 4 shows the cumulative

distribution function (CDF) of the repair time used by Or-

chestra to update routes and transmission schedule when the

network encounters the controlled interference generated by

1∼4 jammers running JamLab [41]. We repeat the experiments

three times under each setting. The network repair time ranges

from 20s to 95s (median: 45s) when the jammers generate

signals emulating WiFi data streaming traffic1. We use the end-

to-end packet delivery rate (PDR) as the metric for network

reliability. The PDR of a data flow is defined as the percentage

of packets that are successfully delivered to their destination.

Figure 5 shows the PDRs of 8 data flows during the repair

when 1∼4 jammers are present in the network. Low median

PDRs (0.9, 0.87, 0.845, and 0.825) and large variations are

observed in Figure 5. We observe similar results when using

JamLab to generate jamming signals emulating Bluetooth.

Orchestra requires much shorter repair time compared to

1Co-existence of WSAN devices and WiFi is common in industrial deploy-
ments since WiFi is often used as backhauls to connect multiple WSANs.

WirelessHART and achieves high averaged delivery rates

in clean environments [10], making it a good networking

solution for many real-time applications. However, the repair

time is still too long and its performance when encountering

interference needs to be enhanced for those reliability-critical

industrial WSANs that packet lost must become an exception

to meet with guaranteed service. Our work is therefore an

alternative approach that is complementary to Orchestra for

reliability-critical industrial WSANs and further enhances the

network reliability under network dynamics by developing

new distributed graph routing and autonomous scheduling

approaches.

V. DISTRIBUTED GRAPH ROUTING

In this section, we first describe some terminologies and

then introduce our distributed graph routing protocol that

generates and operates with graph routes. Our protocol is

extended from RPL [7], which is an oriented distance-vector

routing protocol developed for low-power IPv6 networks and

standardized by the IETF ROLL working group. Under RPL,

nodes are organized in a Destination-Oriented DAG (DODAG)

structure and the DODAG is rooted at the border router node

(Internet access point). Each node is attached a rank, i.e., its

distance to the root using a cost function (e.g., the expected

transmission count (ETX) metric), and sends a packet towards

the root by forwarding it to a neighbor node with a smaller

rank. The routes generated by RPL are not graph routes since

each node only has a single preferred parent in the parent set to

which it sends packets. It is to be noted that RPL also allows to

use multiple parents if those parents are equally preferred and

have identical rank, while our protocol assigns two preferred

parents to each node as default routes and builds the routing

graph following the specification of WirelessHART2.

Directed Acyclic Graph (DAG): In a DAG, all links are

oriented in such a way that no cycle exists. All links selected

for routing orient toward or terminate at the access points.

Basically the DAG begins at the leaf nodes and ends at

the access points which can ensure messages to be safely

delivered to the destination without any cycle. The graph

routes generated by our protocol form a DAG.

Best Parent and Second Best Parent: Each node has a best

parent and a second best parent. The best parent locates on

the primary path from the node to the access points with the

smallest accumulated ETX. The path through the second best

parent has the second smallest accumulated ETX and serves

as a backup route.

Rank: Each node has a rank. All access points set their ranks

to 1 and a field device sets its rank by increasing its best

parent’s rank by 1.

2In this paper, we focus on illustrating the generation of the uplink graph
(from the field devices to the access points). Other graphs such as downlink
graph and broadcast graph can be generated following the same method.



Weighted ETX: The weighted ETX (ETXw) of a node is

a cost function quantifying the distance to the access points

through two routes:

ETXw = ω1 ∗ ETXabp + ω2 ∗ ETXasbp (1)

where ETXabp is the accumulated ETX to the access point

through the best parent and ETXasbp is the accumulated ETX

through the second best parent. ω1 and ω2 are two weighting

factors defined as:

ω1 = 1− (1− 1/ETXbp)
2 (2)

ω2 = (1− 1/ETXbp)
2 (3)

where ETXbp denotes the ETX between the node and its best

parent. According to WirelessHART, the transmission and first

retransmission of a packet are scheduled through the primary

route, while the second retransmission is scheduled through

the backup route. Therefore, ω1 represents the probability of

a successful packet delivery during the first two transmission

attempts and ω2 represents the probability of the first two

attempts fail.

Join-in Message: All nodes in the network broadcast the

join-in messages periodically allowing new nodes to join the

network. The join-in message contains the rank and ETXw

of the node.

Joined-callback Message: Once a node selects its best or

second best parent, it sends a joined-callback message to the

selected node to inform the selection.

Our distributed graph routing algorithm is presented in

Algorithm 1 which runs on the access points and field devices

to construct the routing graph towards the access points. When

a network starts, all access points initialize their rank to 1 and

ETXw to 0 and then begin to broadcast the join-in messages.

The rest nodes set their rank and ETXw to infinity. When

a node receives the join-in messages from other nodes, it

selects its best parent and second best parent based on the

accumulated ETX values and then sets its rank by increasing

its best parent’s rank by 1. After joining the network, the node

begins to broadcast the join-in messages.

The routing graph building procedure begins from the access

points until reaching all leaf nodes. Each node selects its

best and second best parents, as required by WirelessHART,

towards the access points according to the accumulated ETX

values. It is important to note that the initialized ETX be-

tween two nodes are determined by the Received Signal

Strength (RSS). We empirically set RSSmin = −90dBm and

RSSmax = −60dBm. If the RSS value is larger than -60

dBm, the ETX is set to 1. If the RSS value is smaller than

-90 dBm, the ETX is set to 3. The ETX in between is scaled

proportionally between 1 and 3. The ETX value gets penalized

if a transmission error occurs (e.g., no ACK).

A node runs the Algorithm 1 when it receives a join-in

message. The Trickle algorithm [42] is used to control the

generation of the join-in messages. A timer varying from Imin

to Imax is used to control the internal between two consecutive

join-in messages. Specifically, the Trickle algorithm uses Imin

Algorithm 1: Distributed Graph Routing Algorithm

//Table I shows the notations

Input : RootID, NodeID

Output: RouteTable

RouteTable← NULL;

ETXw(NodeID) = Rank(NodeID) =∞;

if NodeID == RootID then
//access point

Set Rank = 1 and ETXw = 0;

Broadcast join-in messages;
end

if Rank(NodeID) ==∞ and NodeID! = RootID
then

//field device receives the first join-in message from i
Set ETXa(NodeID, i) =
ETX(NodeID, i) + ETXw(i);

Set message sender as its best parent;

Set ETXmin = ETXa(NodeID, i);
Set Rank(NodeID) = Rank(i) + 1;

Send joined-callback messaget;
end

if Rank(NodeID)! =∞ and NodeID! = RootID then
//field device receives the non-first join-in message

from i
Set ETXa(NodeID, i) = ETX(NodeID, i) +

ETXw(i);
if ETXa(NodeID, i) < ETXmin then

Set its best parent as the second best parent;

Set message sender as its best parent;

Set ETXmin = ETXa(NodeID, i)
Set Rank(NodeID) = Rank(i) + 1;

Send joined-callback message;
end

if ETXa(NodeID, secondbestparent) >
ETXa(NodeID, i) >= ETXmin and

Rank(i) < Rank(NodeID) then
Set message sender as second best parent;

Send joined-callback message;
end

ETXw(NodeID) =
ω1 ∗ ETXa(NodeID, bestparent) + ω2 ∗
ETXa(NodeID, secondbestparent);

Broadcast join-in message;
end

if Receive joined-callback message then
Update RouteTable and add the message sender as a

child;
end



TABLE I
NOTATIONS USED IN ALGORITHM 1.

Symbol Description
ETXw(i) Weighted ETX from node i to access points
ETXa(i, j) Accumulated ETX from node i to access points

through node j
ETX(i, j) ETX between node i and j
ETXmin(i) Min accumulated ETX from node i to access points
Rank(i) Rank of node i

(a) Network Topology. (b) Graph Routes.

Fig. 6. Example of the route generation.

as the first interval and then doubles the size of the interval

until it reaches Imax. If a node detects a change of its own

best parent or second best parent, it resets its Trickle timer to

Imin to quickly update its ETXw and rank to its neighbors.

The Trickle algorithm dynamically scales the interval length

to enable fast yet low cost updates on ETXw and rank.

A. Routing Example

Figure 6 shows an example with two access points and

four field devices. The dash lines in Figure 6(a) denotes the

links with the ETX values. When the network starts, AP1

and AP2 broadcast their rank and ETXw. #5 selects AP1

as its best parent and AP2 as its second best parent since

ETXa(5, AP1) is smaller than ETXa(5, AP2). Similarly, #6

selects AP2 as its best parent and AP1 as its second best

parent. Both #5 and #6 set their ranks to 2 and begin to

broadcast the join-in messages. The link between #5 and #6

is not selected for routing since #5 and #6 have the same

rank. This design is used to avoid loops. #4 selects #6 as its

best parent since ETXa(4, 6) has the smallest value and sets

its rank to 3. #3 compares ETXa(3, 4) with ETXa(3, 5) to

determine the best and second best parents. Figure 6(b) shows

the generated graph routes. The solid lines represents the

primary paths (#3→#4→#6→AP2 and #5→AP1) and the dash

lines represents the backup routes (#3→#5, #4→#5, #5→AP2,

and #6→AP1).

VI. AUTONOMOUS SCHEDULING

In this section, we introduce our autonomous transmission

scheduling approach that allows the field devices to compute

their own transmission schedule autonomously based on the

graph routing presented in Sections V. Our scheduling ap-

proach has the salient feature that requires no schedule negoti-

ation or sharing among neighboring nodes, which significantly

reduces the communication overhead.

Following the suggestion in Orchestra, we separate the

network traffic into three types: synchronization traffic, routing

traffic, and application traffic. The EBs are used for time

synchronization thus belong to the synchronization traffic. The

join-in and joined-callback messages used to select parents are

part of the routing traffic. The packets containing application

data belong to the application traffic. Three slotframes with

different periods are designed to carry different types of traffic.

Under our scheduling approach, each node first generates three

schedules following the slotframes based on its node id (e.g.,

MAC address), traffic demand, and routing table and then

combines them into a single schedule to execute at runtime.

Here are the key scheduling rules of our approach:

Use of Dedicated and Shared Slots: To achieve determinis-

tic behavior, the synchronization and application traffic uses

the contention-free dedicated slots, while the routing traffic

employs the shared slots to accommodate network topology

changes.

Assigning Slots for Synchronization: When a node attempts

to join the network, it first snoops the channel to capture an

EB from its neighbors. A captured EB allows a joining node

to synchronize its clock and learn the transmission schedule

currently used in the network. After the synchronization, the

node selects its best and second best parents as presented in

Sections V. Under our scheduling approach, the node i uses

the ith slot in the synchronization slotframe to broadcast EB

and jth slot to receive EB from its best parent (node j).

Assigning Slots for Routing: A fixed, shared slot in the

routing slotframe is assigned for all nodes to exchange routing

related packets including the join-in and joined-callback mes-

sages. All nodes in the network use the same time slot offset

for the routing traffic.

Assigning Slots for Application: According to Wire-

lessHART, multiple transmission attempts are scheduled for

each packet through its primary and backup routes. The node’s

packet transmission and reception schedules are determined by

its unique node id (NodeID) and parent-child relationship.

Under our scheduling approach, a node uses the sth time slot

in the application slotframe for the pth transmission attempt:

s = A ∗ (NodeID −NAP )−A+ p (4)

where A denotes the total number of transmission attempts for

each packet and NAP denotes the number of access points.

Schedule Combination: After generating the three individual

schedules, the node then combines them to a single one for

execution at runtime. To resolve slot assignment conflict dur-

ing the combination, we assign different priorities to different

types of traffic. The most critical synchronization traffic has

the highest priority, while the application traffic has the lowest



(a) Graph routes in the example.

(b) Synchronization Schedule.

(c) Routing Schedule.

(d) Application Schedule.

(e) Combined Schedule

Fig. 7. Three schedules for different traffic and combined schedule.

priority. The schedule for traffic with lower priority yields

during the combination. It is important to note that no traffic

is constantly blocked since the three slotframes have different

periods.

Section VI-A uses an example to illustrate the scheduling

process and Section VI-B analyzes the performance.

A. Scheduling Example

Figure 7 illustrates our scheduling approach. Figure 7(a)

shows the graph routes (primary paths: #3→#1, #4→#2;

backup paths: #3→#2, #4→#1). In the example, the periods

of the synchronization, routing, and application schedules

(slotframe lengths) are assumed to be 61, 11, and 7 time slots,

respectively. The combined schedule has 61 ∗ 11 ∗ 7 = 4697

time slots in total. As Figure 7(b) showed, node #3 uses the

third time slot to transmit its EB and receive the EB from

its best parent in the first slot. Figure 7(c) shows the routing

schedule which assigns the first slot for routing and Figure 7(d)

shows the application schedule which deliveries a packet from

#3 and a packet from #4 to the access points in every 7

time slots. Figure 7(e) shows the combined schedule. There

exist conflicts during the combination. Each node resolves

the conflicts locally. For example, #1 and #3 use the first

slot for the synchronization traffic with highest priority in

their combined schedule, while #2 and #4 use the slot for

routing3. It is important to note that each node generates its

combined schedule only based on local information requiring

no schedule negotiation or sharing from its neighbors, which

represents an important feature of our approach.

B. Performance Analysis

Under our scheduling approach, each slotframe repeats at

a constant period and the transmission behavior is equivalent

to Orchestra. The synchronization and application traffic using

dedicated slots is by design contention-free, while the routing

traffic utilizing shared slots has a contention probability:

pc(routing) =

{

1− e−T∗L/N , if L ≥ N

1− e−T , otherwise
(5)

where T , N , and L denotes the average traffic load on the

slot under a Poisson distribution, the number of nodes in the

network, and the slotframe length. Here, for simplicity, we

assume a simple network of N nodes, all connected to each

other, and a single slotframe.

The probability of a slotframe A to be skipped due to a

conflict with any other slotframe during the combination is:

pskip(A) = 1− (
∏

∀B∈SF,Bpri>Apri

(1− p(confA,B))) (6)

where SF denotes the set of all slotframes in the network,

Bpri denotes the priority of B, and p(confA,B) denotes the

event of a given slot in A conflicting with any slot in B.

As reported in Orchestra, the probability of an application or

routing slotframe to be skipped is expected to be very low

in practice since the synchronization period determined by

the hardware clock drift is much longer than the routing and

application periods and the routing traffic is actually controlled

by the Trickle algorithm. Our experimental results also confirm

this and show high PDRs.

VII. EVALUATION

We have implemented our solution (DiGS) in Contiki [43],

an open source operating system for IoT, and evaluated it in

three aspects: end-to-end reliability, end-to-end latency, and

the energy consumption per received packet. To demonstrate

the feasibility of our solution, we repeat the experiments

on two physical testbeds located in the campuses of the

3Although the slot is assigned for routing, whether using it or not at runtime
is controlled by the Trickle algorithm as discussed in Section V.





(a) CDF of PDR. (b) CDF of latency. (c) CDF of power consumption per received
packet.

Fig. 10. Performance under DiGS and Orchestra when the network encounters interference on Testbed B.

(a) PDR of each data flow. (b) A micro-benchmark measurement on the packet
delivery success rate among 8 flows on Testbed A.

(c) CDF of power consumption per received packet.

Fig. 11. Performance under DiGS and Orchestra when the network encounters node failure on Testbed A.

only 12.5% under Orchestra provide that. More importantly,

DiGS delivers a significant improvement over Orchestra in the

worst-case PDR (from 76.0% to 90.3%), which represents a

significant advantage in industrial applications that demand

high reliability in harsh industrial facilities. The higher PDRs

provided by DiGS under interference benefit from the route

diversity offered by the graph routing.

As Figure 9(b) showed, DiGS reduces the median latency

from 917.5ms to 601.3ms and averaged latency from 1214.1ms

to 649.5ms compared to Orchestra. The reduced latency pro-

vided by DiGS represents a significant advantage in industrial

applications allowing it to employ control loops with tighter

deadlines. Moreover, as shown in boxplots Figure 9(c) and

Figure 9(d), DiGS achieves a smaller variation of latency than

Orchestra, which represents another significant advantage in

industrial applications that demand predictable performance.

This result shows that DiGS employing the distributed graph

routing is indeed more resilient to interference thanks to route

diversity. Figure 9(e) shows the CDF of power consumption

per received packet under DiGS and Orchestra5. DiGS pro-

vides an average of 0.056mW decrease in power consumption

per received packet compared to Orchestra. Although the

idle listening overhead introduced by DiGs leads to moderate

increases in total energy consumption, the slight increases in

power consumption are in exchange for a significant improve-

ment on reliability, resulting in an overall reduction on power

consumption per received packet. Figure 9(f) plots a micro-

benchmark measurement on the packet delivery success rate

among 8 data flows between the 74th and 84th packets are

forwarded in the network. When encountering the controlled

interference, 3 flows lose the 75th, 76th, and 77th packets

5We only consider the power consumed by the radio and estimate it based
on the timestamps of radio activities and the radio’s power consumption in
each state according to the CC2420 data sheet [47]

when running Orchestra. Those flows recover from the packet

lost and successfully deliver the 78th, 80th, and 82th packets,

respectively. Orchestra consumes 35s to recover from inter-

ference by updating the routing and scheduling, while DiGS

provides seamlessly packet delivery during the process.

Similar gains are seen for DiGS on Testbed B. As Fig-

ure 10(a) showed, under the configuration of 6 data flows,

DiGS achieves a worst-case PDR of 93.2%, a median PDR of

94.5%, and a 90th percentile PDR of 97.7%, outperforming

Orchestra by 7.6%, 5.2%, and 4.7%, respectively. As shown

in Figure 10(b), the improvements offered by DiGS in worst-

case latency and median latency are 213.0ms and 232.7ms,

respectively. As Figure 10(c) showed, DiGS also provides

higher energy efficiency when encountering interference over

Orchestra (i.e., 0.057mW decrease in the power consumption

per received packet), resulting from the significant improve-

ment on reliability.

B. Performance with Node Failure

We also explored DiGS’s performance with node failure by

turning off 4 nodes on the routing graph in turn. We repeat the

experiments for 34 times. Figure 11 shows the performance

comparison between DiGS and Orchestra when the network

encounters node failure on Testbed A. As Figure 11(a) showed,

6 of the total 8 data flows becomes completely disconnected

under Orchestra after the nodes fail, while all flows still

achieve a 100% PDR under DiGS.

Figure 11(b) plots a micro-benchmark measurement on the

packet delivery success rate among 8 data flows when a node

suddenly fails. 6 data flows are affected and lose the 34th
packet and then recover after 10s when running Orchestra,

while DiGS successfully delivers all packets through backup

routes. As Figure 11(c) showed, DiGS survives node failure

without losing any packet and achieves a 9.01mW decrease

on power consumption per received packet compared to Or-



(a) CDF of PDR. (b) CDF of latency. (c) CDF of radio duty cycle per received packet.

Fig. 12. Simulation with 150 nodes in Cooja Simulator.

Fig. 13. Network initialization time comparison between DiGS and Orchestra.

chestra. As shown in Figure 11, DiGS provides significant

improvements on failure tolerance and energy efficiency over

Orchestra, which are critical properties for industrial applica-

tions.

C. Network Initialization

To study the efficiency of DiGS to initialize the network, we

measure the time duration of each node joining the network

(i.e., between the network start and each node synchronizing

with the network and setting its preferred parents). Figure 13

shows the CDF of joining time of 50 nodes on Testbed A under

DiGS and Orchestra. DiGS does result in a slight increase in

network initialization time (from 23.0s to 24.1s) compared to

Orchestra as a result of one more preferred parent selected by

each node to construct the network. The averaged joining times

of 50 nodes are 15.4s and 14.3s under DiGS and Orchestra,

respectively. The slight increases in network initialization

are in exchange for moderately enhancing the reliability and

latency when the network encounters interference and node

failure. This tradeoff makes DiGS well-suited for industrial

applications running in dynamic environments with critical

performance demands.

D. Simulation Study with 150 Nodes

To explore DiGS’s performance at a larger scale, we perform

a simulation study using the Cooja simulator. In the simula-

tions, 150 nodes and two access points are placed in a 300m

X 300m area. We run simulations with 300 flow sets, each of

which contains 20 data flows that have different sources and

destinations. Each source node generates a packet in every 10

seconds. 5 Cooja disturber nodes are configured to turn on and

off in every 5 minutes to interfere nearby links.

Figure 12 shows the performance under DiGS and Orches-

tra when the network encounters interference. Figure 12(a)

presents the CDF of PDR. On average, DiGS achieves 16.3%

higher PDR than Orchestra. In addition, 53.0% of the flow

sets under DiGS achieve PDRs higher than 95.0%, while only

11.0% under Orchestra provide that. Moreover, DiGS delivers

a significant improvement over Orchestra in the worst-case

PDR (from 86.7% to 63.0%). As Figure 12(b) showed, DiGS

reduces the median latency from 1950.0ms to 1560.0ms and

averaged latency from 2068.6ms to 1565.7ms compared to

Orchestra. DiGS improves the reliability and latency under

interference at the cost of slight increases on the radio duty

cycle. As shown in Figure 12(c), DiGS suffers an average

of 0.056% increase on radio duty cycle per received packet

over Orchestra. The slight increases in duty cycle per received

packet are in exchange for a critical improvement on reliability

and latency.

VIII. CONCLUSIONS

The “production and manufacturing” CPS, underlying the

Industry 4.0, that presents one of the largest economic impact

potential of IoT. IEEE 802.15.4 based WSANs are appealing

for use in industrial IoT applications since they operate at

low-power and can be manufactured inexpensively. Almost a

decade of real-world deployments of WirelessHART standard

has demonstrated the feasibility of using its core techniques

including reliable graph routing and TSCH to achieve reliable

low-power wireless communication in industrial facilities.

However, a major limitation of current WSAN standards

is their limited scalability due to their centralized routing

and scheduling that enhance the predictability and visibility

of network operations at the cost of scalability. This paper

decentralizes the network management in WirelessHART and

presents the first distributed graph routing and autonomous

scheduling solution that allows the field devices to compute

their own graph routes and transmission schedules. Experi-

mental results from two physical testbeds and a large-scale

simulation show our solution provides significant improvement

on network reliability, latency, energy efficiency, and failure

tolerance under dynamics, critical properties for industrial

applications, over state of the art at the cost of slightly higher

power consumption and longer network initialization.
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