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Abstract: In this article, we define operator algebras internal to a rigid C*-tensor cat-
egory C. A C*/W*-algebra object in C is an algebra object A in ind-C whose cate-
gory of free modules FreeMod¢ (A) is a C-module C*/W*-category respectively. When
C = Hilbsg, the category of finite dimensional Hilbert spaces, we recover the usual
notions of operator algebras. We generalize basic representation theoretic results, such
as the Gelfand-Naimark and von Neumann bicommutant theorems, along with the GNS
construction. We define the notion of completely positive morphisms between C*-
algebra objects in C and prove the analog of the Stinespring dilation theorem. As an
application, we discuss approximation and rigidity properties, including amenability,
the Haagerup property, and property (T) for a connected W*-algebra M in C. Our defi-
nitions simultaneously unify the definitions of analytic properties for discrete quantum
groups and rigid C*-tensor categories.
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1. Introduction

Algebras of operators on Hilbert space were first introduced to give a rigorous mathemat-
ical understanding of quantum mechanics. Of particular importance are von Neumann
algebras (W*-algebras) and C*-algebras, introduced by von Neumann [MvN43] and
Gelfand-Naimark [GN43] respectively. Later on, abstract algebraic characterizations of
C*- and W*-algebras were given, which make no reference to underlying Hilbert spaces.
Operator algebras have seen important applications to many branches of mathematics,
including representation theory, conformal and quantum field theory, and most recently
topological phases of matter.

Classically, the symmetries of a mathematical object form a group. In recent decades,
we have seen the emergence of quantum mathematical objects whose symmetries form
a group-like object called a tensor category. Two important examples of such objects
are quantum groups and subfactors, which are said to encode quantum symmetry.

The modern theory of subfactors began with Jones’ landmark result in [Jon83] show-
ing that the index of a II; subfactor lies in the set {4 cos? (n/n)|n > 3} U [4, oo]. We
study a finite index subfactor N € M by analyzing its standard invariant, which has
a number of different axiomatizations. In finite depth, we have Ocneanu’ paragroups
[Ocn88,EK98], and in the general case, we have Popa’s A-lattices [Pop95] and Jones’
planar algebras [Jon99]. We may also view the standard invariant as the rigid C*-tensor
category whose objects are the bifinite N — N Hilbert bimodules generated by L(M)
and whose morphisms are bounded N — N bilinear intertwiners, together with the dis-
tinguished Frobenius algebra object L?(M).

We are currently seeing the emergence of new mathematical objects that
encode enriched quantum symmetry, including superfusion categories [DGNO10,BE16,
BGH+16,Ush16], tensor categories enriched in braided tensor categories [Kel05,MP17],
para planar algebras [JL17], and anchored planar algebras in braided pivotal categories
[HPT16b]. To understand these notions from an operator algebraic framework, we must
develop a theory of enriched operator algebras, or operator algebras internal to a rigid
C*-tensor category.
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In turn, these enriched operator algebras give a uniform approach to analytic prop-
erties, like amenability, the Haagerup property, and property (T), for discrete groups,
(discrete) quantum groups, subfactors [Pop99], and rigid C*-tensor categories [PV15].

1.1. Algebras in monoidal categories and module categories. Suppose C is a semi-
simple monoidal category enriched in Veciy, the category of finite dimensional vector
spaces. A unital algebra in C is an object a € C together with morphisms i : 1¢ — a
and m : a ® a — a which satisfy unit and associativity axioms. It is easy to see that
the category of algebras in C with algebra morphisms is equivalent to the category of
lax monoidal functors C°? — Vecsq with lax monoidal natural transformations via the
Yoneda embedding a — C(-, a).

However, we want to generalize all algebras, including infinite dimensional ones. To
do so, we replace C with Vec(C), the category of linear functors C°? — Vec, where Vec
denotes the category of all vector spaces. There is a natural notion of tensor product of two
such functors akin to the Day convolution product [Day70]. (In fact, Vec(C) is equivalent
to the ind-category of C.) Again, we have an equivalence of categories between algebra
objects in Vec(C) and lax monoidal functors C°P — Vec. An ordinary complex algebra
A now corresponds to the involutive lax monoidal functor A : C = VeCfoé) — Vec
sending C to A.

A common theme in mathematics is trading an object for its representation theory.
For example, the Gelfand transform allows us to trade a unital commutative C*-algebra
A for its compact Hausdorff topological space of algebra representations A — C. In
this sense, we think of C*-algebras as encoding non-commutative topology.

For each ¢ € C, we write ¢ = C(-, ¢) for its image under the Yoneda embedding.
We may trade our algebra object A € Vec(C) for its category FreeMod¢(A) of free
modules in Vec(C), whose objects are right A-modules of the form ¢ ® A for ¢ € C,
and whose morphisms are right A-module morphisms. References for the free module
functor include [KO02,BN11,HPT16a]. Notice that FreeMod (A) carries the structure
of a left C-module category. We may now recover the algebra structure on A from the
category FreeMod(A) with its distinguished base-point A by the Yoneda lemma, or
the internal hom construction, since for each ¢ € C, we have a canonical isomorphism

A(c) = Homyee)(e, A) = HompreeModc (a) (€ ® A A).
Yoneda

Thus the category algebra objects A € Vec(C) is equivalent to the category of left
C-module categories M with distinguished basepoint m € M and whose objects are
of the form ¢ ® m for ¢ € C. We call such a left C-module category cyclic. Usually
this result is stated as a correspondence between Morita classes of algebras and left C-
module categories without basepoints. Remembering the basepoint allows us to recover
the actual algebra, not just its Morita class.

1.2. x-Algebras and operator algebras. More structure on C is needed to define a *-
structure on an algebra object A € Vec(C). An involutive structure on C is an anti-tensor
functor (~, v, ¢, r) : C — C where ~ is an anti-linear functor, v, : @ ® b—>bRa
is a family of natural isomorphisms, ¢ : =~ = id is a monoidal natural isomorphism,
and r : 1o — 1¢ is a real structure, all of which are compatible (see Sect. 2.2 for more
details). Given an involutive structure on C, we define a x-algebra object in Vec(C) to
be an involutive lax monoidal functor C°? — Vec.
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Algebras in A € Vec(C) Cyclic C-module categories

Trivial algebra 1 =C(-,1¢) € Vec(C) Trivial cyclic C-module category (C,1¢)
Algebra natural transformation A = B | Cyclic C-module functor (M, m) — (N, n)
Endomorphism algebra L(V) Cyclic C-module generated by V € Vec(C)
Representation A = L(V) Cyc. C-mod. functor (M, m) — (Vec(C), V)

Fig. 1. Morita correspondence between algebra objects and cyclic module categories

Hilbert spaces provide a natural context to discuss representations of x-algebras and
operator algebras. This has two important consequences.

First, to define an operator algebra internal to an involutive tensor category, we restrict
our attention to bi-involutive tensor categories [HP15], which have a dagger structure
compatible with the involutive structure. (In the graphical calculus for tensor categories,
one thinks of the involutive structure as reflection about the y-axis and the dagger struc-
ture as reflection about the x-axis. The bi-involutive condition is that these reflections
commute.) In this article, we focus completely on the case when C is a rigid C*-tensor
category with simple unit object. While there should be interesting results using arbitrary
bi-involutive categories, our most important results rely on objects of C being dualizable,
and on the fact tha we may equip each morphism space C(a, b) with the structure of a
finite dimensional Hilbert space.

Our Morita correspondence above in Fig. 1 restricts to an equivalence of categories
between *-algebras in Vec(C) and cyclic C-module dagger categories. Using this finer
correspondence, we say that a x-algebra object A € Vec(C) is a C*-algebra object
precisely when the dagger category FreeMod¢(A) is a C*-category. This definition is
similar in spirit to the fact that being a C*-algebra is merely a property of a complex
x-algebra, not extra structure. There is an obvious analogous definition for a W*-algebra
object, which again is a property of a x-algebra object. (See Fig. 2.)

The second consequence is that to represent a x-algebra object A € Vec(C), we need
the notion of a Hilbert space objectin C. As with vector spaces, we replace the category of
Hilbert spaces Hilb with Hilb(C), the category of linear dagger functors H : C°? — Hilb
with bounded linear natural transformations. This means if H, K € Hilb(C), a natural
transformation 6 = (0.).cc : H = K is a morphism in Hompjjpcy (H, K) if and only if

sup |6, : H(c) — K(c)|| < oo.
ceC

Notice that in this case, the adjoint 6* : K = H exists, and Hilb(C) is a W*-category.
Whereas Vec(C) is merely involutive, Hilb(C) is bi-involutive, as the dagger structure
is compatible with the involutive structure.

Given a Hilbert space object H € Hilb(C), there is a canonical W*-algebra object
B(H) € Vec(C) given by the internal hom; we have natural isomorphisms

BH)(a) = Homyecc)(a, B(H)) = Hompyjpc)(a ® H, H).
Yoneda

We prove many of the basic operator algebra theorems for operator algebras in C.
Theorem A (Gelfand-Naimark). Given any C*-algebra object A € Vec(C), there is
a Hilbert space object H € Hilb(C) and a faithful x-algebra natural transformation
0 : A= BH).

We also have a notion of a state on A and a version of the GNS construction.
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*-Algebras in A € Vec(C) Cyclic C-module dagger categories

*-Algebra nat. trans. Cyclic C-module dagger functor

C*-algebra object Cyclic C-module C*-category

WH*-algebra object Cyclic C-module W*-category

WH*-algebra object B(H) Cyc. C-mod. W*-cat. generated by H € Hilb(C)
*-Algebra representation into B(H) | Cyclic C-module dagger functor into (Hilb(C), H)
Normal *-algebra nat. trans. Normal cyclic C-module dagger functor

Fig. 2. Correspondence between s-algebra objects and cyclic module dagger categories

Given two C*-algebra objects A, B € Vec(C), a *-natural transformation 6 : A = B
is called completely positive if for every ¢ € C, the induced linear x-map

Oewc EndFreeModc(A) (C®A c®A) — EndFreeModC(B) (c®B,c®B)

maps positive elements to positive elements (note that both of these endomorphism
algebras are C*-algebras). Since the categories of free A /B-modules admits finite direct
sums, positivity on C implies complete positivity of the maps 6:g.

Theorem B (Stinespring dilation). Suppose 6 : A = B(H) is unital completely positive.
Then there is a Hilbert space object K € Hilb(C), a *-algebra natural transformation
7w : A = B(K), and an isometry v : H = K such that 6 = Ad(v) o w as x-natural
transformations.

We can also define the notion of the commutant of a x-algebra object A € Vec(C)
in a given representation. To do so, we pass to the corresponding C-module dagger
categories. A representation 7 : A = B(H) gives us a C-module dagger functor 7 :
FreeModg(A) — Hilb(C) sending A to H. We define the commutant of a cyclic left
C-module dagger subcategory M C Hilb(C) with basepoint H to be the cyclic right
C-module dagger subcategory M’ C Hilb(C) with basepoint H whose morphism space
M H® ¢, H® d) is the space of all f € Hompjjpc)(H ® ¢, H® d) which commute
with all morphisms from M:

fH®c—> HQ®d|foralla,beCandg € M(a® H,b® H), =

(I

a H ¢ a H ¢

We similarly define the commutant of a cyclic right C-module dagger subcategory of
Hilb(C) with basepoint H as a left C-module dagger subcategory. Thus the bicommutant
of a left C-module dagger category is again a left C-module dagger category, which
allows us to take the bicommutant of an algebra object in Vec(C).

Theorem C (von Neumann bicommutant). Given a cyclic left C-module dagger sub-
category M C Hilb(C) with basepoint H, the weak*-closure of M is equivalent to its
bicommutant M". Thus if M € Vec(C) is a W*-algebra object and w : M = B(H)
is a faithful normal *-algebra natural transformation, we have a *-algebra natural
isomorphism M = M.
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Operator algebras in Hilbgy Operator algebras in C

C*-algebra A C*-algebra object A € Vec(C)
+#-homomorphism A — B +-algebra n.t. A = B

Hilbert space H Hilbert space object H € Hilb(C)

C*-algebra B(H) C*-algebra object B(H) € Vec(C)
Representation A — B(H) *-Algebra n.t. A = B(H)

c.p. map A — B *-n.t. 0 : A = B such that Ozg. is positive for all ¢ € C
State p: A — C State p : A(lg) — C

von Neumann algebra M WH*-algebra object M € Vec(C)

Trivial algebra C Trivial algebra object 1 € Vec(C)
Representation M — B(H) | normal x-algebra n.t. M = B(H)
Commutant M’ N B(H) Commutant W*-algebra object M’ € Vec(C)
B(H) =C B(H) =1

W*-completion A” C B(H) | W*-algebra object A” € Vec(C)

Fig. 3. Analogy between ordinary operator algebras and operator algebras in C. We use the shorthand ‘n.t.’
for natural transformation and ‘c.p.” for completely positive

To prove these results, we bootstrap from the ordinary theory of operator algebras,
which is the case C = Hilbig. In this case, Vec(C) = Vec, and we see that x/C*/W*-
algebras A € Vec(C) exactly correspond to */C*/W*-algebras respectively. We expect
that much of the world of ordinary operator algebras generalizes to the enriched setting.
We summarize the dictionary between ordinary and enriched operator algebras in the
table below (Fig. 3).

1.3. Application to approximation and rigidity properties. Analytic properties such as
amenability, the Haageruup property, and property (T) were first defined for countable
discrete groups G to characterize the local topological behavior of the unitary dual,
i.e., the C*-tensor category of unitary representations, with respect to the Fell topology
[BAIHVOS]. One can replace this unitary dual with the state space of the universal C*-
algebra of G, and a state may be viewed as an element of £°°(G). In turn, approximation
properties, like amenability and the Haagerup property can be defined by the ability
to approximate an arbitrary state in £°°(G) with states that decay sufficiently nicely
in £°°(G). Rigidity properties, like property (T), can be defined by the inability to
approximate the identity with any class that is small at infinity.

These analytic properties were later generalized to II;-factors and quantum groups.
More recently, Popa and Vaes [PV 15] introduced these notions for rigid C*-tensor cat-
egories, generalizing Popa’s definitions for subfactors [Pop94,Pop99]. This has led to a
great deal recent interest in understanding these properties from different perspectives
[NY16,GJ16,NY15]. It has become clear that in this setting, the unitary dual of a rigid
C*-tensor category C is the tensor category Z(Hilb(C)). This category was first intro-
duced by Neshveyev and Yamashita [NY16] as the unitary ind-category of C, and it
was shown to be equivalent to the representation category of Ocneanu’s tube algebra
[PSV15].

In this article, we define analytic properties of W*-algebra objects M € Vec(C) for
which M(1¢) is trivial. Our definitions simultaneously unify the definitions of analytic
properties for countable discrete groups, quantum groups, subfactors, and rigid C*-tensor
categories. The basic idea is to find a canonical correspondence between states (in the
ordinary sense) on the algebra of interest (quantum group algebra, tube algebra, etc.)
and ucp morphisms (in our categorical sense) on an appropriately defined W*-algebra
object in the appropriate category. We further study these properties for irreducible
discrete inclusions of factors in [JP17].
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1.4. Application to enriched quantum symmetry. As mentioned earlier, one of the main
motivations of this project is the emergence of objects that can be thought to encode
enriched quantum symmetries, like superfusion categories, tensor categories enriched
in braided tensor categories, and planar algebras internal to a braided pivotal category.
Now that we have a notion of an enriched fusion category and planar algebra, we should
look for the notion of an enriched subfactor. We would then like to prove that enriched
categories and planar algebras arise as the standard invariants of these enriched subfac-
tors. Indeed, in [JL17, Rem. 2.22], Jaffe and Liu tell us the theory works in full generality
in the G-graded setting for G-graded subfactors acting on G-graded Hilbert spaces for
G an abelian group.

The anchored planar algebras defined in [HPT16b] allow the enriching category C
to be an arbitrary braided pivotal category, whose objects are not necessarily Hilbert
spaces. Thus a more abstract version of operator algebra internal to a rigid C*-tensor
category is needed for this more abstract C-graded subfactor theory. Indeed, our present
notion of C*/W*-algebra object in Vec(C) will be used in [HPT] to define the notion of
a unitary anchored planar algebra in Vec(C) where C is a unitary ribbon category. We
anticipate a future generalization of subfactor theory to the C-graded setting.

2. Background

Notation 1. In this article, as much as possible, we use the following types of letters to
denote the following types of things. Categories are denoted by C, M, A/. Objects in
C are denoted by lower case roman letters starting from the beginning of the alphabet
a, b, c, and morphisms in C(c, a ® b) will be denoted by greek letters «, 8, y and ¢, .

Functors will be denoted by bold-face capital letters, e.g., A, F. For a € C, the
representable functor C( -, a) is denoted by the bold-face lower case letter a. Natural
transformations are usually denoted by 6, o, and 7.

Vectors in vector spaces or Hilbert spaces are denoted by f, g or by n, &, ¢ depending
on the context.

We begin with a review of the notions of categories that arise in this article. Sections
2.1-2.3 are adapted from [HP15, §2.1-2.2].

2.1. Linear, dagger, and C*-categories. Inthis article, alinear category will mean a Vec-
enriched category, where Vec denotes the category of complex vector spaces, which may
be infinite dimensional. We denote by Vecq the category of finite dimensional complex
vector spaces.

A dagger category is a linear category C equipped with an anti-linear map C(a, b) —
C(b, a) for all a,b € C called the adjoint. It must satisfy the axioms ¥** = 1 and
(Y o ¢)* = ¢* o Y* for composable v, ¢, which implies id} = id, foralla € C. An
invertible morphism v € C(a, b) is called unitary if ¥* = ¢~

We denote by Hilb the category of complex Hilbert spaces, and Hilbgq is the category
of finite dimensional complex Hilbert spaces.

Remark 1. Recall that a x-algebra being a C*-algebra is a property, not extra structure.
Given a x-algebra A, A is a C*-algebra if and only if

lall* = sup {|A| > 0|a*a — A1, is not invertible}

defines a genuine norm on A, A is complete in this norm, the norm is sub-multiplicative
llab|l < |la|| - |b]l, and the norm satisfies the C*-axiom ||a*a|| = ||a||>.
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Definition 1. A dagger category C is called a C*-category if it satisfies the following
two properties (which are not extra structure):

— Foreverya,b € Cand ¢ € C(a, b),thereisa¢ € C(a, a) suchthat y* oy = ¢p*o¢.
— Foreach a, b € C, the function || - || : C(a, b) — [0, oo] given by

19 1% = sup {|A] = 0| ¥* oy — Aid, is not invertible}

isanormon C(a, b), C(a, b) is complete in this norm, the norm is sub-multiplicative
I o @l < l1¥]l - l¢ll, and these norms satisfy the C*-axiom ||y* o ¢ || = ||1p||2.

When C admits direct sums, a dagger category is a C*-category if and only if C(a, a) is
a C*-algebra for every a € C (see [GLRS85, Def. 1.1], and use Roberts’ 2 x 2 trick to
see each C(a, b) as a closed subspace of the C*-algebra End¢(a & b)).

A C*-category C is called a W*-category if each Banach space C(a, b) has a predual
C(a, b).. Again, this is a property, and not extra structure. When C admits direct sums,
we recall from [GLRS85, Lem. 2.6] that a C*-category is a W*-category if and only if
C(a, a) is a von Neumann algebra for every a € C.

A functor between linear categories F : C — D is called linear if the map F :
C(a,b) — D(F(a), F(b)) is linear for all a, b € C. If C and D are dagger categories,
then a linear functor is called a dagger functor if F(y*) = F(y)* for all morphisms
in C. A dagger functor between W*-categories F : C — D is called normal if for all
a,b € C, the map C(a, b) - D(F(a), F(b)) is continuous with respect to the weak™*-
topologies. Equivalently, if C, D admit direct sums, F is normal if for all ¢ € C, the
induced x-homomorphism C(c, ¢) — D(F(c), F(c¢)) is normal.

By [GLR85], a dagger category C is a C*-category if and only if it admits a faithful
dagger functor C — Hilb which is norm-closed on the level of hom spaces. Similarly, C
is a W*-category if and only if it admits a faithful normal dagger functor C — Hilb.

2.2. Involutions on tensor categories. A tensor category is a linear monoidal category
C,®,a, A, p,1¢), where ® : C x C — C is the tensor product bifunctor, which is
associative up to the associator natural isomorphisms ¢, which satisfy the pentagon
axiom. We denote the unit object by 1¢, and A, p are the unitor natural isomorphisms
which satisfy the triangle axioms. Wherever possible in the sequel, we suppress the
associators and unitors to ease the notation.

A dagger tensor category is a dagger category and a tensor category such that the
associator and unitor natural isomorphisms are unitary, and which satisfies the compati-
bility condition (¥ ® ¢)* = ¥* ® ¢p*. A C*-tensor category is a dagger tensor category
whose underlying dagger category is a C*-category.

Definition 2. A tensor category is called involutive if there is a covariant anti-linear
functor = : C — C called the conjugate. This functor is involutive, meaning there are
natural isomorphisms ¢, : ¢ — ¢ forall ¢ € C satisfying ¢. = ¢z, and anti-monoidal,
meaning there are natural isomorphisms v, : @ ® b — b ® a and an isomorphism
r : 1 — 1 satisfying the following axioms:

— (associativity) v c@p © (idz ®Vb.c) = Vba,c © (Va.p @ idz)
— (unitality) vi 4 o (r ® idz) = idz = v,4,1 o (idz ®r).

We require ¢, v, and r to be compatible: ¢ =7 or and @ugps = Vb 4 © V750 (0a ® @p).
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Example 1. The category Vec is involutive where the conjugate is defined to be taking
the complex conjugate vector space. We denote the conjugate of V' € Vec by V =
{vlv € V}, where Av =_Xv forall A € C. Givenamap T : V — W, we define
T:V — Wby Tv = Tv. Note that T is linear, while T + T is anti-linear.

The notions of dagger category and involutive tensor category can be combined to
form the notion of a bi-involutive tensor category, defined in [HP15, §2.1].

Definition 3. A bi-involutive tensor category is an involutive dagger tensor category
such that ~ is a dagger functor, and the natural isomorphisms ¢, v, and r are all unitary.

Note that being bi-involutive is a property of an involutive tensor category which is
a dagger tensor category, not extra structure.

Example 2. The category Hilb is bi-involutive with complex conjugation and adjoints.

Remark 2. 1f C is (bi-)involutive, then C°P is too by defining gcor = ¢ U veo = Ve !
and rgor = Vc_l.

A lax tensor functor between tensor categories C and D consists of a triple (F, u, i)
where F : C — D is a functor equipped with a morphism ¢ : 1p — F(1¢) and a natural
transformation w, p : F(a) @F(b) — F(a®b) fora, b € C which satisfies the following
axioms:

- (ass.oci.ativity) Ma,b®c .o (idF(a) @Mb,c) = Ma®b,c ? (Mu,b & idF(C))
— (unitality) p1,4 0o (t ® idp()) = idF@) = Ha,1 © (1dF@) Q).
A lax tensor functor is called a (strong) tensor functor if ¢ and all 1, 5 are isomorphisms.
A natural transformation of (lax) tensor functors 6 : (F, /LF , LF) = (G, [LG, LG) is a
natural transformation 6 : F = G such that 6,g; o ,ug b = Mg’h o (6, ® 6p) for all
a,beCandb, olF =G,

If C, D are dagger tensor categories, then a lax tensor functor is called a dagger lax
tensor functor if F is a dagger functor. A dagger lax tensor functor is called a dagger
(strong) tensor functor if ¢ and all p, 5 are unitary isomorphisms.

Definition 4. Suppose now C and D are involutive tensor categories. A (lax or strong)
tensor functor (F, i, t) : C — D is called involutive if it is equipped with a natural
isomorphism x, : F(a@) — F(a) for all a € C satisfying the axioms
— (involutive) gp) = Xa © Xa © F(@q)
— (unital) x1, o F(rg) ot =Torp
— (monoidal) xagh 0 F(vpa) 0 Uy 7 = lab © VE®),F(a) © (Xb @ Xa)-

Now suppose C and D are bi-involutive tensor categories. An involutive (lax or strong)
tensor functor (F, u, ¢, x) : C — D is called bi-involutive if F is also a dagger tensor
functor and all x, are unitary isomorphisms.

2.3. Rigid C*-tensor categories.
Definition 5. A tensor category C is called rigid if every ¢ € C admits

— adual object ¢V together with morphismsev, : ¢¥®c — 1¢ andcoev, : 1¢ = c®c”
which satisfy the zig-zag axioms (id, ® ev.) o (coev, ® id.) = id. and (ev, ® id.v) o
(id,v ® coev,) = id.v, and
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~

— apredual object ¢\, such that (c\)Y = c.

The dual of a morphism ¢ € C(a, b) is given by
P = (evp ®id,v) o (idpv @Y ® id,v) o (idpv @ coevy) : bY — aV.

A tensor category is called semi-simple if it is equivalent as a category to a direct
sum of copies of Veciq. Equivalently, C is semi-simple if it admits finite direct sums
(including the empty direct sum, i.e., the zero object), and every object is a direct sum
of finitely many (maybe zero) simple objects, which satisfy C(a, a) = C.

Assumption 1. All our rigid C*-tensor categories in this article are assumed to have
simple unit object and admit finite direct sums and subobjects. However, it is important
to note that there are interesting examples without simple unit objects, e.g., unitary
multifusion categories.

Example 3 ([HP15, §2.1]). Let C be a rigid C*-tensor category. By [LR97], C is semi-
simple, since all endomorphism algebras are finite dimensional C*-algebras. By [ Yam04,
Thm.4.7] and [BDH14, §4], a rigid C*-tensor category C has a canonical bi-involutive
structure. The conjugation is determined up to unique unitary isomorphism by ev, :
a®a — lc¢and coev, : 1¢ — a ® a which satisfy the zig-zag axioms, together with
the balancing condition

coevy o(Y ® idg) o coev, = ev, o(idg @) o ev) (D

forall y € C(a — a). The above equation gives a scalar multiple of id;, foreacha € C
by setting ¥ = id, called the quantum dimension of a, which is denoted dim¢ (a) or d,.

The conjugate of a morphism ¥ € C(a, b) is ¥ = (¥*)V : @ — b. The coherence
structure isomorphims j, v, ¢ are given by:

r = coevj
Va b = (CVa ® ld@) o (1dﬁ® evy ® lda®@) ] (id§®5 ® COCVb@a) (2)
@a = (id=®ev,) o (evi ®id,) = (coev); ®ids) o (id, ® coevy)

where the second equivalent definition of ¢ above follows from the balancing condition.
The unitary natural isomorphims ¢ equip C with a canonical spherical pivotal structure.

An important class of examples of rigid C*-tensor categories are unitary fusion
categories, which only have finitely many isomorphims classes of simple objects.

Example 4. From our perspective, one of the most important examples of a rigid C*-
tensor category is the category of bifinite bimodules over a II; factor (N, try), denoted
Bimps(N). The tensor product is given by the Connes fusion tensor product, denoted
Xy (see [Bis97] for more details).

Let 2 € L*>(N) be the image of 1 € N. Given an H € Bimp;(N), wecallaé € H
left N-bounded if the map NS2 — H given by n£2 — &n is bounded. We denote the
extension of this map by L : L%*(N) — H. There is a similar notion of a vector being
right bounded, and by [Bis97, Prop. 1.5 and Rem. 1.6], £ € H is left N-bounded if and
only if it is right N-bounded. We denote the subspace of bi-bounded vectors of H by
H°. It is easy to see that L¢ is right N-linear, and thus so is its adjoint. Thus for every
n, & € H°, we have an N-valued inner product given by (n|£)4 = L;Lg , which defines
a unique element of N, since it commutes with the right N-action.
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For H € Bimpi(N), the conjugate bimodule H is the conjugate Hilbert space with
N — N action given by n - & -m = m*En*. We see thatthe mapevy : H Xy H — 1 :=
L2(N) defined by n ® & — (n|€)y is abounded N — N bimodule map.

By [Con80], there is a finite subset B = {8} C H° called a right N-basis such that
Z,BEB LﬂLZ = idy. This means that for all £ € H°, we have £ = ZﬂeB BBIEIN.
There is a similar notion of left N-basis, but we will not need it. We see that the map
coevy : L*>(N) = 1 — H Xy H given by n2 ZBeBnﬂ ® B is independent of
the choice of B. Moreover, it is easy to verify that the maps evy and coevy satisfy the
zig-zag relations.

We note that evy and coevy do not necessarily satisfy the balancing condition (1).
Standard solutions to the conjugate equations are obtained by renormalization on irre-
ducible bimodules, and extending to direct sums in the standard way. We refer the reader
to [LR97,BDH14] for more details.

Notation 2. In the remainder of this article, C is a rigid C*-tensor category (with simple
unit object 1¢), and Irr(C) is a fixed set of representatives of the simple objects of C.

Definition 6. For all a, b € C, C(a, b) is a Hilbert space with inner product! given by

(@, V)cwp = Vd)cwp = 3)

For all a, b, ¢ € Irr(C), we fix orthonormal bases ONB(c, a ® b) for C(c, a ® b) with
respect to the above inner product.

Now taking a, ¢, d, e € C, we have natural vector space isomorphisms

D Cc.abh)@Ch,de) =C(c,a®d®e) = P C(f,a®d)RClc, f®e).

belrr(C) felr(C)
“)
These isomorphisms are not Hilbert space isomorphisms, since the sets
{(d, ®B) oa|b € Irr(C), o € C(c,a®b), and B € C(b,d ® )} 5)

{(y ®ide) o8| f €Irr(C), y € C(f,a®d)and § € C(c, f QR e)}

are not orthonormal bases for C(c, a ® d ® e) under the inner product from (3). To fix
this problem we define a different inner product on the tensor product spaces above in

.

Definition 7. For c,a,d,e € C and b € Irr(C), we define a new inner prod-
uct on the vector space C(c,a ® b) ® C(b,d ® e) by (a1 Q@ Bilax ® B2) =
db_l(oz1|a2)c(c,a®b) (B11B2)c(b,dze)- Note that since b € Irr(C), this inner product

! Here, we carry two notations for the inner product on a Hilbert space H: (x, y)g = (y|x) g. The first is
linear on the left, and the second is linear on the right.
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agrees with the graphical inner product on C(c,a ® d ® ¢) from (3). We write
C(c,a ® b) ®p C(b,d ® e) to denote this space with its new inner product.

Similarly, when f € Irr(C), we define C(f, a ®d) ® r ®C(c, f ®e) to be the Hilbert
space with the inner product which multiplies the ordinary tensor product inner product
byd;".

In general, for a € Irr(C), we use the symbol ®, to denote the tensor product of
Hilbert spaces where the inner product is balanced by dividing by the dimension d,, of
this simple object.

Now using this new balanced Hilbert space tensor product of hom spaces, the natural
isomorphisms in (4) above become unitary. Thus for all a, ¢, d, e € C, we have a unitary
operator

P co.dgey@nCic.aw) > P Cf.a®d)®;Cle. fSe)
belr(C) felr(C)

Y,0
>, U
felir(C)

y€ONB(f,a®d)
§€ONB(c, f®e)

Although the operator U is unitary, (U ;’ ’é) is not a unitary matrix, since the bases in (5) are
not orthonormal bases. Although these operators U depend on the objects a, ¢, d, e € C,
we suppress them from the notation. The collection of unitary operators U satisfy the
pentagon axiom.

Remark 3. Often, we will use that

Z BB eClc,a®b)®C(a®Db,c)
BeONB(c,a®b)

is independent of the choice of ONB.

2.4. The category Vec(C). In this section, we introduce the category of C-graded vector
spaces for a rigid C*-tensor category C. This category is equivalent to ind-C but has a
simpler description and is easier to work with due to the semi-simplicity of C.

Definition 8. Let C be a rigid C*-tensor category. Let Vec(C) be the tensor category
whose objects are linear functors V : C°°? — Vec, and whose morphisms from V to
W are given by natural transformations of functors. For V € Vec(C), the vector spaces
V(a) are called the fibers of V.

For functors V, W € Vec((), their tensor product is given by

VeW) ()= P V@eC(-.a®b)@Wb)
a,belrr(C)

The associator of Vec(C) is given by the standard associator in Vec, along with the 6j
symbols in C. Suppose we have U, V, W € Vec(C), so that

URIVeWNHo = P Uweclc.a®b)[V(d)RCh.dee)®W()]
a,b,d,eclrr(C)
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(U VI®W)() = @ [U@) ®C(f,a®d)@V(d)]®Clc, f ®@e) @ W(e)
a,d,e, felr(C)

The associator U® (V® W) = (U® V) ® W has c-component for ¢ € C given by
8

NQa®ERBRN I~ Y Uyn®yE§HRI’Y

felr(C)
y €ONB(f,a®d)
$cONB(c, f®e)

where (U ‘i/ ’2) is the matrix representation of the operator U from (6) with respect to the
appropriate bases.

Given natural transformations 0 : U = Vand 1t : W = X, we define o ® 7 :
UW=V®Xby (0 Q1) = @a,bem(@ 0a @ ide(c.agh) OTh.

Remark 4. Notice that this tensor structure of Vec(C) depends on the choice Irr(C), but
picking any other choice Irr(C)’, we get a canonical equivalence of monoidal structures.
Indeed, if ®’ is the monoidal structure induced from Irr(C)’, we can endow the identity
functor idyec(cy With a canonical tensorator isomorphism intertwining ® and ®'.

First, for each a € Irr(C) and the corresponding a’ € Irr(C)’, we pick a unitary
isomorphism y, € C(a, a’), which is a one dimensional Hilbert space. We define our
tensorator to be the natural transformation V® W = V ® W given on the summands
of VW)(c)forceCbyn®@a®& € V(a) C(c,a ®b) @ W(b) fora, b € Irr(C)
maps to

Vy)(E) @ [(Ya ® vp) o o]
QW(y)(E) e V(@) ®Clc,d @) @W(D') C (VR W)(c).

This tensorator natural transformation is independent of our initial choices of y,, y» by
Remark 3, since each appears with its adjoint in the formula above.

Definition 9 (Yoneda embedding). We have a fully faithful, monoidal functor C —
Vec(C) which sends the object a € C to the functor a := C(-,a) : C°°> — Vec. In
particular, the tensor unit in Vec(C) is the functor 1 = C(-, 1¢). We will call functors
equivalent to those of the form a compact objects in Vec(C). It is an easy exercise to see
that these are precisely the dualizable objects in the tensor category Vec(C).

Remark 5. Suppose 6 = (0:)cec € Homygec)(V, W) for V, W e Vec(C). First, for
every ¢ € Irr(C), we have 6. : V(c) — W(c) is some linear transformation. Conversely,
given a family of linear maps 6, : V(c) — W(c) for ¢ € Irr(C), we see that naturality
is satisfied for all morphisms between simples ¢ — ¢’. Hence we may extend 6 to all
objects in C by additivity to get a natural transformation. In other words,

Homyeee)(V. W) = [ L(V(c). W(e)).
celrr(C)

We now give an easy way to construct vector space objects V € Vec(C).

Definition 10. Suppose we have a family of vector spaces {V.|c € Irr(C)}. We may
construct a canonical vector space object V € Vec(C) as follows (although it depends
on the choice of Irr(C)).
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First, we define V(c¢) = V, for all ¢ € Irr(C). For arbitrary b € C, we define
V) = P, el (C) V(a) ® C(b, a). Notice that the spaces V(b) only depended on the
choice of Irr(C). Suppose now we have a morphism ¢ € C(c, b) for b, c € C. We get a
natural transformation V() : V(b) — V(c) by V(¥) = @aem(c) idy(e) ®a(y). Itis
now easy to verify that V is a linear functor C°? — Vec.

Definition 11. We now endow Vec(C) with an involutive structure. First, we define for
V € Vec(C) a linear functor V : C°? — Vec by V(c) := V(c¢) on objects, and on
morphisms ¥ € C(a, b), we define V(lﬂ) =V@).

Note that - is an anti-linear functor. If 6 = (0:)ceir(c) : V = W is a natural

transformation, we get a natural transformation @ : V = W by 6, = 6z. We thus have
a natural identification between Homyecc)(V, W) and the complex conjugate vector

space Homyegcc) (V, W).

The natural isomorphism gy : V. — %is givenby (pv). = V(g Ywhereg. : ¢ —> ¢
is the canonical pivotal structure of C, since @ygc is the identity. The unit morphism
r : 1 — 1 has components r. : 1(c) — 1(c) given by post-composing with r¢:

1(c) = C(c, 1¢) —=5 C(c, T¢) = 1(c).

The natural isomorphisms vy w : VoW — WQYV are constructed as follows. First,
we note that for all a, b, ¢ € C, there is a canonical linear (unitary) isomorphism

—Vec

— — Vp,q0— _— =
CEb®a) —s C@E,b®a) 2= CE, a®b) — Clc,a®b)

Now for all a € Irr(C), there is a unique a, € Irr(C) such that a, = a. We choose a
unitary isomorphism y, : ax — a for all a € Irr(C). Now we construct a map between

VoW = P V@ elc,a®b)@WH) and
a,belrr(C)

WV =WeaV©) = H Wb)eCE b®a)®Via)
ay,by€lrr(C)

C
@ V(ay) @ C(C, by @ ay) @ W(bs)
ay,by€lrr(C)

v

1163

as follows. Note that we have isomorphisms V(y*) : V(a,) — V(a), W(y;) :

W(by) — W(b), and C(C, by Qay) = C(C,b®a) by ¥ — (yp @ ya) o ¥, where
these conjugates are taken in Vec. Using these isomorphisms, we get an isomorphism
from the summands of (W ® V)(c) to the summands of (V ® W)(c) which is indepen-
dent of the choice of y,, y» by Remark 3, since every time y,, ¥, appear, we also see
their adjoints y,, y;.

Definition 12. A real structure on a vector space object V € Vec(C) is a natural iso-
morphism o : V = V satisfying ¢ o o0 = ¢y.

Remark 6. Let C" be the involutive rigid tensor category obtained from C by forgetting
the adjoint. Note that Vec(C) is monoidaly equivalent to the ind-category of C¥, where
the monoidal structure is given by the Day convolution product [Day70]. Indeed, linear
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functors C°? — Vec never interact with the adjoint, and thus can be seen as linear
functors (C%)°P — Vec. Importantly, we cannot compare ~ and ()" in C* without the
adjoint. In general, if C is not semi-simple, then one cannot simply use linear functors,
but rather functors that commute with filtered co-limits. However, for our purposes, our
model proves especially easy to work with.

2.5. Graphical calculus for the Yoneda embedding. The Yoneda lemma gives a natural
identification V(a) = Homyec(c)(a, V). In turn, this allows us to use the tensor category
graphical calculus to represent elements of V(a) as morphisms in Vec(C). Given & €
V(a), we denote the corresponding natural transformation a = V as a coupon with
strings and labels:

v
V) 3§ < € Homyec(c) (a, V). @)

a

If Y € C(b, a), by the naturality condition of the Yoneda Lemma, the map V() :
V(a) — V(b) is given diagrammatically by

v
&)
Yw® )=
)

®)

b

Naturality of the Yoneda Lemma in V says thatif 6 : V. = W is a natural transformation
and & € V(a), we have

€))

Lemma 1. Given V, W € Vec(C), a, b € Irr(C), & € V(a), n € W(b), and a morphism
o € C(c, a ® b), the natural transformation corresponding to

§®@a®neV(a®Cc,a®b)@W(b) C (VeW)()

is given by

€ Homygg(c)(e, V® W). (10)

where we draw an open circle to denote the morphism o € C(c,a ® b).



1136 C. Jones, D. Penneys

Proof. By the naturality condition in the Yoneda lemma (8), it suffices to show that the
natural transformation corresponding to

E®idygr ®n € (VOW)(a®b)=V(@)R®Cla®b,a®b) @ W(b)

is given by

€ Homygec)(a® b, VW)

But this picture is represented by the natural transformation in Homyegc)(a®b, VW)
defined by sending

Clc,a®b)=(@®b)(c0)> f+—E&® f®neV(a)
®C(c,a®b) WD) € (VR W)(c).

From the Yoneda lemma, the canonical bijection between natural transformations from
a®btoV® Wand (V® W)(a ® b) is given by evaluating on the identity morphism
idigr € C(a®b,a®b). O

Remark 7. Using the string diagram notation, we easily see why the matrix representation
v ;/ ’g) of the operator U from (6) appears in the associator for Vec(C):

= > (11
felr(C)
y€ONB(f,a®d)
8€ONB(c, f®e)

2.6. The category Hilb(C). Ordinary operator algebras are realized as operators acting
on Hilbert spaces, motivating us to study a ‘Hilbert space’ version of Vec(C). We note
that this category is equivalent to the Neshveyev-Yamashita unitary ind category [NY 16].
We prefer to use our model to emphasize the similarities and differences between Vec(C)
and Hilb(C).

Definition 13. Let C be a rigid C*-tensor category. Let Hilo(C) be the tensor category
whose objects are linear dagger functors H : C°? — Hilb and whose morphisms from
H to K are given by bounded natural transformations. (Recall a natural transformation
0 = (0c)cec 1s bounded if sup,..¢ [|6:]| < 00.)

We define a dagger structure on Hilb(C) by defining the adjoint of a natural transfor-
mation locally. If 6 : H = K is a natural transformation, 6* : K = H is defined by
(0™). = (6.)* for ¢ € C. Similar to Remark 5, we see that for all H, K € Hilb(C),

Hompjipcy (H, K) = @ B(H(c), K(c))
celrr(C)

as von Neumann algebras, which witnesses that Hilb(C) is in fact a W*-category.
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Similar to Vec(C), using the Yoneda embedding, each & € H(a) can be viewed as
a bounded natural transformation & € Hompjipc)(a, H) by defining for ¢ € C(b, a),
(Og)p(¥r) = H(¥) () as in (8). Again, we denote @¢ by a coupon with an a string on
the bottom and an H string on the top as in (7). Notice this means that £ = (®¢),(idg).
We denote the adjoint (H)ék : H = a graphically by

a
@g = € Homyec(c)(H, a). (12)
H

By the second naturality criterion of the Yoneda embedding (9), for & € H(a) =
Hompjipc)(a, H) and n € H(b) = Hompjip(c) (b, H), we have

(©0:6)-

Recall that for all a, b € C, C(a, b) carries the Hilbert space structure from (3). Thus
for n, £ € H(a), since H(a) > n = (0,))4(id,) forid, € a(a) = C(a, a), we obtain the
following identity between the inner product on H(a) and the graphical calculus:

M€ a@ = ((Op)a(da)[§)H@) = (ida [(©))aE))caa) =

Remark 8. We demonstrate the utility and consistency of the graphical calculus by the
following calculation, which verifies that H is a dagger functor. For all ¢ € C(b, a),
& € H(a), and n € H(b), we have

a = HYMEnw-

We now endow Hilb(C) with the structure of a C*-tensor category.
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Definition 14. The tensor product of dagger functors H, K € Hilb(C) is given similarly
to that in Vec(C) by

HRK)(\):= P H@) ®,C(-.a®b)®,K(b),
a,belrr(C)

where we take direct sum in Hilb. Here, we use the ®, symbol as in Definition (7)
above. The underlying space is the ordinary tensor product of vector spaces, but we
equip it with a new inner product, which is not the ordinary Hilbert space tensor product
inner product. For ¢ € C and a, b € Irr(C), we define the inner product on the space
H(a) ®, C(c, a ® b) ®p K(b) using the graphical calculus (10) as a guide:

(G2 @ar @m|& ®a; @ np) == c (21610 H(a) (M2 K@) (@2la1) e aob) -

= dady,

As the operator U from (6) is unitary, we see that the associator isomorphism from
Vec(C) depicted in (11) is unitary. We suppress the rest of the definition as it is parallel
to that of Vec(C).

We endow Hilb(C) with an involutive structure the same way we endowed Vec(C)
with an involutive structure. One checks that Hilb(C) is actually bi-involutive under
this involutive structure. (Recall from Definition 3 that being bi-involutive is a property
of an involutive tensor category which is also a dagger category.) There is a similar
notion of a real structure for a Hilbert space object H € Hilb(C). Notice that the full
subcategory of compact objects is again equivalent to C as a bi-involutive tensor category
viaa — a:=C(-,a).

The following results will be useful in what follows.

Lemma 2. Suppose f € Homyjipc)(a®H, H). We have f = Oifand only if f.(a®§) =
Oforallc € C,a € C(c,a®Db), and & € H(b).

Proof. The forward direction is trivial. For the reverse direction, just note that linear
combinations of vectors of the form o ® & are dense in (a ® H)(c). Thus f, = 0 for all
ceC,and f=0. O

There is also a Hilbert space object version of Definition 10.

Definition 15. Suppose we have a family of Hilbert spaces {H.|c € Irr(C)}. We may
construct a canonical Hilbert space object H € Hilb(C) (which depends on Irr(C)) by
first setting H(c) = H, for all ¢ € Irr(C). For arbitrary b € C, we define H(b) =
P, cirrc) H(@) ®q C(b, a), the direct sum of Hilbert spaces.

Given a morphism ¢ € C(c,b) for b,c € C, for all a € TIrr(C), the map
a(y) : C(b,a) — C(c,a) which precomposes with ¥ has norm bounded above
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by the same universal constant || o 1//*||<1x/>2 in the C*-algebra C(b, b), which does

not depend on a € Irr(C). Thus we get a bounded map H(y) : H(b) — H(c) by
H) = @aelrr(C) idH(e) ®a(y). It is now easy to verify that H preserves identity
morphisms, composition, and adjoints, so H € Hilb(C).

Corollary 1. Suppose we have a V € Vec(C) together with positive semi-definite
sesquilinear forms (-, - ). on V(c) for all ¢ € Irr(C). Define H(c) to be the Hilbert
space completion in || - |2 of V(c)/Ny. . .)., where N. .\. is the length zero vectors in
V(c). There is a canonical extension of H to an element of Hilb(C).

3. x-Algebras in Vec(C)

The aim of this section is to define the notion of a x-algebra in Vec(C) for C a rigid
C*-tensor category with simple unit object. As a reminder, we suppress the associators
and unitors of C whenever possible.

First, we review the notions of algebras and module categories and the correspon-
dence between them. We then define a x-algebra, and we discuss the correspondence
between x-algebras and dagger module categories. This correspondence affords an ele-
gant definition of a C*-algebra object as a x-algebra object whose corresponding dagger
module category is a C*-category. W*-algebra objects are defined similarly.

3.1. Algebras and module categories.

Definition 16. An algebra object in a tensor category 7 is an object A € 7, and a pair
of morphisms m : A® A — Aandi: 1¢ — A such that

(1) mo(idyg ®m) =m o (m ®idy) as morphisms A® A ® A — A, and
(2) mo (i ®idy) =idyg = m o (id4 ®i) as morphisms A — A.

Given two algebra objects (A, my,ia) and (B, mp, ip) in 7, an algebra homomor-
phism 0 : A — B is a morphism in 7 (A, B) that is compatible with the units and
multiplications of A and B,i.e.,mpo (0 ®0) =0 omysandB oig =ip.

Notation 3. Given an algebra (A, m, i), we represent m and i by a trivalent and univalent
vertex respectively:

The following proposition is straightforward, and we leave the details to the reader.
Proposition 1. We have an equivalence of categories
{ Algebra objects in Vec(C) } = { Lax tensor functors C°? — Vec } .

The content of the above proposition is that the data of a multiplication morphism m
for algebra object A € Vec(C) is equivalent to the data of a laxitor u for A : C°P — Vec,
and the unit i € A(l¢) can be identified with the image of 1¢ under the unit map
t: lyvec = A(lp).

We will use the equivalence of categories in Proposition 1 to freely pass between
algebra objects in Vec(C) and lax tensor functors C°? — Vec.
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Definition 17. The base algebra associated to (A, m, i) is the unital associative algebra
A(1¢) with multiplication 1.1, : A(l¢) ® A(l¢) — A(le) and uniti € A(1¢).

We now discuss C-module categories and C-module functors. In Section 3.2 below,
we will review the equivalence between algebra objects and cyclic C-module categories,
whose objects are labeled by the objects of C.

Definition 18. A C-module category is a linear category M with a bilinear bifunctor
- ® —: C x M — M together with unitor natural isomorphisms A,, : lc @ m — m
for m € M and associator natural isomorphisms ot 4. : c® (d @m) — (c@cd)@m
satisfying the pentagon axiom

Qg .b®cc,m © Xa,b,c@m = (aa,b,c ®idy) o Qa®cb,c,m © (idg ®ab,c,m)
a,b,ceC,meM

and the triangle axioms

(pc ®idy) o Qe le,m = id: @A and (Ac ®1idy,) 0 Ale,eom = )\c®m
ceC;me M.

As with tensor categories, we will suppress the associator and unitor isomorphisms for
module categories whenever possible to ease the notation.

A C-module category M is called cyclic with basepoint m € M if the objects of M
are exactly the ¢ ® m for ¢ € C.

A C-module dagger category is a C-module category which is also a dagger category
such that the isomorphisms o, and A,, are unitary isomorphisms, and for all ¢ €
C(a, b) and ¢ € M(m, n), we have (¥ ® ¢p)* = ¥v* ® ¢*, where ¥* € C(b, a) comes
from the dagger structure of C. A C-module C*-category is a C-module dagger category
whose underlying dagger category is a C*-category. A C-module W*-category is defined
similarly, but we must require that the action maps ¢ — ¥ ® ¢ are weak*-continuous.

Remark 9. Some of our readers may want to take idempotent completions of cyclic C-
module categories, but we will not need it for our purposes. We note that one can freely
pass back and forth between a cyclic C-module category and its idempotent completion,
since we are remembering the basepoint.

Definition 19. Suppose M, N are two C-module categories. A C-module functor
(F,w) : M — N isa functor F : M — N together with a family @ of natural

isomorphisms (@, , : ¢ ® F(m) 3 F(c ® m)).cc.mem such that the following axioms
hold:

— (assocaitivity) For all ¢ € C and m € M, the following diagram commutes:

id¢ QWi m We,d@m

cR®ARFm)) ——————cQFd®m) ————— = F(c ® (d @ m))

la im)

(c @ d) ® F(m) Leodm F((c ®d) ® m)
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— (unitality) For all ¢ € C and m € M, the following diagram commutes:

1c ® F(m) e F(lc ® m)
F(m)

A cyclic C-module functor between cyclic C-module categories (F, w, @) : (M, m) —
(N, n) is a C-module functor (F, w) together with an isomorphism @ : n — F(m).

If M, N are C-module dagger categories, we call a C-module functor (F, w) a C-
module dagger functor if all the isomorphisms w, , are unitary, and F(f*) = F(f)*
for all morphisms f € M(m, n). If M, N are C-module W*-categories, we call a C-
module dagger functor normal if each map M(m, n) — N (F(m), F(n)) is continuous
with respect to the weak* topologies. Finally, if (M, m) and (', n) are cyclic C-module
dagger categories, (F, w, @) is called a cyclic C-module dagger functor if (F, w) is a
dagger C-module functor and @ is unitary.

3.2. Equivalence between algebras and cyclic module categories. The following theo-
rem is well-known to experts, so we will only sketch the proof.

Theorem 1. There is an equivalence of categories
{ Algebra objects in Vec(C) } = {Cyclic C-module categories } .

Remarks 1. (1) Cyclic C-module categories together with cyclic C-module functors
actually form a 2-category. Similar to [HPT16b, Lem. 3.5], there exists at most one
2-morphism between any two cyclic C-module functors, and all 2-morphisms are
invertible. We thus obtain a 1-category from this 2-category by taking equivalence
classes of 1-morphisms as in [HPT16b, p. 15].

(2) In certain situations, subject to appropriate adjectives, the above correspondence is
usually stated as a correspondence between algebra objects up to Morita equivalence
and C-module categories without basepoints. (In the semi-simple case, see [Ost03,
Rem. 3.5(ii)].) Picking a basepoint for M allows us to recover the algebra, and not
just its Morita class.

Proof (Sketch of proof). To go from algebras objects to cyclic C-module categories, we
take the category Ma of free right A-modules in Vec(C), whose objects are of the
form ¢ ® A for ¢ € C. (Note this is the image of the free module functor described in
[KO02,BN11,HPT16a].)

To go from cyclic C-module categories to algebras, we get an algebra A € Vec(C)
by taking the Vec(C)-valued internal hom: A := HO—mVeC(C) (m, m), which satisfies the
universal property Homyeccy (¢, A) = M(c ® m,m) forallc € C. O

We discuss in more detail the correspondence between algebra objects A € Vec(C)

and cyclic C-module categories, as it will be useful for our discussion of operator algebras
in Vec(C).

Construction 1 (Module My from algebra A). Suppose that A € Vec(C) is an algebra
object. The cyclic left C-module category M has objects given by ¢ ® A € Vec(C)
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for ¢ € C, and morphisms given by right A-module morphisms. Recall from [Ost03,
Lem. 3.2] (see also [KOO02, Fig.4]) that there is a natural equivalence

Hompg, (@ ® A, b ® A) = Homyee(c)(a, b ® A).

Using this natural equivalence, we give a concrete, equivalent description of M which
is even easier to work with.
The objects are the symbols ca for ¢ € C, and the morphism spaces are defined by

Ma(aa, ba) := Homyeccy(a,b® A) = A(b ®a) € Vec

by Frobenius reciprocity. (Defining Homvg (a, b) € Cfora, b € C by the natural isomor-

phism Homyec(c)(Homp (a, b), A) = Ma(aa, bs), we have Hom;(a, b) = b®a.)
Graphically, we denote our morphisms as follows:

It is straightforward to check that composition is associative. The identity morphism for
aa is given by

idg, =1 :

The C-module structure on M is defined as follows. The object ¢ € C acts on ap by
(c®a)a. Given morphisms ¢ € C(c, d) and f € M (aa, ba) = Homyee(c)(a, b®A),
we define

d b
w®f—¢

It is straightforward to show this defines a bifunctor using the graphical calculus as a
guide. We see that M is cyclic, with basepoint (1¢)a.
If 6 : A = B is an algebra natural transformation, we define 6 : My — Mgp by

€ Homyeco)(c®a,d @b ® A) = MA((c ® a)a, (d @ b)a).

It is straightforward to verify that 6 is a functor. The fact that 6 preserves units means 6
preserves identity morphisms, and the fact that 6 intertwines the multiplication means
that 6 preserves composition.



Operator Algebras in Rigid C*-Tensor Categories 1143

Construction 2 (Algebra A,, from module (M, m)). Suppose that (M, m) is a cyclic left
C-module category. Concretely, for a € C°P, we define A(a) := M(a ® m, m) € Vec.
We use the usual diagrammatic calculus to denote f € A(a) as

Given ¥ € C(b, a), we get amap A(Y) : A(a) — A(b) by
N

We define the laxitor (1, : A(a)®A (D) — A(a®b)fora, b € Con f®g € A(a)QA(D)
by

Hap(f ® &)= fo(id, ®g) =

The uniti € A(l¢) = M(1¢ ® m, m) is given by the identity id,,.

Now suppose A and B are the algebras corresponding to the cyclic C-module cate-
gories (M, m) and (V, n). Given a cyclic C-module functor (@, w, @) : (M, m) —
(N, n), we get a natural transformation ®:A=B by defining @, on f € A(a) =
M(a ® m, m) by

Since @ (idy,) = idem), Cl;(iA) = ig. Since @ preserves composition, we see & inter-
twines u® and u®B.

Remark 10. Just as we defined the left cyclic C-module category M from our algebra
object A € Vec(C), we can also define the right cyclic C-module category A M as
follows. The objects are symbols of the form sc for ¢ € C, and

Hom, r((aa, ab) = Homyecc)(a, A ® b) = A(a ® b).
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We have a similar diagrammatic calculus for the morphisms:

There is a similar version of Theorem 1 which gives an equivalence of categories between
cyclic right C-module categories and algebra objects in Vec(C).

Definition 20. Given a tensor category C, we define C°P to be the opposite category with
the reverse composition. We define C™P to be the category with the reverse monoidal
structure. We define C™°P to be the tensor category with both the reverse composition
and reverse monoidal structure. (This notation is from [DSPS13, p. 26].) When C is
rigid, we get monoidal equivalences C = C™°P and C°P = C™P.

Remark 11. The data of M as a left C-module category can also be viewed as:

— M as aright C™P-module category,
— MP°P as a left C°P-module category, and
— MP°P as aright C™°P-module category.

When M is cyclic with basepoint m, these four module categories correspond to the
following four algebras: A € Vec(C), A™ e Vec(C™P), A°? € Vec(C°P), and A™P ¢
Vec(C™eP),

One shows that on objects a € C, A™(a) = A(a) and AP(a) = A™P(q) =
A(a"). The multiplication morphisms for A™P, A°P, and A™°P are given in terms of the
multiplication morphism p for A respectively as follows:

Vec

A™(a) @ A™P(b) = A(a) ® A(b) ﬂ—» A(b) ® A(a) £ A(b ®a) = A"™P(a ®cmp b)

Vec
AP@@) @ AP (b) = A@@”) @ ADY) LN AGY) @AWY L AGY ®aY) = AP ®cop b)
AP (0) @ AMP () = A(@V) @AGBY) L A@Y ®5Y) =A@ a)Y) = AMP(q @cmop b)

where VeC is the braiding in Vec. We see that the monoidal equivalence C — C™°P
given by a — a" takes the algebra A™P € Vec(C™M°P) to the algebra A € Vec(C), and
similarly for A°P and A™P.

3.3. x-Algebra objects and dagger module categories. We now introduce the new notion
of a x-algebra object in Vec(C). We will give three equivalent definitions.

Let (C, ¢, v, r) be a rigid C*-tensor category with its canonical bi-involutive struc-
ture. We warn the reader that C°P has the bi-involutive structure defined in Remark 2.
In particular, for the material in this section, the coherence axioms for the involutive
structure on Vec(C) have inverses on all instances of ¢, v, r.

Definition 21. LetF, G € Vec(C). A conjugate linear natural transformation9 : F = G
is a family of conjugate linear maps 6, : F(a) — G(a) for a € C which is conjugate
natural, i.e., for all v € C(b, a), the following diagram commutes:
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Fla) — "~ G@)
lW) im/)
F(b) . G®)

Given two conjugate linear natural transformations 6 : F = G and p : G = H, their
composite p o 6 : F = H is the linear natural transformation defined by

(0 00)q :=H(ga) o pg 0 6, : Fla) — H(a).

Remark 12. The reader should be careful not to confuse a conjugate linear natural trans-
formation with the conjugate natural transformation from Definition 11, which is linear!

Definition 22. A *-structure on an algebra object A € Vec(C) is a conjugate linear
natural transformation j : A = A which satisfies the following axioms:

— (involutive) j o j =idy, i.e., ida) = A(@,) o jzo jaforalla e C
— (unital) ji, = A~
— (monoidal) jagp(a,p(f, 8)) = A(U;;)(Mzﬁ(jb(g), Ja(f))) foralla,b € C.

A x-algebra object in Vec(C) is an algebra object together with a x-structure.
Suppose (A, i), (B, jB) € Vec(C) are x-algebras. We call a natural transformation
0 : A = B a x-natural transformation if Gg(jj}(f)) = jf(@a(f)) for all f € A(a).

We already saw in Definition 11 that Vec(C) has the structure of an involutive cate-
gory. We now define an involutive structure on the category of algebra objects in Vec(C).

Definition 23. The conjugate algebra (A, 11,7) € Vec(C) is defined by first taking the
conjugate functor A € Vec(C) from Definition 11. The laxitor i, ;, : A(a) ® A(b) —

A(a ® b) is given by

VA@).A®)
_—

PR = vy —
A@) ® A(b) M%®Mmﬂ$A@®miﬁiAw®m

The unit map 7 : lyeec — A(l¢) is given by

- 7 - -1y ——
1Ves = Tvee — A(le) ~2 % A(Tp).

It is straightforward to check that this defines a lax monoidal functor. L
Suppose now @ : A = B is an algebra natural transformation, we let 0 : A = B
be the conjugate natural transformation from Definition 11. We see that 6 is an algebra
natural transformation.
It is straightforward to verify that the category of algebra objects in Vec(C) with
algebra natural transformations is involutive.

Proposition 2. The following pieces of data are equivalent for an algebra object
(A, i, t) € Vec(C):
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(1) a =-structure j on A,

(2) an involutive structure x on A (thought of as a lax monoidal functor c.f- Proposi-
tion 1), and .

(3) an algebra natural isomorphism o : A = A which is involutive, i.e., G o
0 = QA.

Proof. We tell how to construct the morphims, and we leave the details to the reader.
To go from (1) to (2), we define x,(f) = ja_1 (f) for f € A(a). To go from (2) to (3),
we define o, := yx, o A(gpa_l). To go from (3) to (1), we define j,(f) := o,(f) for all
feA(). O

Similar to Theorem 1, we have the following equivalence. Again, we only sketch the
proof, as the details are similar to that of Theorem 1. We do, however, provide explicit
details on the correspondence between the *-structure on an algebra object A € Vec(C)
and a dagger structure on a cyclic C-module category (M, m).

Theorem 2. There is an equivalence of categories

{x-Algebra objects in Vec(C)} = {Cyclic C-module dagger categories} .

Proof (Sketch of proof). 1f (A, u,t, j) : C°P — Vec is a *-algebra object, we define
a dagger structure on My, from Construction 1 as follows. For f € A(b ® a) =
Ma(aa, bp), we define

[ = (AGdz ®¢p) 0 A(V, 5) © e, (f) € A@@® b) = M4(ba, an).

To prove that this defines a dagger structure on My, we must show f** = f and
(go f)* = f* o g* for composable f and g. The first of these properties is verified as
follows. Suppose f € A(b ® a) = My (aa, ba). Using naturality of j, followed by the
compatibility of v and ¢ in an involutive tensor category, we have

| A

( Upaw © S () )

b®a
l Yab l
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Suppose now f € A(b ® a) and g € A(¢ ® b). Using naturality and monoidality of j,

A A
A A A A

(J'5®u (f )) (jz@b(g)) (J';c@u (f )) (jz@b(g ))

b®a t®b b®a t®b
—1 —1
" (ba), @@b) ( ¥ (ba), @c@b)
H c®b®b®a H c®b®b®a
o= (oo, ) = ( v

c®a

( ) (e

|

Here, since v is associative, we simply write one v with three inputs for a composite of
v’s to simplify the notation. Again using associativity of v, followed by (2), the right
hand side above is equal to

A A
A /L\ A A /L\ A
(rea)  (eer@)  (J50a)  (Jean(®)

b®a t®b b®a c®b

C) ) Ca) (o)

= f"og".

|

It is similarly easy to prove (¥ ® f)* = ¢v* ® f* forall ¥ € C(c,d) and f €
Ma(aa, ba).

When 6 : A = B is a x-algebra natural transformation between x-algebras, the
induced cyclic C-module functor 6 from Construction 1 is a dagger functor.

For the other direction, suppose (M, m) is a cyclic C-module dagger category. Taking
A = A,, € Vec(C) corresponding to (M, m) as in Construction 2, we get a *-structure
on A as follows. For f € A(a) = M(a ® m, m), we define

m

‘= (evg ®idy) o (idz ® f*) = e M@®m,m).

a m

A@a) >
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It is straightforward to show j satisfies the appropriate axioms.

If @ : (M, m) — (N, n) is a cyclic C-module dagger functor, then & defined as in
Construction 2 is a *x-algebra natural transformation. O

Definition 24. Given a x-algebra (A, u, t, j), the base algebra is the x-algebra A(E ®
l¢) = Endpg, (1a). (Here, the multiplication is the same as in Definition 17, but to

define the x-structure, we must think of 1o = 1¢ ® 1¢.)

3.4. C*and W*-algebra objects. The equivalence between x-algebras objects in Vec(C)
and C-module dagger categories afforded by Theorem 2 gives us an elegant definition
of a C*-algebra object in Vec(C).

Definition 25. A x-algebra object A € Vec(C) is a C*-algebra object if the cyclic
C-module dagger category M is a C*-category. Similarly, a x-algebra object is a W*-
algebra object if My is a W*-category.

Remark 13. For C*-algebras, any *-algebra homomorphism is automatically continuous.
Given any *-algebra natural transformation 6 : A = B, the components f;g. give *-
algebra homomorphisms between C*-algebras A(c®c) — B(c®c), and are thus always
bounded. When A and B are W*-algebra objects, we should consider normal x-algebra
natural transformations. This means each component 6. : A(c) — B(c) is continuous
with respect to the weak*-topology coming from the identification A(c) = Ma(ca, 1a)
and B(c) = Mg(cg, 1B).

The equivalence of categories for *-algebra objects in Theorem 2 gives us the fol-
lowing result for W*-algebra objects.

Theorem 3. There is an equivalence of categories
{ W#*-algebra objects in Vec(C) } = {Cyclic C-module W*-categories }
where the morphisms on both sides are required to be normal/weak* continuous.

Remark 14. Operator algebras have been associated to C-module C*/W*-categories M
which are semi-simple. In this case, the corresponding notion is a C*-quantum groupoid
or partial compact quantum group [BS96,NV00,DCT15].

The following fact gives an abstract characterization of C*/W*-algebra objects which
does not explicitly use cyclic C-module dagger categories.

Proposition 3. A x-algebra A € Vec(C) is a C*/W*-algebra object if and only if for
every ¢ € C, the x-algebra A(c ® c) is a C*/W*-algebra. Here, the multiplication and
x-structure are those pulled back from identifying A(c ® ¢) = Ma(ca, ca).

Proof. Recall from Sect. 2.1 that a dagger category that admits direct sums is a C*-
category if and only if each endomorphism x-algebra is a C*-algebra. Note M admits
direct sums, withap ®ba = (a®b)a. Thus we need only check M (ca, ca) = A(c®c)
is a C*-algebra for each ¢ € C. The result for W*-algebra objects is similar. O

It is important to note that as in Remark 1, being a C*/W*-algebra object is a property
of a x-algebra object, not extra structure.

We now give examples of C* and W*-algebra objects in Vec(C) for various rigid
C*-tensor categories C. Recall that to define a C*/W*-algebra object in C, we simply
need to produce a C-module C*/W*-category, and choose a distinguished object.
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Example 5 (C*/W*-algebras). Let C = Hilbsg, the category of finite dimensional Hilbert
spaces. Then Vec(C) = Vec, the category of vector spaces (not necessarily finite
dimensional). To see this, we just note that any F € Vec(C) is completely determined
by F(1¢ = C) € Vec, which is some vector space. Hence if H € Hilbsy, we have
F(H) =F(C) ®c H.

Given a *-algebra A € Vec(C), we see that we may identify the objects of Ma
as free right A(C)-modules of the form H ®c A(C), and we identify the morphisms
space Ma (H, K) = A(C) ® B(H, K) with composition givenby (f ® S) o (g®T) =
w(f ® g) ® (S o T). We then see that *-algebras A € Vec(C) are exactly x-algebras,
C*-algebras in Vec(C) are just C*-algebras, and W*-algebras in Vec(C) are just W*-
algebras.

Example 6 (Discrete groups). Suppose G is a discrete group. The group algebra G =
C[G] is a W*-algebra object in the rigid C*-tensor category Hilbsq(G) of finite dimen-
sional G-graded Hilbert spaces. Given an outer action of G on a Il factor N, we get a
tensor functor F : Hilbtg(G) — Bimps(N), and we may view the crossed product as a
W-algebra object in Vec(Hilbsg(G)) = Vec(G), the category of (not necessarily finite
dimensional) G-graded vector spaces.

Example 7. Let C be a rigid C*-tensor category, D be a W*-tensor category, and F :
C — D be a dagger tensor functor. Then we can view D as

(1) A C-module category. Every object m € D gives a W*-algebra Ay ,, € C.
(2) A CKXC™P module category. Every m € D gives a W*-algebra D(AF ;,) called the
quantum double of Ay .

Below, we mention classes of sub-examples that we feel are particularly interesting, and
merit individual study.

Sub-Example 1 (Symmetric enveloping algebra). Letid : C — C be the identity functor.
Then the algebra Ajq,1. is trivial, while the quantum double D(Ajq,1.) is called the
symmetric enveloping algebra [Pop99,Mgu03]. We will give more details on this algebra
in Sect. 5.5.

Sub-Example 2 (Quantum group). Given arigid C*-tensor category C and a dagger tensor
functor F : C — Hilbsg, one can apply the Tannaka-Krein-Woronowicz construction
to obtain a discrete quantum group G, whose representation category is canonically
equivalent to C, and whose forgetful functor is equivalent to the original functor F. We
discuss this construction in greater detail in Sect. 5.5. Let G be a discrete quantum group
and let C = Rep(G) be its associated rigid C*-tensor category, with forgetful functor
F : C — Hilbgy. Then G = Ap is called the quantum group algebra object. We
call D(G) the Drinfeld double algebra object, which is actually Morita equivalent to
D(Ajq,1.) in an appropriate sense, though explaining this would take us too far afield
for now. We will investigate the quantum group algebras further in Sect. 5.5.

Sub-Example 3 (11} factor bimodules). Let F : C — Bim(N) be a dagger tensor functor
where N is a IIj factor. If F is full, then choosing m to be L>(N) yields the trivial
algebra: Ag ;2(y) = Aid,1.- In general, choosing an bifinite bimodule H € Bimp(N)
necessarily yields a locally finite algebra, and if H is irreducible and F is full, A g will
be connected.

Example 8 (Quasi-regular subfactors). An irredicible inclusion of II; factors N € M
is called quasi-regular if the N — N bimodule yL*(M)y decomposes as L*(N) &
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;- niH; where for each i € N, n; € N and H; € Bimp;(N) is bifinite. (See
[ILP98,Pop99,PSV15] for more details.) We define M € Vec(Bimps(N)) by M(H) :=
Homy_n(H, NL2(M)y) for H € Bimps(N). Since M is a von Neumann algebra, M
is a W*-algebra object, and since N € M is irreducible, M is connected.

Example 9 (Planar algebras and graphs). Consider 7 LJs, the Temperley-Lieb-Jones
category with loop parameter 8. Recall that Ad(7 LJs) = Ad(Rep(SU,(2))) for § =
g +q~', where Ad denotes taking the adjoint subcategory, a.k.a., the even half.

A planar algebra P, is an algebra object in Vec(Ad(7 LJs)) which lifts to a com-
mutative algebra in the center Z(Vec(Ad(7 LJ;s)))- The corresponding cyclic module
category for P, is the projection category Proj(P,) from [MPS10,BHP12] with base-
point the empty diagram.

This is really a special case of De Commer and Yamashita’s classification of module
categories of Rep(SU, (2)) by weighted graphs with balanced cost functions [DCY15].
A planar algebra with its principal graph and dimension function gives such a module
category when we restrict to the adjoint subcategory Ad(Rep(SU, (2))).

Example 10 (B(H)). Note that Hilb(C) is a C-module W*-category, since C embeds in
Hilb(C). Given H € Hilb(C), take (Mpy, H) to be the cyclic left C-module W*-category
generated by H. We define B(H) to be the algebra in Vec(C) obtained from Construction
2 applied to (Mmu, H). Notice that by Theorem 1,

Hom gy (@, b) = BH) (b ® a) = Homyjipc) (b ® a ® H, H)
= Hompjpc)(a ® H, b ® H).

Similarly, we define g M to be the cyclic right C-module W*-category generated by H.

Note that My = Mgy, but in general, )M 2 gM, as we see from the following
proposition.

Proposition 4. We have the following correspondence between algebras in Vec(C) and
left and right C-module W *-categories:

B(H) «— My B(H) «— gM
B(H) «— Mg BH) <— gM

Note that B(H) = B(H) as algebras in Vec(C), but is helpful to think of these two
algebras as four algebras to see the above correspondences more easily.

Proof. 1t suffices to prove M corresponds to B(H). Let A € Vec(C) be the algebra

corresponding to M. We see we have a *-algebra natural transformation 6 : B(H) =
A, where for ¢ € C, 0. is the composite map

B(H)(c) = B(H)(c) = Homyec(c) (€ ® H, H) = Homyec(c) (€ ® H, H)
vo— (id ®¢p)o—

= HomyeeoyH®C,H) =  HomyeeeyH® ¢, H) = 5A(c).

We leave the rest of the details to the reader. O
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Sub-Example 4. When H € Hilb(C) is compact, so is B(H), and it is easy to check that
B(H) = H ® H. Moreover, the algebra structure on B(H) corresponds exactly to the
usual multiplication on H ® H given by idy ® evy ® id.

4. C*-Algebra Objects in Vec(C)

We now focus our attention on C*-algebra objects in Vec(C). We prove analogues of
theorems for ordinary C*-algebras in Hilb¢g.

From this point on, whenever possible, we suppress the involutive structure (v, ¢, r)
on Vec(C) and Hilb(C) to ease the notation. As a consequence, we will consider A(1¢)
as the base algebra instead of A(1¢ ® 1¢).

4.1. Conditional expectations. Leta € C and consider a C-module C*-category M. For
every m € M, the map ¢, : Endpq(m) — Endq(a ® m) given by (,(f) = id, ® f
is a unital C*-algebra isometry. The standard left inverse for m € M, denoted E, :
End pq(a ® m) — End p(m), is given by

1 m
Eu(f) = — a (14)

An easy calculation shows E, o t, = id,,. The map E, is also called a partial trace or
a conditional expectation.

We make use of the following result, due to Longo-Roberts in the abstract setting
[LRI7], which is a version of the Pimsner-Popa inequality for subfactors [PP86]. We
give an easy diagrammatic proof for the convenience of the reader.

Lemma 3. Ifa € Candm € M, then f < dg(ida QE,(f)) forall f € Endpq(a®@m)™.

Proof. For all f > 0, since the tensor product of positive operators is positive,

m

| = d2(ids O (/).

m

Corollary 2. For all f € Endq(a ® m)*, we have

a1 fI < HE«(HI = £
In particular, E, is faithful.

Proof. The firstinequality follows from Lemma 3 by dividing by daz. The second inequal-
ity follows from the fact that id, ® E,, is positive, together with f < | f]|(id, ® id,,).
O

We now discuss the probabilistic index of a conditional expectation due to [PP86]. For
a broader discussion of index of inclusions, conditional expectations, and dualizability,
see [BDH14].
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Definition 26. Suppose A C B is aunital inclusion of C*-algebras. A conditional expec-
tation £ : B — A C B is said to have finite index if there exists a number K > 1 such
that K - E — 1p is a positive map. The index ind(E) of E is the infimum of such K.

Suppose we have a C-module C*-category M. Lemma 3 above shows that the condi-
tional expectation E, : End pq(a ® m) — End s (m) has finite index, and in particular
1 <ind(E,) < dg. Using the following proposition, this inequality has particularly nice
consequences when End o (m) is finite dimensional.

Proposition 5 ([FK98, Cor.4.4]). If E : B — A C B is a faithful conditional expecta-
tion and A is finite dimensional, then B is finite dimensional if and only if ind(E) < oo.

Corollary 3. Let M be a C-module C*-category. Suppose we have m € M such that
dim(End azq(m)) < oo. Then End aq(a ® m) is a finite dimensional C*-algebra for all
aeC.

Corollary 4. Suppose A € Vec(C) is a C*-algebra object and dim(A(1¢)) < oo. Then
dim(A(a)) < oo foralla € C.

Definition 27. A C*-algebra object A € Vec(C) is called locally finite if either of the
following equivalent conditions hold.

(1) dim(A(c)) < ooforallc € C.
(2) dim(A(1¢)) < o0

Locally finite algebra objects bear many similarities to finite dimensional algebras. If
C = Hilbgg, then locally finite algebras are just finite dimensional C*-algebras. Moreover,
each locally finite C*-algebra object is also a W*-algebra object, which generalizes the
fact that finite dimensional C*-algebras are also W*-algebras.

Among locally finite algebras are a distinguished class: the so-called connected alge-
bras.

Definition 28. An algebra object A € Vec(C) is connected if dim(A(1¢)) = 1.
Note that every connected C*/W*-algebra has a unique state.

Remark 15. Given a C*/W*-algebra object A € Vec(C), there is a forgetful functor
which maps A to the C*/W*-algebra A(1¢). This functor has a left adjoint; the free
functor maps a C*/W*-algebra A to the C*/W*-algebra object in Vec(C) which has
A(lg) = A, and A(c) = (0) for all ¢ € Irr(C) with ¢ 2 1¢.

These free C*-algebra objects contain trivial categorical content, since they have
nothing to do with the category C. On the other hand, connected algebras contain sub-
stantial categorical content, since looking at the base algebra A(1¢) = C tells us nothing
about the algebra. Globally, the structure can be highly non-trivial, as in the group algebra
discussed in Example 6.

The following facts are straightforward.
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Facts 1. Under the correspondence between W*-algebra objects and cyclic C-module
W*-categories from Theorem 2, we have the following correspondences.

— Locally finite algebras correspond to cyclic C-module W*-categories whose endo-
morphism algebras are all finite dimensional.

— Connected algebra objects correspond to cyclic C-module W*-categories with irre-
ducible basepoint.

4.2. Operator valued inner products and equivalence of norms. We now use our pre-
vious discussion on conditional expectations in the special case of the cyclic C-module
C*-category M associated to a C*-algebra object A € Vec(C).

Definition 29. Given a C*-algebra object A € Vec(C), we have a left A(1¢)-linear
inner product 4(-, -) : A(a) X A(a) — A(l¢) and a right A(1¢)-linear inner product
(])a : A(a) x A(a) — A(l¢) defined by

Notice that for f € A(IC) and 8> h e A(Cl), a(“lc,a(f ®g)a h) = Mlc,lc(f ®a<g’ h))
and similarly (g|ta, 1. (h® f))a = 1g,10 ({glh)a ® f). These forms are anti-symmetric,
and they are positive definite by Corollary 2.

Lemma 4. Suppose A € Vec(C) is a C*-algebra object. The right A(1¢)-valued inner
product is completely positive in the sense that for all f1, ..., fu € A(a), the matrix
((fil fi)a)i,j 1s positive in My, (A(1¢)). A similar result holds for the left A(1¢)-valued
inner product.

Proof. Let My be the cyclic C-module C*-category from Construction 1. The condi-
tional expectation E, : A(@ ® a) = End g, (aa) — End g, (1a) = A(le) from (14)

is given by
1 a
Ea(f)=— .
a
a

The right A (1¢)-valued inner product is exactly given by (f|g)s = da Ea(Uz.a (Ja(f) ®
g)), and E, is completely positive. O

Lemma 5. Suppose f1, ..., fun € A(a) and € C(b, a). As operators in M,,(A(1¢)),

0< ((A(I/f)(fk)lA(lﬂ)(ﬁ))a> =< ||1//||é((fk|fi>a>

ik ik
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Proof. Using the module category as in Lemma 4, we see that

((A(w)(fk)IA(llf)(ﬁ))a) =

ik

< ||¢V||%(<fk|ﬁ>a)

i.k

Now we use that fact that ¥ — " is an isometry. O

Remark 16. A priori, we get two different norms on each A(a) from ,(-, -) and (- |- )4
by composing with || - ||a(1.), and A(a) is complete with respect to both of them.

Suppose A € Vec(C) is a C*-algebra object and ¢ € C. An element f € A(c) can be
embedded into M in many ways. Any time we write ¢ = b ® a fora, b € C, we get
a vector space isomorphism A(c) = A(b ® a). We get many norms on A(c) from these
identifications.

Definition 30. When we can write ¢ = b®a, we define || - lla,p oNA(C) bY || - | My (an,ba)-

All these norms induce the same topology on A(c).

Proposition 6. Suppose ¢ = b ® a. Then db_1 I fllap < I flle,ie < dpll fllap-

Proof. This follows directly from Corollary 2 by drawing diagrams. O

4.3. The Gelfand-Naimark theorem in C. First, we prove the analog of the Gelfand-
Naimark theorem: every C*-algebra is a norm closed C*-subalgebra of B(H). To do so,
we need to discuss what an embedding of C*-algebra objects should be.

Definition 31. An embedding of C-module C*-categories M — N is a faithful C-
module *-functor @ : M — N. An embedding of C*-algebra objects 0 : A — B
is a C*-algebra natural transformation 6 : A = B such that 6 : My — Mg is an
embedding of C-module C*-categories.

Theorem 4 (Gelfand-Naimark in C). A C*-algebra object A € Vec(C) has an embed-
ding into B(H) for some object H € Hilb(C).
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Proof. Let (r, K) be a faithful, non-degenerate representation of the C*-algebra A(1¢).
(Such a representation exists by the usual Gelfand-Naimark theorem.) We’ll use Defi-
nition 15 to define a Hilbert space object H € Hilb(C). First, we define the vector space
object V € Vec(C) by V(a) = A(a) ®c K fora € C. We define a sesquilinear form on
each V(a) by

(f®&, 8@ v = (T(glf)a)é Mk- 15)

Itis clear that (-, - )y(g) is positive by Lemma 4 and anti-symmetric. We may now take
the quotient by the length zero vectors and complete to obtain a Hilbert space H(a). By
Definition 15, we get a canonical Hilbert space object H € Hilb(C) by only considering
simple objects a € Irr(C). (Note that for arbitrary a € C, H(a) from Definition 15 is
isomorphic to the completion of V(a) with the sesquilinear form from (15).)

We now construct an embedding A — B(H). To do so, we construct a cyclic C-
module dagger functor @ : (Mjy, 14) — (My, H).Foreachc € C, we define @(cp) =
c®H. Given amorphism f € Ma(aa, ba) = A(b®a), we construct a bounded natural

transformation @(f) : a @ H = b ® H as follows.
Suppose ¢ € C. First, using the diagrammatic calculus for simple tensors (10), we
see

span

= 8d=c <JT T

Now we define our map @ on f € Ma(aa, ba) by

(a®H)(c)

2(f)

We see that this map is well-defined and bounded by the following calculation, where
we suppress some labels to ease the notation:
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2
= Z<7T &, Ek>
ik
H(b)
= <7T &, Sk>
ik
< 1£ 15,

H(a)

(17)
where the final inequality holds since for f € Ma(aa, ba), f¥o f < ||f||§\/[A id,.
To prove functoriality of @, if f € Ma(aa, ba), g € Ma(ba, ca), we have

2()P(f)
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To show that @ is a dagger functor, if f € Ma(aa, ba), then

A
D)D) et
d

which is easily seen to be @ (f)* using the inner product (16) above.

Finally, we want to show that @ is an isometry on the level of hom spaces. It suffices to
check that @ is injective on the endomorphism C*-algebras End p4, (aa) fora € C, since
injective C*-algebra homomorphisms are isometric. To do so, let f € Endaq, (aa) =
A(a@ ® a) such that f # 0. Choose a vector & € K such that (7 (f|f).&,&)xk # O,
which is possible since 7 is faithful. Then consider the vector

a A

-l -

(id, ®in) ®E =1 \ *! ®F € @B H)()

a

where ipo € A(1¢) is the unit morphism. Then @ (f)((id, ®is) ® &) # 0,50 D(f) # 0.
Thus @ |gng My (@n) has trivial kernel. O

From our version of the Gelfand-Naimak theorem, we get notion of a representation
of a C*-algebra object.

Definition 32. A representation of the C*-algebra object (A, m, i) € Vec(C) is a Hilbert
space object H € Hilb(C) and a *-algebra natural transformation 6 : A = B(H).

Notice that for all ¢ € C, we get a x-algebra homomorphism f:g. : A(c ® ¢) —
B(H)(c ® c), which is automatically bounded. A representation 6 : A = B(H) is called
faithful if each 6;g. is injective.

4.4. Completely positive morphisms and Stinespring dilation. Just as completely pos-
itive maps between C*-algebras are positive x-maps which are not necessarily algebra
homomorphisms, completely positive morphisms between C*-algebra objects in Vec(C)
are positive *-natural transformations which are not necessarily algebra natural trans-
formations. The major difference is that since C admits finite direct sums, positivity is
sufficient for complete positivity!

Definition 33. Suppose A, B € Vec(C) are C*-algebra objects. A *-natural transforma-
tion 6 : A = B is called a completely positive morphism (cp morphism) if for all ¢ € C,
the bounded linear transformation 6zg. : A(c ® ¢) — B(c ® ¢) maps positive opera-
tors in the C*-algebra A(c ® ¢) = Ma(ca, ca) to positive operators in the C*-algebra
B(c ® ¢) = Mg(cB, cB).

A completely positive morphism 6 : A = B is called unital (ucp) if 0, (ia) = iB.

Example 11. A x-algebra natural transformation 6 : A = B is completely positive,
since every fzgc : Ma(ca, cA) = Mp(cB, c) is a x-algebra homomorphism.

Example 12. Notice that when C = Hilbgq, a positive *-natural transformation 6 : A =
B is equivalent to an ordinary completely positive map 6, : A(l¢) — B(l¢). Notice
that the positivity of the n-fold amplification of 6, follows from the positivity of

19@@(@?:110), since M, (A(1¢)) =A@} 1¢) @ (B 1¢))-



1158 C. Jones, D. Penneys

We now include a formulation of cp-multiplier on the module category side which
corresponds to completely positive x-natural transformations between algebra objects.

Definition 34. Let (M, m) and (N, n) be cyclic C-modules categories. A multiplier is

a collection of maps O, : M(a @ m,b ® m) - N(a ® n, b ® n) such that for all
v eCa,b),d €Clc,d), fe MbRm,c®m),and e € C,

@a,d ¢

If (M, m) and (N, n) are C-module C*-categories, we define a cp-multiplier as a mul-
tiplier {®, 5} such that every ©. . maps positive elements to positive elements.
In Example 15, we compare our definition of (cp-)multiplier with [PV15, Def. 3.4].

Recall that a natural transformation 6 : A = B can be defined by a collection of
maps (6. : A(c) — B(c))cenr(c), Which corresponds to a collection of maps (GVC :
Ma(ca, 14) = Mg(c, 1B))cemr(c)- Conversely, any such collection of maps My —
Mp induces a natural transformation A = B.

Definition 35. Suppose A, B € Vec(C) are algebra objects, and let 6 : A = B be a
natural transformation (which is not necessarily an algebra natural transformation). We
define the amplification of 6 to be the multiplier {@a’b a,beC } 1 M — Mg given

by
by
ba
Oub = > (18)
[N celrr(C)
«€ONB(c,hQa)

aB

It is straightforward to check that {®, ;} is a multiplier. The word “amplification”
is motivated by the case C = Hilbtg, in which algebra objects are ordinary associative
algebras A, B € Vec, and natural transformations are simply characterized by linear
maps A — B.Amap6 : A — B induces amplified maps M, x,, (A) = My, xm(B).Itis
easy to check that our definition of amplification above coincides with the usual notion
when C = Hilbgg.

In fact, all multipliers arise uniquely as amplifications. The proof of the following
proposition is straightforward.

Proposition 7. Let ©® = {@a,b a,be C} : Ma — Mg be a multiplier. Then © is
the amplification of the natural transformation 6 : A = B corresponding to the family
{@c,1 : Ma(ca, 1a) = Mg(ce, 1)|c € Irr(O)}.
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Corollary 5. A multiplier Max — Mg is completely positive if and only if it is the
amplification of a completely positive morphism A = B.

‘We now prove the analog of the Stinespring dilation theorem. We begin with a lemma.

Lemma 6. Suppose H, K € Hilo(C) and v € Hompjipcy(H, K). Then the map Ad(v) :
B(K) — B(H) defined by

Ad()(f) = (ide ®v™) o f o (id; V) = ( f € HomHiIb(C) (c@H,c@H) =ZEBH)(c®c)

for f € B(K)(c ® c) is completely positive.

Proof. Letc € Candlet f = g*og forsome g € B(K)(c®c) = Hompjjpc)(cRK, ¢®
K). Then we have Ad(v)(f) = h*oh forh = go(id. ®v) € Hompjjpc)(c ®H, c R K).
Now since Hilb(C) is a C*-category, we may write 1* o h = k* o k for some k €
Hompjpc)(c @ H,c @ H) =EBMH)(c®c). O

Theorem 5 (Stinespring dilation in C). Let H € Hilb(C), and let B(H) € Vec(C) be the
corresponding C*-algebra object. Let A € Vec(C) be another C*-algebra object, and
suppose we have a unital completely positive morphism 6 : A — B(H). Then there is
a K € Hilb(C), a *-algebra natural transformation = : A — B(K), and an isometry
v € Hompjipcy(H, K) such that 6 = Ad(v) o 7 as *-natural transformations.

Proof. We follow the usual proof of the Stinespring dilation theorem. We begin by
defining V= A®H € Vec(C). We define a sesquilinear form on V(c) = (AQH)(c) =
@a’bem(@) A(a) ® C(c,a ® b) @ H(b) for ¢ € Trr(C) by

Here, for f € A(a) and g € A(e), g* o f € A(e ® a) = Ma(aa, ea) is the composite
of f € Ma(aa, 1¢) and g* € Ma(lc, ea). Equivalently, g% o f = 1.1, (Je(8) ® f),
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where we view f € A(1¢®a) and j.(g) € A(e®1¢). Thus6(g*o f) € Hompjjpc)(a®
H,e®H).

Note that this sesquilinear form is positive semi-definite since 6 is completely positive.
We now define K € Hilb(C) as the completion of V (modulo the length zero vectors)
using Corollary 1.

There is an obvious morphism v : H = A @ H = V given for ¢ € Irr(C) by

H(c) 5§ — ia ®idi, ®& € A(lg) ® C(c, I¢ ® ¢) ® H(c).

Note that v is an isometry, since ijg 0iA = Mig,1¢(J1c(fA) ® ia) = ia and 6 is unital.
A straightforward computation shows that v* : K = H is given on (A ® H)(c) by

Al@)®C(c,a®b)QHD) > gRa@n+H—> . .

n
b
c

O

We now get a x-representation 7 : A = B(K) as follows. If 1 € A(d) ford € Irr(C),
we define the map 7my(h) € B(K)(d) = Hompjpc)(d ® K, K) by defining its c-
component (777 (h)),onBRgRaR& €C(c,d®e) A(a) ®C(e,a®b) H(b) C
(d® (A ®H))(c) by

BRICRAQE —> c (AQH)(o).

The fact that this map is bounded and thus well-defined is similar to (17) above, but is a
bit more involved as 6 appears in the inner product. First, we use the 6j symbols of C to
rewrite (4 (h)). appliedto BR® g Ru ®& € C(c,d Re) ® A(a) ®C(e,a @ b) @ H(b)
as

felr(C)
y€ONB( f,a®d)
8€ONB(c, f®b)

> Ups:
l
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Treating the dashed box above as a single element k¢, € A(f), by definition,

f/

Iam)eB® f @@k = D S UUs( 0%

felr(C) f'elr(C)
yeONB(f.a@d) y'€ONB(f',a®d)
S€ONB(c, f®b) §'cONB(c, f'®b)

1161

<]l

Now using that # is natural, we may pull the y and y’ outside of the 6§, and again use

the 6j symbols to obtain

(Hd,a(h® 8N o pgah ®g)

IA

19)
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where we view g € A(I¢ ® a) = M, (aa, 1¢). Now using positivity and naturality of
0, we see that (19) above is bounded above by

Ihl%,, ¢ © <kl 1B ® g ®a ®E&lapK) -

Hence 74(h) : d ® K = K is a bounded natural transformation with norm at most
l21| A1, - We omit the proof that 77 is a *-algebra natural transformation, which is similar
to the proof of the same fact in Theorem 4.

Finally, we verify that Ad(v) o m = 0. Indeed, for 1 € A(a) and § € H(b), we
have 7, (h) € B(K)(a) = Hompjpc)(a ® K, K) and v(§) € K(b). For ¢ € Irr(C) and
o € C(c,a ® b), we have

[(Ad(v) 0 ) (M]e(e ® &) = v¥[a(M)c(e @ v(E))] = v (ma (M) (@ @ ia ® id ®E))

H

Oa(h) (o @ §).

By Lemma 2 applied to (Ad(v) o ), (h) — 6,(h), we are finished. O

4.5. States and the GNS construction.

Definition 36. A state on A is a ucp morphism¢ : A — 1 where1 =C(-, 1¢) : CP —
Hilb. Notice that a state on A corresponds uniquely to a state on A(1¢), since for all ¢ €
Irr(C), 1(c) = 8¢=1.C. Thus ¢ is completely determined by the map ¢, : A(1¢) — C,
which must be a state since ¢ is ucp.

We now give two equivalent definitions of the GNS Hilbert space representation of
A with respect to a state ¢.

First, given a state ¢ on A, we can define Hilbert space objects L2(A)¢ and ¢L2(A) €
Hilb(C) by defining the fiber Hilbert spaces at a € C to be the completion of A(a) with
the inner products on A(a) given respectively by

(f 8)2a), = 681 F)a) (£, 8),028) = Dl S, 8)).
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Notice that we have a left and a right L%(A), similar to the left and right C-module
categories associated to A.

Equivalently, when we identify a state ¢ on A with a state on A(l¢), we can first
apply the GNS construction for C*-algebras to obtain a representation of A(l¢) on
L*(A(1¢), ¢), and then apply our Gelfand-Naimark Theorem 4 in C to obtain a Hilbert
space object L2(A)¢ € Hilb(C) and a representation A = B(L2(A))¢,. In other words,
we get a cyclic C-module dagger functor Fy : Ma — M2, ,» analogous to the GNS
construction.

Notice that the second description gives an isomorphic Hilbert space object. If H is as
in our Gelfand-Naimark Theorem 4 in C for the A(1¢)-module L2(A(1l¢), ¢), we have
H(a) is the completion of A(a) ®a(1.) L%(A(lo), ¢) using the relative tensor product
inner product.

Remark 17. The right L? (A)y carries aleft A(1¢) action, whereas the left ¢L2 (A) carries
aright A(1¢) action. In general, the left and right L2 (A) are different, and their relation-
ship is complicated. We anticipate they are related by a version of the Tomita-Takesaki
theory in our C-graded setting. We defer this exploration to a future article.

We can, however, relate the left and right L2(A) by taking conjugates.

Proposition 8. The map A(a) > f +— j.(f) € A(a) extends to an isomorphism of
Hilbert space objects 3 L*(A) = L2(A) in Hilb(C).

Proof. 1t suffices to show the map is isometric. Given f, g € A(a), we have

Ua(P): Ja@) ray, = Vel Ja@) iz, @ = (a8 Ja(f ) 2a)@

= ¢(Ja(Hlja(@)a) = ¢

=¢@(f.8) = (f. 8),12a)-

‘We now focus on tracial states.

Definition 37. A frace on the C*-algebra object A € Vec(C) is a state T on A such that
foralla € C and f, g € A(a),

T(fig) =T

The following corollaries are now immediate.

Corollary 6. If T is a trace on A, then L*>(A); = L*(A) in Hilb(C), since the left and
right inner products on each A(a) agree on the nose.
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Corollary 7. If T is a trace on A, then L*(A); is symmetric witho : L>(A); = L2(A),
given by the map from Proposition 8 together with Corollary 6.

Proof. Tt remains to show that ¢ is involutive, i.e., ¢ = & o ¢. Indeed, since complex
conjugation on Vec is strictly involutive, we see that for f € A(a),

T () =7Ga(N) = (a0 ja) () = Algg V() = @r2a))a (),

where @724 was given in Definition 11. O

Given a trace T on A, we get left and right GNS representations of A on L?(A), where
by Corollary 6, we do not need to specify the left or the right L*(A).First, foreacha € C,
we denote the image of A(a) in L2(A)(a) by A(a) For f € A(a), we getbounded natural
transformations A(f) : a® L*(A) = L*(A) and p(f) : L>(A) ® a = L*(A) given on
their c-components for ¢ € Irr(C) by

(20)

Ab) @ Cle.b®a) s @ p 1LY

Proposition 9. The left and right actions of A on L*(A) commute up to the associator
in Hilb(C).

Proof. First, note that the associativity of (A, u, t) involves the associator «a o A in
Vec(C) described in (11), which gives a unitary o724 12(a).22(a) in Hilb(C). This
means foralln € A(a), & € A(d), . € A(e)anda € C(c,a®b), B € C(b,d ® e), we
have

= X
felr(C)

y €ONB( f,a®d)
6€ONB(c, f®e)

1)

Consider A(n) € Hompjp)(a ® L%(A), L*(A)) for n € A(a) and p(¢) €
Hompipc) (L2 (A) ® e, L?(A)) for ¢ € A(e). On the c-component C(c,a ® b) ®p
(A(d) ®4C(b,d Q@ e)) of a® (L*(A) @ e) for ¢ € Irr(C), we have

(A() ®ide)c o (ida ®p (7)) = (ida ®p (1)) 0 (A(n) ® ide). 0 (OlLZ(A),LZ(A),LZ(A))o
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In string diagrams, this is exactly the commutation relation

(22)

a [2(A) e a L2A) e

where we suppress the associator in Hilb(C). 0O

Now that we have commuting actions of the algebra object A on a Hilbert space
object, we can discuss bimodules and commutants. Formalizing these notions provides
a segue into Section (5) on W¥*-algebra objects and the von Neumann bicommutant
theorem in C.

5. W#*-Algebra Objects in Vec(C)

We now focus our attention on W*-algebra objects in Vec(C). We prove analogues of the-
orems for ordinary W*-algebras in Hilbsg. Recall from Theorem 3 that normality/weak*
continuity is required for morphisms between W*-algebra objects and between cyclic
C-module W*-categories.

5.1. Commutants in bimodule categories.

Remark 18. One notion of a commutant for a tensor category C and a left C-module
category M is the category C}\/t = End¢ (M), the left C-module endofunctors of M.
Notice that this is the categorified commutant, where we think of C as a categorified ring,
and thus the commutant C}Vl is again a tensor category. This is the wrong categoricial
level for this article. We want the commutant of an algebra object A inside B(H), which
corresponds to the cyclic C-module C*-category M4 inside My, to be another algebra
object. Thus we want a definition of commutant which gives us another module category,
not a tensor category.

The above discussion, together with the commutation relation (22), motivates us to
take the commutant of a cyclic C-module dagger category inside a cyclic C —C bimodule
WH-category.

Definition 38. Suppose H € Hilb(C). Define the cyclic C — C bimodule W*-category
By to be the full W*-subcategory of Hilb(C) generated by H, i.e., the objects are of the
foma® H® b fora, b € C.

Definition 39. Suppose (M, m) is a cyclic left C-module dagger category, and @ :
(M, m) — (Mpy, H) isacyclic C-module dagger functor. The right commutant @ (M)’
is the cyclic right C-module W*-category whose objects are the left C-module dagger
functors R, := — ® ¢ : Mg — Bpg for ¢ € C, and whose morphisms are bounded
left C-module dagger natural transformations which commute with morphisms from
@ (M). Here, the basepoint is R, These morphisms are described explicitly below in
Lemma 7. Notice @ (M)’ is obviously a right C-module category with C-action given



1166 C. Jones, D. Penneys

by R, ® ¢ := Rygc. It follows from Corollary 8 below that the right commutant is a
WH-category.

Similarly, there is a notion of a left commutant of a cyclic right C-module C*-category,
which is a cyclic left C-module W*-category. This is defined using left creation functors
L.: My — BygforceC.

Starting with a left module (M, m) and a cyclic C-module dagger functor @ :
(M, m) — (Mg, H), the right commutant @ (M)’ has a canonical normal cyclic
right C-module dagger functor (®(M)’, H) — (gM, H). The bicommutant @ (M)”
is the left commutant of the right commutant of @ (M)’. There is a similar notion of
bicommutant of a right module.

If6 : A — B(H) is a representation of a C*-algebra object in A € Vec(C), we
define its commutant §(A)" € Vec(C) to be the W+-algebra object from Remark 10
corresponding to the right commutant é(./\/l A) where 6 : (Ma, 1p) = (My, H) is the
corresponding cyclic C-module dagger functor from Construction 1.

Lemma 7. Any C-module natural transformation (f¢).cc : Rq = Ry fora, b € C is of
the form f, = id. ® f for some fixed f € Hompjpc)y(H ® a, H ® b) independent of
ceC.

Proof. Suppose we have a natural transformation (f:).cc : Ry = Rp. We observe that
fe =1de ® f/, where f/ is the normalized left partial trace of fc:

= dime(¢)”! { fogiae } = dim¢(c)”! /o) = dime(o)”! ‘ [ :
|‘-U I "- 177

'\\_ﬂ___l I‘ﬂ___l
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' ]

Now using that idg ®— is faithful, we see f. = f;. Calling this map f, we are
finished. O

Using Lemma 7, we get a concrete description of the right commutant M’.

Corollary 8. We may identify the objects of ® (M)’ with objects of the form H® ¢ €
Hilb(C), and for c, d € C, the morphism space ® (M)’ (R, Ry) is isomorphic to

f € Homyjpe)(H® ¢, H® d) forall g € Homgaq)(a ® H, b ® H)

Thus M’ is a W*-category.

Next, we show that B(H) has the commutant that one should expect. We begin with
a discussion of creation natural transformations.

Definition 40 (Creation natural transformations). Suppose b, ¢ € Irr(C) and a € C.
For « € C(c,a ® b), and x € B(H(c), H(b)), we define a natural transformation
L% = (L7")qec - H — a @ H as follows. First, we recall that

@M@ = P a@.Cd.e® O HNHZ P Cd.a® f)orH(f).
e, felr(C) felr(C)

via the Hilbert space isomorphism ¥ ® S ® & — a(i)(8) ® £. (That the inner products
agree is a simple graphical calculation.) For d € Irr(C), we define the component LZ‘X
by

H

H
©)
H(d) > & = EO = S gl @ x(E)] = Sora . € Clc,a ®b) @ HD).
d

o
O

c

The maps (Lg’x)delrr(C) are clearly natural with respect to morphisms between simples
objects d — d’, and we extend it by additivity to all objects. A

If b = ¢, we define the creation natural transformation L% = L%i9% We define
right creation natural transformations similarly. It is straightforward to check that the
d-component of (L**)* for d € Irr(C) is given on the summand C(d,a ® f) ® r H(f)
for f € Irr(C) by

(LN)3(B ® &) = 8a=cd f=p(@|B)c(c.avn)x™ (§).
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Proposition 10. For an object H € Hilb(C), the commutant My is equivalent to (C, 1¢)
as a cyclic right C-module W*-category. Hence BH)' = 1 € Vec(C).

Proof. We want to show that any f = (fc)cec € Hompiipc)(H® a, H® b) in My, is
of the form idg ®y for some € C(a, b). By applying duality morphisms in Hilb(C),
it suffices to consider the case that a = 1¢.

Suppose f = (fe)cec € Hompjpcy(H, H® b) is in M. O

Claim 1. For ¢ € Irr(C), the image of f. is contained in the ‘diagonal’ H(c) ®.C(c, c®
b).

Proof (Proof of Claim 1). Let g € Endijjpc)(H) be the natural transformation which is
the identity on H(c) and zero everywhere else. Since f € My, fog = (g®idp)o f. We
have (f o g). = fe, but ((g ®1idyp) o f). has image contained in the H(c) ®. C(c, c ® b)
summand of (H® b)(c). O

Claim 2. For ¢ € Irr(C), there is a B, € C(c, ¢ ® b) such that f.(§) = & ® B, for all
& € H(c). Thus f is the sum of the right creation operators RPe over ¢ € Irr(C).

Proof (Proof of Claim 2). We may assume there is a unit vector £ € H(c) such that
fc (&) # 0, as otherwise the claim is trivial setting 8, = 0. Note that we can write f,(£)
as a finite sum

f®= > npes
BEONB(c,c®b)

Let g € Endnjin(c) (H) be the natural transformation whose c-component is the projection
onto C& and zero everywhere else. Then

D np®B = fel&) = (fog)e®) = (g ®idp) 0 ))eE) = D (Elnp)E @ B=£ @ pe.
B B

where B = 3 5 (&|ng)B € C(c, c ® b)\{0}.

Now pick any other unit vector n € H(c). Let & € Endpjpc)(H) be the natural
transformation whose c-component is the rank one operator |n) (€| and zero everywhere
else. Since f € My, wehave f oh = (h ®idp) o f, so

Jem) = (feohe)(§) = (f oh)c(§) = (h ®idp) o [)c(§) = (h ®idp)c(§ @ Bc)

=1Q® Be.
Thus we see f. is right creation by 8.. O
For the next claim, we define Supp(H) = {c € Irr(C)|H(c) # (0)}.

Claim 3. The collection (B¢)cesupp) satisfy the following ‘naturality condition’: for
alla e Cand a € C(c,a ® d), we have (id; ®B4) o = (¢ ® idp) o fBe.

Proof (Proof of Claim 3). Suppose ¢, d € Supp(H). Let £ € H(c) and n € H(d) be
unit vectors, and consider the rank one operator x = |n)(£|. Form the creation natural
transformation L** € Hompjpc)(H, a ® H) from Definition 40. Since f € My, by
the definition of the tensor product of natural transformations in Hilb(C), we have

N ® [(ids ®Bq) 0] = (ida ® f)c 0 LT (§) = (L* ®idp)c o fe (&)
=n® [(a ®idp) o Bc].
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Claim 4. There is a fixed ¥ € C(1¢, b) such that for all ¢ € supp(H), 8, = id, Q.

Proof (Proof of Claim 4). Again, we may assume there are distinct ¢, d € supp(H).
Setting a = ¢ ® d, the naturality condition from Claim 3 implies that

cd db c g db

This has two important implications. First, setting ¢ = d and applying a c-cap between
the second and third strings on the top, we see that

for some morphism y, € C(l¢, b).

The naturality condition above now reduces to id, ® ev;; Ry = i1d, ® evjl ®vya. By
capping off and diving by the appropriate scalars, we see that y. = y;. Thus there is a
single ¥ € C(1¢, b) such that for all ¢ € supp(H), B, = id. ®y¥. O

From this series of claims, we deduce that there is a fixed ¥ € C(l¢, b) such that
for all ¢ € supp(H), f. : H(c) — @aem(c) H(a) ®, C(c, a ® b) is exactly the map
E > £® (Ad. ®y¥) € H(c) ® C(c, c ® b). Note that this formula also holds when
¢ ¢ supp(H), since for those ¢ € Irr(C), we have H(c) = (0). The result follows. O

5.2. W*-categories and linking algebras. We now recall how to pass back and forth
between W*-categories and their linking von Neumann algebras. Much of the follow-
ing conversation is contained, either explicitly or implicitly, in [GLR85, §2]. (See also
[GLRSS, Prop.7.17].)

Suppose we have a small W*-category X, so that Ob(X) is a set. By [GLR85], there
is a faithful normal dagger functor F : X — Hilb, also called a faithful representation,
which is norm closed at the level of hom spaces.

Definition 41. We define the auxiliary Hilbert space by
K = EB F(x).
xe0b(X)
The linking algebra of (X, F) is the von Neumann algebra
1
WEX,F)=| @ FXx,y)| NBK),
x,y€0b(X)

together with the distinguished projections p, := F(id,) € B(F(x)) for all x € Ob(X).
Note that Y, copu) Px = lwxx.F)- Also, for all x, y € Ob(X), we have a Banach
space isomorphism X (x, y) = p, W*(X, F) p,.
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Now starting with a von Neumann algebra X and a partition of unity, i.e., a collection
of mutually orthogonal projections P = {p} which sumto 1, we get a small W*-category
Wix, p) as follows. The objects are the p € P, and the morphism spaces are given by
W, p)(p,q) = qXp. The identity morphism in Wx, p)(p, p) is p, and composition
is exactly multiplication in X.

It is now easy to see that starting with the W*-category X and the faithful representa-
tion F : X — Hilb, we have an equivalence of categories X = Wwx(x F), (p,|xe0b(X)})»
and the objects of both categories can be identified with Ob(X). Starting with a von
Neumann algebra X and a distinguished partition of unity P, given any faithful rep-
resentation F : W py — Hilb, we have an isomorphism of von Neumann algebras
W*Wix,p), F) = X.

Moreover, these constructions are well-behaved with respect to inclusions. Given a
WH-subcategory ) C X with Ob())) = Ob(X), together with a faithful representation
F : X — Hilb, we get a unital inclusion of von Neumann algebras W*()), F|y) <
W#*(X, F). Note also that W*()), F|y)) contains the distinguished partition of unity
{px|1x € Ob(X)}. Conversely, given a von Neumann subalgebra ¥ C X such that Y
contains the distinguished partition of unity P = {p} of X, we get a canonical W*-
subcategory Wy, py S Wx,py whose objects are the elements p € P and whose
morphisms spaces are given by V(p,q) = q¥Yp C gXp.

The discussion above sketches the proof of the following theorem.

Theorem 6. Let X be a W*-category and let X = W*(X, F) be its linking algebra with
respect to the representation F, together with the partition of unity P = {px|x € Ob(X)}.
There is a bijective correspondence between:

(1) WH*-subcategories of X whose objects are Ob(X), and
(2) von Neumann subalgebras of X containing the distinguished partition of unity P.

As an application of the above theorem, given a dagger subcategory Z C X whose
objects are Ob(X), we can define its W*-completion. First, we take the unital -
subalgebra Z C X = W*(X, F) corresponding to Z, and we define the W*-completion
Z" of Z to be the W*-subcategory of X’ corresponding to Z” C X. It is easy to see that
Z" can also be obtained by taking Z”(x, y) to be the weak* closure of every Z(x, y)
in X (x, y) for all x, y € Ob(X). (This is essentially in [GLR85, Thm.4.2].)

5.3. The linking algebra of By and the bicommutant theorem. For this section, we
assume that C is small. Our main result holds when C is essentially small, meaning C is
equivalent as a dagger category to a small rigid C*-tensor category.

Suppose we have H € Hilb(C). We now apply the discussion of the last section to the
W-category By, whose objects are the set Ob(Bg) = {a ® H ® b|a, b € C}. Note that
we get a faithful representation By — Hilbbya@ H® b — @eehr(c) (a@H®b)(e).
Thus the auxiliary Hilbert space is given by

k= @ P acHob@.
a,beOb(C) eclir(C)
and the linking algebra W*(H) of By is the von Neumann algebra
1

Wi =| P GDB(<a®H®b)<e>,(c®H®d)<e)> NB(K).

a,b,c,deOb(C) eclrr(C)
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The distinguished partition of unity is

P =1pab= Z idagHeb)() |a, b, € C
eelrr(C)

‘We now use Theorem 6 to define some canonical W*-subcategories of By. There is
a left action A of My on K. Each morphism in f € Mg(a ® H, ¢ ® H) includes into
W#*(H) by defining

MH= f®idh€( e D B(<a®H®b>(e),(c@H@b)(e))) C WH(H).

beOb(C) a,b,ceO0b(C) eclir(C)
Similarly, there is a right action p of gM on K such that each p(g) € W*(H).

Definition 42. We define the von Neumann subalgebra Ly = A(Mpy)” N B(K) C
W#(H). Similarly, there is a von Neumann subalgebra Ry = p(gM)” N B(K) C
W*(H).

We now have a partition of unity of W*(H) which is coarser than P given by

Q1 ={4a=Ar(dagn) = ) paplacC
beOb(C)

Similar to Theorem 6, by construction, we can recover a category equivalent to My,
since for all @, b € C, we have a Banach space isomorphism

gpLHgs = Mu(a @ H,b ® H).

Similarly, we can recover gM from Ry from the coarse partition of unity

Or = {pGdugh) = Y pas|beC
aeOb(C)

Now we have a normal embedding ¢ : Mj — Mgy given by embedding C(a, b) —
Hompjpcy(a ® H, b ® H) by ¥ — ¢ ® idg. The image ¢(My) inside My behaves
like the scalars.

Definition 43. We define the left ‘trivial’ algebra Lo = (A o ((My))” C A(Mpy) C
W#*(H). Similarly, we have the right ‘trivial” algebra R defined using p o .

Using this new language, the following corollary is just a restatement of Proposition
10.

Corollary 9. Ly N Ry = Re. Similarly, Ly N Ry = Lc.

Now by Theorem 6, there is a bijective correspondence between von Neumann subal-
gebras N C Lp containing the distinguished partition of unity Q, and W*-subcategories
Ww,0,) S Mu with the objects a @ H for a € C. Similarly, we have a bijective
correspondence between von Neumann subalgebras N C Rpyg containing R and W*-
subcategories (v, 0) VW € g M with the objects H®@ b for b € C.
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Remark 19. Note that in general, Wy, o,) is not a C-module category. If Wy g, ) is
a C-module category, then N necessarily contains L¢, since N is unital. The converse
is not true, since there is no a priori compatibility between the algebra multiplication
and the left C action. However, we call always obtain a W*-algebra containing N which
corresponds to a C-module category by taking the closure in My of Wy, o, ) under the
left C-action and taking the corresponding W*-algebra.

We can now describe the relationship between these bijective correspondences and
the commutants from Definition 39. In our new language, the following proposition is a
restatement of Corollary 8.

Proposition 11. Suppose N' C My is a cyclic C-module dagger subcategory (not nec-
essarily W*), so that N has objects of the forma @ H for a € C. Let N C Ly be the
corresponding x-subalgebra. Then N' = (yoRy. 0 W-

We have a similar statement switching the role of left and right.

We are now ready to prove our version of the von Neumann bicommutant theorem.

Theorem 7 (von Neumann bicommutant). Suppose we have a cyclic C-module dagger
Sfunctor @ : (M, m) — (My, H). The bicommutant cyclic C-module W*-category
(D (M), H) is equivalent to the weak* closure of ® (M) inside (My, H).

Proof. Let M C Ly be the induced subalgebra of @ (M) € Mpy. Then we see that the
weak* closure of @ (M) € My is Wy, g,)- Also note that by Remark 19, Lo € M
since M is unital. We then have

(M) = WimnRuynLu.01) (by Proposition 11)
= W(mrnLwv (RynLw). 1)
=Wwmrvie,0r) (by Corollary 9)
=Ww.0.)

O

Remark 20. In the event that ® = 6 where 6 : A = B(H) is a representation of a
C*-algebra object, Theorem 7 gives us a W*-algebra object corresponding to 6(Map)”,
which we denote by A” € Vec(C). Note that the representation A = B(H) factors
through A", since the cyclic C-module dagger functor 6 factors through 6(My)".

5.4. Bimodules between algebra objects. Equipped with our definition of the commutant
and the bicommutant theorem, we now discuss the notion of a bimodule between algebra
objects in Vec(C).

Definition 44. Suppose we have two x-algebra objects A,B € Vec(C). An A — B
bimodule consists of a Hilbert space object H € Hilb(C), together with representations
A Mpa —> Mg C Bgand p : gpM — gM C By satisfying the requirement that
pPBM) S A(My).

Example 13. Suppose A € Vec(C) is a C*-algebra object with a trace 7. The left and
right actions of A on L2(A) from (20) make L2(A) an A — A bimodule by Proposition
9.
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Definition 45. A finite W*-algebra objectin Vec(C) is a pair (M, t) where M € Vec(C)
is a W*-algebra object and 7 is normal a tracial state on M which is faithful on M(1¢).

Proposition 12. The GNS representation of a W*-algebra object M € Vec(C) with
respect to a normal state ¢ on M(l¢) gives a normal representation 1 : M =
B(L2(M)y).

Proof. 1t suffices to show that the induced C-module dagger functor 7 : My —
M 2y is normal. Since these W*-categories admit direct sums, we need only show that

for every increasing bounded net f; / f inthe W*-algebra Mm(am, am) = M(@a®a),
we have 77 (f;) /' 7(f) in the W*-algebra Endnijip(c)(a ® L?(M)). Since the action of
Endiipc)(@®L*(M)) on Hy := B .cprricy @R L2 M) (¢) = D cetrr(c) Cc. a®b)®p
L%(M)(b) is faithful (and normal), we need only check that for every Do ®& €
Cle,a ® b) @, M(b),

n

D (x ®EDIF ()@ ®E))e = ¢
k=1

/¢ = D (@ ®&IF()ar ®&))e.

k=1

(Since (f;) is bounded, we need only check 77 (f;) / 7 (f) on a dense subspace of H,,.

For example, see [Pen13, Lem. A.2].) This readily follows from the fact that My is a
W-category, the positivity and normality of the conditional expectation E, from (14),
and the normality of ¢ on M(1¢). O

Corollary 10. The left and right M action on L*>(M) from (20) are normal.

We now want to prove the analog of the fact that JMJ = M’ in the case of a finite
von Neumann algebra (M, trys). We recall the proof from [JS97, Thm. 1.2.4] in the
ordinary operator algebra setting so that we may adapt the technique for a finite von
Neumann algebra object (M, t) € Vec(C).

Theorem 8. Let (M, tryy) be a finite von Neumann algebra, and let J : L2(M, try) —
L*(M, try) be the conjugate linear unitary given by the extension of x$2 +— x*£2,
where 2 € L>(M, tryy) is the image of | € M. Then JMJ = M'.

Proof. 1t is trivial that JMJ C M’ since left and right multiplication commute. It is
easy to compute that for all x € M’, Jx$2 = x*$2. Indeed, for all f € M,

(JxQ, f2) = (Jf2,x2) = (f*2,x2) = (x*2, fQ). (23)
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Using this, we compute M’ € JM J by showing (JMJ) = JM'J C M. Indeed, for
x,y € M and f, g € M, we have

(xJyJf$2,882) = (Jyf*2,x"g2) = (Jf 'y, gx*Q2) = (Jgx* 2, f*y$2)
= (JglxQ2, f[*yQ2) = (fx2,Jg"TyR2) = (fx2,Jg"y*2) (24)
= (xfR,Jy"g*" Q) = (xf2,Jy*Jg2) = (JyJxf$2,gR),

which relied on the fact that (JzJ)* = Jz*J forz =g,y. O

To generalize this result to (M, ) € Vec(C), we first need to define the analogs of
J and £2, and define the analogs of the vectors £2, f£2 for f € M(a), and x$2 for
x € M/(b). We should then see that JMJ C M’'. By construction, we should have

Jf2 = j}ZV[(f).Q, and we will need to prove Jx§2 = j})W (x)£2. We should then be able
to follow the string of inequalities in the above proof to conclude the other inclusion.

Definition 46. For a, b € C, we define a conjugate linear natural transformation J ab .
a®L M) @b=b® L M)®a by defining its c-component Jf’b for ¢ € C by the
extension of the map

Cd,a®e)®,M(e) 4C(c,d®b) 52 QER B BR jo(§)®T € CT, b
® d) ®; M(e) ®: C(d, e ® a)
ford, e € Irr(C). (Recall IVI(e) is the image of M(e) inside L2(M)(e) as in Section 4.5.)
The following lemmas are straightforward calculations.

Lemma 8. Using Definition 21 for composition for conjugate linear natural transfor-
mations, and suppressing ¢’s, the conjugate linear natural transformations J satisfy

ba b
J?% o JEP = lda®L2(M)®b'

Lemma9. For « ® £ ® f € C(d,a ® ¢) ® M(e) ® Clc,d ®b) and y ® 1 ® 8 €
CE b®d) ;M@ ®:Cd,e®a),

(@ ®E®BIY ®1® ) goransae = (/7 @1 @ 8la®E ® B)apr s -
Lemma 10. Conjugation by J is an anti C — C bimodule natural transformation. That

is, foreveryx € Bg@a@H®b,c @ H® d) and € C(d’,c") and ¢ € C(b',d"), we
have
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Proposition 13. For f € M(a), we have J'¢1cx(j, (f)J'¢4 = p(f) as natural
transformations LZ(M) ®a = L>(M).

Proof. Fixcelrr(C)and § @ o € IVI(b) ®p C(c, b ® a). Then

(Il o n(a(f))e o I E @ a) = (J1e1C o h(ju (f))) @ ® ji(E))

—_ gle.le
=J,

=p(feE Q).

O

Definition 47. Using the left and right actions A, p of M on L2(M) from (20), we define
the W*-algebra object JMJ € Vec(C) is the algebra object corresponding to the left
C-module W*-category generated by the JA(f)J = p(j(f)) for f € M(a). (Note
that the left C-action here is given by ¥ > p(f) = p(f) ® ¥.) By Proposition 13, we
have JMJ C M/, i.e., there is a canonical injective *-algebra natural transformation
JMJ = M.

We now define £2 : 1 = L?(M) to be the bounded natural transformation correspond-
ing to i € M(1¢). For f € M(a), we see f£2 € M(a) C L2(M)(a) corresponds to
A(f)(da ®82) 1 a = LZ(M):

L2(M)

"= (W)

a 2

Moreover, it is immediate that J££2 = J,¢''€ 2 = j,(f)82.
Lemma 11. Suppose x € M'(b) € gM (wb, w1). We have Jx2 = j})vr(x)Q.

Proof. The proof follows (23) almost exactly. Suppose f € M(b). Then

The first equality follows from Lemma 9, the third equality follows from commutation
between M and M, and the last equality follows from sphericality, since we have bal-
anced solutions to the conjugate equations. Now we use the correspondence between
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the dagger structure of By and the definition of jM and jM/ to see that the right hand
side above is equal to

xJyJ =

Thus JM'J C M, and together with Proposition 13, JMJ = M'.

Proof. The proof follows (24) almost exactly. Fix ¢ € Irr(C), and suppose « @ f ® 8 €
Cle,a®d) ®; M(d) ®, C(c,e ® b) and g € M(c). We calculate (xJyJ(¢ @ f ®
B)$2, 852) 12w (c) as follows. To get the first line of (24), we get the following equalities
by Lemma 10, Jf2 = j;lv[( f)$2, the fact that M and M’ commute, and Lemma 9
respectively:
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We get the first two terms in the second line of (24) by applying isotopy, using the
definition of jM/, applying Lemma 11, and using Proposition 13 respectively:
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Now conjugation by J is a natural transformation, so we may pull & and 8" through
the pair of J’s to move them to the bottom. We rotate ¥ and 8" and the d string attached
to jq(f)* to obtain o and B8 and f again. We then use Lemma 11 again follows by the
definition of jM/ to finish the second line of (24).



Operator Algebras in Rigid C*-Tensor Categories 1179

We obtain the final line of (24) by again using that M and M’ commute, then using the
definition of jM, then using JjgvI (8)§2 = g$2, and finally Lemma 10 again.
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We conclude that xJyJ(e ® f QB) = JyJx(a @ f@®PB) foralla ® f ® B €
Cle,a®d) ® M(d) ®. C(c,e ® b), and thus xJyJ = JyJx by a result similar to
Lemma?2. O

5.5. Analytic properties. We now consider connected W*-algebra objects M € Vec(C).
These algebras have natural definitions of analytic properties such as amenability, the
Haagerup property, and property (T). We show that our definitions specialize to the
usual definitions for two well-studied classes of examples: subfactors and rigid C*-
tensor categories due to [Pop99,PV15], and discrete (quantum) groups, studied by many
authors.

Before we begin, we would like to remark on our specialization to connected algebras.
For ordinary W*-algebras, the correct definitions for things like property (T), amenabil-
ity, and the Haagerup property are undoubtably via Connes’ correspondences. There, no
traces or multipliers are required. While we strongly believe that a robust theory of corre-
spondences exists in our setting, the development of this theory in full generality requires
a generalization of Tomita-Takesaki theory, a task which would take us too far a field.
We restrict our attention to connected algebras, which bear the strongest resemblance to
the best studied examples: discrete (quantum) groups and rigid C*-tensor categories.

On the other hand, it would be relatively easy to modify our definitions to include
algebras whose base algebra is a finite von Neumann algebra. This would allow us to
include the well studied case of actual II; factors as examples. However, the definitions
are not quite as clean and natural as they are for connected algebras, so we exclude them
here, but we’ve set things up suggestively so that the interested reader may easily derive
the correct generalization.

Let M € Vec(C) be a connected W*-algebra object, and let T denote its unique
state. Let H; := @ aclir(C) L?>(M(a));, where the inner product on M(a) is given

by (flg)a = t({flg)a)- Then we can canonically identify EndH"b(C)(Lz(M)T(a)) =
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@aeln(C) B(L>(M);) € B(H;). We define the von Neumann algebra £°(M) :=
Becirric) BL M) (@).

Let ¥ : M = M be a ucp morphism (note that all ucp morphisms are automatically
normal since M is locally finite). Then my := B ,cpr(c) Wa €xtends to a bounded norm
one map in £*° (M) acting on H;. Note conversely, forany m € £°° (M), there exists some
categorical multiplier ¥ such that m = my. Thus we call an element my € £°°(M)
a ucp-multiplier if ¥ is a ucp morphism. (This is a slight conflict of notation with our
earlier notion of cp-multiplier on My, but they are equivalent notions by definition.)

Below, point-wise convergence of operators in £>°(M) € B(H;) means strong oper-
ator topology convergence in B(H;). Also, a ucp multiplier my € £*°(M) € B(H;),
so it naturally makes sense to talk about finite rank and compact multipliers.

Definition 48. Let M € Vec(C) be a connected W*-algebra object. Then M

(1) is amenable if there exists a net of finite rank ucp multipliers converging to the
identity point-wise in £°°(M).

(2) hasthe Haagerup property if there exists a net of compact ucp multipliers converging
to the identity point-wise in £°°(M).

(3) has property (T) if every sequence of ucp multipliers which converges to the identity
point-wise converges in the operator norm in £°°(M).

Notice that since connected implies all M(a) are finite dimensional, a ucp multiplier
my is finite rank if and only if it is non-zero for at most finitely many a € Irr(C).
Similarly, my is compact if and only if for every ¢ > 0, there is a finite set F' C Irr(C)
such that |, || < e foralla € Irr(C) \ F.

We now consider several classes of examples which have recently generated a great
deal of interest, and show that various notions of cp-multipliers in different settings
correspond to our ucp morphisms. We give a translation for the definition of analytic
properties from well known examples to our context.

Example 14 (Discrete groups). This is actually a special case of 16 below. Suppose G is
a discrete group. The group algebra G = C[G] is a connected W*-algebra object in the
rigid C*-tensor category C = Hilbtg(G) of finite dimensional G-graded Hilbert spaces.
Then £°°(G) = £°°(G). It follows the more general results from Example 16 below
that cp-multipliers agree with the usual definition, and thus our definitions of analytic
properties agree with the usual notions.

Example 15 (Symmetric enveloping algebra object). Consider C as aleft CKC™P-module
W*-category, where the action is given by (aXb™P)(c) = a®c®b. Then the cyclic (CK
C™P)-module W*-category (C, 1¢) yields an algebra M € Vec(C) called the symmetric
enveloping algebra [Pop94,Pop99,Mas00], or the quantum double.

For an object A € CXIC™, M(A) = @ ,cir(c) (CXC™) (A, aKa™). Note that we
have a canonical isomorphism y, 5 : (¢ ¥a™) ® (b K Py > @b R@b) "
given by the involutive structure on C. The algebra structure on M is given for f €
(C®C™)(A,aXa™)and g € (CRC™)(B,bXD ") by

W p(f@e) = Y de(@B@)oyap(f®Deg).
celir(C)
a€ONB(a®b,c)

Using the identification of (C, 1¢) with the category of free M-modules, we see
that M(a K b™P, ¢ K d™P) = C(a ® b, c ® d). Now, in [PV15, Def. 3.4], Popa and
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Vaes define a multiplier on a rigid C*-tensor category as a family of maps @, :
Cla®b,a®b)y - Cla®b,a ® b) satistfying certain compatibility conditions. In
[PV15, Prop. 3.6], they show that these maps uniquely extend to maps Ougp ced :
Ca®b,c®d) — C(a®b, c®d) satisfying the same type of compatibility conditions.
By inspection, these conditions are precisely the conditions for a family ®,gp, g4 to be
amultiplier in the sense of Definition 34. Furthermore, they define a cp-multiplier to be a
multiplier for which @, j, is positive for all objects a, b € C. This precisely corresponds
to our definition of a ucp-multiplier. This yields a canonical bijection between ucp
morphisms 6 : M = M and cp-multipliers for C in the sense of Popa and Vaes [PV 15].

From this discussion, we deduce the following result.

Proposition 14. The symmetric enveloping algebra object M has a property from Defi-
nition 48 if and only if C has the corresponding property in the sense of [PV15, Def. 5.1].

Example 16 (Discrete quantum groups). We rapidly recall the basics of discrete quantum
groups from [NT13]. We refer the reader there for additional details.

Suppose C admits a dagger tensor functor (F,n) : C — Hilbgy. Using Tannaka-
Krein-Woronowicz reconstruction, we obtain a discrete quantum group G, which has
two canonical algebras associated to it. The first is the Hopf *-algebra C[G] which,
as in the case of group algebra C[G], has a universal C*-completion and a reduced
C*-completion. All intermediate norms yield compact quantum groups often thought
of as the “algebras of functions” on the compact duals of G. The second is the type I
von Neumann algebra £°°(G) = [ [, ¢y ) B(F(a)), which has a non-trivial co-algebra
structure making it into a multiplier Hopf algebra. We describe both of these algebras
more explicitly below. We remark that when viewed as a locally compact quantum group,
one uses the latter von Neumann algebra as the fundamental object.

For convenience, for ¢ € C, we define the space H. = Hilbsq(C, F(c)), which can
canonically be identified with F(c) itself, and H} = Hilbsq(F(c), C) whichis canonically
identified with the dual space F(c)*. Then using the tensorator 7, we can define maps
Ned : He ® Hi — H,gq and r/’:’d : H:®d — H!® Hj.Fora € C(a ® b, c), we set
a@ = F(a) ongp : F(a) ® F(b) — F(c). In particular, since evz € C(a ® @, 1¢) and
ev, € C(a ® a, 1¢) are standard solutions to the duality equations in C, we see €v, and
€vg solve the duality equations for F(a), F(a) in Hilbsg, since F is a dagger functor. It is
an important point that these solutions in general are highly non-standard. For example,
eV: 0 €v, = d,, but in general, if d, is not an integer, we have dimyjp (F(a)) < d,. Itis
also easy to check that in general they do not induce a pivotal structure on Hilbsg.

Define £*°(G) = @aem(c) B(F(a)), the von Neumann algebra direct sum. While
boring as an algebra, £°°(G) has a much more interesting co-algebra structure, which
we will not describe in detail. The group algebra, also called the polynomial algebra
on the compact dual, is defined as C[G] := @, cpy(c) Hi ® Ha, the algebraic vector
space direct sum, which we can view as the “restricted dual” of the algebra £*°(G).
This has a matrix co-algebra structure A (dual to the algebra structure on £°°(G). The
multiplication is defined for x = } ¢y X(}) ® x(3) and y = 3 ccire) y(b]) ® yf’z)
(in leg numbering notation) by

Xy = Z dc(xfl]) 02 y?l)) od"@a&o (X?Z) ® y(bZ)),

a,belrr(C)
«cONB(a®b,c)
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under which C[G]is an associative algebra. Define the antipode S : H; @ H, — H}® Hz
by

S(xy ®x2)) =&V, 0 (I ® x2)) ® (x(1) ® 1z) 0 &Vg

which we extend to all of C[G] linearly. It is easily verified that S(xy) = S(y)S(x).
Note that > = 1 if and only if the (éV,, évz) induce a pivotal structure on Hilbsg, which
is equivalent to asking that G is of Kac type.

To define a *-structure, first note that the dagger structure on the category Hilbtg
gives us conjugate linear maps * : H, — H and * : H — H,, yielding a conjugate
linear map j : Hf ® H, — H) ® H, given by j(x1) ® x)) = xa) ® xz*l). The
anit-linear involution on C[G] is given by x* = § o j(x). It is straightforward to verify
that x*™ = x and (xy)* = y*x*. The maps S and # satisfy the relation S(S(x*)#), which
makes (C[G], A, S) into a Hopf *-algebra. In general, S and # do not commute; rather,
they commute precisely when G is Kac type.

To make the connection with the standard aspects of the theory of compact quantum
groups, for a € Irr(C), let B, := {e{'} be an orthonormal basis for F(a). Here, we again
slightly abuse notation to identify e with the morphism C — F(a) sending 1 > ef.
We use the notation (e4)* for dual basis element of H. We define u?‘j =()"® e? €
H} ® H, € C[G]. Itis well known (and easy to check) that u® := (u?j),-)j e M, (C[G))
is unitary. In fact, the map ef — > i€ ® uj j extends to a linear map 7 : F(a) —
F(a) ® C[G], and makes F(a) into a unitary co-representation of C[G]. One can show
C is equivalent to the rigid C*-tensor category of unitary co-representations of C[G].
Again, we refer the reader to [NT13] for more details on compact quantum groups.

Definition 49. A state on G is a linear functional ¢ on C[G] such that ¢ (1¢[g)) = 1c
where 1¢jg) = u}’cl, and ¢ (x*x) > 0 for all x € C[G].

The pairing H} ® H, — C given by x(1) ® x2) — x(1)(x(2)) is non-degenerate
(since H, € Hilbtg). Thus for every linear functional ¢, : H ® H, — C, there is a
unique @, € End(F(a)) such that ¢, (x(1) ® x2)) = x(1)(Pa(x2))).

A linear functional ¢ on C[G] may thus be uniquely defined by a sequence my =
{D,1®, € End(F(a))}. If ¢ is a state, ¢ extends to a state on the universal C*-algebra
C;(G) (for example, boundedness follows from [DK94, Lem. 4.2].) Then @, is the image
of u under the amplification of the state ¢ (viewed as a ucp map from C}(G) — C),
and thus || @, || < 1. Hence my € £°(G).

Definition 50. A cp-multiplier on G is an element my € £°°(G) such that the corre-
sponding functional ¢ is a state.

We are now ready to give definitions for analytic properties for quantum groups.
First, defining H := @ae[rr(c) H,, we can view £°°(G) as a von Neumann sub-
algebra of B(H), which enables us to discuss finite rank/compact ucp-multipliers.
Again, point-wise convergence means strong operator topology convergence, viewing
£°(G) C B(H).

Definition 51. Let G be a discrete quantum group. Then G

(1) is amenable if there exists a net of finite rank ucp-multipliers converging point-wise
to the identity in £*°(G).
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(2) has the Haagerup property if there exists a net of compact ucp-multipliers converg-
ing point-wise to the identity in £>°(G).

(3) has property (T) if every net of ucp-multipliers converging point-wise to the identity
in £°°(G) converges uniformly to the identity.

We remark that the definitions presented here are somewhat non-standard. The first
definitions of these properties were given respectively by: amenability [BS93,Rua96,
BCTO5], the Haagerup property [DFSW16], and property (T) [Fim10]. For a general
overview of analytic properties (and many equivalent characterizations of the above
properties) for locally compact quantum groups in general, we recommend the survey
papers [DFSW16] and [DSV16], and the references therein.

Our definitions can be seen to be equivalent to the more usual definitions via the con-
text of completely positive multipliers for quantum groups (see [Daw12]). The equiva-
lence of amenability to other definitions can be seen by applying the usual group-theory
type arguments; for example, our definition clearly is equivalent to saying “the trivial
representation on C[G] can be approximated by finitely supported states”, so by stan-
dard group theory type arguments, the universal C*-norm equals the reduced C*-norm on
C[G], hence the reducing map is injective. Thus the compact dual is co-amenable, which
is equivalent to G being amenable (see, for example [Bral6, Thm. 3.12, 3.13 and 3.15]).
For the Haagerup property, this can be seen directly from [DFSW16, Thm. 5.5]. For
property (T), this comes from [DSV16, Thm. 3.1]. We greatly thank Makoto Yamashita
for very helpful discussions about the equivalent characterizations of these properties
for discrete quantum groups.

We now unify these definitions with our categorical definitions. Recall the tensor
functor F makes Hilbtq into a C-module W*-category. Let G be the connected W*-algebra
object corresponding to C € Hilbtg, given by G(a) = Hilbig(F(a), C) = H}. A natural
transformation ® : G — G is uniquely determined by a family of linear maps @, :
H} — H}.Each @, can be viewed as an operator ¢, € B(H,), which acts on H by
precomposition. Such a @, induces a categorical multiplier @, 5, : Hilbiy(F(a), F(b)) —
Hilbsq(F(a), F()), given by

Pap(Hi= Y de(idriy ® (V5 0 (idggs) @) 06 0 B 08¥)) 0 (&} @ idr)
a,belrr(C)
a€ONB(c,b®a)

(compare with (18)). Conversely, every cp-multiplier is of this form and produces a
family @, and a state ¢ as described above.

Recall that if A, B are n x n matrices, their Schur product is the n x n matrix given
by (A x B);; = A;;jB;j. The Schur Product Theorem states that the Schur product of
two positive matrices is again positive. We have the following lemma that will be useful
later.

Lemma 12. Let A be an n x n matrix. Then A is positive if and only if v(B x A)v* > 0
for all positive matrices B, wherev = (1,1, ..., 1).

Proof. By the Schur product theorem, if A > 0, then the condition follows. Conversely,
assume our condition holds. Let z = (z1, ..., z,) be an arbitrary row vector, and let
Z = diag(z), so that Z* = diag(z). Let V be the n x n matrix with all entries equal to
1. Then zAz* = v(Z(V x A)Z*)v* = v ((ZV Z*) x» A) v* > Osince ZV Z* > 0. Here
we have used the fact that since Z, Z* are diagonal, Z(V x A)Z* = (ZV Z*) x A. Thus
A is positive. O
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The next proposition is essentially [Daw12, Thm. 5.9]. We include a proof for com-
pleteness and convenience of the reader.

Proposition 15. A natural transformation ® : G — G is ucp if and only if p € C[G] is
a state.

Proof. Let {®, € End(F(a))|a € Irr(C)} be the sequence associated to @. Let B, be an
orthonormal basis for F(a) as above. For i, j € B, and k,[ € Bj, define the number

chk]ls =¢ ((ufl)#u?j). Here and throughout, the letter after the semi-colon indicates the
component of the preceding index.

‘We want to find a nice characterization of positivity for ucp morphisms which we can
compare to positivity of states on the algebra C[G]. First note that @ is a ucp morphism if
andonlyifforanyc € C, f € B(F(c)),andt € H,,the corresponding multiplier satisfies
t*o®. (f)ot > 0. We will express this condition by choosing coordinates and writing
this expression in terms of coefficients with respect to orthonormal bases. First, we write
F(c) = @ae/\ F(C(c,a)) ® F(a) =: K4, where A is the finite subset of Irr(C) such
that @ < ¢. We have a choice of orthonormal basis for F(a) (hence H,), for a € Irr(C)
given above, and we choose an orthonormal basis V, of F(C(a, ¢)) foreacha € A. Then
viewing f € End(K 4), we define f, »(v, i, w, k) as the coefficients of f with respect
to the tensor product basis, namely ZveVaieBa Jar i, w,Hw® e,l: =P (f(v®el)),
where here Py, is the projection of K 4 onto the component F(C(c, b)) ® F(b). Similarly,
define the numbers ¢, (v, j) as the coefficient of e;f in the expansion of v o f for v € V,.

Then positivity is equivalent to

>y Yo D fas i w, B (v, HOLL = 0

a,be A weVy,,veV, k,leBy,i,jeB,

The above discussion leads to the following abstract characterizations of positivity
in both cases:

(1) We see ¢ is a state on C[G] if and only if for any finite set A C Irr(C), and any
functions «, : B, x B, — C, the sum

Z Z ap(k, Do (i, j)q)ff’,-lfﬁ = 0.

a,beAk,leBy, i,jeB,

(2) @ : G = G is a ucp morphism if and only if for any finite set A € Irr(C) and
arbitrary finite sets V, for a € A, and for any maps 7, : V, x B, — C and
Ja.b i Va X By x V x Bp whose values f, (i, v, k, w) are the coefficients of an
n X n positive matrix forn = ||, Va X By| (as above) we have

oo Yo W, D fap, i w, it v, HOLET > 0.

a,be AweVy,veV, k,leBy,i,jEB,

Now, we claim conditions (1) and (2) on the coefficients of @ are equivalent. Let
C[V,] denote the Hilbert space with orthonormal basis given by V,. Define K, :=
PucaClVal ® Hy and Hy == @, 4 HF ® H,. Then we can naturally view f as a
positive operator F' : K4 — K 4. Similarly we can view T, ((e)*) := Zvev,, ta(v,i)v
as a linear map H — C[V,]. Setting T := P, 4, 7. ® id, : Hx — K, we have
the positive operator 7* o F o T, which we view as a matrix with our distinguished
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orthonormal basis. Similarly, defining D) ®e) =Y pen ticn, P rinled) ®e)
yields an operator @ : Hy — Hy. .
Its clear that condition (1) on @ simply states that the operator @ is positive, while

condition (2) states that
v((T*oFoT)*a)v* >0

for all K4 and positive F : K4 — K, wherev = (I,1,...,1).But T* o Fo T €
End(H, ) is always a positive operator, and every positive P € End(H,,) arises this way
for some K 4 (for example, pick K4 = H,, and set T = id). Thus we can replace this
condition with v(P x @)v* > 0 for all positive operators P € End(H,), which by
Lemma 12 above is equivalent to @ being positive. Thus the conditions (1) and (2) are
equivalent. O

We now deduce the following proposition.

Proposition 16. A discrete quantum group G is amenable, has the Haagerup property,
or property (T) if and only if the corresponding W*-algebra object G in Rep(G) does.
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