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The probability of finding a spherical cavity or “hole” of arbitrarily large size in typical disordered many-
particle systems in the infinite-system-size limit (e.g., equilibrium liquid states) is non-zero. Such “hole”
statistics are intimately linked to the thermodynamic and nonequilibrium physical properties of the
system. Disordered “stealthy” many-particle configurations in d-dimensional Euclidean space RY are
exotic amorphous states of matter that lie between a liquid and crystal that prohibit single-scattering
events for a range of wave vectors and possess no Bragg peaks [Torquato et al., Phys. Rev. X, 2015, 5,
021020]. In this paper, we provide strong numerical evidence that disordered stealthy configurations

Received 24th May 2017, across the first three space dimensions cannot tolerate arbitrarily large holes in the infinite-system-size

Accepted 22nd July 2017 limit, i.e., the hole probability has compact support. This structural “rigidity” property apparently endows

DOI: 10.1039/c7sm01028a disordered stealthy systems with novel thermodynamic and physical properties, including desirable
band-gap, optical and transport characteristics. We also determine the maximum hole size that any

rsc.li/soft-matter-journal stealthy system can possess across the first three space dimensions.

1 Introduction formation of very large holes is of fundamental importance in

understanding thermodynamic phase separations into dense
Statistical-mechanical studies of disordered many-particle systems  liquid phases and “hollow” phases.'*"®
often focus on quantifying various statistics of particle locations. Given a general many-particle system in d-dimensional
This includes n-body correlation functions,"™ the structure Euclidean space R can one find arbitrarily large holes? For
factor,’ nearest-neighbor probability distributions,”® and various ~ disordered systems, the answer to this question is often “yes”.
statistics of the corresponding Voronoi cells.”> However, rather ~Consider the void-exclusion probability function, Ey(r), which
than considering the particles themselves, it has been suggested
that the space outside of the particles (void space) may be even
more fundamental and contain greater statistical-geometrical
information."*'* A major focus of this paper is the study of a
particular property of the void space between point particles in
disordered “stealthy” systems,"”>* which are disordered many-
particle configurations that anomalously suppress large-scale
density fluctuations, endowing them with unique physical
properties.>>*” The specific question that we investigate is
whether disordered stealthy systems can contain arbitrarily
large holes. Here we define a “hole” as a spherical region of
a certain radius that is empty of particle centers. It is note-
worthy that this hole statistic plays a central role in the

“quantizer” and “Covering” problems that arise in discrete Fig. 1 In a Poisson point configuration (ideal gas), particle locations are

random and uncorrelated. If there is a spherical hole of radius r and volume

geometry.14’28 It is also noteworthy that the question of the v4(r) in a configuration of volume V, then when one adds another particle
(marked red), the probability that this hole remains empty is 1 — vy(r)/V.
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gives the probability of finding a randomly located spherical
cavity of radius r empty of particles."® If Ey(r) is non-zero for an
arbitrarily large r, then one can find arbitrarily large holes in
the infinite-size-system limit, even if these are very rare events.
For example, as explained in Fig. 1, the void-exclusion prob-
ability for a Poisson point process (i.e., an ideal gas) at number
density p is given by’

Ey(r) = exp[—pv4(7)], (1)

where v,(r) = n%r%/I(1 + d/2) is the volume of a d-dimensional
sphere of radius r,"* and I'(x) is the gamma function. Although
Ey decays exponentially as v,(r) increases, it is always positive
for any finite r. Thus, no matter how large a hole is desired, the
rare event of forming such a hole can always be observed in the
infinite-system-size limit. Similarly, Ey(r) is found to be positive
for arbitrarily large 7’s for equilibrium hard-sphere fluid systems
across dimensions.” Therefore, they also allow arbitrarily large
holes. It is noteworthy that Ey(r) can be expanded as a series
involving n-body correlation functions.” Therefore, Ey(r) requires
many-body correlation information to quantify the probability of
hole formation.

Even for many-particle systems in which Ey(r) is not exactly
known in the larger limit, there are often strong arguments
indicating that holes of arbitrary sizes can occur. For equilibrium
systems of particles interacting with some potentials (e.g., Lennard-
Jones potential) at some positive temperature 7, the free energy cost
of creating a hole, AF, often scales as the hole volume and/or hole
surface area, and is therefore finite. Thus, the probability of
finding a large hole [roughly exp(—AF/(ksT))] is also nonzero.
Moreover, hard-sphere systems in a glassy or crystalline state
away from jamming points possess collective motions that can
produce arbitrarily large holes in the infinite-system limit.>®

Besides the aforementioned many-particle systems with
unbounded hole sizes, we also know of several systems in which
the hole radii are bounded from above. A simple class of systems
whose hole probability must have compact support are perfect
crystalline (periodic) many-particle systems. Spheres large
enough to encompass entire unit cells always contain particles.
Thus, holes of arbitrarily-large radii cannot exist. A simple
disordered class is saturated random sequential addition (RSA)
sphere packings across dimensions. RSA is a time-dependent
packing process, in which congruent hard spheres are randomly
and sequentially placed into a system without overlap. In the
infinite-time limit, the system becomes saturated, i.e., spheres
can no longer be added to the packing, and hence holes must be
finite in size. By contrast, RSA packings below the saturation
density were found to have positive Ey(r) for arbitrarily large r,*°
and therefore allow for the presence of very large holes.

So far we have seen that although all perfect crystalline
many-particle systems prohibit arbitrarily large holes, many
disordered many-particle systems allow them. A promising
class of amorphous structures that may not tolerate arbitrarily
large holes is disordered hyperuniform systems. Such systems
have received considerable attention because they anomalously
suppress density fluctuations.”*’ Specifically, if one places a
spherical window of radius R into a d-dimensional many-particle
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system and counts the number of particles in the window, then
the number variance, ¢*(R), scales as R? for large R in typical
disordered systems. Any system in which ¢*(R) grows slower than
R? is said to be hyperuniform.** Equivalently, a hyperuniform
many-particle system is one which the structure factor S(k) tends
to zero as the wavenumber |k| tends to zero,* ie.,

lim S(k) =0. @)

[k|—0

Disordered hyperuniform systems are a good starting point to search
for more examples of disordered systems with bounded hole sizes
because the formation of large holes might be inconsistent with
hyperuniformity, which suppresses large-scale density fluctuations.

However, we know that not all disordered hyperuniform
systems prohibit arbitrarily large holes. For example, in a
hyperuniform fermionic-point process in d spatial dimensions,
Ey(r) scales as exp(—cr®™) (where ¢ is a constant) for large r.>>
Also, the hyperuniform two-dimensional one-component
plasma possesses an Ey(r) that scales as exp(—cr®) for large
r.3*3* Both of these systems thus allow arbitrarily large holes.
Therefore, hyperuniformity alone is not a sufficient condition
to guarantee boundedness of the hole size. Nevertheless,
different hyperuniform systems have different levels of sup-
pression for large-scale density fluctuations. While any system
in which limy_ S(k) =0 is considered hyperuniform, the
“stealthy” variants of hyperuniform systems have S(k) = 0 in
the entire interval |k| € (0,K] for a certain value of K. Stealthy
hyperuniform systems are known to possess many unique
thermodynamic and nonequilibrium physical properties,
including negative thermal expansion behavior,” complete
isotropic photonic band gaps comparable in size to those of a
photonic crystal,>* > transparency even at high densities,*® and
nearly optimal transport properties.>” The behavior of S(k) near
k = 0 in stealthy systems is identical to that in perfect crystals.
Since perfect crystals prohibit large holes, could stealthy hyper-
uniform systems also prohibit large holes?

In this paper, we present strong numerical evidence that
disordered stealthy systems indeed prohibit arbitrarily large
holes. It is nontrivial to study the existence of large holes not
only because formation of large holes is extremely rare, but also
because numerical simulations are limited to finite-sized systems
and one wants to infer the infinite-volume-limit behaviors. With
periodic boundary conditions, such systems are always perfect
crystals, even if the repeating units may be very large. As we have
mentioned, perfect crystals always have bounded hole sizes. We
developed two numerical techniques to overcome these issues to
distinguish whether a system can tolerate arbitrarily large holes or
not that can be applied to infer the maximum hole size in general
disordered systems (whether they are stealthy or not) in the
infinite-volume limit. Specifically, we first attempt to determine
the maximum size of the holes that naturally emerges in stealthy
hyperuniform systems across the first three space dimensions by
studying the tail behavior of Ey(r). We find that the tail of Ey(r) for
stealthy systems is qualitatively similar to that for crystals and
saturated RSA sphere packings, which have finite holes, and is
qualitatively different from that for Poisson point processes with
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unbounded hole sizes. We then determine the maximum hole
size that any stealthy system can possess across the first three
space dimensions. To do this, we generate large stealthy systems
with largest possible holes by imposing repulsion fields with sizes
equal to the desired hole sizes in stealthy systems. We discover
that this method can only create holes of certain finite sizes
without breaking stealthiness. In stealthy configurations with
largest possible holes, particles concentrate in concentric shells
around the hole. Analytical studies on this pattern allows us to
derive a conjectured upper bound of the hole radius for all
stealthy systems. Our results suggest that there exists an upper
bound on the sizes of solute particles that a stealthy solvent can
dissolve, since particles with exclusion radii above this upper
bound would create intolerably large holes.

The rest of the paper is organized as follows: Section 2
defines stealthy point patterns and two associated parameters,
7 and K. Section 3 studies maximum hole sizes and the tail
behavior of Ey(r) in such systems. Section 4 defines the repul-
sion field we used to create holes, study the pattern of stealthy
systems with such holes, and conjecture an upper bound for
the hole radius, in one to three dimensions. Section 5 provides
concluding remarks and discussions.

2 Mathematical definitions

For a single-component system with N particles, located
at ¥ =1y, I,..., Iy, in a simulation box of volume V with
periodic boundary conditions in a d-dimensional Euclidean
space R? the static structure factor is defined as

N
> exp(—ik - ;)
=

S(k) =

and k is a d-dimensional wavevector (which must be integer
multiples of the reciprocal lattice vectors of the simulation
box).>*

As we have explained earlier, a hyperuniform system is defined as
one in which the number variance ¢(R) grows more slowly than R?
for large window radius R, or a system in which lim_o S(k) = 0.

2
/N, where i is the imaginary unit

Stealthiness is a stronger condition than hyperuniformity. For some
positive K, we call a system “stealthy up to K if

S(k)=0 forall 0 < |k|] < K. (3)

For particles interacting with a pair potential v(r), the total
potential energy is given by

O SEES SUCECETINC
i<j

where 7(k) is the Fourier transform of v(r), and we set the
structure-independent constant @, in the second line of eqn (4)
(defined in ref. 21) to be zero in this paper.

Our focus in the current paper is on stealthy potentials that
take the following form:

v(k|), if0<]|k <K,
(k) = { ()

0, otherwise,
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where V(|k|) is an arbitrary positive function. For present
purposes, we choose V(|k|) = 1 for simplicity. However, one
could alternatively consider other functional forms of V(|k|), all
of which have the same ground-state manifold.'® (In Section 5,
we provide examples of physical many-particle systems
whose interactions approximate stealthy potentials.) In any
case, because (k) has compact support, the corresponding
direct-space potential v(r) is a bounded (soft), oscillating long-
ranged function.’® Because S(k) is by definition always non-
negative, a configuration is a ground state of this potential if it
is stealthy up to K, ie., if S(k) is constrained to zero for all
0 < |k| <K

Only half of these constraints are independent. This is
because by definition, S(k) = S(—k). Let the number of indepen-
dent constraints be M, so the parameter

M
x “aN=1) (6)

quantifies the fraction of degrees of freedom that is constrained.
Because y is proportional to M, it is also proportional to v(K),
the volume of a d-dimensional sphere of radius K. Indeed, we have
previously found"®

@

It was found that for y < 0.5, the ground states of stealthy
potentials are uncountably infinitely degenerate, and possess
no long-range order.” As y increases beyond 0.5, the ground
states are still uncountably infinitely degenerate, but develop
long-range translational and orientational order.”’ As
increases further, these ground states eventually undergo phase
transitions into the integer lattice, the triangular lattice, and
the BCC lattice in one, two, and three dimensions,
respectively.'® In this paper, we want to study hole sizes of
disordered stealthy systems, and will therefore focus on the y <
0.5 range. Because ground states of the stealthy potentials are
uncountably infinitely degenerate, one can have different ways
to sample the ground states, which assign different weights to
different parts of the ground state manifold. We have pre-
viously focused on the zero-temperature limit of the canonical
ensemble (ie.,, define the probability measure P(r") oc
exp[—®(r")/ksT], where kg is the Boltzmann constant and T is
the temperature, and then take the T — 0 limit). However, in
this paper, we will also assign different weights to bias toward
configurations with large holes.

3 Hole probability and maximum hole
size in unbiased stealthy systems

If an upper bound on the hole sizes exists, how should it
depend on K and y? The K dependence can be easily ascer-
tained from a scaling argument: if there exists a configuration
with hole size R that is stealthy up to K, then by rescaling the
real-space configuration by a factor o, one can create another
configuration with hole size Ra, stealthy up to K/a. Therefore,
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the maximum hole radius, R., must be inversely proportional to K.
Therefore, we henceforth study the dimensionless hole size, R.K,
rather than R, itself.

A different argument can shed light on the dependence of
the hole size on y. A superposition of multiple configurations,
each stealthy up to a certain K, is also stealthy up to the same
K.'® Therefore, if there exist n configurations, each with a hole
of radius R that is stealthy up to K, then one could superpose
them with hole centers aligned to create another configuration
with the same hole radius R and K. However, since the number
of particles increases by a factor of n, y decreases by a factor of
n. Therefore, if there exists a configuration of a certain hole size
and K at some y value, then there exists a configuration of the
same hole size and K at arbitrarily small y values. In other
words, R K as a function of y must achieve the global maximum
in the y — 0" limit.

With these preliminary analytical results in mind, let us
examine the numerical results from unbiased ground states of
stealthy potentials (i.e., T = 0 limit of the canonical ensemble).
We have previously generated such ground states in two and
three dimensions for various y values by performing low-
temperature (kg7 = 2 x 107 in 2D and k7 = 107 ° in 3D)
molecular dynamics simulations, periodically taking snapshots,
and then minimizing the energy starting from each snapshot;
see ref. 27 for more details. For each y, we generated 20000
configurations. The number of particles, N, is always between 421
and 751 and is detailed in ref. 27. For each configuration, we
rescaled it to unity K and performed a Voronoi tessellation and
found out the largest distance between each Voronoi vertex and
its neighbor particles. This distance is the maximum hole size for
any particular configuration. We then determined the maximum
hole size among all 20 000 configurations and plotted them as a
function of y in Fig. 2. For a comparison, we also present the
same quantity for Poisson point processes at the same conditions,
derived in Appendix A. As eqn (7) shows, with K fixed to unity,

Fig. 2 Maximally observed R. in 20000 entropically favored stealthy
ground states, rescaled to unity K. The number of particles per configu-
ration, N, depends on y and space dimensions but is always between 421
and 751 and is given in ref. 27. The same quantity for Poisson point
processes (ideal gas) at the same density is also plotted for comparison.
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p is inversely proportional to y. Thus, it is not surprising that R. for
Poisson point processes (at the same density) increases as y
increases. In unbiased stealthy ground states, however, R, weakly
increases with increasing y and saturates at some constant value,
suggesting that R. is bounded for stealthy ground states with fixed
K. The critical radius R. decreases slightly as y tends to zero
because unbiased stealthy ground states become less ordered.
Therefore, although large hole formation is still possible, its
probability decreases. When this probability is too low, it becomes
computationally more difficult to find such a large hole with only
20000 configurations.

Examining the large-r tail behavior of Ey(r) suggests strongly
that R. is finite in stealthy systems. As we have explained in
Section 1, if the hole size is bounded, Ey(r) for some value of r
must be identically zero, instead of being exponentially small.
In Fig. 3, we closely examine the tails of Ey(r) of stealthy systems
in the first three space dimensions in a semi-log scale. As we
showed earlier, numerically found R. suffer from greater sampling
errors if y is too small. Thus, to study the tail behavior of Ey(r), we
choose sufficiently large y values (0.45-0.46) in Fig. 3. Nevertheless,
we will show in the next section that smaller y values do not result
in any qualitative difference. For purposes of comparison, we
compare our results for stealthy systems to Ey(r) for systems in
which we know that the holes must be finite in size, namely,
lattices in which Ey(r) is given exactly'® and saturated RSA sphere
packings; and contrast our results to Poisson point processes, in
which hole sizes are unbounded. As Fig. 3 shows, the tail behavior
of stealthy systems resembles that of crystalline structures and
saturated RSA packings. For each of these systems, the logarithm
of Ey(r) must decay to its bounded cut-off value of R. with an
infinite slope at which Ey(R.) = 0, which may be regarded to be
singularity. However, these figures necessarily present Ey(r) above
certain positive lower limits and hence only nearly-infinite slopes
are apparent. By contrast, Poisson point processes and equilibrium
hard-sphere fluids (not shown in the figure), which have
unbounded R_’s, possess log[Ey(r)]'s that comparatively have very
small slopes on the scale of the figures, without any singularity.
Note that although Ey(r) of RSA packings has been studied
before,*>?° this is the first study that focuses on its tail behavior.

It is noteworthy that the three lattice structures we chose
(integer, triangular, and BCC lattice) are the optimal solutions
of the covering and quantizer problems®® in their respective
dimensions. In a specific dimension and density, the covering
problem asks for the configuration with the smallest cutoff in
Ey(r) (i.e., the smallest R.), while the quantizer problem asks for
the configuration that minimizes the so-called ‘‘quantizer
error,” defined as'

G= %J:OI"EV (r)dr. (8)

As Fig. 3 shows, in two and three dimensions, Ey(r) of stealthy
systems at y = 0.45-0.46 is quite close to Ey(r) of the triangular
and BCC lattices. Therefore, stealthy ground states at high
values should provide nearly optimal solutions to these two
problems.
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Fig. 3 Numerically computed Ey(r) for (top) a stealthy system at y = 0.45
in 1D, (middle) a stealthy system at y = 0.45 in 2D, and (bottom) a stealthy
system at y = 0.46 in 3D. For comparison, we also present Ey(r) of perfect
crystals (integer, triangular, and BCC lattices’*), saturated RSA packings,
and Poisson point processes at the same number density across the first
three space dimensions. For Poisson point processes, we present both
numerically found Ey(r) and exact analytical predictions for Ey(r). The
excellent agreement between these numerical and exact results is a
testament to the numerical precision of our calculations.

4 Stealthy configurations with largest
possible holes

In the previous section we studied the largest holes naturally
occurring in unbiased disordered ground states of stealthy
potentials. In this section, we study the maximum hole sizes
consistent with stealthiness. To do so, we impose a radial
exclusion field at the center of the simulation box to bias the
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configuration toward ones with largest holes. We combine the
stealthy potential with such an exclusion field, and try to find
the ground state of the system. We then study the patterns of
the resulting ground states.

4.1 Simulation details

To bias toward configurations with large holes, we let the total
potential energy be a sum of the stealthy potential contribution
and the exclusion field contribution:

(") = OIGEY) + Pex(Rsr"), ©)

where @ (K;r") is the stealthy potential given in eqn (5), and
& (Rsr") is the exclusion-field contribution, given by

Dex (Rf;rN) = ZF(Rf;riC)7 (10)

where r;. is the radial distance from particle i to the center of
the simulation box,

(Re/ric = 1),

0, otherwise,

if rie < Rf,

F(Rg;ric) = { (11)

and Ry is the radius of the exclusion field. By varying R¢, we can
probe the largest possible hole size in a particular system.
Before Ry reaches R, (the upper bound of the hole radius),
d., can be zero. However, once R; surpasses R, for a particular
system, ®., must be positive.

If we can find a configuration for which ¢(r") = 0, then both
Dy(K;rY) and P (Rer™) must be zero, and therefore this configu-
ration is stealthy up to K while simultaneously having a hole
radius Ry. To test if there are such configurations, we perform
energy minimizations using the L-BFGS algorithm,*”*° starting
from many random initial configurations, and finding if the
ending &(r") in any configuration dropped below a strong
tolerance of 10~ '°. We consider a certain number, R, to be the
numerically found maximum hole size if a zero-energy configu-
ration is found within Ny, energy minimization trials for R = R,
but not found for R = R, + 0x. Here we choose Niia = 100 and dx =
0.01. For a two-dimensional system at y = 0.10 and N = 400, with
this choice of Nyiy and o we find R.K = 4.58; while using N, =
1000 and oz = 0.0001, we find R.K = 4.5903. Therefore, our choice
of Nyia and 0 produces R.K values with approximately 102
precision. As explained in our previous work,”® to minimize
boundary effects for the stealthy potential, we use a rhombic
simulation box with a 60° interior angle in 2D and a simulation
box in the shape of a fundamental cell of a body-centered cubic
lattice in 3D with periodic boundary conditions.

As a test for this methodology, we combined the exclusion
field [eqn (10)] with following pair potential

(1Y) = > _v(ry), (12)
where
1 —l‘l']' 27 lf Vl'/' 1
v(ry) = =) a (13)

0, otherwise,
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Fig. 4 A configuration obtained by energy minimization using the
potential in egn (12) and an external field of radius R = 9.2. The simulation
box contains N = 400 particles and has side length L = 25.

and performed energy minimizations in two dimensions. For
this potential to be zero, any pair of particles cannot be closer
than distance 1. Therefore, the ground state of this potential
corresponds to an equilibrium hard disk system of diameter 1.
As we have mentioned in Section 1, any such system in the
infinite-volume limit must possess an unbounded hole size.
Nevertheless, the formation of very large holes is still very rare
and may be difficult to observe if one simply samples unbiased
configurations. We performed our simulation on an N = 400
system with volume fraction # = 0.5. As shown in Fig. 4, the
energy minimization algorithm is capable of creating a hole of
radius R = 9.2, although the probability of finding such a hole
in an unbiased system is extremely small. According to
eqn (4.21) of ref. 5, Ey(9.2) = 4 x 10 ?’°. This demonstrates
that if the hole size is unbounded in the infinite-system-size
limit for some system, this numerical protocol can indeed
create very large holes in a finite-size simulation. Fig. 4 also
shows that in creating such a large hole, the particles are
pushed to each other as closely as possible (i.e., up to
interparticle contacts). Therefore, even larger holes should
be possible if we simulated larger systems at the same volume
fraction.

4.2 One-dimensional study

We first examine R.K values found by the above-mentioned
algorithm in 1D, since this is computationally the easiest
dimension to study and will shed light on corresponding
results in higher dimensions. Our result for several different
y’s and system sizes are summarized in Fig. 5. It appears that
R.K as a function of y is chaotic and displays no systematic
trend. Nevertheless, Fig. 5 does show that R.K is always close to
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Fig. 5 Numerically found maximum R.K, as a function of z, in 1D biased
stealthy configurations for various system sizes.

Fig. 6 A 1D biased stealthy configuration of N = 100 particles obtained by
energy minimization using the stealthy potential of K = 1 and an external
field of radius Ry = 3.1 at y = 0.1. The particles self-assemble into 10
clusters. Although particles in the same cluster may not be distinguishable
from each other here, we have examined the configuration and find that
each cluster contains exactly 10 particles.

© but never exceeds it. As we will see later, © is the upper bound
of R.K in 1D.

Examining stealthy configurations with hole sizes Ry & n/K
reveals a more interesting behavior. Such a configuration is
shown in Fig. 6. At exclusion-field size R¢ = 3.1/K, 100 particles
self-assemble into 10 clusters, each containing 10 particles.
These clusters then form a one-dimensional integer lattice.

As we have explained in Section 3, a superposition of multi-
ple integer lattices, with hole centers aligned, have the same
R.K as a single integer lattice. It is straightforward to calculate
R.K of an integer lattice: if the distance between neighboring
lattice sites is L, then the maximum hole radius is L/2, and the
stealthy range K is equal to the location of the first Bragg peak,
2n/L. Therefore, R.K of any integer lattice is simply m.
To summarize, the numerically found hole radius is never
above m/K; and superposed integer lattices can indeed achieve
hole radius m/K. Therefore, we expect that m/K is an upper
bound of the hole size for stealthy 1D structure at any .

4.3 Two- and three-dimensional studies

We now move on to study maximum hole sizes in two and three
dimensions. As we will see, these higher dimensions are
computationally more challenging than 1D because the struc-
tures that maximize the hole size are not periodic. The R.K
values found by the algorithm mentioned in Section 4.1 are
presented in Fig. 7. Similar to the 1D case, the dependence of
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Fig. 7 Numerically obtained maximum R.K, as a function of z, in 2D and
3D biased stealthy configurations.

Fig. 8 (top) A 2D biased stealthy configuration of N = 400 particles
obtained by energy minimization using the stealthy potential of K = 1
and an external field of radius Ry = 4.58 at y = 0.1. (bottom) Its corres-
ponding structure factor S(k), which is less than 1072° in the 0 < |k|] < K
range, verifying the stealthiness with high precision. Notice that it also
reveals underlying sixfold rotational symmetry of the structure.

R.K on y or N is weak and non-systematic. However, 2D
configurations, one of which is shown in Fig. 8, exhibit a more
complicated pattern with sixfold rotational symmetry, in which
particles concentrate in a lower-dimensional manifold.
Although this pattern is non-crystalline, it is still much more
ordered than unbiased stealthy ground states at this y value.”
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Note that the configuration shown in Fig. 8 and related ones are
stealthy and hyperuniform, even though they are not homogeneous.
Since stealthiness is defined as S(k) = 0 for all 0 < |k| < K, this
implies no single scattering and an associated anomalous
suppression of density fluctuations for wavelengths above 2n/K.
In this configuration, 2n/K is the distance between two con-
secutive rings. For any wavelength larger than 2n/K, the higher
densities concentrated in the rings will cancel out the lower
densities between the rings, which suppresses the overall
density fluctuations. Such cancellation no longer occurs for
wavelengths below 2n/K, but the resulting density fluctuations
are compatible with stealthiness.

To better reveal the intricacies of these patterns, we com-
puted the one-body correlation function, g,(r), of a 2D system of
% = 0.1 and N = 400, shown in Fig. 9A. The plot shows high-
intensity concentric shells around the exclusion field (located
at the center of the simulation box) and honeycomb network
structures away from the exclusion field. Fig. 9B also shows
£1(r) of a larger 2D system, which exhibits the same pattern.
Fig. 9C shows g;(r) of a 3D system, which again has concentric
shells around the exclusion field, but the structure away from
the center is not obvious.

By pushing R.K to its numerical limit, we obtain periodic
structures in 1D but non-periodic structures in 2D and 3D. Is it
possible that this transition from periodic structures to non-
periodic structures arises from increased numerical difficulties
in higher dimensions? To eliminate this possibility, we analy-
tically calculated R.K values for various 2D and 3D periodic
structures for comparisons, and summarize these results in
Tables 1 and 2. In 2D, crystal structures achieve R.K = 4.44 but
the system shown in Fig. 9 achieved R.K = 4.6; while in 3D
crystal structures achieve R.K = 5.44 but the system shown in
Fig. 9 achieved R.K = 5.85. Therefore, these non-periodic
structures indeed have the largest known value of R K.

It would be useful to analytically model these g;(r) functions
to find the maximum dimensionless hole size in the infinite-
system-size limit. We will focus on the rings before considering
the honeycomb-like structure away from the hole center. Com-
paring Fig. 9A with Fig. 9B, we see that increasing N increases
the number of rings. Therefore, we expect infinitely many rings
in the infinite-system-size limit.

It is instructive to model an isotropic collection of concentric
shells, for which we can write

gi(r) =) _¢o(lrl—r), (14)

o

J

where ¢; is the intensity of the shells, ¢ is the Dirac delta function,
and 7; is the location of the shells. To determine ¢; and r;, we
computed the angular average of gy(r) shown in Fig. 9B, and
identified five peaks from it. As Fig. 10 shows, r; appears linear
with j, for which linear regression produces r; = 0.0612; — 0.01478.
By rescaling the configuration, we can eliminate one fitting para-
meter and get 7; =j — b, where b = 0.242.

To find c;, we have computed the fraction of particles located
on each ring, p;. We find again p; is linear with j, with linear
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Fig. 9 Numerically obtained g(r) for (A) d = 2, N = 400, R.K = 4.58, averaged over 3449 biased stealthy configurations that also exhibit sixfold rotational
symmetry; (B) d = 2, N = 1600, R.K = 4.60, averaged over 72 configurations; and (C) d = 3, N = 400, R.K = 5.85, averaged over 5174 configurations. The y
value is always 0.10. In 3D, g.(r) is represented by color-coded spheres with volumes proportional to gy(r) at the spheres’ location. Notice that there is a

tendency for particles to concentrate in a lower-dimensional manifold.

Table1 Maximum dimensionless hole size, R.K, for various 2D crystalline
structures

Crystal R.K
Square lattice 4.44
Honeycomb crystal 4.19
Triangular lattice 4.19
Kagome crystal 3.63

Table 2 Maximum dimensionless hole size, R.K, for various 3D crystalline
structures

Crystal R.K
Face-centered cubic 5.44
Simple cubic 5.44
Hexagonal close packed 5.13
Mean centered-cuboidal lattice*® 5.03
Body-centered cubic 4.97
Simple hexagonal 4.80
Diamond 4.71
Pyrochlore crystal*! 4.51

Fig. 10 The peak locations of g;(r) for a 2D biased stealthy system of N =
1600 particles, at y = 0.10, with an exclusion hole of dimensionless radius
R.K = 4.60 at the origin, averaged over 72 configurations.

6204 | Soft Matter, 2017, 13, 6197-6207

regression result p; = 0.0275(j — 0.242) oc r;. Because p; is
proportional to 7;, and is therefore proportional to the circum-
ference of the rings, each ring has the same intensity. Neglecting a
constant factor, we can then set ¢; = 1.

To summarize, numerical results suggest that in the infinite-
system-size limit,

() oc S o0 —j+ ),

=

(15)

where constant b is numerically measured as 0.242 in 2D. Note
that this equation also applies to the 1D numerical result (an
integer lattice of particle clusters) if we let b = 1/2. The hole
radius of this system is simply R. = 1 — b, the radius of the first
ring. After determining R., we should then ascertain K. Since

S(k) is zero for all k such that 0 < |k| < K, the collective
N

coordinates p(k) = > exp(—ik - r;) should also be zero. Thus,
=

the Fourier transform of g;(r), which we denote by g;(k), should
also be zero in this range. Fourier transforming eqn (15) gives
N (7 d/2
100 = [ explk-nen) o>V G - )
=
(16)

where k = |k| is the wavenumber and J, is the Bessel function of
order v. In eqn (16), letting d = 1, 2, and 3 respectively yields

x> cosik(j— )] (d=1), (17)
Jj=1
(0 oS G=BAlk(G—B)] (@ =2), (18)
Jj=1
and
oci Yeoslk(j—b) — /2] (d=23). (19)
Jj=1
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For large x, Jo(x) is asymptotically x> cos(x — m/4). Substituting

this into eqn (18) gives

gi(k) ui\/j?cos[k(j—b)—ﬂ (d=2).

We have already seen in the previous section that, the
solution to maximizing R.K = (1 — b)K in 1D is b = 1/2 and
K = 2m. Comparing eqn (20) with eqn (17), in light of the
numerical result b ~ 0.242 (d = 2), suggests that b = 1/4 in
2D. Somehow the 7/4 phase factor in eqn (20) changes b to 1/4.
If K is still 2z, then in 2D we have R.K = (1 — b)K = 31/2 ~ 4.71,
which is slightly above the numerically observed maximum
dimensionless hole size R.K = 4.65. Similarly, in 3D, the n/2
phase factor in eqn (19) probably changes b to 0. If so, the
maximum dimensionless hole size in 3D would be R.K = 2m.
The difference between 2n and the numerically observed max-
imum R.K = 5.86 is nontrivial, but this can be explained by the
increased numerical difficulty in 3D; for example, fewer con-
centric shells can be formed with the same number of particles
in higher dimensions.

5 Conclusions

In this paper, we have investigated the possibility of creating
large holes in stealthy hyperuniform many-particle systems
using numerical and analytical techniques. We demonstrated
that hole sizes in such systems are bounded, first by examining
the tail of Ey(r) in unbiased ground states of stealthy potentials,
and then by imposing radial exclusion fields to bias stealthy
configurations toward ones with the largest possible holes.
These results suggest that holes larger than a certain upper
bound cannot exist in such systems. We then found that R.K is
bounded from above by n, 3n/2, and 2r in one, two, and three
dimensions. A conjectured formula for the upper bound on
the dimensionless hole size in d dimensions is (d + 1)n/2.
An outstanding problem is a rigorous proof that stealthy
infinite systems cannot tolerate holes of arbitrarily large sizes.
Our methods should be applicable to study the existence of
arbitrarily large holes in other disordered many-particle sys-
tems. This is useful because maximum hole sizes and hole
probabilities are related to several other important quantities,
including the principal relaxation time 7; associated with
diffusion-controlled reactions among traps. Specifically, con-
sider a reactive chemical species that can diffuse in the void
space between particles, and can be absorbed when it is within
a certain distance to any particle. The fraction of such species,
released at time ¢ = 0, that is not absorbed at time ¢ (in other
words, the survival probability of the molecules of such spe-
cies), can be expanded as a series of exponential functions*?
(21)

P = hexp(—/T,),
n=1

where I, are coefficients and 7T, are relaxation times. The largest
relaxation time T} is called the “principal relaxation time.” The
relaxation times can be measured directly by NMR experiments,
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in which proton magnetization decays at the phase
boundary.**”** It has been demonstrated that T; is determined
by the largest holes in the configurations, and is therefore
divergent if arbitrarily large holes can occur.*? Indeed, for a
reactive species in equilibrium hard-sphere systems, the large-¢
behavior of its survival probability is actually p(f) ~ exp[—t*"]
in three dimensions.*? It is noteworthy that stealthy trap model
systems that prohibit arbitrarily large holes would have finite T}
values.

The stealthy potential employed in this paper is equivalent
to a direct-space pairwise additive potential v(r) whose shape
can be tuned by changing the form of the compactly-supported
non-negative function #(k) in eqn (4)."”*° This paper and
ref. 17, 21 and 46 used a step-function ¥(k), corresponding to
a real-space pair potential that is a function that oscillates
about zero and weakly decaying, similar to Friedel oscillations
of the electron density in a variety of systems, including molten
metals as well as graphene.*”"** However, one could also choose
V(k) to be the so-called “overlap” function (proportional to the
intersection volume of two d-dimensional spheres of diameter
K at distance k), in which the corresponding direct-space pair
potential v(r) is a positive decaying function with multiple
minima,'®?* similar to effective pair interactions that arise in
multilayered ionic microgels."’

It is interesting to note that if one could realize a solvent that
is strictly stealthy, then its maximum hole size is related to the
largest solute particles that it can dissolve. In a solvent with a
finite value of R, particles with exclusion radius larger than R,
would create intolerably large holes, and would therefore not
dissolve. Solute particles smaller than R, would dissolve in such
a solvent, but the effective interactions between them deserve
future research. Would particles larger than R./2 refuse to touch
each other in order to avoid combining the holes they create?
Also, if the solute particles are only slightly smaller than R,
solvent particles should be concentrated in concentric-shell
regions around the solute particles. Could the interference
between these concentric shells induce very complicated effec-
tive interactions?

Appendix A

Expected R, for a finite number of finite-sized Poisson
configurations

Although there is no theoretical limit on the hole radii in
Poisson configurations (ideal gas), one still expects to find a
finite R, if one only studies a finite number of finite sized
configurations. If one studies a total of N, configurations of N
particles, one expects to see roughly N.N uncorrelated holes. Of
these N.N holes, one expects to find the largest hole once.
Therefore

1
N

Ev(R.) = expl-pvi (R)] = 1+ (22)

This equation predicts the largest hole size, R, as a function of

p, N., and N. To find R. presented in Fig. 2, notice that for
stealthy systems of a given y and K, p is given in eqn (7).
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Substituting eqn (7) into eqn (22) yields

V1 (RC)V] (K)

2dy(2) = In(NcN).

(23)

Here we use K =1, N, =20 000, and N = 500 to be consistent with
stealthy results.

Note added in proof

A recent preprint arXiv:1707.04328 by S. Ghosh and J. L.
Lebowitz provides a proof of our conjecture that stealthy point
processes have bounded hole sizes for any space dimension d
with upper bounds on the sizes that depend inversely on K.
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