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a b s t r a c t 

In this paper, we introduce non-dimensional mass property parameters to the classical 

PRB model for accurately predicting the dynamics of the compliant mechanisms. Given ex- 

tensive work on PRB models accurately modeling the statics and kinematics of compliant 

mechanisms, few works have investigated on their accuracy in predicting dynamics. Here 

we study the fundamental natural frequency of two typical mechanisms: fixed-root and 

pinned-root compliant parallel-guiding mechanisms (CPGM). First, analytical expressions 

of the natural frequencies of the continuum models are derived according to the vibra- 

tion mechanics. Second, theoretical expressions of the natural frequencies of the parame- 

terized PRB model are obtained from their dynamics equations. Third, the mass property 

parameters are optimized to minimize the error between the continuum models and the 

parameterized PRB model. We conclude that the optimized PRB models can well predict 

the dynamics especially the low input signal frequency or mass of beams are not negligi- 

ble. These new PRB models can significantly improve computational efficiency in dynamics 

simulation of compliant mechanisms. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Compliant mechanisms have numerous applications in mechanical designs [1–3] and robotic systems [4–6] due to their

strengths including reduced part count, less friction, and easy for assembly with high precision and reliability [7] . However,

compliant mechanisms are relatively difficult in analyzing, designing, and modeling, especially the dynamic modeling due

to the infinite degree of freedom (DOF). To address kinetostatic analysis of the compliant mechanisms, finite element anal-

ysis (FEA) [8] method and the Pseudo–Rigid–Body (PRB) model [9,10] are two commonly used approaches. In addition, the

Chained–Beam–Constraint–Model (CBCM) is recently developed [11,12] for the static analysis of compliant beams. However

the FEA method requires significant computational load to obtain an acceptable accuracy. The PRB model method, on the

other hand, has been developed and proven as an efficient approach for design and kinetostatic analysis of the compliant

mechanisms with a moderate accuracy. 

Recent developments of PRB models on statics and kinematics include the 2R PRB model [13] , the 3R PRB model [14] ,

the RPR model considering beam extension or beam circular shape [15,16] , etc. However, research on the dynamics of the
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Nomenclature 

A cross section area of the beam 

E Young’s modulus of the material 

I second moment of inertia 

K stiffness matrix of the dynamics equation 

L length of the beam 

M inertia matrix of the dynamics equation 

a location of the mass center 

h height 

m mass 

t thickness 

w transverse displacement 

y the mode wave number 

α ratio of distance of the mass center to the length 

β ratio of the mass of the PRB segment to the beam mass 

γ characteristic radius factor 

δ the mode frequency error between the continuum model and the simulation model 

λ ratio of the tip mass to the beam mass 

ρ density of the material 

Subscripts 

b beam 

i counters 

t beam tip 

Superscripts 

p the PRB model 

c the continuum model 

s the simulation model 

compliant mechanisms using PRB models is limited and particularly on the accuracy study [17] . Lobontiu [18] studied the

dynamics of flexure hinges including kinetic energy, free/forced response, and damping effects. Li and Kota [19] investigated

the natural frequency characteristic and the dynamic response of the compliant mechanisms using the FEA method. Rösner

et al. [20] derived a dynamic model of flexure hinges via the FEA method. Zhao et al. [21] developed the dynamic model

of a compliant linear-motion mechanism using the Lagrange equation. In addition to the traditional approaches on dynamic

analysis, a few studies have investigated the PRB model on dynamic analysis of compliant mechanisms. Boyle et al. [22] pre-

sented the dynamics of a constant-force compliant mechanism with a generalized PRB model, but effects of the input signal’s

parameters and the design parameters are relatively less explored. Yu et al. [23] studied the dynamics of the PRB model of

the compliant mechanisms, and Lyon et al. [24,25] studied the first modal frequency of compliant mechanisms based on the

PRB model. However, both of them only studied the natural frequencies and no dynamic performance and accuracy were

investigated. She et al. [26] studied the dynamics of the 3R PRB model, but the accuracy of dynamics of the PRB model only

held for a short time period and no explorations were conducted on the effects of the design or input parameters on the

output performance or accuracy. She et al. [27] first introduced mass property parameters to the original PRB model, but

the work was limited to the optimization of the fundamental natural frequency, and no dynamic performance was explored.

Li et al. [28] investigated the dynamics of the PRB model considering the design parameters such as the mass ratio of the

beam mass over the end mass. However, they did not derive the analytical expression of the natural frequency in terms of

design parameters. 

In this paper, we present a systematical procedure for developing optimized PRB models that can precisely predict the

dynamics of compliant mechanisms. We introduce a set of mass property parameters to the classical PRB model such that

the fundamental natural frequency of the optimized PRB model agrees with that of the continuum model. The organization

of the paper is described as the following. We begin with the problem statement in Section 2 . Theoretical expressions of

the continuum model with its natural frequency are derived in Section 3 . Parametrized PRB models with analytical expres-

sions of the natural frequency of the compliant beams are presented in Section 4 . Dynamics validations and evaluations are

conducted in Section 5 . Finally, conclusions and future work are presented in Section 6 . 

2. The problem statement 

It is well known that the conventional PRB models predict the static force deflection of a flexible continuum member

using a serial chain of two or more rigid links joined by torsion/extension springs [29] . In these PRB models, two sets
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Fig. 1. (a) A fixed-root compliant parallel-guiding mechanism, (b) the PRB model of the fixed-root compliant parallel-guiding mechanism, (c) the PRB 

model for a fixed-guided beam, (d) A pinned-root compliant parallel-guiding mechanism, (e) the PRB model of the pinned-root compliant parallel-guiding 

mechanism, (f) the PRB model for a pinned-guided beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of parameters: kinematic parameters (e.g. characteristic length, tip deflection coefficient) and compliance parameters (e.g.

torsion/extension spring constants) were obtained by minimizing errors between the PRB model and the continuum model

calculated either by beam theories or finite element simulations. 

One of the most important factors affecting dynamics of a mechanical system is the natural frequency, which is deter-

mined by boundary conditions, effective stiffness and effective mass. A general calculation of the natural frequency for a

mass-spring system may be expressed as: 

f = 

1 

2 π

√ 

K 

M 

, (1)

where K is the stiffness and M is the mass of the system. 

Given the dynamic equations of the PRB model of a compliant mechanism, one can calculate the natural frequency of

the PRB model according to Eq. (1) . Meanwhile, the natural frequency of a compliant beam can be obtained by studying the

continuum model with an analytical expression. Since both of them have theoretical expressions, the natural frequency of

the PRB model may be optimized to agree with that of the continuum model. Specifically, non-dimensional mass property

parameters will be introduced to the original PRB model, and are then optimized. This framework is a generalized approach

and can be applied to any compliant mechanisms as long as the corresponding PRB models are specified and the bound-

ary conditions and design parameters are confirmed. Compliant parallel-guiding mechanism (CPGM) is a typical compliant

mechanism with one DOF providing accurate linear motion capabilities [30] , and complex mechanical devices can be de-

signed by combining individuals in parallel and/or series [31] . In this paper, CPGM will be studied as a case to verification.

In particular, we study CPGM with two typical boundary conditions: fixed-root ( Fig. 1 (a)) and pinned-root ( Fig. 1 (b)). 

The conventional PRB models for the fixed-root and the pinned-root CPGM are shown in Fig. 1 (b) and (d), respectively.

To simplify the analysis procedure, we only need to study half of these PRB models, i.e. PRB models of a single beam with

two different boundary conditions, as shown in Fig. 1 (c) and (f). The full model and the half model have the same natural

frequency verified by FEA simulations. 

In what follows, continuum models of a compliant beam with the fixed-guided and pinned-guided boundary conditions

will be first studied. Then parameterized PRB models of the fixed-guided and pinned-guided compliant beam will be devel-

oped and optimized. Finally, the optimized PRB models will be validated by FEA simulations from both of the time domain

and the frequency domain, and the effects of the input and design parameters on dynamics will be explored as well. 

3. Analytical continuum models of compliant beams 

In this section, we derive theoretical expressions of the natural frequencies of the continuum model of both the fixed-

guided and pinned-guided compliant beams and validate them by FEA simulation. 

3.1. The fixed-guided compliant beam 

Considering a fixed-guided compliant beam with a tip load as shown in Fig. 2 (a), the beam has a length of L , a cross

area of A , an area moment of inertia of I , a density of ρ , and a tip mass of m t . For convenient analysis, here we start the

derivation from a linear continuum model. The governing differential equation of the transverse displacement w ( x, t ) may

be described as: 

EI 
∂ 4 w (x, t) 

4 
+ ρA 

∂ 2 w (x, t) 
2 

= 0 (2)

∂x ∂t 
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Fig. 2. (a) A fixed-guided compliant beam with a tip load, (b) its parameterized PRB model. 

 

 

 

 

 

 

 

 

 

 

 

 

The solution of the above governing equation has the following form: 

w (x ) = C 1 sin (φx ) + C 2 cos (φx ) + C 3 sinh (φx ) + C 4 cosh (φx ) , (3)

where φ is the wave number, and C i are constant coefficients. 

Given the boundary conditions of the fixed-guided compliant beam, there is no displacement and angular rotation at the

beam root and no angular rotation at the beam tip. The shear force at the tip should be considered since we consider a tip

mass placed at the beam tip [32] . Therefore, the boundary conditions of the fixed-guided compliant beam with a tip load

can be expressed as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

w (0 , t) = 0 

∂w (0 , t) 

∂x 
= 0 

∂w (L, t) 

∂x 
= 0 

EI 
∂ 3 w (L, t) 

∂x 3 
= m t 

∂ 2 w (L, t) 

∂t 2 

(4) 

Substituting Eq. (4) to Eq. (3) yields the following transcendental equation in order to achieve a nontrivial solution: 

1 

y 

2( sin y cosh y + cos y sinh y ) 

1 + cosh 
2 
y − sinh 

2 
y − 2 cos y cosh y 

= λ, (5) 

where y is the dimensioned wave number, and it is a variable with respect to the mass parameters, and λ is defined as the

mass ratio of the tip mass ( m t ) over the beam mass ( m b ): 

λ = 

m t 

m b 

. (6) 

Given any specific design of λ, one may solve Eq. (5) for y . Note Eq. (5) has an infinite number of solutions. Here we

only show the first three in Table 5 in the Appendix A . It is observed that y decreases as the increasing of λ. In addition,
y decreases rapidly for λ∈ [0, 10] while only gently for λ∈ [100,1E+6]. That means, the mass ratio does not play a key role

for large λ, i.e. the beam mass does not significantly affect the natural frequency if the tip mass dominates the dynamics. 

With the solution of y , one can analytically calculate the natural frequencies of the fixed-guided compliant beam based

on the continuum model: 

c f i (λ) = 

1 

2 π

(
y i (λ) 

L 

)2 √ 

EI 

ρA 
, i = 1 , 2 , 3 , · · ·n. (7)

where i is the mode number and superscript c represents the continuum model. By factoring out the physical parameters, a

simplified form of the natural frequency can be obtained as: 

c f̄ i (λ) = 
c f i (λ) 

( 

2 πL 2 

√ 

ρA 

EI 

) 

= y 2 i (λ) , i = 1 , 2 , 3 , · · ·n. (8)
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Table 1 

Parameters of the fixed-guided cantilever beam. 

Parameter Value 

Young’s Modulus E = 69 GPa 

Density of beam ρ = 2700 kg m 
−1 

Poisson ratio ν = 0.3 

Length L = 0.225 m 

Thickness t = 0.001 m 

Height h = 0.073 m 

(a)

(b)

Fig. 3. (a) A pinned-guided compliant beam with a tip load, (b) its parameterized PRB model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To validate the continuum model, simulations in Abaqus FEA have been conducted. We define the error of the i th modal

natural frequency between the continuum model and FEA simulations as: 

δi = 

∣∣∣∣ s f i − c f i 
s f i 

∣∣∣∣ × 100% , i = 1 , 2 , 3 , · · ·n. (9)

where superscript s represents the FEA model. With the physical parameters in Table 1 , the calculation and simulation

results are shown in Table 6 in Appendix A . 

We can see that the errors are very small for all of the three modal natural frequencies for all cases of different mass

ratios of λ. We conclude that the analytical continuum model is validated. We can also draw the following conclusions

by observation. First, the natural frequency decreases along with the increasing of λ. That is, a heavy mass load results in

a small natural frequency, which agrees with our intuition. Second, the natural frequency decreases rapidly for λ∈ [0, 10]

while only gently for λ∈ [100,1E+6]. The first modal natural frequency continuously decreases for λ∈ [100,1E+6] while the

second and third modal natural frequency converge to constant values. Furthermore, it shows that the higher modal natural

frequencies correspond to larger errors. Finally, it seems that λ has no obvious effects. 

3.2. The pinned-guided compliant beam 

Now considering the pinned-guided compliant beam with a tip load as shown in Fig. 3 (a), the physical parameters are

defined the same as those in Section 3.1 , and the governing equation of the pinned-guided compliant beam can refer Eq. (2) .

Similarly, the boundary conditions of the pinned-guided compliant beam with a tip load can be expressed as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

w (0 , t) = 0 

∂ 2 w (0 , t) 

∂x 2 
= 0 

∂w (L, t) 

∂x 
= 0 

EI 
∂ 3 w (L, t) 

∂x 3 
= m t 

∂ 2 w (L, t) 

∂t 2 

(10)

Solving the governing equation for a nontrivial solution yields the following transcendental equation: 

1 

y 

2 cos y cosh y 

sin y cosh y − cos y sinh y 
= λ (11)

The first three solutions of Eq. (11) are listed in Table 7 in Appendix A . We can see a similar trends as those of the fixed-

guided compliant beam are obtained. That is, the value of y decreases along with the increasing of λ, and it decreases rapidly
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Table 2 

Parameters of the PRB model of the fixed-guided compliant beam. 

Statics and kinematics Dynamics 

Relations Parameters Relations Constraints Initial values 

α1 = 
a 1 
l 1 

α2 = 
a 2 
l 2 

0 ≤α1 ≤1 

l 1 = 
(1 −γ ) L 

2 
α3 = 

a 3 
l 3 

0 ≤α2 ≤1 α10 = 0 . 5 

l 2 = γ L γ = 0 . 85 β1 = 
m 1 
m b 

0 ≤α3 ≤1 α20 = 0 . 5 

l 3 = l 1 k θ = 2 . 68 β2 = 
m 2 
m b 

0 ≤β2 ≤1 β10 = 0 . 075 

K = 2 γ k θ
EI 
L 

β3 = 
m 3 
m b 

0 ≤β3 ≤1 β20 = 0 . 85 

λ = 
m t 
m b 

β1 + β2 + β3 = 1 β30 = 0 . 075 

m b = m 1 + m 2 + m 3 λ≥0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for λ∈ [0, 10] while gently for λ∈ [100,1E+6]. y 1 continuously decreases while y 2 and y 3 converge to constant values for λ∈
[100,1E+6]. 

The natural frequency and normalized natural frequency of the pinned-guided compliant beam can then be calculated by

Eq. (7) and Eq. (8) , respectively. Validation of the continuum model of the pinned-guided compliant beam is also conducted

via FEA simulations with the same parameters given in Table 1 , and the results are shown in Table 8 in Appendix A . It is

observed that all natural frequencies of the continuum model agree with those of the FEA simulations. Similar trends are

also observed for the pinned-guided compliant beam. The larger mass ratio corresponds to the smaller natural frequency.

Given the increase of the mass ratio of λ, the first modal natural frequency continuously decreases while the second and

third natural frequency decrease for small λ but converge to some constant values for large λ. In addition, the lower order

modal frequency may correspond to the smaller error between the continuum model and FEA model, but the mass ratio

may have no effects on the errors. 

4. Optimization of mass parameters of the PRB models for dynamics 

In this section, we study the natural frequency of the PRB models for both of the fixed-guided and pinned-guided com-

pliant beam. 

4.1. The fixed-guided compliant beams 

Non-dimensional mass property parameters are first introduced to the PRB model, then are optimized via comparing the

natural frequencies of the PRB model with those of the continuum model. 

4.1.1. Parametric development of the PRB model of the fixed-guided compliant beam 

The PRB model of the fixed-guided compliant beam is shown in Fig. 2 (b). The geometric relations of the PRB model are

kept the same as those in statics and kinematics, as shown in the first column in Table 2 , where l 1 , l 2 , and l 3 are the lengths

of each segment of the PRB model, γ is the characteristic radius factor, and k θ is the lumped stiffness of the PRB model. The

parameters of γ and k θ are original PRB parameters given in the second column in Table 2 , and we keep them unchanged

in order to retain the accuracy of the statics and kinematics. 

In order to guarantee the natural frequency of the PRB model to be consistent with that of the continuum model, here

we introduce the concept of non-dimensional mass distribution parameters β i and αi , from which β i is defined as the ratio

of the mass of the i th link ( m i ) over the mass of the entire beam ( m b ) and αi is defined as the ratio of the distance between

the mass center of the i th link and its root ( a i ) over the length of the i th link ( l i ). The definitions are shown the third

column in Table 2 . The constraints and initial values of the introduced non dimensional mass property parameters are given

as shown in the fourth and fifth column in the table given the physical meaning. 

The dynamics equation of the PRB model of the fixed-guided compliant beam can be obtained with the Lagrangian

formulation [33] , written as: 

M(q ) ̈q + C ( q , ˙ q ) ̇ q + K q + g ( q ) = τ (12) 

where q is the joint angle, M(q) is the inertia matrix, C ( q , ˙ q ) ̇ q represents the Coriolis force and centripetal force, K is the

stiffness matrix, g(q) is the gravity term, and τ is the motor torque. Following the derivation procedures of Lagrangian

formulation, it is observed that α1 , α3 , β1 are independent to the inertia matrix M(q) . It is worth noting that M(q) includes

the mass inertia and moment inertia, and both of them are calculated with respected to the rotational joint. With the

dynamic formulation, the natural frequency of the PRB model may be calculated by Eq. (1) [34] . Due to the constraints of

the boundary condition, the PRB model of the fixed-guided compliant beam has reduced to one degree of freedom, and

only the first natural frequency can be obtained, which corresponds to the fundamental natural frequency of the continuum
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model. According to Eq. (1) , the fundamental natural frequency of the PRB model can be obtained as: 

p f 1 (λ) = 

1 

2 π

g(λ, α2 , β2 , β3 , γ , k θ ) 

L 2 

√ 

EI 

ρA 
(13)

where superscript p represents the PRB model, and g ( λ, α2 , β2 , β3 , γ , k θ ) is a function determined by geometric parameters

for statics/kinematics and mass property parameters for dynamics, which can be expressed as follows: 

g(λ, α2 , β2 , β3 , γ , k θ ) = 

(
4 k θ
γ

1 

β2 (α2 
2 

+ 
1 
12 

) + β3 + γ

) 1 
2 

(14)

The normalized form of the natural frequency of the PRB model can be calculated as: 

p ̄f 1 (λ) = 
p f 1 (λ) 

( 

2 πL 2 

√ 

ρA 

EI 

) 

= g(λ, α2 , β2 , β3 , γ , k θ ) (15)

4.1.2. Optimization of the PRB model of the fixed-guided compliant beam 

Now we have the theoretical expression of the natural frequency for both of the continuum model and the PRB model.

Next, we compare their results and optimize the non-dimensional mass parameters such that the fundamental natural fre-

quency of the PRB model best approximates that of the continuum model. Let’s define the error of the natural frequency

between the PRB model and continuum model as: 

δ̄1 = 

∣∣∣∣ c f̄ 1 −p f̄ 1 
c f̄ 1 

∣∣∣∣ × 100% (16)

The ideal situation is to have the error to be 0 and one can find a relationship of the parameters of the PRB model for

the fixed-guided compliant beam as: 

y 4 1 (λ) = 

4 k θ
γ

1 

β2 (α2 
2 

+ 
1 
12 

) + β3 + γ
(17)

Defining the error as the objective function and the optimization problem can be formulated as: 

u ∗ = arg min 
u s.t. u 0 

∣∣∣∣c f̄ 1 − p ̄f 1 (u ) 
∣∣∣∣ (18)

where u = ( β2 , β3 , α2 ) are the optimization variables. And u 0 is the boundary condition set including one equality con-

straint and seven inequality constraints listed in Table 2 . Since the number of optimization parameters is more than number

of equality constraints, there may be an infinite number of solutions or no solutions with a physical meaning. The optimized

solution sets nearest to their initial condition are shown in Table 9 in Appendix A . The table compares analytical results of

the continuum model, the original PRB model, and the optimized PRB model in terms of a variety of λ, in addition to the
optimized dynamic parameters of the PRB model β2 , β3 , and α2 . 

It is observed that the non-dimensional mass parameters can be optimized within their boundary given the mass ratio

range of λ∈ [0, 10]. Beyond this range, they are set to be the boundary in order to reach a minimal error. Within their

boundaries, the parameter of β2 has a trend of monotonically decreasing along with the increasing of λ while β3 and α2

have the trend of monotonically increasing. 

It is observed that the frequency error between the original PRB model and the continuum model can be up to 6.06%

at λ = 0 , which may result in a significant dynamic derivation (to be discussed later). The error decreases along with the

increasing of λ, which means that a light tip load may result in significant dynamic error while a heavy pay load may have

small errors. However, the error can be eliminated with the optimized mass property parameters in the range of λ∈ [0, 10].

Beyond this range, the parameters reach their boundary limits and cannot be optimized. 

Since λ in Table 9 is discrete and finite, the optimized mass property parameters are discrete as well. To obtain a more

general PRB model, we utilize an arctan function to curve fit the data in Table 9 for all mass parameters α1 , α2 , β1 , β2 , β3

of both beam models, and they are represented by the curve fitting parameters of a, b, c , and d as given in Table 3 with 95%

confidence interval. 

The relation of the natural frequency verse λ is shown in Fig. 4 . The stared line shows the natural frequency obtained

from the continuum model, the dashed line shows the natural frequency from the original PRB model, the circled line

shows the optimized PRB model with the mass parameters given in Table 9 , and finally the continuous line shows the

optimized PRB model with the mass parameters from curve fitting as given in Table 3 . This figure shows that the original

PRB model has a large deviation comparing with the continuum model in terms of the natural frequency given a small λ
but have a trend of converging to the continuum model given λ of infinite large. That means, the original PRB model can

be accurate given a heavy pay load with a light beam, but has larger errors for the opposite cases. However, by introducing

and optimizing the mass property parameters of β2 , β3 , and α2 , the optimized PRB model can agree with the continuum

model for all λ values with respect to the natural frequency. The optimized PRB model with the curve fitted mass property

parameters can pass through all discrete points of the continuum model, hence may be used for accurately modeling of the

dynamics of the compliant beam with a continuous range of λ. 
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Table 3 

The complete table of the PRB model. 

Kinematics & statics 

parameters 

Parameters for dynamics of PRB model 

Original PRB model Optimized PRB model a arctan (bλ + c) + d

a b c d 

Fixed-guided 

compliant beam 

γ = 0 . 85 k θ = 2 . 68 β20 = 0 . 85 β30 = 0 . 075 α20 = 0 . 5 β2 ( λ) −0.2789 2.178 −5.584 0.4111 

β3 ( λ) 0.3026 2.377 −6.163 0.5518 

α2 ( λ) 0.153 3.218 −5.536 0.7681 

Pinned-guided 

compliant beam 

β10 = 0 . 85 β20 = 0 . 15 α10 = 0 . 5 β1 ( λ) −0.2699 2.219 −5.82 0.3979 

β2 ( λ) 0.2699 2.222 −5.826 0.6021 

α1 ( λ) 0.14 4 4 3.125 −3.882 0.7817 
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Fig. 4. Natural frequency vs. mass ratio of the fixed-guided beam. 

Table 4 

Parameters of the PRB model of the pinned-guided compliant beam. 

Statics and kinematics Dynamics 

Relations Parameters Relations Constraints Initial values 

l 1 = γ L 

l 2 = (1 − γ ) L 

K = γ k θ
EI 
L 

γ = 0 . 85 

k θ = 2 . 68 

α1 = 
a 1 
l 1 

α2 = 
a 2 
l 2 

β1 = 
m 1 
m b 

β2 = 
m 2 
m b 

λ = 
m t 
m b 

m b = m 1 + m 2 

0 ≤α1 ≤1 

0 ≤α2 ≤1 

0 ≤β1 ≤1 

0 ≤β2 ≤1 

β1 + β2 = 1 

λ≥0 

α10 = 0 . 5 

α20 = 0 . 5 

β10 = 0 . 85 

β20 = 0 . 15 

 

 

 

 

 

 

4.2. The pinned-guided compliant beam 

In this section, we will follow a similar procedure to obtain the optimized PRB model for the pinned-guided compliant

beams. 

4.2.1. Parametric development of the PRB model of the pinned-guided compliant beam 

The parameterized PRB model is shown in Fig. 3 (b). The geometric parameter of the statics and kinematics plus the

introduced mass property parameters of the PRB model are given in Table 4 . The characteristic radius factor γ and stiffness

coefficient k θ are kept unchanged as shown in the table. The constraints and initial values of the mass property parameters

are shown in the table as well. 

The dynamic equations can be derived with the Lagrangian method and have the form of Eq. (12) . Again, the inertia

matrix is independent of α . Following the same procedure as Section 4.1.1 , we can obtain the natural frequency and the
2 
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Fig. 5. Natural frequency vs. mass ratio of the pinned-guided beam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

normalized natural frequency of the PRB model of the pinned-guided compliant beam as: 

p f 1 (λ) = 

1 

2 π

h (λ, α1 , β1 , β2 , γ , k θ ) 

L 2 

√ 

EI 

ρA 
(19)

p ̄f 1 (λ) = h (λ, α1 , β1 , β2 , γ , k θ ) (20)

where h ( λ, α1 , β1 , β2 , γ , k θ ) is a function determined by the parameters associated with statics, kinematics, and dynamics

of the PRB model, and can be expressed as follows: 

h (λ, α1 , β1 , β2 , γ , k θ ) = 

(
k θ
γ

1 

β1 (α2 
1 

+ 
1 
12 

) + β2 + γ

) 1 
2 

(21)

4.2.2. Optimization of the PRB model of the pinned-guided compliant beam 

With the theoretical expressions of the natural frequency of the continuum model and PRB model of the pinned-guided

compliant beam, one can also obtain the relationship of the mass property parameters of the pinned-guided compliant beam

as: 

y 4 1 (λ) = 

k θ
γ

1 

β1 (α2 
1 

+ 
1 
12 

) + β2 + γ
(22)

Similar to the case of the fixed-guided compliant beam, we can also formulate this problem into a parameter optimiza-

tion problem as in Eq. (18) with u = (β1 , β2 , α1 ) being the optimization variables. The results for various λ are shown in

Table 10 in Appendix A . It shows that the mass property parameters may start from their initial value and converge to their

boundary conditions. Within their boundaries, the parameter of β1 has a trend of monotonically decreasing along with the

increasing of λ while β2 and α1 have the trend of monotonically increasing. Fig. 5 shows that the optimized PRB model can

accurately predict the natural frequency of the continuum model. The maximum error is up to 9.32% at λ = 0 . 

5. Performance evaluation of the dynamics of the PRB models 

After the derivation of the parameterized PRB models, we will apply the developed PRB models of the compliant beams

to compliant mechanisms and evaluate their dynamic performance via comparing with FEA simulations in this section. It is

worth noting that the NLgeom is turned on in Abaqus for considering large deflection effects or large strain effects. 

5.1. The fixed-root compliant parallel-guiding mechanism 

According to Fig. 4 , the error between the original PRB models and continuum model is relatively large for small λ and

decreases along with the increasing of λ. It may be not necessary to test all cases of λ to validate the dynamics. Instead,
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Evaluations of the dynamics of the PRB models for the fixed-root compliant parallel-guiding mechanism given the sinusoidal force with A = 10 N, 

ω = 10 Hz, and λ = 0. (a) displacement response, (b) velocity response, (c) acceleration response, (d) error of displacement response, (e) error of velocity 

response, (f) error of acceleration response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we pick a few typical λ such as λ1 = 0 , λ2 = 0 . 5 , and λ3 = 10 for dynamics validation. In terms of the fixed-guided com-

pliant beam, we have studied its fundamental natural frequency with analytical expressions of the original PRB model, the

optimized PRB model, and the continuum model, plus the fundamental frequency of its FEA model. The simulation models

of the fixed-root CPGM based on the fixed-guided compliant beam are built in existing commercial software. More specif-

ically, the original and optimized PRB models were built in ADAMS while the compliant FEA model was built in Abaqus.

The original/optimized PRB model of the fixed-root CPGM is comprised of two sets of the original/optimized PRB model of

the fixed-guided compliant beam, according to the discussion in Section 2 . The parameters of the original PRB model, the

optimized PRB model, and the FEA model of the fixed-root CPGM are from the fixed-guided beam model. 

Prior to conducting the dynamic analysis, we first do a quick check of the fundamental frequency of all models. The

natural frequency can be obtained from the analytical models, from frequency analysis in FEA simulations (Abaqus), or from

Fast Fourier Transform (FFT) of the response of multi-body dynamics simulations (ADAMS). And their results are shown in

Table 11 in Appendix A . 

The results show that natural frequency of the original PRB model, the optimized PRB model, and the Abaqus FEA model

of the fixed-root CPGM agree with that of the fixed-guided compliant beam. However, the natural frequency of the original

PRB model has a deviation from that of the FEA model. This table has shown that the optimized PRB model developed from

the fixed-guided compliant beam can be used for the fixed-root CPGM. Next, we will check if the dynamics of the optimized

PRB model can agree with that of the FEA model for the case of the fixed-root CPGM. 

Here sinusoidal signals as the input force are applied at the tip of the fixed-root CPGM, and we check the output perfor-

mance such as displacement, velocity, and acceleration at the stage. The Abaqus FEA simulation, which is a continuum beam,

is assumed to be the reference, and the ADAMS simulation, which contains both of the original PRB model and optimized

PRB model, are those to be evaluated. 

Assume the applied input force in terms of time t is in the sinusoidal form of F = A sin (2 πωt) , where A is the magnitude,

ω is the input frequency. Given λ = 0 , A = 10 N and ω = 10 Hz, the time response is shown in Fig. 6 . Fig. 6 (a)–(c) show the

time response of the displacement, velocity, and acceleration, respectively, from which the dotted line is the original PRB

response, the continuous line is the optimized PRB response, and the dashed line is the FEA response. Fig. 6 (d)–(f) show

the corresponding errors between the PRB models and the FEA model, from which the dotted line shows the output error

between the original PRB model and the FEA model while the continuous line shows the error between the optimized PRB
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model and the FEA model. The dynamics error is defined as: 

ε(t) = 

| c z(t) − p z(t) | 
max ( c z( t)) 

(23)

where z ( t ) may be displacement, velocity, or acceleration, the superscript c represents the continuum FEA model, and the

superscript p represents the PRB model (either original or optimized). The figure shows that, in addition to the displacement,

the velocity and acceleration of the optimized PRB model agree with those of the FEA model as well, but the original PRB

model has larger deviations. The figure also shows that the error of the original PRB model is significantly larger than that

of the optimized PRB model. 

Here we define a parameter ξ for deformation of beam length: 

ξ = 

�

L 
× 100% (24)

where � is the tip deflection and L is the length of the CPGM. The figure shows that ξ is up to 8%. It is also observed that

the displacement error is less than velocity error, and the velocity error is less than the acceleration error. Furthermore, it

shows that the error of the displacement is smooth while it has many sharp oscillations from the error of the acceleration.

Finally, the simulation shows that the PRB model is significantly efficient than the FEA simulation. Given the same simulation

steps of 10 0 0 in Abaqus and ADAMS, the Abaqus FEA runs around 2 h to complete the dynamics simulation while the PRB

models in ADAMS requires less than 1 min (Hardware: Intel ® Xeon ® CPU E7- 4870 2.4 Ghz 8 Cores). Overall, the simulation

demonstrates that the optimized PRB model developed in Section 4 can accurately and efficiently predict the dynamics of

the fixed-root CPGM given the input force. As we discussed in Section 4 , the possible maximum error occurs at λ = 0 . Since

the optimized PRB model can precisely model the dynamics of the fixed-root CPGM at λ = 0 , we expect that the larger λ
will work even better, which will be shown later. 

Next, we study how the magnitude of the input force of A , the frequency of the input force of ω, and the mass ratio of

λ affect the accuracy of the optimized PRB model. 

5.1.1. Effects of the input magnitude 

We have validated that the optimized PRB model is accurate for the case of A = 10 N, ω = 10 Hz, and λ = 0 with ξ = 8% .

Here we would like to increase the magnitude of the input force while retaining the input frequency as ω = 10 Hz and

λ = 0 and to explore how large the magnitude can be and how it affects the accuracy. We gradually increase the magnitude

up to A = 100 N, and the optimized PRB model can still basically follows the FEA model given ξ = 44 . 31% . It turns out that

the magnitude of the deformation monotonically increases with the increasing of the magnitude of the input force. Larger

input force magnitudes result in large errors. 

5.1.2. Effects of the input signal frequency 

Now, let us take a look at effects of the input signal frequency ω. Intuitively, the PRB model (both the original and

optimized one) is accurate to model the low frequency dynamics (which is close to the static cases). On the other hand, the

PRB models may not be accurate for dynamics of high input frequency, since it may excite high modal natural frequencies

but both PRB models only have 1 DOF with 1 modal natural frequency. 

To study the effects of different input frequencies on the dynamic performance of the fixed-root CPGM, we select the

input signal frequency based on the natural frequencies of the fixed-root CPGM. More specifically, the input frequencies are

chosen between two adjacent natural frequencies of the fixed-root CPGM. For the cases of λ1 = 0 , λ2 = 0 . 5 , and λ3 = 10 ,

the first three natural frequencies of the fixed-root CPGM can refer from Table 6 . 

Taking λ = 0 as an example, the first three natural frequencies are 25.735 Hz, 139.13 Hz, and 343.99 Hz, respectively.

Here we explore the input frequency of 10 Hz, 100 Hz, and 200 Hz while keeping λ = 0 and A = 10 N. Fig. 7 shows the

displacement response given the input force with different input frequencies of 10 Hz, 10 0 Hz, and 20 0 Hz. Given the input

frequency of ω = 10 Hz, the optimized PRB can follow the FEA output very well but the original PRB has large deviations.

Neither PRB models can follow the FEA model at ω = 100 Hz. However the optimized PRB model performs better than the

original PRB model. The same conclusion can be drawn for ω = 200 Hz. In terms of the frequency error, the original PRB

model has larger error than that of the optimized PRB for all of three cases, and the difference of the errors are significantly

large at the low frequency of ω = 10 Hz while slightly large at the high frequencies of ω = 100 Hz and ω = 200 Hz. That

means, the optimized PRB model performs significantly better than the original PRB model at low input frequencies, but

their performances are close at high input frequencies. This figure also shows that the optimized PRB model may work well

given the input force with a frequency below or around its fundamental frequency, and may lose the accuracy if the input

signal frequency is very high. 

5.1.3. Effects of the mass ratio 

Next, we study effects of the mass ratio λ on the dynamic performance. Given the same input of A = 10 N and ω = 200

Hz but with different mass ratios of 0, 0.5, and 10, the displacement response is shown in Fig. 8 . The figure shows that the

original and optimized PRB model have a close performance given ω = 200 Hz, which do not agree with the FEA model at

λ = 0, but both of them track the model well at λ = 10. It is clear to see that a larger λ results in a smaller error for both
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Exploration of the effect of the input frequency on the output response for the fixed-root parallel-guiding mechanism. (a) and (d) are given the 

input of A = 10 N, ω = 10 Hz, and λ = 0, (b) and (e) are given the input of A = 10 N, ω = 100 Hz, and λ = 0, (c) and (f) are given the input of A = 10 , 

ω = 200 Hz, and λ = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRB models, which agrees with the discussion in Section 4 . The PRB models are not accurate given λ = 0 with A = 10 N

and ω = 200 Hz, but they can be precise if λ increases from 0 to 10. This figure also shows that the optimized and original

PRB model do not have a significant difference at the input frequency of ω = 200 Hz for the case of the pinned-root CPGM,

either both inaccurate for small λ or both precise for large λ. 

5.1.4. The frequency domain analysis 

To further understand the dynamic response of the fixed-root CPGM, FFTs of the time response signals are conducted in

order to analyze the data in the frequency domain. Fig. 9 shows the frequency response given A = 10 N, ω = 200 Hz, and

λ = 0 for the fixed-root CPGM. The figure shows the magnitude and phase and their errors of the displacement, velocity,

and acceleration. 

According to the magnitude and phase plot of the displacement in Fig. 9 (a) and (b), it is clear to see that the output

response of both PRB models contains two frequencies, one of which is their natural frequency (25.5 Hz for the optimized

PRB model and 27.1 Hz for the original PRB model) and the other is the input frequency (200 Hz). However, the FEA response

has four signals including the first three natural frequencies which are 25.7 Hz, 138.7 Hz and 342.43 Hz as given in Table 6 ,

plus the input frequency of 200 Hz. As shown in Fig. 9 (d) and (e), the optimized PRB model agrees with the FEA model

well at the fundamental frequency while the original PRB model cannot. However, both of the PRB models cannot track the

second and third natural frequency of the FEA model since both of the PRB models have a single DOF with a single modal

natural frequency. Furthermore, it shows that the fundamental natural frequency may be excited as a dominated response

since its magnitude is significantly larger than those of the high modal natural frequencies. Finally, this figure shows that the

optimized PRB model can still track the FEA model well at its fundamental frequency (25.7 Hz) in terms of the displacement

response, and the error shown in the time domain of Fig. 8 (a) and (d) comes from the excitations of the high modal natural

frequencies of the FEA model. 

Now let’s take a look at the velocity response of Fig. 9 (c) and (g). It is observed that the fourth modal natural frequency

around 625 Hz of the fixed-root CPGM is excited as well, which is not observable in the displacement response. It may result

from the tiny magnitude of the displacement response exited by the fourth modal natural frequency. It well explains that

the velocity response in the time domain has more fluctuation and less smooth than that of the displacement response as

shown in Fig. 6 , since it contains a wider frequency spectrum than that of the displacement response. The figure also shows
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(a) (b) (c)

(d) (e) (f)

Fig. 8. Exploration of the effect of the mass ratio on the output response for the fixed-root compliant parallel-guiding mechanism. (a) and (d) are given 

the input of A = 10 N, ω = 200 Hz, and λ = 0, (b) and (e) are given the input of A = 10 N, ω = 200 Hz, and λ = 0.5, (c) and (f) are given the input of 

A = 10 , ω = 200 Hz, and λ = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the optimized PRB model follows the FEA model well at its fundamental frequency (25.7 Hz) in terms of the velocity

and the error in the time domain comes from the excitations of the high modal natural frequencies of the FEA model. 

The acceleration response of Fig. 9 (h) and (i) show that an even higher order natural frequency around 910 Hz is ex-

cited as well and it is not observable from the frequency response of the displacement and velocity. It well explains that

the acceleration response in the time domain has the highest fluctuation and the least smooth among the responses of

displacement, velocity, and acceleration as shown in Fig. 6 due to its widest frequency spectrum. The figure also shows that

the optimized PRB model can track the FEA model well at its fundamental frequency (25.7 Hz) in terms of the acceleration,

and the error in the time domain comes from the excitations of the high modal natural frequencies of the FEA model. 

We have studied the frequency domain with extensive cases of A, ω, and λ, and some of them are given in the supple-

mental material. It turns out that the input frequency significantly affects the frequency domain response and the accuracy

of the optimized PRB model for the fixed-root CPGM. Given a low input frequency (close or less than the fundamental

natural frequency), the fundamental natural frequency is excited and dominates the response, from which the optimized

PRB model can accurately and effectively predict the dynamics of the fixed-root CPGM. However, a larger input frequency

will excite high modal natural frequencies in addition to the low modal ones, from which the optimized PRB model gradu-

ally lose its accuracy since it can only track the fundamental natural frequency but can do nothing on high modal natural

frequencies. 

5.2. The pinned-root compliant parallel-guiding mechanism 

In this section, we evaluate the optimized PRB model for the pinned-root CPGM. The mass ratios of λ = 0, λ = 0.5, and

λ = 10 are the typical values studied here. In terms of the pinned-guided compliant beam, we have studied the fundamental

natural frequency with analytical expressions of the original PRB model, the optimized PRB model, and the continuum

model, plus the fundamental frequency of its FEA model. Here we build the simulation models of the pinned-root CPGM

based on the pinned-guided compliant beam. Similar to the case of the fixed-root CPGM, the original/optimized PRB model

of the pinned-root CPGM is built in ADAMS comprised of two sets of the original/optimized PRB model of the pinned-guided

compliant beam. The parameters of the original PRB model, the optimized PRB model, and the FEA model of the fixed-root

CPGM are directly from the fixed-guided compliant beam. 
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Original PRB model

Abaqus FEA
Optimized PRB model

Original PRB model
Optimized PRB model

Fig. 9. The frequency domain analysis of the response of the fixed-root compliant parallel-guiding mechanism at A = 10 N, ω = 200 Hz, and λ = 0. (a) and 

(d) represent the magnitude of the displacement and the associated error, (b) and (e) represent the phase of the displacement and the associated error, (c) 

and (i) represent the magnitude of the velocity and the associated error, (g) and (j) represent the phase of the velocity and the associated error, (h) and 

(k) represent the magnitude of the acceleration and the associated error, (i) and (l) represent the phase of the acceleration and the associated error. 

 

 

 

 

 

Before we conduct the dynamics simulation, we did a quick check of the natural frequency of those models with the re-

sults shown in Table 12 in Appendix A . The results show that the natural frequency of the original PRB model, the optimized

PRB model, and the Abaqus FEA model of the pinned-guided compliant beam agree with that of the pinned-root CPGM, as

we discussed in Section 2 . The optimized PRB model is consistent with the FEA model for the pinned-root CPGM in terms

of the fundamental natural frequency, while the original PRB model has a deviation from that of the FEA model. This table

shows that the optimized PRB model of the pinned-guided compliant beam can be used for the pinned-root CPGM. 
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Evaluations of the dynamics of the PRB model for the pinned-root compliant parallel-guiding mechanism given A = 10 N, ω = 1 Hz, and λ = 0. 

(a) displacement response, (b) velocity response, (c) acceleration response, (d) error of displacement response, (e) error of velocity response, (f) error of 

acceleration response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In subsections below, we will follow a similar procedure as the case of fixed-root CPGM to assess effects the magnitude

of the force of A , the input frequency of ω, and the mass ratio of λ on the accuracy of dynamics performance. 

5.2.1. Effects of the input magnitude 

The fundamental natural frequency of the pinned-root CPGM is 11.39 Hz, and we first study the response given a low

input frequency of ω = 1 Hz. Given A = 10 N, ω = 1 Hz, and λ = 0, the deformation is up to ξ = 20% as shown in Fig. 10 .

Fig. 10 (a)–(c) show the response of the displacement, velocity, and acceleration of the pinned-root CPGM, and Fig. 10 (d)–(f)

show the corresponding errors between the PRB models and the FEA model. Similar conclusions as those in Section 5.1.1 are

obtained. The figure shows that the optimized PRB model agrees with the FEA model, but the original PRB model has large

deviations. 

It turns out that the magnitude of the deformation monotonically increases with the increasing of the magnitude of the

input force. 

5.2.2. Effects of the input frequency 

Similar to the case of the fixed-root CPGM, we would like to explore the effects of the input frequency ω on the output

response. The first three natural frequencies of the pinned-root CPGM at λ = 0 are 11.352 Hz, 102.31 Hz, and 284.6 Hz.

Here we pick three input frequencies of 1 Hz, 50 Hz, and 200 Hz while holding λ = 0 and A = 10 N unchanged. Fig. 11

shows the displacement response given the input force with different frequencies of 1 Hz, 50 Hz, and 200 Hz. Given the

input frequencies ω of 1 Hz and 50 Hz, the optimized PRB model can follow the FEA output very well but the original PRB

model has deviations. At ω = 200 Hz, both of the original and the optimized PRB model cannot follow the FEA response. We

observed similar trends as those in Section 5.1.2 . The error of the optimized PRB model increases along with the increasing

of the input frequency. 

5.2.3. Effects of the mass ratio 

We also study the effect of the mass ratio on the output response for the pinned-root CPGM. Given the same input of

A = 10 N and ω = 200 Hz but with different mass ratios of λ of 0, 0.5, and 10, the displacement output is shown in Fig. 12 .

The figure shows that the optimized PRB model performs close to the original PRB model, and both of them cannot track
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(a) (b) (c)

(d) (e) (f)

Fig. 11. Exploration of the effect of the input frequency on the output response for the pinned-root parallelogram mechanism. (a) and (d) are given the 

input of A = 10 N, ω = 1 Hz, and λ = 0, (b) and (e) are given the input of A = 10 N, ω = 50 Hz, and λ = 0, (c) and (f) are given the input of A = 10 , 

ω = 200 Hz, and λ = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the FEA model at λ = 0. Both of the PRB modes perform better at λ = 0.5 than that at λ = 0 but still have some derivations.

However, they can track the FEA model very well with very small errors at λ = 10. Similar conclusions are drawn as those

in Section 5.1.3 . The larger λ can result in the smaller error for both PRB models. 

5.2.4. The frequency domain analysis 

Fig. 13 shows the magnitude and phase plot and their errors with respect to displacement, velocity, and acceleration by

using the frequency domain analysis for the case A = 10 N, ω = 200 Hz, λ = 0. 

According to the magnitude and phase plot of the displacement in Fig. 13 (a) and (b), it is clear to see that the output

response of both of the PRB models only contain two frequencies, from which one is the natural frequency (11.383 Hz for

the optimized PRB model and 12.421 Hz for the original PRB model) and another is the input frequency of 200 Hz. However,

the FEA response has four signals including the first three natural frequencies which are 11.352 Hz, 102.31 Hz, and 284.6 Hz

as given in Table 8 , plus the input frequency of 200 Hz. 

According to the magnitude and phase error given in Fig. 13 (d) and (e), the optimized PRB model can track the FEA

model well at the fundamental frequency but the original PRB model cannot. It has a smaller error comparing with the

original PRB model. However, both of the PRB models cannot track the second and third natural frequency of the FEA model

since both of them have a single DOF. Furthermore, it shows that the first natural frequency may be excited as a dominated

response since its magnitude is significantly larger than those of the higher modal natural frequencies. Finally, this figure

shows that the optimized PRB model can track the FEA model well at its fundamental frequency (11.38 Hz) in terms of

displacement, and the error shown in the time domain of Fig. 12 (a) and (d) comes from the excitations of the high modal

natural frequencies of the FEA model. 

Considering the velocity response of Fig. 13 (c) and (g), it is observed that the fourth and fifth modal natural frequency

around 570 Hz and 910 Hz are also excited with a small magnitude, which is not observable in the displacement response. It

well explains that the velocity response in the time domain has more fluctuation and less smooth than that of the displace-

ment response as shown in Fig. 10 since it contains a wider frequency spectrum. The figure also shows that the optimized

PRB model can track the FEA model well at its fundamental frequency (11.38 Hz) in terms of the velocity and the error in

the time domain comes from the excitations of the high modal natural frequencies of the FEA model. 
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(a) (b) (c)

(d) (e) (f)

Fig. 12. Effects of mass ratio and input frequency on output response of the pinned-root compliant parallel-guiding mechanism. (a) and (d) are given the 

input of A = 10 N, ω = 200 Hz, and λ = 0, (b) and (e) are given the input of A = 10 N, ω = 200 Hz, and λ = 0.5, (c) and (f) are given the input of A = 10 , 

ω = 200 Hz, and λ = 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The acceleration response of Fig. 13 (h) and (i) show a slightly large excitation of the magnitude of the fourth and fifth

modal natural frequency. It well explains that the acceleration response in the time domain has the highest fluctuation and

the least smooth among the displacement, velocity, and acceleration response, as shown in Fig. 10 . The figure also shows

that the optimized PRB model can track the FEA model well at its fundamental natural frequency (11.38 Hz) in terms of the

acceleration, and the error in the time domain comes from the excitations of the high modal natural frequencies of the FEA

model. 

We also studied the frequency domain on a variety values of A, ω, and λ, from which some of them are shown in the

supplemental material. It turns out that the input frequency significantly affects the frequency domain for the case of the

pinned-root CPGM. Similar conclusions are made as those in Section 5.1.4 . The optimized PRB model can track the FEA

model very well at low input frequencies but lose the accuracy at high input frequencies. 

6. Discussions and conclusions 

This paper presents the framework of optimizing the original PRB model to predict the dynamics of compliant mecha-

nisms, and the continuum model is used as a reference for the original PRB model in terms of the natural frequency. In this

study, the linear continuum model is used as the reference for convenient analysis. For the applications requiring high ac-

curacy with large deformations, a nonlinear continuum model working for large deformations is suggested as the reference

for the optimization procedure. 

This paper develops optimized PRB models that can accurately predict statics, kinematics, and dynamics for compliant

mechanisms by introducing non-dimensional mass property parameters. Two typical mechanisms: fixed-root and pinned-

root compliant parallel guided mechanisms, were employed as case studies. We show that the fundamental natural fre-

quency of the optimized PRB model well agrees with that of the continuum model, and the dynamics of the optimized PRB

model is consistent with that of the continuum model at low input signal frequencies. The results show that the accuracy of

the optimized PRB model is significantly improved comparing with that of the original PRB model, given a variety of mass

ratios and input frequencies/amplitudes. We also studied the effect of the mass ratio and input magnitude/frequency on

the dynamic accuracy. The proposed optimized PRB model has significantly reduced the computation load while retaining
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Fig. 13. The frequency domain analysis of the displacement response of the pinned-root compliant parallel-guiding mechanism at A = 10 N, ω = 200 Hz, 

and λ = 0. (a) and (d) represent the magnitude of the displacement and the associated error, (b) and (e) represent the phase of the displacement and 

the associated error, (c) and (i) represent the magnitude of the velocity and the associated error, (g) and (j) represent the phase of the velocity and the 

associated error, (h) and (k) represent the magnitude of the acceleration and the associated error, (i) and (l) represent the phase of the acceleration and 

the associated error. 

 

 

 

 

accuracy. It should be pointed out that the proposed PRB models are limited to predict dynamics of compliant mechanisms

at relatively low frequencies. To overcome this limit, one may seek to use higher order PRB models, such as 2R/3R or RPR

which can capture more complex mode shapes. However, this will increase the complexity of modeling and computational

time. Obviously, a trade-off may be needed by considering the specific applications and allowable computational complexity.
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Appendix A. Data tables 

Table 5 

The values of y i of the fixed-guided compliant beam. 

y 1 y 2 y 3 
0 2.36502016 5.497803918 8.639379828 

0.1 2.234921325 5.294377883 8.352696295 

0.2 2.133388562 5.174338293 8.215369244 

0.3 2.051021398 5.095861203 8.136411803 

0.4 1.982246093 5.040735505 8.08544728 

0.5 1.923535651 4.999952882 8.049920375 

0.6 1.872536832 4.968586228 8.023771431 

0.7 1.827611373 4.943724215 8.003733644 

0.8 1.787577069 4.923539778 7.987895072 

0.9 1.751556337 4.906829718 7.975064113 

1 1.718881343 4.892770 0 07 7.964460128 

5 1.22252097 4.768900303 7.877996202 

10 1.037125321 4.74 994 8383 7.865777068 

100 0.588020867 4.732076443 7.85447814 

10 0 0 0.330944365 4.730244774 7.85333214 

1.00E + 04 0.186119244 4.730061152 7.853217377 

1.00E + 05 0.104663417 4.730042786 7.853205899 

1.00E + 06 0.058856614 4.730040949 7.853204751 

Table 6 

Validation of the continuum model of the fixed-guided compliant beam. 

λ Continuum model FEA simulation Errors (%) 

c f 1 
c f 2 

c f 3 
s f 1 

s f 2 
s f 3 δ1 δ2 δ3 

0 25.66119628 138.6708772 342.4303674 25.735 139.13 343.99 0.2868 0.33 0.4534 

0.1 22.91561992 128.5988269 320.0813496 22.982 129.03 321.55 0.2888 0.3342 0.4567 

0.2 20.88079648 122.833485 309.6429633 20.941 123.25 311.08 0.2875 0.3379 0.462 

0.3 19.29956492 119.1358086 303.719711 19.356 119.54 305.13 0.2916 0.3381 0.4622 

0.4 18.02694666 116.572189 299.9267732 18.079 116.97 301.33 0.2879 0.3401 0.4657 

0.5 16.974914 4 4 114.6935405 297.296 84 81 17.024 115.08 298.69 0.2883 0.3358 0.4664 

0.6 16.08673373 113.2590197 295.3685395 16.134 113.65 296.75 0.293 0.344 0.4655 

0.7 15.32409514 112.1283953 293.8951305 15.369 112.51 295.27 0.2922 0.3392 0.4656 

0.8 14.66009166 111.2146598 292.7331045 14.703 111.6 294.11 0.2918 0.3453 0.4682 

0.9 14.07522535 110.4610353 291.7934252 14.116 110.84 293.16 0.2889 0.3419 0.4662 

1 13.55498156 109.8289265 291.0179791 13.595 110.21 292.39 0.2944 0.3458 0.4692 

5 6.85677297 104.3382678 284.7335677 6.877 104.7 286.08 0.2941 0.3455 0.4706 

10 4.934800618 103.5106215 283.850983 4.9494 103.87 285.19 0.295 0.346 0.4695 

100 1.586326618 102.7331581 283.0360837 1.591 103.09 284.37 0.2937 0.3461 0.4691 

10 0 0 0.502478077 102.6536427 282.9534975 0.50396 103.01 284.29 0.2941 0.3459 0.4701 

1.00E + 04 0.158924075 102.6456731 282.9452278 0.15939 103 284.28 0.2923 0.344 0.4695 

1.00E + 05 0.050257045 102.6448759 282.94 4 4007 5.04E −02 103 284.28 0.2947 0.3448 0.4698 

1.00E + 06 0.0158927 102.6447962 282.944318 1.59E −02 103 284.28 0.2949 0.3449 0.4698 
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Table 7 

The values of y i of the pinned-guided compliant beam. 

y 1 y 2 y 3 

0 1.57079633 4.712385615 7.853981632 

0.1 1.50065129 4.529774083 7.585629476 

0.2 1.44363188 4.415150673 7.45046102 

0.3 1.39593031 4.336902032 7.370479808 

0.4 1.35514076 4.280178821 7.317920785 

0.5 1.31965717 4.237201797 7.280835152 

0.6 1.28835958 4.203525157 7.25329995 

0.7 1.26043896 4.176429021 7.23206107 

0.8 1.23529352 4.154158486 7.215187259 

0.9 1.21246462 4.135530949 7.201461759 

1 1.19159535 4.11972071 7.190080574 

5 0.8599234 3.974544393 7.095988284 

10 0.73135369 3.951317609 7.082504606 

100 0.41567528 3.929144862 7.069995179 

10 0 0 0.23400632 3.9268573 7.068724194 

1.00E + 04 0.1316058 3.926627818 7.06 8596 893 

1.00E + 05 0.07400819 3.926604863 7.06858416 

1.00E + 06 0.04161791 3.926602567 7.068582887 

Table 8 

Validation of the continuum model of the pinned-guided compliant beam. 

λ Continuum model FEA simulation Errors (%) 

c f 1 
c f 2 

c f 3 
s f 1 

s f 2 
s f 3 δ1 δ2 δ3 

0 11.32001207 101.8799631 283.0 0 03015 11.352 102.31 284.6 0.2818 0.4203 0.5621 

0.1 10.33157921 94.13697119 263.9917686 10.362 94.534 265.5 0.2936 0.42 0.5681 

0.2 9.561368612 89.43308124 254.6674 4 4 9.5895 89.811 256.13 0.2934 0.4208 0.571 

0.3 8.939940171 86.29117035 249.2290472 8.9666 86.656 250.66 0.2973 0.421 0.5709 

0.4 8.425117259 84.04869277 245.6872073 8.4505 84.405 247.1 0.3004 0.4221 0.5717 

0.5 7.989679827 82.36931065 243.2033383 8.0139 82.718 244.61 0.3022 0.4215 0.5751 

0.6 7.61520 0 098 81.06519607 241.367288 7.6384 81.409 242.76 0.3037 0.4223 0.5737 

0.7 7.288711674 80.02346374 239.9558296 7.311 80.362 241.34 0.3049 0.4213 0.5735 

0.8 7.0 0 0796666 79.17229943 238.8374082 7.0223 79.507 240.22 0.3062 0.421 0.5756 

0.9 6.74 4 430552 78.46386306 237.9295885 6.7652 78.796 239.31 0.307 0.4215 0.5768 

1 6.51425467 77.86507121 237.1781352 6.5344 78.194 238.55 0.3083 0.4207 0.5751 

5 3.392553192 72.47393465 231.0111357 3.4034 72.779 232.35 0.3187 0.4192 0.5762 

10 2.453929336 71.62935088 230.1340428 2.4618 71.93 231.47 0.3197 0.418 0.5772 

100 0.792712175 70.82771278 229.3218153 0.79527 71.124 230.65 0.3216 0.4166 0.5758 

10 0 0 0.251224688 70.7452645 229.2393716 0.25204 71.042 230.57 0.3235 0.4177 0.5771 

1.00E + 04 0.079461584 70.73699618 229.2311149 7.97E −02 71.033 230.56 0.3218 0.4167 0.5764 

1.00E + 05 0.025128508 70.73616911 229.2302891 2.52E −02 71.032 230.56 0.3217 0.4165 0.5767 

1.00E + 06 0.007946349 70.7360864 229.2302065 7.97E −03 71.032 230.56 0.3219 0.4166 0.5768 

Table 9 

Optimization results for the fixed-guided compliant beam. 

λ Continuum The original PRB model The optimized PRB model 

c f 1 
P f 1 δ̄1 (%) β2 β3 α2 

P f 1 δ̄1 (%) 

0 25.66119 27.2177 6.065619 0.824542 0.100458 0.532669 25.66119 1.54E −07 

0.1 22.91562 24.06602 5.020173 0.823175 0.101825 0.534399 22.91562 3.69E −08 

0.2 20.8808 21.80461 4.424217 0.821281 0.103719 0.536818 20.8808 1.42E −08 

0.3 19.29956 20.08039 4.045817 0.819091 0.105909 0.539624 19.29956 7.27E −09 

0.4 18.02695 18.70962 3.786942 0.816718 0.108282 0.542669 18.02695 4.52E −09 

0.5 16.97492 17.586 3.59993 0.814226 0.110774 0.54587 16.97492 3.22E −09 

0.6 16.08673 16.6432 3.459147 0.811651 0.113349 0.549181 16.08673 2.56E −09 

0.7 15.3241 15.8374 3.349645 0.809017 0.115983 0.552571 15.3241 2.19E −09 

0.8 14.66009 15.13834 3.262255 0.80634 0.11866 0.55602 14.66009 2.02E −09 

0.9 14.07523 14.52437 3.191009 0.803628 0.121372 0.559514 14.07523 1.96E −09 

1 13.55498 13.97951 3.131885 0.800891 0.124109 0.563045 13.55498 1.96E −09 

5 6.856773 7.038501 2.650349 0.687381 0.237619 0.714816 6.856773 4.17E −12 

10 4.934801 5.062326 2.584209 0.566106 0.358894 0.934659 4.934801 9.55E −10 

100 1.586327 1.626366 2.524045 0 1 1 1.621125 2.193636 

10 0 0 0.502478 0.515131 2.518006 0 1 1 0.514963 2.484716 

1.00E + 04 0.158924 0.162925 2.517401 0 1 1 0.16292 2.514301 

1.00E + 05 0.050257 0.051522 2.517341 0 1 1 0.051522 2.517341 

1.00E + 06 0.015893 0.016293 2.517334 0 1 1 0.016293 2.517334 
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Table 10 

Optimization results for the pinned-guided compliant beam. 

λ Continuum The original PRB model The optimized PRB model 

c f 1 
P f 1 δ̄1 (%) β1 β2 α1 

P f 1 δ̄1 (%) 

0 11.32001 12.37525 9.32189 0.802277 0.197723 0.561906 11.32001 4.71E −13 

0.1 10.33158 11.1549 7.968979 0.80 0 067 0.199933 0.564686 10.33158 2.06E −13 

0.2 9.561369 10.23644 7.060393 0.797664 0.202336 0.567744 9.561369 1.90E −08 

0.3 8.93994 9.512931 6.409339 0.795139 0.204861 0.570977 8.93994 2.35E −07 

0.4 8.425117 8.923921 5.920431 0.792534 0.207466 0.574326 8.425117 1.38E −07 

0.5 7.98968 8.432312 5.540052 0.789873 0.210127 0.577757 7.98968 9.03E −08 

0.6 7.6152 8.013917 5.235806 0.787171 0.212829 0.581249 7.6152 6.56E −08 

0.7 7.288712 7.652199 4.986986 0.784439 0.215561 0.584787 7.288712 5.19E −08 

0.8 7.0 0 0797 7.335417 4.779753 0.781683 0.218317 0.588361 7.0 0 0797 4.43E −08 

0.9 6.74 4 431 7.054979 4.604511 0.77891 0.22109 0.591965 6.74 4 431 4.03E −08 

1 6.514255 6.804426 4.454399 0.776122 0.223878 0.595594 6.514255 3.85E −08 

5 3.392553 3.4 94 877 3.01613 0.66631 0.33369 0.752012 3.392553 5.37E −10 

10 2.453929 2.522049 2.775944 0.577148 0.422852 0.975907 2.453929 1.74E −12 

100 0.792712 0.812879 2.544083 0 1 1 0.810262 2.213854 

10 0 0 0.251225 0.257556 2.520019 0 1 1 0.257472 2.48673 

1.00E + 04 0.079462 0.081462 2.517604 0 1 1 0.08146 2.514504 

1.00E + 05 0.025129 0.025761 2.51736 0 1 1 0.025761 2.51736 

1.00E + 06 0.007946 0.008146 2.51734 0 1 1 0.008146 2.51734 

Table 11 

Validation of the fundamental frequency of the fixed-guided compliant beam and fixed-root compliant parallel-guiding mechanism. 

Fundamental natural frequency of the fixed-guided compliant beam (Hz) Fundamental natural frequency of the fixed-root 

compliant parallel-guiding mechanisms (Hz) 

Models Theoretical original 

PRB model 

Theoretical optimized 

PRB model 

Theoretical 

continuum model 

Abaqus FEA ADAMS original 

PRB model 

ADAMS optimized 

PRB model 

Abaqus FEA 

λ1 = 0 27.2177 25.66119 25.66119 25.735 27.0997 25.5127 25.69 

λ2 = 0 . 5 17.586 16.97492 16.97492 17.024 17.4729 17.0299 17.012 

λ3 = 10 5.0623 4.934801 4.934801 4.9494 5.188 4.9801 4.9447 

Table 12 

Validation of the fundamental frequency of the pinned-guided compliant beam and pinned-root compliant parallel-guiding mechanism. 

Fundamental natural frequency of the pinned-guided compliant beam (Hz) Fundamental natural frequency of the pinned-root 

compliant parallel-guiding mechanisms (Hz) 

Models Theoretical original 

PRB model 

Theoretical optimized 

PRB model 

Theoretical 

continuum model 

Abaqus FEA ADAMS original 

PRB model 

ADAMS optimized 

PRB model 

Abaqus FEA 

λ1 = 0 12.37525 11.32001 11.32001207 11.352 12.4207 11.3831 11.393 

λ2 = 0 . 5 8.432312 7.98968 7.989679827 8.0139 8.4534 8.0892 8.0407 

λ3 = 10 2.522049 2.453929 2.453929336 2.4618 2.5636 2.471 2.468 

 

 

 

 

 

 

 

 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.mechmachtheory.

2018.04.005 . 
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