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Abstract

Vector-borne disease transmission is often typified by highly focal transmis-2

sion and influenced by movement of hosts and vectors across different scales.

The ecological and environmental conditions (including those created by hu-4

mans through vector control programs) that result in metapopulation dynamics

remain poorly understood. The development of control strategies that would6

most effectively limit outbreaks given such dynamics is particularly urgent given

the recent epidemics of dengue, chikungunya, and Zika viruses. We developed8

a stochastic, spatial model of vector-borne disease transmission, allowing for

movement of hosts between patches. Our model is applicable to arbovirus10

transmission by Aedes aegypti in urban settings and was parameterized to cap-

ture Zika virus transmission in particular. Using simulations, we investigated12

the extent to which two aspects of vector control strategies are affected by

human commuting patterns: the extent of coordination and cooperation be-14

tween neighboring communities. We find that transmission intensity is highest

at intermediate levels of host movement. The extent to which coordination of16

control activities among neighboring patches decreases the prevalence of infec-

tion is affected by both how frequently humans commute and the proportion of18

neighboring patches that commits to vector surveillance and control activities.

At high levels of host movement patches that do not contribute to vector control20

may act as sources of infection in the landscape, yet have comparable levels of

prevalence as patches that do cooperate. This result suggests that real cooper-22

ation among neighbors will be critical to the development of effective pro-active

strategies for vector-borne disease control in today’s commuter-linked commu-24

nities.
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Introduction

Effective prevention and mitigation of outbreaks of infectious diseases relies on being30

able to predict patterns in the dynamics of spread of exposure risks over space and

time. For vector-borne diseases, this implies understanding the factors that influence32

both host and vector ecologies, and the epidemiological patterns that emerge as a

result. In a world with shifting climates [1], altered habitats [2], and increasing travel34

distances in the course of many people’s normal lives [3, 4, 5] with associated human-

mediated transport of both diseases and vectors [6, 7], even just understanding the36

basic ecological drivers of the system can be complicated. Naturally, understanding

mitigation and control adds yet another layer of complexity.38

Interruption of ongoing transmission can, in principle, target any stage in the par-

asite’s life cycle. Medical interventions that focus on hosts target either infected40

individuals through treatment, or susceptible hosts through prophylaxis or vaccina-

tion. Physical interventions, such as bed nets, can prevent vectors from biting hosts,42

disrupting transmission between hosts and vectors in both directions. There are also

a myriad of interventions that focus on the vector directly. While there are ongoing44

efforts to control some diseases by decreasing vector competence (e.g., through the

release of mosquitoes harboring infection-blocking Wolbachia strains [8, 9]), most46

vector-targeted interventions focus on decreasing vector population sizes or vector

longevity. This can be done by purposefully altering habitat availability, for instance48

through environmental management or by removal of vessels holding standing water

[10]). Populations can also be controlled actively, through sterile male releases, or50

application of adulticides or larvicides [11, 12, 13]).

In the case of newly emerging vector-borne pathogens, the vast majority of our52

epidemic- fighting toolkit relies on the vector-targeted strategies for the simple rea-

son that we rarely have existing medical treatments or preventive measures that54

are effective against novel threats. This does not, however, imply that these strate-

gies are without their own set of challenges. Vector-targeted strategies, by their56

nature, have localized geographic regions of direct effect. Any broader secondary

or community-level impacts, either ecologically or epidemiologically, are driven by58

the direct impact of a local intervention on a local area. In some cases, such as

when eliminating potential larval habitat by removing or chemically treating stand-60

ing water, those performing the intervention can focus on as small a scale as a single

residence. Even wider-scale efforts are frequently still relatively geographically lim-62
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ited in their immediate effect, such as spraying insecticides from trucks or releasing

them from low-flying airplanes: decisions frequently made by city-, county-, district-,64

or state-level public health or vector control agencies, or at a smaller scale, by private

contractors.66

There have been some very successful instances of large-scale coordinated vector

control efforts. These notably include the mass scaling-up of insecticide-treated bed68

net coverage across sub-Saharan Africa [14, 15], or the Aedes aegypti elimination

efforts in Latin America in the 1930’s [16]). However, it is still the case that lo-70

cal/regional vector control efforts are most frequently undertaken at the same level

as their direct effect. In other words, two neighboring municipalities may undertake72

very different control strategies, despite facing similar risks. These differences may

be more drastic, even between regions that are geographically close to each other,74

if they face different risks from vector populations. Such differences could be due

to, for instance, different distributions in land usage, or unequal access to resources76

needed for effective control. Control decisions may reasonably diverge, even among

neighbors, based on many factors. These include differences in ecological viability78

of vector habitat, epidemiological susceptibility of the resident population, different

sizes in resident host populations, different access to medical resources for preven-80

tion and/or treatment, and even different perceptions of risk associated with vector

populations and/or infection. Even if there is consensus among decision makers82

across regions about the need for vector control efforts, the timing, frequency, and

efficacy of control measures may vary.84

Unfortunately, local/regional vector population sizes are not the only drivers of epi-

demiological dynamics across the broader landscape. Even if the vector species re-86

sponsible for transmission of a particular pathogen does not disperse far or frequently

enough to cause concern for neighboring regions about the efficacy of adjacent re-88

gion’s control decisions, humans themselves routinely travel across distances that

are likely to span areas controlled by different decision-makers. Especially around90

dense urban centers, people routinely travel many miles each day as they commute

to employment or school. The result of this confluence of patchy habitat manip-92

ulations of vector populations, with varying levels of travel by hosts who may be

carrying infection, is a textbook case of potential metapopulation dynamics for the94

disease [17, 18, 19].

Considering the question of epidemiological control via vector-targeted intervention96

as a question of metapopulation ecology leads us to a natural set of important im-

mediate questions: How much movement of humans across control region borders98

yields a metapopulation dynamic? Do adjacent regions need to coordinate with each

other in the timing or method of their vector control strategies to avoid inadver-100
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tently supporting longer durations of ongoing pathogen transmission among their

populations? Can heightened local surveillance efforts, that allow regional decision102

makers to be responsive to disease within their own population more rapidly, com-

pensate for lack of coordination in vector control across regions that occurs without104

the need for any knowledge of population health status? Most critically, asking

these questions also allows us to frame control issues in the language of biological106

control: If we understand the disease metapopulation dynamics, can we decrease

the resources and effort dedicated to local control within each region, so long as we108

allow for strategic coordination in those efforts to achieve a global impact on disease

incidence? To begin to address these questions, we here present a simplified spatial110

model of a system that reflects only the most basic elements of such a system.

Model112

We developed a spatial model of vector (e.g., Ae. aegypti) and host (e.g., human)

populations arranged as patches on a 10 x 10 grid. We consider a microparasite such114

as the Zika virus, such that infection in vectors and hosts can be modelled using

a compartmental approach. Thus, within each patch (indicated by subscript k),116

the vector population, Nv,k, consists of immature (Lv,k), susceptible (Sv,k), exposed

(Ev,k), and infectious (Iv,k) mosquitoes. The human population, Nh,k, consists of118

susceptible (Sh,k), exposed (Eh,k), infectious (Ih,k) and recovered (Rh,k) individuals.

A description of the parameters and their values is provided in Table 1. The pa-120

rameter values were based on the literature, varied in order to explore their impact,

or set in order to lead to desired mosquito:host ratios. Transitions between these122

compartments are governed by the following set of equations:

Sh,k(t+ 1) = Sh,k(t)− p1 (1)

where p1 ∼ Poisson(
∑

j wj,kSh,k(t)λh(j, t)), the number of susceptible hosts from124

patch k that become infected at time t (see below).

Eh,k(t+ 1) = Eh,k(t) + p1 − p2 (2)

where p2 ∼ Poisson(τhEh,k(t)) gives the number of latent hosts that progress to the126

infective state.

Ih,k(t+ 1) = Ih,k(t) + p2 − p3 (3)
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where p3 ∼ Poisson(γIh,k(t)) gives the number of infectious hosts that progress to128

the recovered or immune state.

Rh,k(t+ 1) = Rh,k(t) + p3 (4)

The focus of the model is on the short-term, so that human demography and any130

possible waning of immunity can be ignored. Vector populations are described as

follows:132

Lv,k(t+ 1) = Lv,k(t)− p4 + p5 − p6 (5)

Here the number of immature mosquitoes dying per time step is given by p4 ∼
Poisson(µ2 + (µ3Lv,k(t))Lv,k(t)). The number of immature mosquitoes added each134

step are given by p5 ∼ Poisson(φNv,k). Juvenile development is given by p6 ∼
Poisson(η(Lv,k(t)−p4)). Changes in the population size of susceptible (uninfected)136

mosquitoes are given by:

Sv,k(t+ 1) = Sv,k(t) + p6 − (p7 + p8) (6)

where losses are due to mortality: p7 ∼ Poisson(µ1Sv,k(t)), and due to infection:138

p8 ∼ Poisson(λv(k, t)(Sv,k(t)− p7)).

Ev,k(t+ 1) = Ev,k(t) + p8 − (p9 + p10) (7)

Mosquitoes leave the exposed class by dying: p9 ∼ Poisson(µ1Ev,k(t)), and by be-140

coming infectious following the extrinsic incubation period: p10 ∼ Poisson(τv(Ev,k(t)−
p9)).142

Iv,k(t+ 1) = Iv,k(t) + p10 − p11 (8)

Infectious mosquitoes remain so until they die: p11 ∼ Poisson(µ1Iv,k(t)).

Force of infection and movement144

The model operates at a scale where mosquito dispersal can safely be ignored,

through the assumption that mosquito travel between patches is negligible. For146
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Table 1: Description of parameters.

Parameter Description Value Dim. Source

δ proportion of exposure experienced
away from home patch

0-1 d−1 varied

a inverse of gonotrophic cycle duration 0.33 d−1 [20]
c probability of a vector becoming in-

fected upon biting an infective host
0.31 - [21]

b probability of a host becoming in-
fected upon receiving an infectious
bite

0.35 - [21]

τh inverse of human latent period 1/5.8 d−1 [22]
γ inverse of human infectious period 1/5.8 d−1 [22]
µ1 adult mosquito death rate 1/13 d−1 [23]
τv inverse of extrinsic incubation period 1/9.1 d−1 [22]
µ2 base immature mosquito death rate 0.05 d−1 -
µ3 density-dependent modifier of imma-

ture mortality
0.001 d−1 -

φ fecundity 10 d−1 [24]
η rate of larval development 1/7 d−1 [25]

dengue and Zika vectors such as Ae. aegypti this implies patches capture commu-

nities or neighborhoods that are separated in space by a few hundred meters or are148

sufficiently large so that movement across edges is minimal relative to each patch’s

mosquito population [26, 27, 28, 29]. Hosts are assumed to have a home patch (k),150

but commute and can potentially be exposed to infective bites in other patches (j)

with a probability of δ, which we vary across a wide range. The distribution of hosts152

that commute from a given home patch to other patches in the metapopulation

depends on both the distance to and population size of other patches, following a154

gravity-type model.

Fj,k =
|j|

|k|+ |j|
|k||j|
d2j,k

(9)

Where |j| and |k| are the respective sizes of the populations that call patches j156

and k home, and dj,k represents the Euclidean distance on the grid between these

patches. These probabilities are then normalized over all patches that could be158

visited (see Fig. 1a). For each patch, we then have a matrix W with probabilities of

remaining in the home patch (with probability wk,k = 1 − δ, or to any other patch160

with probability wj,k = δF ∗j,k. The distribution of hosts per time step over patches

is based on draws from a multinomial distribution with these probabilities.162
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Figure 1: (a) An example of the commuting probabilities (F ∗j,k) for an arbitrary
patch (with coordinates 4,7); (b) An example of the different levels of coordination
in terms of larval control, where control is either implemented at the individual-
patch level (i), or by a patch and its nearest neighbors (1), its neighbors two steps
(2) or three steps (3) removed, or collectively by the entire metapopulation (c).

It follows that the forces of infection on hosts (λh) and vectors (λv) are:

λv(j, t) = ac
Îj(t)

N̂j(t)
(10)

where Îj(t) =
∑

k wj,kIh,k and N̂j(t) =
∑

k wj,kNh,k. That is to say that the force of164

infection on vectors in a given patch depends on the biting rate (a), the probability

of a vector becoming infected when biting an infective person (c), and the proportion166

of hosts present in patch j that are infective.

The force of infection on hosts, λh is given by:168

λh(j, t) = ab
Iv,j(t)

N̂j(t)
(11)

That is, the force of infection on humans present in patch j depends on the biting

rate (a), the probability of a human becoming infected following an infective bite170

(b), and the density of infective vectors in that patch over all hosts that are present

there that day.172
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Control

We focus on the use of larval control. Interventions targeting immature mosquitoes174

are commonly employed against species such as Ae. aegypti that lay eggs in small

containers with water that are often encountered in private yards (eg. bird baths,176

buckets, etc.). Larval control can take the form of source management, the re-

moval or emptying of containers, or the application of larvicides, such as Bacillus178

thuringiensis israelensis [30]. We focus on the latter: a method that increases the

rate of larval mortality in patches where it is deployed. In our simulations we intro-180

duce a single infected host into an arbitrarily chosen, but always the same, patch.

We assumed that following detection of at least two infected hosts (so that the initial182

introduced case does not invoke a response in the absence of active transmission) in

a given patch, larval control would be implemented the following day and remain184

effective for ten days. Within a given patch, we assumed that 80% of immatures

would succumb to the larvicide per day, so that the base death rate in the presence186

of the larvicide becomes µc = −log(0.2) +µ2 (i.e., an arbitrarily-chosen high level of

efficacy, which allows us to focus on community-level effects of vector control, rather188

than local efficacy).

We varied two components of community-level responses to infection: whether in-190

dividual patches contribute to surveillance and vector control or not (referred to

as cooperation), and the extent to which patches acted collectively (which we refer192

to as coordination). For cooperation, we assumed that a given, randomly assigned

number of patches would not contribute to surveillance and control. This assign-194

ment was fixed, so that the patches that did or did not contribute to control did not

change over time. This percentage was typically set to 20% of the communities, but a196

greater proportion of non-cooperation (50%) was also investigated. Non-cooperation

here could represent, for instance, a lack of resources at a local level. The extent198

to which patches acted collectively was varied from a control response targeted at

the individual patch where infection was witnessed, to a response in the patch with200

infection as well as its immediate neighbors, to its neighbors that are two or three

steps removed, or to all patches in the metapopulation (see Fig. 1b). Coordination202

here therefore gives insight into the value of extending control activities to increas-

ingly large areas around a focal infection. Thus, we investigate how the extent to204

which hosts commute affects the dynamics of Zika infection as it spreads through

a metapopulation as well as the efficacy of coordinated control responses aimed at206

halting the epidemic.
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Results208

The course of the epidemic spreading through the metapopulation is consistent with

typical SIR dynamics: a pathogen burns through a population and then limits its210

own transmission as immunity is built up. This is illustrated in Fig. 2, where

the entomological inoculation rate (a relevant metric of exposure for vector-borne212

diseases which indicates the average number of infectious bites received per person

per unit of time) increases sharply before falling. The extent to which hosts commute214

was varied by changing δ from 0.1 to 1 (i.e., each host has a daily probability of δ of

commuting to a different patch, where that host is then exposed to mosquito bites).216

At intermediate levels of commuting we see the steepest rise in prevalence and the

most intense transmission.218
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Figure 2: The mean prevalence of infection (latent, infected, and immune hosts) in
hosts over time in the absence of vector control, for levels of human commuting (δ)
ranging from 0.1-0.5 (left) and 0.6-1 (right). The lower panels show the correspond-
ing mean entomological inoculation rate (EIR), i.e., the mean number of infectious
bites received per human per day, over time.

With vector control, the mean prevalence after 400 days likewise remains higher at

intermediate levels of movement (see Fig. 3). We varied the extent to which vector220

control responses were coordinated and the extent to which patches contributed to

surveillance and control. Impressions from Fig. 3 are that the usefulness of coordi-222
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nation depends both on the rate of commuting and on the extent to which patches

are capable or willing to implement surveillance and control.224
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Figure 3: (a) Mean prevalence ± 1.96 se of infection in hosts 400 days following
introduction of a single infected case at different levels of human commuting (δ).
Dashed lines merely provide a visual cue. Control is implemented as a collective
response targeting all patches in the environment (c); at the individual patch level
and all neighbors three steps or less removed (3 ); the patch and all neighbors two
steps or less removed (2 ); the patch and its nearest neighbors (1 ); or only at the
individual patch level (i). Control can occur in up to 80% of patches, with 20% not
cooperating (b) The same, except treatment only occurs in 50% of the patches.

For instance in Fig. 3a we see that at both the lowest and the highest rates of

δ, there is relatively little gain to be made by using a more coordinated strategy226

(although the individual patch response is still worse than the other strategies),

while at intermediate levels increasing levels of coordination appear to be more228

effective. At a lower level of cooperation, where only half the patches implement
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surveillance and control (Fig. 3b), control is not only less effective in general, but the230

relative efficacy of more coordinated responses is diminished compared to patch-level

responses.232

To understand why the overall metapopulation disease dynamics are as they are,

patch-level responses are of interest. In Fig. 4 three aspects of the epidemic are234

explored in the absence of control. The number of introductions of the pathogen

resulting in active transmission (i.e., distinct chains of infection in the vector pop-236

ulation) appears to not rely much on the host population size of each patch. The

proportion of time that a patch undergoes active transmission does however depend238

on the patch’s population size, with more populous patches having proportionally

longer periods of ongoing transmission, though this effect becomes less pronounced240

at the highest level of commuting. There appears to be an inverse relation between

patch size and the time until the first infected vectors appear. It is possible that242

the proportion of time with ongoing transmission may be a result of earlier intro-

duction and therefore longer transmission window, though we cannot rule out that244

(in addition or instead) smaller patches simply exhaust their susceptible population

more rapidly.246

We can look at the same statistics when control is being implemented, to understand

how patch-level outcomes are affected. These are shown for the individual-patch248

response in Fig. 5. When control is implemented at the patch-level, the number of

pathogen introductions increases along with community size. However, this is only250

evident at low and moderate levels of movement. A notable difference compared

to the outcomes without control interventions is in the proportion of time patches252

undergo active transmission, where the patches divide into those that are and are

not effectively controlled. The patches that are not effectively controlled tend to be254

non-cooperating patches, those that did not implement surveillance or control, and

the distinction between cooperating and non-cooperating patches appears sharpest256

under moderate levels of commuting (δ = 0.5).

When we plot the time of first introduction against the proportion of time that258

patches had ongoing transmission (i.e., infected vectors), we see that in the absence

of control there is indeed a correlation between these two outcomes (Fig. 6). With260

control, this effect disappears. The bimodal aspect of the patch-level control scenario

for the higher levels of commuting is apparent here as well. Fig. 6 suggests that a262

subset of patches (particularly, but not exclusively, those that did not implement

control) can actually be subjected to a longer period of active transmission than do264

patches in the absence of any control.

Looking at the prevalence of infection in hosts adds to this picture (see Fig. 7). When266
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Figure 4: Patch-level transmission dynamics as a function of patch size for three
levels of commuting (δ = 0.1, 0.5 or 1). Left: the distinct number of transmission
chains (periods with continuous infected vector populations, or, how many intro-
ductions of active transmission occurred?); Middle: The proportion of time (out of
400 d) that each patch had infected vectors; Right: The time in days until the first
infected vector was observed per patch.

δ is 0.1, prevalence of infection in hosts in untreated patches is greater than that

in treated patches, but this difference diminishes as commuting intensifies. This is268

further highlighted by the prevalence by population size scatter plots. At low levels

of movement there is a clear separation between treated and untreated patches,270

and a correlation between patch-size and prevalence. As expected, at higher levels

of movement when hosts are mixed more thoroughly, the infection status of hosts272

from particular patches has seemingly little bearing to their patch-characteristics

(treatment or size). When control is performed collectively, overall prevalence is274

lower, but otherwise the conclusions remains largely the same (Fig. 8).

Discussion276

Vector-borne diseases are often highly focal in space and/or time, and are typ-

ically characterized by strong heterogeneity in exposure among host populations278
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[31, 32]. This is no different for Aedes-transmitted arboviruses in urban settings

[33, 34, 35, 36, 37]. Such heterogeneity can theoretically be masked, alleviated,280

compounded or even shaped by movement of both vectors and hosts. In the case of

mosquitoes, the extent of movement will be determined by species-specific character-282

istics and environmental or ecological conditions. For humans, socio-economic and

cultural conditions likely shape movement patterns. While it is becoming increas-284

ingly clear that these factors can influence the intensity and dynamics of vector-borne

diseases [6, 38, 39, 40, 41], understanding the ramifications for control and surveil-286

lance efforts of the combined effects of movement and heterogeneity remain at the

forefront of vector-borne disease ecology. A metapopulation dynamic, particularly288

the occurrence of rescue events, where infection is reestablished following local ex-

tinctions, thereby allowing for longer persistence of an epidemic outbreak, would290

have particular repercussions for how we structure control programs [42, 43, 44].

This has been recognized in the context of pathogen eradication programs (e.g.,292

[45]), yet for the control of arboviruses such as dengue, chikungunya, and Zika,

control efforts remain largely focal and reactive. Adapting control strategies to con-294

sider heterogeneous exposure and human movement may be challenging, but could

be done by incorporating contact tracing, or targeting high-risk groups or areas [46].296

In the case of a metapopulation dynamic, questions regarding cooperation among

nearby communities become much more relevant. For instance, to what extent are298

control efforts hampered by the inability or unwillingness of adjacent communities

to participate in a control effort? To what extent does coordination of control ef-300

forts in time affect the usefulness of the interventions? And are there situations

where vector control can inadvertently prolong the period of ongoing transmission302

in certain areas?

Our model was run over a relatively short term, namely that in which an initial epi-304

demic outbreak tended to run its course and deplete susceptible hosts. Even so, cer-

tain aspects associated with metapopulation dynamics were evident. These aspects306

were that we found the highest entomological inoculation rates and the fastest spread

of infection at intermediate levels of host movement. Likewise, when vector control308

was implemented, the prevalence of infection remained higher at these intermediate

levels of movement. This is reminiscent of findings that persistence of directly-310

transmitted pathogens tends to be maximized at intermediate levels of connectivity

between patches, such that the number of introductions in uninfected patches rely312

on both movement and the synchronization of dynamics between patches [47]. In

this study, the peak at intermediate levels of movement may be because the basic314

reproduction number of vector-borne disease in metapopulations can decrease with

stronger connectivity [19], while greater rates of movement can reduce heterogeneity316

of exposure, and therefore increase prevalence of infection [41]. Further studies on
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the dynamics of immunity in relation to control effect sizes of interventions are war-318

ranted. Additionally, we found that individual patches in our simulations frequently

lost and reacquired infections, either due to stochastic extinctions (likely short-lived320

chains of infection that stuttered and died out before taking hold) or due to vector

control. The number of active transmission events per patch appeared to be rela-322

tively unaffected by the host population size of individual patches. In the absence

of vector control, the duration of ongoing active transmission in a given patch, as324

indicated by the presence of infective vectors, was associated with the host popu-

lation size of that patch (i.e., the number of humans that called that patch home).326

Because larger patches would have attracted a larger proportion of commuters, this

is likely explained by earlier introductions of infections (see Fig. 4).328

Our study has a number of limitations. Certain of these are due to our assumptions

regarding control interventions. For instance, we have focused only on the use of330

larval control, which is a commonly used Aedes spp. abatement strategy. In reality,

once an arboviral outbreak has been identified, adult control (e.g., perifocal or indoor332

spraying with residual insecticides) is likely to be used in addition to larval control

[30]. However, the focus on larval control represents a targeting of the least mobile334

stage of the mosquitoes. Thus, it allows for easy comparison to models applied at

a different scale where adult mosquito movement could come into play (Schwab et336

al, in prep.), or to mosquito species which disperse over greater distances. Models

that have investigated the role of mosquito movement suggest additional complexi-338

ties related to control can emerge. For instance, clustering of certain interventions

can lead to a lower overall efficacy than a uniformly distributed intervention [48], or340

increase mosquito populations in adjacent areas [49]. Another example of a simpli-

fying assumption is that patches in our model either contributed to both population342

surveillance of infection in hosts and vector control or to neither. The rationale be-

hind this choice was that we assumed such a lack of investment to be driven largely344

by socio-economic conditions (e.g., communities which are less likely to implement

vector control are also less likely to invest in active surveillance or have worse access346

to health care providers). In reality, surveillance and vector control may be orga-

nized at different scales, such that humans still have access to health care and would348

be tested for Zika, but vector control might not be implemented in their commu-

nity. Alternatively, members of a community may be less likely to see physicians for350

relatively mild symptoms, but have access to city-wide vector control interventions.

Whether this distinction matters likely depends on the extent to which communi-352

ties share information regarding infected cases and whether a case in a community

which does not implement vector control would trigger a response in neighboring354

communities. A further limitation relates to the use of a gravity model to describe

human commuting. While use of such an approach is reasonable and often fits356
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commuting data well, this may not always be the case (for instance in the case of

socially-structured movements), and use of mobile phone data or a radiation model358

may be more appropriate [50]. Finally we note that we assumed human behaviour

does not change as a function of infection or throughout an outbreak. In reality,360

it is likely that a proportion of symptomatic cases would be less mobile, or that

active transmission in an area may lead to avoidance behaviour or increased use of362

personal repellents. As including adaptive human behaviour in epidemic models can

have large implications [51], such refinements should be explored in models adapted364

and parameterized to explore such questions in specific situations and well-defined

spatial scales.366

The importance of (re-)introductions of infection and host movement suggest an

important role for coordination of control activities and cooperation among com-368

munities. We have investigated these two aspects here in the following sense: that

coordination implies that surrounding communities would implement vector control370

at the same time as the focal community where an infection in humans was de-

tected, in order to more effectively limit spread of the pathogen. Cooperation was372

investigated in the sense of the ability or willingness to pay for control activities

among different communities, with potential repercussions of non-cooperation being374

either that such communities could act as sources of (re-)infection or simply dimin-

ish the community-level effects (as opposed to the direct, local effects) of control.376

Our main result is that the efficacy of coordination depends strongly on both how

frequently humans commute, and on the overall level of cooperation among commu-378

nities. Importantly, we found that while more coordinated responses tend to lead to

significantly lower prevalence levels after the 400-d-period we simulated, this is not380

the case at low levels (≤ 50%) of cooperation. In that case, a focal, individual-patch

response is not much less effective than a collective response targeting the entire382

metapopulation, and both lead to high proportions of hosts becoming infected over

this time period.384

Worrisome also is the finding that at higher levels of commuting, implementing

vector control at the individual-patch level only, leads to bimodal pattern with regard386

to the proportion of time that patches experience active transmission (Fig. 5). In

fact, these patches often may have active transmission for a longer period than they388

would be in the absence of control altogether (Fig. 6). Intuitively, this could be

because of an influx of susceptible hosts from nearby patches that do implement390

control, resulting in a decreased likelihood of transmission dying out in these source

patches.392

When commuting occurs with high frequency, patches that do not participate in

surveillance and treatment can putatively keep transmission going for a longer time,394
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but do not necessarily suffer a higher disease burden themselves, as the location of

exposure becomes less associated with the control activities undertaken in the home396

patch. Thus, the time a patch continues to have active transmission differs from

the effects on host prevalence. Under high levels of movement, there is potentially398

a tension between achieving high levels of coordination (e.g., multiple communities

enacting vector control to limit the spread of Zika) and maintaining a high level400

of cooperation (i.e., the proportion of communities that is willing to participate in

vector control and surveillance activities). This is because at high levels of coordi-402

nation, the community-level impact of vector control will be stronger, potentially

providing an incentive to not participate to individual communities. This suggests404

that control of vector-borne diseases such as Zika could, under certain conditions,

lead to a situation reminiscent of a tragedy of the commons. Improving vector con-406

trol operations may thus have to rely not only on a realistic understanding of vector

populations, human movement and factors leading to heterogeneous risk of expo-408

sure, but also on the social determinants that drive demand (e.g.,[52]) for vector

control in specific communities.410
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