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Abstract

Vector-borne disease transmission is often typified by highly focal transmis-
sion and influenced by movement of hosts and vectors across different scales.
The ecological and environmental conditions (including those created by hu-
mans through vector control programs) that result in metapopulation dynamics
remain poorly understood. The development of control strategies that would
most effectively limit outbreaks given such dynamics is particularly urgent given
the recent epidemics of dengue, chikungunya, and Zika viruses. We developed
a stochastic, spatial model of vector-borne disease transmission, allowing for
movement of hosts between patches. Our model is applicable to arbovirus
transmission by Aedes aegypti in urban settings and was parameterized to cap-
ture Zika virus transmission in particular. Using simulations, we investigated
the extent to which two aspects of vector control strategies are affected by
human commuting patterns: the extent of coordination and cooperation be-
tween neighboring communities. We find that transmission intensity is highest
at intermediate levels of host movement. The extent to which coordination of
control activities among neighboring patches decreases the prevalence of infec-
tion is affected by both how frequently humans commute and the proportion of
neighboring patches that commits to vector surveillance and control activities.
At high levels of host movement patches that do not contribute to vector control
may act as sources of infection in the landscape, yet have comparable levels of
prevalence as patches that do cooperate. This result suggests that real cooper-
ation among neighbors will be critical to the development of effective pro-active
strategies for vector-borne disease control in today’s commuter-linked commu-

nities.
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Introduction

Effective prevention and mitigation of outbreaks of infectious diseases relies on being
able to predict patterns in the dynamics of spread of exposure risks over space and
time. For vector-borne diseases, this implies understanding the factors that influence
both host and vector ecologies, and the epidemiological patterns that emerge as a
result. In a world with shifting climates [1], altered habitats [2], and increasing travel
distances in the course of many people’s normal lives [3, 4, 5] with associated human-
mediated transport of both diseases and vectors [6, 7], even just understanding the
basic ecological drivers of the system can be complicated. Naturally, understanding

mitigation and control adds yet another layer of complexity.

Interruption of ongoing transmission can, in principle, target any stage in the par-
asite’s life cycle. Medical interventions that focus on hosts target either infected
individuals through treatment, or susceptible hosts through prophylaxis or vaccina-
tion. Physical interventions, such as bed nets, can prevent vectors from biting hosts,
disrupting transmission between hosts and vectors in both directions. There are also
a myriad of interventions that focus on the vector directly. While there are ongoing
efforts to control some diseases by decreasing vector competence (e.g., through the
release of mosquitoes harboring infection-blocking Wolbachia strains [8, 9]), most
vector-targeted interventions focus on decreasing vector population sizes or vector
longevity. This can be done by purposefully altering habitat availability, for instance
through environmental management or by removal of vessels holding standing water
[10]). Populations can also be controlled actively, through sterile male releases, or

application of adulticides or larvicides [11, 12, 13]).

In the case of newly emerging vector-borne pathogens, the vast majority of our
epidemic- fighting toolkit relies on the vector-targeted strategies for the simple rea-
son that we rarely have existing medical treatments or preventive measures that
are effective against novel threats. This does not, however, imply that these strate-
gies are without their own set of challenges. Vector-targeted strategies, by their
nature, have localized geographic regions of direct effect. Any broader secondary
or community-level impacts, either ecologically or epidemiologically, are driven by
the direct impact of a local intervention on a local area. In some cases, such as
when eliminating potential larval habitat by removing or chemically treating stand-
ing water, those performing the intervention can focus on as small a scale as a single

residence. Even wider-scale efforts are frequently still relatively geographically lim-
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ited in their immediate effect, such as spraying insecticides from trucks or releasing
them from low-flying airplanes: decisions frequently made by city-, county-, district-,
or state-level public health or vector control agencies, or at a smaller scale, by private

contractors.

There have been some very successful instances of large-scale coordinated vector
control efforts. These notably include the mass scaling-up of insecticide-treated bed
net coverage across sub-Saharan Africa [14, 15], or the Aedes aegypti elimination
efforts in Latin America in the 1930’s [16]). However, it is still the case that lo-
cal/regional vector control efforts are most frequently undertaken at the same level
as their direct effect. In other words, two neighboring municipalities may undertake
very different control strategies, despite facing similar risks. These differences may
be more drastic, even between regions that are geographically close to each other,
if they face different risks from vector populations. Such differences could be due
to, for instance, different distributions in land usage, or unequal access to resources
needed for effective control. Control decisions may reasonably diverge, even among
neighbors, based on many factors. These include differences in ecological viability
of vector habitat, epidemiological susceptibility of the resident population, different
sizes in resident host populations, different access to medical resources for preven-
tion and/or treatment, and even different perceptions of risk associated with vector
populations and/or infection. Even if there is consensus among decision makers
across regions about the need for vector control efforts, the timing, frequency, and

efficacy of control measures may vary.

Unfortunately, local /regional vector population sizes are not the only drivers of epi-
demiological dynamics across the broader landscape. Even if the vector species re-
sponsible for transmission of a particular pathogen does not disperse far or frequently
enough to cause concern for neighboring regions about the efficacy of adjacent re-
gion’s control decisions, humans themselves routinely travel across distances that
are likely to span areas controlled by different decision-makers. Especially around
dense urban centers, people routinely travel many miles each day as they commute
to employment or school. The result of this confluence of patchy habitat manip-
ulations of vector populations, with varying levels of travel by hosts who may be
carrying infection, is a textbook case of potential metapopulation dynamics for the
disease [17, 18, 19].

Considering the question of epidemiological control via vector-targeted intervention
as a question of metapopulation ecology leads us to a natural set of important im-
mediate questions: How much movement of humans across control region borders
yields a metapopulation dynamic? Do adjacent regions need to coordinate with each

other in the timing or method of their vector control strategies to avoid inadver-
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tently supporting longer durations of ongoing pathogen transmission among their
populations? Can heightened local surveillance efforts, that allow regional decision
makers to be responsive to disease within their own population more rapidly, com-
pensate for lack of coordination in vector control across regions that occurs without
the need for any knowledge of population health status? Most critically, asking
these questions also allows us to frame control issues in the language of biological
control: If we understand the disease metapopulation dynamics, can we decrease
the resources and effort dedicated to local control within each region, so long as we
allow for strategic coordination in those efforts to achieve a global impact on disease
incidence? To begin to address these questions, we here present a simplified spatial

model of a system that reflects only the most basic elements of such a system.

Model

We developed a spatial model of vector (e.g., Ae. aegypti) and host (e.g., human)
populations arranged as patches on a 10 x 10 grid. We consider a microparasite such
as the Zika virus, such that infection in vectors and hosts can be modelled using
a compartmental approach. Thus, within each patch (indicated by subscript k),
the vector population, N, j, consists of immature (L, 1), susceptible (S, ), exposed
(Ey ), and infectious (I, ) mosquitoes. The human population, N}, consists of
susceptible (S, 1), exposed (E} 1), infectious (I} 1) and recovered (Ry, ) individuals.
A description of the parameters and their values is provided in Table 1. The pa-
rameter values were based on the literature, varied in order to explore their impact,
or set in order to lead to desired mosquito:host ratios. Transitions between these

compartments are governed by the following set of equations:

Shi(t+1) = Shit) —p1 (1)

where p1 ~ Poisson(_; w;kShk(t)An(j,t)), the number of susceptible hosts from

patch k that become infected at time ¢ (see below).

Epi(t+1) = Ep(t) +p1 — p2 (2)

where py ~ Poisson(t,Ep, ;(t)) gives the number of latent hosts that progress to the

infective state.

Inp(t+1) = Inx(t) + p2 — p3 (3)



128

130

132

134

136

138

140

142

144

146

where p3 ~ Poisson(vIy(t)) gives the number of infectious hosts that progress to

the recovered or immune state.

Rpp(t +1) = Ry (t) +ps3 (4)

The focus of the model is on the short-term, so that human demography and any
possible waning of immunity can be ignored. Vector populations are described as

follows:

Lyp(t+1)=Ly(t) — pa+ps — s (5)

Here the number of immature mosquitoes dying per time step is given by ps ~
Poisson(pa + (p13Ly (t)) Ly k(t)). The number of immature mosquitoes added each
step are given by ps ~ Poisson(¢N, ). Juvenile development is given by pg ~
Poisson(n(Ly ,(t) —pa)). Changes in the population size of susceptible (uninfected)

mosquitoes are given by:

Suk(t+1) =Sy k(t) +ps — (p7 + ps) (6)

where losses are due to mortality: p; ~ Poisson(u1S, x(t)), and due to infection:
pg ~ Poisson(\,(k,t)(Syk(t) —pr)).

Ev,k(t + ]-) = Ev,k(t) + pg — (p9 +P10) (7)

Mosquitoes leave the exposed class by dying: pg ~ Poisson(u1E, (t)), and by be-

coming infectious following the extrinsic incubation period: pig ~ Poisson(r,(E, (t)—

p9))-

Lt +1) = L, k(t) + pro — p11 (8)

Infectious mosquitoes remain so until they die: pi1 ~ Poisson(p1, k(1))

Force of infection and movement

The model operates at a scale where mosquito dispersal can safely be ignored,

through the assumption that mosquito travel between patches is negligible. For
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Table 1: Description of parameters.

Parameter Description Value Dim. Source
1) proportion of exposure experienced 0-1 d—! varied
away from home patch
inverse of gonotrophic cycle duration 0.33 d-! [20]
c probability of a vector becoming in-  0.31 - [21]
fected upon biting an infective host
b probability of a host becoming in- 0.35 - [21]
fected upon receiving an infectious
bite
Th inverse of human latent period 1/5.8 d-! [22]
0 inverse of human infectious period 1/5.8 dt [22]
1 adult mosquito death rate 1/13 d-! [23]
Tv inverse of extrinsic incubation period 1/9.1 dt [22]
12 base immature mosquito death rate 0.05 d-! -
143 density-dependent modifier of imma-  0.001 d—! -
ture mortality
0] fecundity 10 d-1 [24]
n rate of larval development 1/7 d-! [25]

dengue and Zika vectors such as Ae. aegypti this implies patches capture commu-
nities or neighborhoods that are separated in space by a few hundred meters or are
sufficiently large so that movement across edges is minimal relative to each patch’s
mosquito population [26, 27, 28, 29]. Hosts are assumed to have a home patch (k),
but commute and can potentially be exposed to infective bites in other patches (j)
with a probability of §, which we vary across a wide range. The distribution of hosts
that commute from a given home patch to other patches in the metapopulation
depends on both the distance to and population size of other patches, following a

gravity-type model.

Ll |kl
F+1] &,

ok (9)
Where |j| and |k| are the respective sizes of the populations that call patches j
and k home, and d;; represents the Euclidean distance on the grid between these
patches. These probabilities are then normalized over all patches that could be
visited (see Fig. 1a). For each patch, we then have a matrix W with probabilities of
remaining in the home patch (with probability wy, = 1 — 6, or to any other patch
with probability w; = 6 F J*k The distribution of hosts per time step over patches

is based on draws from a multinomial distribution with these probabilities.
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Figure 1: (a) An example of the commuting probabilities (F},) for an arbitrary
patch (with coordinates 4,7); (b) An example of the different levels of coordination
in terms of larval control, where control is either implemented at the individual-
patch level (i), or by a patch and its nearest neighbors (1), its neighbors two steps
(2) or three steps (3) removed, or collectively by the entire metapopulation (c).

It follows that the forces of infection on hosts (\) and vectors (A,) are:

Noliat) = ac 2 (10)

where fj(t) =, wjklp and Nj (t) = > wjxNp k. That is to say that the force of
infection on vectors in a given patch depends on the biting rate (a), the probability
of a vector becoming infected when biting an infective person (¢), and the proportion

of hosts present in patch j that are infective.

The force of infection on hosts, Ay is given by:

M(ist) = ab% (11)

~—

That is, the force of infection on humans present in patch j depends on the biting
rate (a), the probability of a human becoming infected following an infective bite
(b), and the density of infective vectors in that patch over all hosts that are present
there that day.
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Control

We focus on the use of larval control. Interventions targeting immature mosquitoes
are commonly employed against species such as Ae. aegypti that lay eggs in small
containers with water that are often encountered in private yards (eg. bird baths,
buckets, etc.). Larval control can take the form of source management, the re-
moval or emptying of containers, or the application of larvicides, such as Bacillus
thuringiensis israelensis [30]. We focus on the latter: a method that increases the
rate of larval mortality in patches where it is deployed. In our simulations we intro-
duce a single infected host into an arbitrarily chosen, but always the same, patch.
We assumed that following detection of at least two infected hosts (so that the initial
introduced case does not invoke a response in the absence of active transmission) in
a given patch, larval control would be implemented the following day and remain
effective for ten days. Within a given patch, we assumed that 80% of immatures
would succumb to the larvicide per day, so that the base death rate in the presence
of the larvicide becomes p, = —l0g(0.2) + u2 (i-e., an arbitrarily-chosen high level of
efficacy, which allows us to focus on community-level effects of vector control, rather

than local efficacy).

We varied two components of community-level responses to infection: whether in-
dividual patches contribute to surveillance and vector control or not (referred to
as cooperation), and the extent to which patches acted collectively (which we refer
to as coordination). For cooperation, we assumed that a given, randomly assigned
number of patches would not contribute to surveillance and control. This assign-
ment was fixed, so that the patches that did or did not contribute to control did not
change over time. This percentage was typically set to 20% of the communities, but a
greater proportion of non-cooperation (50%) was also investigated. Non-cooperation
here could represent, for instance, a lack of resources at a local level. The extent
to which patches acted collectively was varied from a control response targeted at
the individual patch where infection was witnessed, to a response in the patch with
infection as well as its immediate neighbors, to its neighbors that are two or three
steps removed, or to all patches in the metapopulation (see Fig. 1b). Coordination
here therefore gives insight into the value of extending control activities to increas-
ingly large areas around a focal infection. Thus, we investigate how the extent to
which hosts commute affects the dynamics of Zika infection as it spreads through
a metapopulation as well as the efficacy of coordinated control responses aimed at

halting the epidemic.
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Results

The course of the epidemic spreading through the metapopulation is consistent with
typical SIR dynamics: a pathogen burns through a population and then limits its
own transmission as immunity is built up. This is illustrated in Fig. 2, where
the entomological inoculation rate (a relevant metric of exposure for vector-borne
diseases which indicates the average number of infectious bites received per person
per unit of time) increases sharply before falling. The extent to which hosts commute
was varied by changing § from 0.1 to 1 (i.e., each host has a daily probability of ¢ of
commuting to a different patch, where that host is then exposed to mosquito bites).
At intermediate levels of commuting we see the steepest rise in prevalence and the

most intense transmission.
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Figure 2: The mean prevalence of infection (latent, infected, and immune hosts) in
hosts over time in the absence of vector control, for levels of human commuting (6)
ranging from 0.1-0.5 (left) and 0.6-1 (right). The lower panels show the correspond-
ing mean entomological inoculation rate (EIR), i.e., the mean number of infectious
bites received per human per day, over time.

With vector control, the mean prevalence after 400 days likewise remains higher at
intermediate levels of movement (see Fig. 3). We varied the extent to which vector
control responses were coordinated and the extent to which patches contributed to

surveillance and control. Impressions from Fig. 3 are that the usefulness of coordi-
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nation depends both on the rate of commuting and on the extent to which patches

are capable or willing to implement surveillance and control.
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Figure 3: (a) Mean prevalence £+ 1.96 se of infection in hosts 400 days following
introduction of a single infected case at different levels of human commuting (4).
Dashed lines merely provide a visual cue. Control is implemented as a collective
response targeting all patches in the environment (¢); at the individual patch level
and all neighbors three steps or less removed (3); the patch and all neighbors two
steps or less removed (2); the patch and its nearest neighbors (1); or only at the
individual patch level (7). Control can occur in up to 80% of patches, with 20% not
cooperating (b) The same, except treatment only occurs in 50% of the patches.

For instance in Fig. 3a we see that at both the lowest and the highest rates of
4, there is relatively little gain to be made by using a more coordinated strategy
(although the individual patch response is still worse than the other strategies),
while at intermediate levels increasing levels of coordination appear to be more

effective. At a lower level of cooperation, where only half the patches implement
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surveillance and control (Fig. 3b), control is not only less effective in general, but the
relative efficacy of more coordinated responses is diminished compared to patch-level

responses.

To understand why the overall metapopulation disease dynamics are as they are,
patch-level responses are of interest. In Fig. 4 three aspects of the epidemic are
explored in the absence of control. The number of introductions of the pathogen
resulting in active transmission (i.e., distinct chains of infection in the vector pop-
ulation) appears to not rely much on the host population size of each patch. The
proportion of time that a patch undergoes active transmission does however depend
on the patch’s population size, with more populous patches having proportionally
longer periods of ongoing transmission, though this effect becomes less pronounced
at the highest level of commuting. There appears to be an inverse relation between
patch size and the time until the first infected vectors appear. It is possible that
the proportion of time with ongoing transmission may be a result of earlier intro-
duction and therefore longer transmission window, though we cannot rule out that
(in addition or instead) smaller patches simply exhaust their susceptible population

more rapidly.

We can look at the same statistics when control is being implemented, to understand
how patch-level outcomes are affected. These are shown for the individual-patch
response in Fig. 5. When control is implemented at the patch-level, the number of
pathogen introductions increases along with community size. However, this is only
evident at low and moderate levels of movement. A notable difference compared
to the outcomes without control interventions is in the proportion of time patches
undergo active transmission, where the patches divide into those that are and are
not effectively controlled. The patches that are not effectively controlled tend to be
non-cooperating patches, those that did not implement surveillance or control, and
the distinction between cooperating and non-cooperating patches appears sharpest

under moderate levels of commuting (6 = 0.5).

When we plot the time of first introduction against the proportion of time that
patches had ongoing transmission (i.e., infected vectors), we see that in the absence
of control there is indeed a correlation between these two outcomes (Fig. 6). With
control, this effect disappears. The bimodal aspect of the patch-level control scenario
for the higher levels of commuting is apparent here as well. Fig. 6 suggests that a
subset of patches (particularly, but not exclusively, those that did not implement
control) can actually be subjected to a longer period of active transmission than do

patches in the absence of any control.

Looking at the prevalence of infection in hosts adds to this picture (see Fig. 7). When

11
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Figure 4: Patch-level transmission dynamics as a function of patch size for three
levels of commuting (6 = 0.1, 0.5 or 1). Left: the distinct number of transmission
chains (periods with continuous infected vector populations, or, how many intro-
ductions of active transmission occurred?); Middle: The proportion of time (out of
400 d) that each patch had infected vectors; Right: The time in days until the first
infected vector was observed per patch.

0 is 0.1, prevalence of infection in hosts in untreated patches is greater than that
in treated patches, but this difference diminishes as commuting intensifies. This is
further highlighted by the prevalence by population size scatter plots. At low levels
of movement there is a clear separation between treated and untreated patches,
and a correlation between patch-size and prevalence. As expected, at higher levels
of movement when hosts are mixed more thoroughly, the infection status of hosts
from particular patches has seemingly little bearing to their patch-characteristics
(treatment or size). When control is performed collectively, overall prevalence is

lower, but otherwise the conclusions remains largely the same (Fig. 8).

Discussion

Vector-borne diseases are often highly focal in space and/or time, and are typ-

ically characterized by strong heterogeneity in exposure among host populations

12
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levels of commuting (6 = 0.1, 0.5, or 1), when larval control is implemented at the
patch level in 80% of patches. Left: the distinct number of transmission chains
(periods with continuous infected vector populations, or, how many introductions of
active transmission occurred?); Middle: The proportion of time (out of 400 d) that
each patch had infected vectors. Patches that did implement control are shown in
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Figure 6: The time in days until the first infected vector occurs in a given patch
plotted against the proportion of time (out of 400 days) that a patch had ongoing
transmission. Different panels represent simulations for varying levels of commut-
ing, 4. Orange dots represent patches from the scenario without any intervention.
Magenta dots represent those patches from the scenario with individual patch-level
larval control which implemented control, while black dots represent patches from
the same environment which did not implement control).
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[31, 32]. This is no different for Aedes-transmitted arboviruses in urban settings
[33, 34, 35, 36, 37]. Such heterogeneity can theoretically be masked, alleviated,
compounded or even shaped by movement of both vectors and hosts. In the case of
mosquitoes, the extent of movement will be determined by species-specific character-
istics and environmental or ecological conditions. For humans, socio-economic and
cultural conditions likely shape movement patterns. While it is becoming increas-
ingly clear that these factors can influence the intensity and dynamics of vector-borne
diseases [6, 38, 39, 40, 41], understanding the ramifications for control and surveil-
lance efforts of the combined effects of movement and heterogeneity remain at the
forefront of vector-borne disease ecology. A metapopulation dynamic, particularly
the occurrence of rescue events, where infection is reestablished following local ex-
tinctions, thereby allowing for longer persistence of an epidemic outbreak, would
have particular repercussions for how we structure control programs [42, 43, 44].
This has been recognized in the context of pathogen eradication programs (e.g.,
[45]), yet for the control of arboviruses such as dengue, chikungunya, and Zika,
control efforts remain largely focal and reactive. Adapting control strategies to con-
sider heterogeneous exposure and human movement may be challenging, but could
be done by incorporating contact tracing, or targeting high-risk groups or areas [46].
In the case of a metapopulation dynamic, questions regarding cooperation among
nearby communities become much more relevant. For instance, to what extent are
control efforts hampered by the inability or unwillingness of adjacent communities
to participate in a control effort? To what extent does coordination of control ef-
forts in time affect the usefulness of the interventions? And are there situations
where vector control can inadvertently prolong the period of ongoing transmission

in certain areas?

Our model was run over a relatively short term, namely that in which an initial epi-
demic outbreak tended to run its course and deplete susceptible hosts. Even so, cer-
tain aspects associated with metapopulation dynamics were evident. These aspects
were that we found the highest entomological inoculation rates and the fastest spread
of infection at intermediate levels of host movement. Likewise, when vector control
was implemented, the prevalence of infection remained higher at these intermediate
levels of movement. This is reminiscent of findings that persistence of directly-
transmitted pathogens tends to be maximized at intermediate levels of connectivity
between patches, such that the number of introductions in uninfected patches rely
on both movement and the synchronization of dynamics between patches [47]. In
this study, the peak at intermediate levels of movement may be because the basic
reproduction number of vector-borne disease in metapopulations can decrease with
stronger connectivity [19], while greater rates of movement can reduce heterogeneity

of exposure, and therefore increase prevalence of infection [41]. Further studies on
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the dynamics of immunity in relation to control effect sizes of interventions are war-
ranted. Additionally, we found that individual patches in our simulations frequently
lost and reacquired infections, either due to stochastic extinctions (likely short-lived
chains of infection that stuttered and died out before taking hold) or due to vector
control. The number of active transmission events per patch appeared to be rela-
tively unaffected by the host population size of individual patches. In the absence
of vector control, the duration of ongoing active transmission in a given patch, as
indicated by the presence of infective vectors, was associated with the host popu-
lation size of that patch (i.e., the number of humans that called that patch home).
Because larger patches would have attracted a larger proportion of commuters, this

is likely explained by earlier introductions of infections (see Fig. 4).

Our study has a number of limitations. Certain of these are due to our assumptions
regarding control interventions. For instance, we have focused only on the use of
larval control, which is a commonly used Aedes spp. abatement strategy. In reality,
once an arboviral outbreak has been identified, adult control (e.g., perifocal or indoor
spraying with residual insecticides) is likely to be used in addition to larval control
[30]. However, the focus on larval control represents a targeting of the least mobile
stage of the mosquitoes. Thus, it allows for easy comparison to models applied at
a different scale where adult mosquito movement could come into play (Schwab et
al, in prep.), or to mosquito species which disperse over greater distances. Models
that have investigated the role of mosquito movement suggest additional complexi-
ties related to control can emerge. For instance, clustering of certain interventions
can lead to a lower overall efficacy than a uniformly distributed intervention [48], or
increase mosquito populations in adjacent areas [49]. Another example of a simpli-
fying assumption is that patches in our model either contributed to both population
surveillance of infection in hosts and vector control or to neither. The rationale be-
hind this choice was that we assumed such a lack of investment to be driven largely
by socio-economic conditions (e.g., communities which are less likely to implement
vector control are also less likely to invest in active surveillance or have worse access
to health care providers). In reality, surveillance and vector control may be orga-
nized at different scales, such that humans still have access to health care and would
be tested for Zika, but vector control might not be implemented in their commu-
nity. Alternatively, members of a community may be less likely to see physicians for
relatively mild symptoms, but have access to city-wide vector control interventions.
Whether this distinction matters likely depends on the extent to which communi-
ties share information regarding infected cases and whether a case in a community
which does not implement vector control would trigger a response in neighboring
communities. A further limitation relates to the use of a gravity model to describe

human commuting. While use of such an approach is reasonable and often fits
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commuting data well, this may not always be the case (for instance in the case of
socially-structured movements), and use of mobile phone data or a radiation model
may be more appropriate [50]. Finally we note that we assumed human behaviour
does not change as a function of infection or throughout an outbreak. In reality,
it is likely that a proportion of symptomatic cases would be less mobile, or that
active transmission in an area may lead to avoidance behaviour or increased use of
personal repellents. As including adaptive human behaviour in epidemic models can
have large implications [51], such refinements should be explored in models adapted
and parameterized to explore such questions in specific situations and well-defined

spatial scales.

The importance of (re-)introductions of infection and host movement suggest an
important role for coordination of control activities and cooperation among com-
munities. We have investigated these two aspects here in the following sense: that
coordination implies that surrounding communities would implement vector control
at the same time as the focal community where an infection in humans was de-
tected, in order to more effectively limit spread of the pathogen. Cooperation was
investigated in the sense of the ability or willingness to pay for control activities
among different communities, with potential repercussions of non-cooperation being
either that such communities could act as sources of (re-)infection or simply dimin-
ish the community-level effects (as opposed to the direct, local effects) of control.
Our main result is that the efficacy of coordination depends strongly on both how
frequently humans commute, and on the overall level of cooperation among commu-
nities. Importantly, we found that while more coordinated responses tend to lead to
significantly lower prevalence levels after the 400-d-period we simulated, this is not
the case at low levels (< 50%) of cooperation. In that case, a focal, individual-patch
response is not much less effective than a collective response targeting the entire
metapopulation, and both lead to high proportions of hosts becoming infected over

this time period.

Worrisome also is the finding that at higher levels of commuting, implementing
vector control at the individual-patch level only, leads to bimodal pattern with regard
to the proportion of time that patches experience active transmission (Fig. 5). In
fact, these patches often may have active transmission for a longer period than they
would be in the absence of control altogether (Fig. 6). Intuitively, this could be
because of an influx of susceptible hosts from nearby patches that do implement
control, resulting in a decreased likelihood of transmission dying out in these source

patches.

When commuting occurs with high frequency, patches that do not participate in

surveillance and treatment can putatively keep transmission going for a longer time,
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but do not necessarily suffer a higher disease burden themselves, as the location of
exposure becomes less associated with the control activities undertaken in the home
patch. Thus, the time a patch continues to have active transmission differs from
the effects on host prevalence. Under high levels of movement, there is potentially
a tension between achieving high levels of coordination (e.g., multiple communities
enacting vector control to limit the spread of Zika) and maintaining a high level
of cooperation (i.e., the proportion of communities that is willing to participate in
vector control and surveillance activities). This is because at high levels of coordi-
nation, the community-level impact of vector control will be stronger, potentially
providing an incentive to not participate to individual communities. This suggests
that control of vector-borne diseases such as Zika could, under certain conditions,
lead to a situation reminiscent of a tragedy of the commons. Improving vector con-
trol operations may thus have to rely not only on a realistic understanding of vector
populations, human movement and factors leading to heterogeneous risk of expo-
sure, but also on the social determinants that drive demand (e.g.,[52]) for vector

control in specific communities.
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