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Abstract 44 
 45 
With the emergence or re-emergence of numerous mosquito-borne diseases in recent years, 46 
effective methods for emergency vector control responses are necessary to reduce human 47 
infections. Current vector control practices often vary significantly between different 48 
jurisdictions, and are executed independently and at different spatial scales. Various types of 49 
surveillance information (e.g. number of human infections or adult mosquitoes) trigger the 50 
implementation of control measures, though the target and scale of surveillance vary locally. 51 
This patchy implementation of control measures likely alters the efficacy of control.  52 
We modeled six different scenarios, with larval mosquito control occurring in response to 53 
surveillance data of different types and at different scales (e.g. across the landscape or in each 54 
patch). Our results indicate that: earlier application of larvicide after an escalation of disease risk 55 
achieves much greater reductions in human infections than later control implementation; uniform 56 
control across the landscape provides better outbreak mitigation than patchy control application; 57 
and different types of surveillance data require different levels of sensitivity in their collection to 58 
effectively inform control measures. Our simulations also demonstrate a potential logical fallacy 59 
of reactive, surveillance-driven vector control: measures stop being implemented as soon as they 60 
are deemed effective. This false sense of security leads to patchier control efforts that will do 61 
little to curb the size of future vector-borne disease outbreaks. More investment should be placed 62 
in collecting high quality information that can trigger early and uniform implementation, while 63 
researchers work to discover more informative metrics of human risk to trigger more effective 64 
control. 65 
 66 
 67 
Introduction 68 
 69 

Container-inhabiting mosquitoes in the genus Aedes, specifically Ae. aegypti and Ae. 70 
albopictus, are competent carriers of many flaviviruses, including Zika, dengue, yellow fever, 71 
and chikungunya (Chouin-Carneiro et al., 2016; Gratz, 2004; Weger-Lucarelli et al., 2016). They 72 
are also notoriously difficult to control because they thrive in urban and suburban settings where 73 
the immatures develop in water-holding containers present in homes and backyards (Powell et 74 
al., 2013; Unlu et al., 2014, 2013). Previous attempts to eradicate Ae. aegypti (the yellow fever 75 
mosquito) from its invasive range in the Americas were successful only in the short-term; within 76 
a few years after eradication had occurred across large portions of Central and South America, 77 
they began recolonizing and soon achieved numbers greater than their pre-eradication campaign 78 
abundances (Reiter, 2001). Although invasive Aedes are very difficult to eradicate once they 79 
become established in a new area, reducing their abundance during outbreaks can significantly 80 
reduce the number of humans who become infected (Lorenzi et al., 2016). Especially for newly 81 
emerging or re-emerging mosquito-borne viruses like Zika, most human populations are highly 82 
susceptible to the virus and vaccines are not yet ready for use. Therefore, control of vector 83 
populations before and during outbreaks remains the best direct means available of limiting the 84 
size of outbreaks, which may continue to emerge in the coming years (Manore et al., 2017). 85 
 Although vector control interventions and implementation methods vary widely between 86 
local agencies (NACCHO, 2016), many implement Integrated Mosquito Management (IMM) 87 
techniques (Rose, 2001) that target the larval and adult stages at different times. In the absence of 88 
mosquito-borne infectious disease circulation in the local human population, mosquito control 89 
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efforts tend to target the aquatic larval stage via source reduction, through both 90 
draining/elimination of oviposition sites and larvicide application to water-holding containers in 91 
active use (e.g. bird baths, recycling cans)  (Fonseca et al., 2013). However, source reduction is 92 
difficult to implement for control of container-inhabiting species because their larval habitats are 93 
often abundant, cryptic, and/or on privately owned land. During active outbreaks, common 94 
practice has included application of adulticide in and around areas with high prevalence of 95 
human infection (WHO, 1997). Unfortunately, these chemical control methods have become less 96 
effective in recent years due to the evolution of resistance to multiple types of insecticides in 97 
mosquito populations worldwide (Corbel et al., 2017). Alternative, non-chemical control 98 
methods are being developed and tested (Hoffmann et al., 2011; Yakob and Walker, 2016), but 99 
they will likely need to be part of a larger IMM strategy in order to provide effective outbreak 100 
prevention or mitigation within a broader eco-evolutionary context (Agusto et al., 2012; Yakob 101 
et al., 2017). 102 
 While trying to discover and implement the most effective emergency vector control 103 
regimes (e.g. Unlu et al. 2016; Gaff et al. 2015), scientists and mosquito control specialists rarely 104 
consider the fact that different agencies enact control measures in response to different types and 105 
scales of information. Private citizens may be bothered by the abundance of mosquitos in their 106 
own house or yard (Dickinson and Paskewitz, 2012), and enact bottom-up control on that small 107 
scale, while local/municipal vector control agencies enact mosquito control measures across their 108 
own jurisdictions, and state/national/global health agencies may implement larger scale, top-109 
down control measures.  110 

Critically, control efforts at these various spatial scales are frequently implemented 111 
reactively, only after a certain surveillance threshold is reached. Reactive control can occur in 112 
response to surveillance of different potential risks, such as the number of adult mosquitoes in a 113 
small area, or the number of human arbovirus cases in a larger region. At small scales 114 
(households to neighborhoods), during times of high risk of mosquito-borne viral outbreaks, 115 
surveillance of the number of adult mosquitoes is collected from appropriate traps in districts that 116 
can afford them. At larger scales (counties to states), surveillance of the number of human 117 
arbovirus cases is more common, though inadequate support for these systems threatens the 118 
capacity to identify outbreaks before they become epidemics (Hadler et al., 2015). Thus far, little 119 
attention has been paid to the reactive nature of many control efforts, and the differences caused 120 
by focusing on different triggers for control. These independently-motivated actions, triggered 121 
and enacted at different, often overlapping, spatial scales of control create a broad patchwork of 122 
vector control that needs to be considered in order to implement effective control across all 123 
spatial scales.  124 
 Mosquito control efforts are also often implemented only after human infections have 125 
been detected or mosquito populations have peaked (Eisen et al., 2009; Unlu et al., 2016). 126 
Although proactive control of mosquito populations before introduction of a pathogen into the 127 
landscape reduces outbreak size and public health costs more effectively than reactive control 128 
(Eisen et al., 2009; Vazquez-Prokopec et al., 2010), the funds necessary to implement these 129 
measures often diminish in the absence of an outbreak (McKenna, 2016). 130 

While both adulticidal and larvicidal control efforts are in common use, we restricted our 131 
consideration here to purely larval control strategies, though work is underway to contrast our 132 
findings with outcomes from other methods. Because we were modelling only short-term control 133 
measures, we chose to use larval control since it hinders mosquito population growth more 134 
immediately, while single applications of adulticide only reduce the adult population until larvae 135 
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mature and replace it. In addition, commonly used larvicides can be delivered to larval habitats 136 
in slow-dissolving briquettes that remain effective for long periods, preventing immediate 137 
compensation (Skovmand et al., 2009). Larval vector control at a large spatial scale can be 138 
accomplished either through the tremendous effort of mosquito control experts and citizen 139 
volunteers to implement widespread spot treatment by emptying, overturning, or removing 140 
containers providing larval habitat; or by using newly developed aerosolized sprays designed to 141 
activate in pools of standing water (Faraji and Unlu, 2016). While both metapopulation theory 142 
and pest management practice posit that such area-wide and uniform control would best reduce 143 
vector populations (Levins, 1968; Vreysen et al., 2007), it rarely occurs, due to, the small scale 144 
of the information obtained by vector control agencies, as well as variability in skill and 145 
engagement among these agencies, cost limitations (Shepard et al., 2014), and environmental 146 
contamination concerns (Zhong et al., 2010). Instead, control efforts occur on a smaller scale, 147 
with patchy distributions of spot treatment across the landscape (Unlu et al., 2013). 148 
 We present a mathematical model of mosquito-borne viral transmission to explore how 149 
the various triggering mechanisms for initiation of control alter the spatial patchiness in control 150 
coverage and ultimately impact the effectiveness of outbreak mitigation efforts.   151 
 152 
 153 
Methods 154 
 155 

We used a simple grid landscape of 20 (five by four) identical patches to form the spatial 156 
basis of our model. Within this landscape, the location and movement of mosquitoes were 157 
modeled explicitly to capture the metapopulation dynamics that result from differences in 158 
surveillance and control, and affect disease transmission. Humans were assumed to be mobile 159 
enough that a mosquito in any patch can bite any human (see Table 1 for a list of additional 160 
assumptions).  161 

We constructed the following discrete-time SIR-type difference equation model using 162 
variables and parameters defined in Tables 2 and 3:  163 

 164 
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 167 
 168 
Topic Assumptions 

Landscape 
• All patches are identical, with equal connectivity between all adjacent patches. 
• The landscape is completely isolated. 
• Humans move homogeneously throughout the landscape. 

Control 

• Surveillance is 100% accurate and results are immediate enough to inform the 
following day’s actions. 

• Treatment to each larval development (“breeding”) pool is completely effective for 
exactly 10 days. 

• Source reduction via larvicide application is the only control measure 
implemented. 

Epidemiology 

• The single arbovirus strain is only transmitted horizontally and only between 
mosquitoes and humans. 

• Recovery causes complete life-long immunity in humans; mosquitoes do not 
recover from infection. 

• Transmission of the virus is immediate; there is no latency/exposed period. 
• No viral evolution occurs. 
• Viral infection has no effect on mosquito life history. 

Mosquito population 

• Mosquito feeding on humans has no effect on birth or death rate, and both are 
constant throughout mosquito lifetime. 

• No evolution occurs in the mosquito population, including no evolution of 
resistance to treatment. 

• Oviposition of non-diapause eggs occurs daily. 
• A fixed percent of mosquitoes in each patch disperse to an adjacent patch each day; 

dispersal is not density-dependent. 
• No regulation of the adult population occurs, only density-dependent regulation of 

the juvenile population. 
• Juveniles cannot grow and die on the same day; eggs cannot be laid and die on the 

same day. 
Table 1. Assumptions of the model. 169 
 170 
 171 

Variable Definition 
Mj Number of juvenile (pre-adult) mosquitoes 
Mn Number of adult naïve (uninfected) female mosquitoes 
Mi Number of adult infected female mosquitoes 
Hs Number of susceptible humans 
Hi Number of infected humans 
Hr Number of recovered humans 

p and q Patch identifiers 
t Day identifier 

Table 2. Variables used in model equations. 172 
 173 
 174 
 175 
 176 
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 177 
 178 
 179 
Parameter Value(s) Definition 

Treat 0=untreated 
1=treated Matrix of control schedule in each patch 

µ∧ 1/20 Per capita death rate of mosquitoes  
(after density-independent mortality) 

ν* 3 Per capita birth rate of mosquitoes  
(after density-independent mortality) 

K* 350 Carrying capacity of juvenile mosquitoes in each pool 
g∧ 1/10 Growth rate of mosquitoes from juvenile to adult 

D* � 𝐷𝐷𝑝𝑝,𝑞𝑞
∀𝑞𝑞≠𝑝𝑝

= 0.1 Matrix of mosquito dispersal probabilities between pools 

r^ 0.3 Biting rate 

c* 0.003 Scaling constant (to enable reasonable pace of outbreak amid a 
ubiquitous human population) 

T* Tmh = 0.08 
Thm = 0.07 

Transmission probabilities per bite from mosquitoes to humans 
(Tmh) and humans to mosquitoes (Thm) 

γ∧ 1/4 Recovery rate of humans 
All rates are in days. 180 
*=Assumed for model exploration 181 
∧=Modified from (Erickson et al., 2010) 182 
Table 3. Parameter definitions and values used in model simulations. 183 

 184 
Equations 1-3 describe the number of female pre-adult (or “juvenile” to avoid confusion 185 

with patch designation in variable indices), naïve/uninfected adult, and infected adult female 186 
mosquitoes, respectively, in patch p on day t. All immature, pre-reproductive stages are 187 
incorporated into the juvenile compartment. Equations 4-6 describe the number of susceptible, 188 
infected, and recovered humans on day t.  Human demography was not included because we 189 
assume that the model will be run for a short enough timeframe that the human population size 190 
(1000 individuals) does not change. The adult mosquito dispersal matrix was generated using a 191 
probability of adult mosquito dispersal out of each patch of 0.1. For each patch p, this dispersal 192 
probability was divided by the number of patches adjacent to patch p, so that there was an equal 193 
probability of dispersing from patch p to each adjacent patch q. Dispersal only occurred between 194 
adjacent patches to reflect the limited mobility of Aedes mosquitoes (Edman et al., 1998; Trpis 195 
and Hausermann, 1986).  196 

Since it has been demonstrated that the order of events for discrete-time models affect the 197 
outcome (Bodine et al., 2012; Massaro et al., 2013), we provide the order of our model dynamics 198 
as follows: On day t, adult mosquitoes from day t-1 lay eggs in their current patch up to the 199 
juvenile carrying capacity, then either: die and are removed from the population; remain in their 200 
current patch; or disperse to an adjacent patch. All compartment transitions also occur 201 
simultaneously after egg laying, based on the previous day’s abundances (juvenile mosquitoes 202 
grow to become uninfected adults, uninfected mosquitoes become infected, susceptible humans 203 
become infected, and infected humans recover). 204 
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 Each run of the model proceeded for 200 days without disease or control to bypass 205 
transient population dynamics before surveillance and control implementation began. We chose 206 
to begin surveillance before disease introduction to mimic how control agencies may respond to 207 
knowledge of an increased risk of arboviral outbreaks (e.g. from a national media report on 208 
mosquito-borne viruses), before any pathogen is known to be circulating. After the seventh day 209 
of surveillance in each run, one human became infected, and each simulation then continued for 210 
150 days post-infection (156 total days of surveillance) to examine the short-term dynamics 211 
immediately following the introduction of a pathogen into the system. 212 
 213 
Incorporating surveillance and reactive control into simulations 214 
 To reflect the diversity of current mosquito control practices and examine potential 215 
alternatives, we simulated six scenarios with different triggers for the implementation of control 216 
efforts (Table 4). To examine the relationship between the threshold level of the surveillance 217 
data that triggers control and how effectively each scenario reduces human infections, we first 218 
ran each of the four surveillance scenarios 1000 times at each of 10 different thresholds. We then 219 
ran all six scenarios for 5000 Monte Carlo realizations at a single threshold.  220 
 221 

Scenario Focus of 
Surveillance 

Scale of 
Surveillance 

and Response 

Number 
(Percent) of 

Patches 
Participating 

Range of 
Threshold Values 

Tested 

L-Inf Infected 
humans 

Whole 
landscape 16 (80%) 1-10 infected 

humans 

S-Ad Adult 
mosquitoes Individual patch 16 (80%) 

10%-100% 
baseline* adult 

abundance 

S-Juv Juvenile 
mosquitoes Individual patch 16 (80%) 

10%-100% 
baseline* juvenile 

abundance 

S-Inf Infected 
mosquitoes Individual patch 16 (80%) 1-10 infected 

mosquitoes 

L-None None Whole 
landscape 16 (80%) N/A 

S-None None Individual patch 20 (100%) N/A 
* Baselines are average per patch abundances in the 10 days before surveillance begins. 222 
Table 4. Summary of the surveillance and control scenarios simulated. “L” stands for large-scale and 223 
“S” for small-scale control implementation. “Inf” refers to surveillance of the number of human or 224 
mosquito infections, “Ad” refers to adult mosquito surveillance, and “Juv” to immature mosquito 225 
surveillance. 226 
  227 

For each run in all scenarios (except for S-None), 16 out of the 20 patches were 228 
stochastically selected to participate in surveillance and control for all 156 days of each 229 
simulation. This level of participation was chosen as an arbitrarily high level to simulate more 230 
effective control conditions. Surveillance occurred daily in participating patches; on each day t 231 
that the surveillance target met or exceeded the threshold level, treatment was applied on days 232 
t+1 through t+11. Treatment affected only juvenile mosquitoes and was assumed to be 233 
completely effective for ten days after the initial application, so that there were no juveniles in 234 
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treated patches. Treatment ceased only after ten consecutive days on which the surveillance 235 
target remained below the threshold for triggering control.   236 
 237 
L-Inf: Large-scale human infection surveillance. This scenario simulated how county, state, or 238 
federal agencies might use the larger-scale information available on human epidemiology. 239 
Control was implemented when the total number of humans infected on day t exceeded the 240 
threshold for control in that run. All participating patches were then treated starting on day t+1 241 
through day t+11, regardless of any local differences between patches. Thus, all participating 242 
patches were either untreated or treated at any given time (Figure 1b).  243 

 244 
S-Ad, S-Juv, and S-Inf: Small-scale mosquito surveillance. In all three of these scenarios, 245 
control occurred in each participating patch individually, based on surveillance information from 246 
each patch (Table 4), simulating how individuals or local municipalities might use smaller-scale 247 
information about mosquitoes. Control occurred in patch p when the variable being assessed in 248 
patch p on day t was above the threshold for control in that run. Only patch p was then treated on 249 
day t+1 through day t+11, so some participating patches may be treated on a given day, while 250 
others may not be, depending on local dynamics (Figure 1a). 251 
 252 
L-None and S-None: No surveillance and large- or small-scale control. To determine whether 253 
surveillance-based treatment is more effective than control that is uninformed by any ecological 254 
or epidemiological data, we also examined the effect of treating patches without any surveillance 255 
information to guide the timing of control. In each run of L-None, the 16 participating patches 256 
were treated on days 2-137 (~70% treatment coverage) to simulate large-scale control 257 
implementation immediately after learning of the risk for disease introduction. To evaluate the 258 
efficacy of small-scale control implementation in response to increased risk, in each run of S-259 
None, each of the 20 patches was treated on 109 stochastically selected days of the 156-day 260 
simulation (also ~70% treatment coverage) beginning on day two.  261 
  262 
Analysis 263 
 Since one of the primary goals of vector control is to mitigate human disease risk, we 264 
report results using the percent reduction in human infections, calculated for each run as the 265 
percent difference between the number of human infections in that run and the number of human 266 
infections when the model is run without any surveillance or control.  267 
 Because different scenarios cause different amounts of the landscape to be controlled 268 
over time, we also determined the percent of the landscape that was treated over the 156 days of 269 
each simulation, calculated as the total number of days that all patches were treated in that run, 270 
out of all 3,120 possible days of treatment (20 patches × 156 days).  271 
 272 
 273 
Results 274 
 275 
Threshold sensitivity  276 
 For human and mosquito infection surveillance (L-Inf and S-Inf, respectively), efficacy 277 
of control initially declined very steeply, even between the very sensitive thresholds of just one 278 
and two infected individuals, though mosquito infection surveillance was much less effective 279 
than human infection surveillance across all thresholds (Figure 2). Even slightly higher 280 
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thresholds delay the onset of control enough to significantly reduce control efficacy in these 281 
scenarios. Control in response to the number of juvenile or adult mosquitoes was much more 282 
effective at lower thresholds than the disease surveillance scenarios because of treatment 283 
application prior to disease introduction, which lowers the reproductive number of the pathogen 284 
by lowering the abundance of the vector. The adult mosquito surveillance scenario (S-Ad) 285 
achieved the greatest reduction in human cases for the two most sensitive thresholds tested 286 
before rapidly declining in response to progressively higher thresholds. Juvenile mosquito 287 
surveillance (S-Juv) achieved about a 70% reduction in human cases for the eight lowest 288 
thresholds before precipitously dropping in efficacy when using the two highest thresholds. 289 
 290 
 291 
Comparison of surveillance scenarios at a single threshold  292 
 All of the following results for the surveillance scenarios use thresholds of 1 human or 293 
mosquito infection (for L-Inf and S-Inf), or 10% of the baseline abundance of the adult mosquito 294 
population in each patch (for S-Ad) or the juvenile mosquito population in each patch (for S-295 
Juv). Due to these low thresholds, our simulations represent best-case circumstances of highly 296 
accurate and efficient monitoring and control programs. 297 
 Simulations with control in all participating patches in response to one human infection 298 
(L-Inf) lead to a 57.3% mean reduction in total human infections, with a range of 54.9-59.5% 299 
(Figure 3, Table 5). In all runs with this scenario, 71.8% of the landscape was controlled over the 300 
course of the simulation, since all participating patches were treated starting on day 17 (10 days 301 
after disease introduction) through all 156 days of surveillance (Figure 4a).  302 
 303 

Scenario Control 
Threshold/Trigger 

Mean 
reduction 
in human 
infections 

Range of 
human 

infection 
reduction 

Proportion of 
landscape 

treated over 
time 

First day of 
treatment 

L-Inf 1 infected human 57.3% 54.9-59.5% All 0.718 17 

S-Ad 10% adult baseline 85.6% 82.0-87.7% 0.743-0.790 3 

S-Juv 10% juvenile baseline 73.4% 70.7-75.4% All 0.718 3 

S-Inf 1 infected mosquito 31.2% 28.4-34.6% 0.642-0.664 25-32 

L-None On days 2-137 87.5% 86.2-88.7 All 0.697 2 

S-None On 109 stochastically 
selected days 71.0% 66.2-75.0% All 0.699 2 

Table 5. Results from 5000 runs of each scenario. 304 
 305 
 Simulations with control in each participating patch when adult mosquito abundance 306 
exceeded 10% of the baseline (S-Ad) lead to an 85.6% mean reduction in human infections, with 307 
a range of 82.0-87.7%. The high efficacy of this scenario is due to control occurring before 308 
disease introduction since the surveillance target concerned ecological rather than 309 
epidemiological dynamics. Control coverage ranged from 74.3-79.0% because adult populations 310 
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periodically dropped below the threshold for control (Figure 4b), depending on the locations of 311 
the participating patches in each run.  312 
 Enacting control when the number of juvenile mosquitoes exceeded 10% of the baseline 313 
(S-Juv) achieved a mean reduction of 73.4% and a range of 70.7-75.4%. In this scenario, because 314 
the direct effect of treating the larval habitats caused the juvenile populations to fall to zero 315 
(below the threshold for triggering control), all participating patches were untreated on the same 316 
day, every 11 days, once the previously applied larvicide was no longer in effect (Figure 4c). 317 
Because these dynamics occurred in all runs, this scenario essentially caused the accidental 318 
emergence of large-scale control, leading to 71.8% control coverage in all runs. The lapses in 319 
control every 11 days caused periodic spikes in mosquito abundance that made this scenario less 320 
effective than S-Ad at this control threshold.  321 
 Control in each participating patch in response to one mosquito infection (S-Inf) was the 322 
least effective scenario. Despite treating an average of 65.6% of the larval habitats over all 156 323 
days of surveillance, it lead to a mean reduction in human infections of just 31.2% and a range of 324 
28.4-34.6% (Figure 3, Table 5). This is because it took up to 25 days after disease introduction 325 
(day 32 of surveillance) for the virus to infect mosquitoes in all participating patches, so 326 
treatment did not occur in many of these patches until later in the course of the outbreak (Figure 327 
4d).  328 
 329 
Scenarios without surveillance 330 

Treatment in both L-None and S-None began on day 2, rather than on day 3 as it did in S-331 
Ad and S-Juv, because, once aware of the risk of disease introduction, control is enacted on the 332 
following day, without a lag for collecting surveillance information. L-None achieved an average 333 
of 87.5% infection reduction, the highest of any of the scenarios tested, and the smallest range of 334 
just 2.5 percentage points. 335 

The results of S-None demonstrate a strong negative linear relationship (R2=0.862) 336 
between the average timing of control implementation and the reduction in human infections 337 
(Figure 5), indicating that implementing larval control measures earlier in the course of the 338 
spread of the disease is vitally important to reducing outbreak size. Average human infection 339 
reduction was 71.0%, but ranged from 66.2-75.0% even though 69.9% of the landscape was 340 
treated in all 5000 runs, with differences in efficacy largely due to when treatment occurred. 341 
 342 
 343 
Discussion 344 
 345 
 The scenarios that yielded the fewest human infections after 150 days of arbovirus 346 
transmission had larvicide treatment in participating patches beginning before or soon after 347 
disease introduction and largely remaining in effect throughout the simulations (Figure 4). This 348 
result suggests that, where early detection of an outbreak is possible, collecting surveillance 349 
information continuously throughout the course of an outbreak may not be necessary, and in fact 350 
may be a waste of resources that should instead be put toward immediate and consistent control 351 
efforts as soon as the risk of an arbovirus outbreak increases, though risk assessment would still 352 
be necessary to determine when emergency control efforts can cease. However, it should be 353 
noted that, because we modelled a theoretical landscape with a ubiquitous human population, 354 
these results are not immediately applicable to current vector control programs across scales. 355 
Rather, we hope this research sparks a discussion among local governments, mosquito control 356 
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experts, and researchers about how control regimes across numerous independent jurisdictions 357 
can best limit surveillance and treatment application costs while remaining effective.  358 

Scenarios in which control began before disease introduction achieved much greater 359 
reductions in human infection than scenarios in which control was only implemented after 360 
arbovirus was already circulating. Surveillance information on vector ecology and population 361 
dynamics may thus provide more effective triggers for control than surveillance information on 362 
epidemiological dynamics that, by nature, only trigger control after disease introduction. Indeed, 363 
an increase in dengue infections in Singapore over the past few decades has coincided with a 364 
shift in the focus of surveillance from vector populations to human infection cases (Ooi et al., 365 
2006). However, the resources needed for vector surveillance are often only available when the 366 
risk of disease introduction is both known and acknowledged, and may only be provided after 367 
active transmission has been confirmed. This creates an impossible situation for underfunded 368 
mosquito control agencies, which cannot enact control without surveillance information to 369 
trigger it, and cannot acquire surveillance information without the resources to collect it.  370 

The small-scale surveillance scenarios demonstrate another limiting factor in the success 371 
of vector control programs. The results from these scenarios imply an intuitive, but often 372 
neglected, fallacy of threshold-based, surveillance-driven vector control: the more effective the 373 
measure is in the short-term, the sooner it stops being implemented, and the less effective it is in 374 
the long-term.  For instance, in the runs of S-Ad that yielded infection reductions on the lower 375 
end of that scenario’s range, mosquito populations in some patches would dip below the 376 
threshold for applying further control measures, leading to lapses in treatment that caused greater 377 
production of adult mosquitoes. The fluctuations in the number of treated patches in the S-Juv 378 
simulations (Figure 4c) similarly demonstrate lapses in control due to short-term control success. 379 
Although our simulations were not tailored to explore this particular problem, they nonetheless 380 
reveal the potential for threshold-based programs to interpret surveillance data as premature 381 
implications of successful outbreak mitigation. The ability of vector control in reducing arboviral 382 
outbreaks could be greatly improved with more accurate metrics of human disease risk, such as 383 
those that incorporate surveillance data from multiple targets and consider human behavioral 384 
exposure and other socioecological factors (Adams and Kapan, 2009; Gujral et al., 2007; 385 
Kilpatrick and Pape, 2013; Stewart-Ibarra et al., 2014; Stewart Ibarra et al., 2014; Stone et al., 386 
2017), rather than using the direct impacts of control measures to approximate their efficacy. 387 

The threshold results from S-Juv demonstrate another potential inefficiency of 388 
surveillance-driven control: for some surveillance targets, extensive and highly sensitive 389 
surveillance may not achieve infection reductions any greater than would less costly, moderately 390 
sensitive methods (Figure 2).  Thus, results from this scenario under our model assumptions 391 
suggest that control in response to juvenile mosquito abundance may be a good option if 392 
surveillance data are not guaranteed to be particularly accurate, because it achieves similar 393 
infection reductions when using either highly sensitive or intermediate control thresholds. 394 
Information on larval mosquito abundance is easily obtained by “citizen scientists” (Kampen et 395 
al., 2015; Silvertown, 2009), who could assist mosquito control experts with surveillance data 396 
collection, thus reducing costs for local municipalities. Because moderate data sensitivity is 397 
sufficient to inform control efforts in this scenario, a slight loss in accuracy in data collected by 398 
citizen scientists would not reduce the efficacy of control efforts informed by this information.   399 

Unlike those of S-Juv, the threshold sensitivity results from L-Inf revealed a steep initial 400 
decline in the reduction in infections achieved, with a drop in efficacy of 15 percentage points 401 
between control thresholds of just one and two human infections (Figure 2). The higher 402 
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reductions achieved using the lowest control threshold are due to earlier implementation of 403 
larvicide treatment; the only change in control implementation at higher thresholds is the 404 
delaying of treatment application, which allowed mosquito populations to remain high and 405 
transmit more of the virus to the human population. If highly sensitive human infection 406 
surveillance causes quicker implementation of control measures, then collecting this information 407 
is well worth the costs.  408 

Implementing small-scale larval control in response to surveillance of adult mosquito 409 
infections (S-Inf), however, was consistently the least effective of the surveillance methods 410 
simulated, even when using the most sensitive threshold. Thus, when implementing larval 411 
control measures only, the costs of labor, equipment, and laboratory testing associated with 412 
obtaining this information may outweigh the benefits. Ongoing work is examining whether other 413 
methods, such as adulticide treatment, in response to mosquito infection surveillance may 414 
provide worthwhile benefits. 415 

Our results reveal numerous advantages to large-scale surveillance and control, 416 
particularly with anticipatory implementation before disease introduction (as in L-None) rather 417 
than responsive implementation after transmission has begun (as in L-Inf). Although L-Inf 418 
yielded lower efficacy than the anticipatory scenarios, it achieved greater infection reductions at 419 
all thresholds than S-Inf (the other responsive scenario), due to earlier uniform implementation 420 
of control in all participating patches (Figure 4). This suggests that even when anticipatory 421 
methods are not possible, implementation of control early in an outbreak can still prevent many 422 
people from acquiring infections. L-Inf was also the only scenario in which there were no gaps in 423 
treatment once it began (Figure 4), which would prevent the mosquito populations from 424 
compensating for the decreased density of immatures in each treated larval pool.  425 

The two large-scale control scenarios (L-Inf and L-None) had the smallest ranges in 426 
efficacy (Figure 3, Table 5), indicating that the homogenous/uniform control inherent to large-427 
scale implementation yields more predictable outcomes that are less dependent on the location of 428 
the participating patches than small-scale control. In the small-scale scenarios, the runs on the 429 
lower end of each scenario’s efficacy range exhibited patchier control implementation (due to 430 
spatial effects that will be examined in future efforts), while the more effective runs better 431 
approximated the uniformity of the large-scale scenarios. This suggests that when the locations 432 
of participating patches can be carefully chosen to lead to spatially and temporally homogenous 433 
control measures across the landscape, small-scale surveillance and control can yield similar 434 
treatment uniformity to purposeful large-scale control. However, when some areas of the 435 
landscape cannot be treated for a reason unrelated to mosquito and epidemiological dynamics 436 
(e.g. inaccessibility, private land, protected wildlife areas), small-scale surveillance may yield 437 
patchier implementation of control measures that are less effective than the uniform control 438 
implemented using large-scale surveillance. Engagement of private citizens to actively 439 
participate in local efforts, such as data collection from ovitraps, can make these more effective 440 
uniform methods more economically and logistically feasible (Fonseca et al., 2013; Regis et al., 441 
2008; Ryan et al., 2015). 442 
 The theoretical nature of this model highlights the real-world inefficiencies that plague 443 
the efficacy of responses to vector-borne disease outbreaks at any scale. In our simulations, 444 
treatment of larval habitats occurs one day after the surveillance data threshold is reached; in 445 
reality, control efforts may not be implemented for many weeks due to inadequate surveillance 446 
and funding. Also, because large proportions of those infected with dengue or Zika experience 447 
no or mild symptoms (Sikka et al., 2016), many people may need to be infected before anyone 448 
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would seek medical care and testing. It may then take months and multiple laboratory tests to 449 
confirm and report a human diagnosis, though there are fewer hurdles to testing and reporting 450 
mosquito infections in areas with sufficient resources (Lindsey et al., 2012). Despite the utility of 451 
the CDC’s ArboNET system for arboviral incidence reporting (Marfin et al., 2001), the time 452 
currently required to test for arbovirus postpones the implementation of control measures in 453 
response to this information, significantly reducing the efficacy of these responses (Figure 5). 454 
Thus, while our current systems of surveillance remain in place, implementing control in 455 
response to epidemiological surveillance would likely not be as effective in reality as it is in this 456 
model. Future research should incorporate these inefficiencies in surveillance data collection and 457 
control implementation into simulations, as well as more complex ecological dynamics assumed 458 
absent here, including: co-infection with multi-strain pathogens in a metapopulation framework; 459 
evolution of insecticide resistance in mosquito populations; and insecticide effectiveness across a 460 
range of environmental variables. 461 
 The extent and methods of vector and arbovirus surveillance and control vary widely 462 
between jurisdictions in the United States (Lindsey et al., 2012; NACCHO, 2016). This likely 463 
leads to patchy implementation of control regimens that lack the urgency and uniformity of the 464 
more effective scenarios simulated here. This lack of uniformity also pervades the research that 465 
has been done on the effectiveness of various vector control approaches. Thus, while it would be 466 
useful to compare our results with more real-world studies, the current literature contains little 467 
overlap in study design, making it difficult to compare the results of these disparate approaches 468 
(Bowman et al., 2016). Increased standardization in methods, investment in proactive 469 
approaches, and communication about vector population dynamics locally, nationally, and 470 
internationally could significantly reduce the public health risks of Zika virus and other current 471 
and future vector-borne infectious diseases. 472 
 473 
 474 
Conclusions 475 
  476 
 In our simulations, vector control implemented in anticipation of an arboviral outbreak 477 
was much more effective at reducing the number of human infections than control efforts that 478 
began after disease introduction. Thus, surveillance information on mosquito ecology and 479 
demography may more effectively inform control application than information on epidemiology 480 
that inherently can only trigger treatment after disease transmission has begun. Uniform control 481 
applied consistently across space and time can further mitigate outbreaks more than patchy 482 
control application, indicating that large-scale efforts informed by landscape-wide surveillance, 483 
or even well-positioned small-scale implementation, may be more effective than haphazard 484 
small-scale efforts enacted in each patch independently. For some surveillance targets, only very 485 
sensitive and accurate information can notify control agencies of an escalating risk quickly 486 
enough for them to implement effective control, so limited resources would be well spent on 487 
collecting high quality surveillance data. However, other types of surveillance data may still 488 
effectively inform control without requiring high sensitivity in their collection. Critically, rather 489 
than responding to a true measure of control efficacy and risk level, some control efforts 490 
triggered by surveillance may instead foster a false sense of security that leads to ineffective or 491 
prematurely relaxed efforts (c.f. Arosteguí et al. 2013, Gubler 2002, Reyes-Castro et al. 2017) . 492 
Further research on the previously neglected topics of surveillance target and scale in mosquito-493 
borne disease control can help determine economical methods to both collect high quality 494 
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surveillance information and implement continuously effective responses, especially in regions 495 
where the best outcomes require the participation and cooperation of many local jurisdictions.  496 
 497 
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Figure Captions 506 
 507 
Figure 1. Representations of control implementation over time in small-scale and large-508 
scale surveillance scenarios. Grey squares receive larvicidal treatment, while white squares do 509 
not. (a) The small-scale control of S-Ad, S-Juv, S-Inf, and S-None yields patchier control, with 510 
the number and location of treated patches changing over time. (b) The large-scale control of L-511 
Inf and L-None yields spatially uniform control, with all participating patches either treated or 512 
untreated at each time step. 513 
 514 
Figure 2. Average infection reduction at each threshold level tested, for scenarios using 515 
surveillance. Shaded regions indicate two standard deviations around the mean. Top panel: 516 
results from scenarios L-Inf and S-Inf, using threshold numbers of infections to trigger treatment. 517 
Bottom panel: Results from scenarios S-Ad and S-Juv, using threshold proportions of baseline 518 
abundance to trigger treatment.  519 
 520 
Figure 3. Box-and-whisker plots of human infection reduction in all six scenarios. 521 
 522 
Figure 4. Number of patches receiving treatment in surveillance scenarios on each of the 523 
156 days of surveillance and control. Blue dotted lines indicate introduction of one infected 524 
human. (a) L-Inf (large-scale human infection surveillance); (b) S-Ad (small-scale adult 525 
mosquito surveillance); (c) S-Juv (small-scale juvenile mosquito surveillance); (d) S-Inf (small-526 
scale mosquito infection surveillance). Because S-Ad and S-Inf have slightly different numbers 527 
of patches treated each day in each run, one representative run from each scenario was chosen 528 
for the figure. Effectiveness percentages are the average percent reduction in human infections 529 
under that scenario, compared to implementing no control measures. 530 
 531 
Figure 5. S-None demonstrates the importance of early vector control in reducing outbreak 532 
size. All patches in each run were treated on 109 days of the 156-day simulation. The x-axis 533 
shows the average day number on which treatment occurred in all 20 patches in each run, with 534 
the left side indicating earlier average treatment, and the right side indicating later average 535 
treatment across the landscape. 536 
 537 
 538 
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