
Bandwidth-Hard Functions: Reductions and Lower Bounds

Jeremiah Blocki
∗

Department of Computer Science,

Purdue University

jblocki@purdue.edu

Ling Ren

CSAIL, MIT

renling@mit.edu

Samson Zhou
†

Department of Computer Science,

Purdue University

samsonzhou@gmail.com

ABSTRACT
Memory Hard Functions (MHFs) have been proposed as an an-

swer to the growing inequality between the computational speed

of general purpose CPUs and Application Specific Integrated Cir-

cuits (ASICs). MHFs have seen widespread applications including

password hashing, key stretching and proofs of work. Several met-

rics have been proposed to quantify the “memory hardness” of

a function. Cumulative memory complexity (CMC) [8] (or amor-

tized Area × Time complexity [4]) attempts to quantify the cost to

acquire/build the hardware to evaluate the function — after nor-

malizing the time it takes to evaluate the function. By contrast,

bandwidth hardness [30] attempts to quantify the amortized en-

ergy costs of evaluating this function on hardware — which in turn

is largely dominated by the number of cache misses. Ideally, a good

MHF would be both bandwidth hard and have high cumulative

memory complexity. While the cumulative memory complexity of

leading MHF candidates is well understood, little is known about

the bandwidth hardness of many prominent MHF candidates.

Our contributions are as follows: First, we provide the first re-

duction proving that, in the parallel random oracle model, the

bandwidth hardness of a Data-Independent Memory Hard Function

(iMHF) is described by the red-blue pebbling cost of the directed

acyclic graph (DAG) associated with that iMHF. Second, we show

that the goals of designing anMHFwith high CMC/bandwidth hard-

ness are well aligned. In particular, we prove that any function with

high CMC also has relatively high energy costs. This result leads to

the first unconditional lower bound on the energy cost of scrypt in
the parallel random oracle model. Third, we analyze the bandwidth

hardness of several prominent iMHF candidates such as Argon2i

[11], winner of the password hashing competition, aATSample and
DRSample [4] — the first practical iMHF with essentially asymptot-

ically optimal CMC. We show Argon2i, aATSample and DRSample
are maximally bandwidth hard under appropriate cache size. Fi-

nally, we show that the problem of finding a red-blue pebbling with

minimum energy cost is NP-hard.

∗
Research supported in part by NSF Award #1704587.

†
Research supported in part by NSF Award #1649515.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00

https://doi.org/10.1145/3243734.3243773

KEYWORDS
memory-hard functions, energy cost, bandwidth hardness, graph

pebbling

ACM Reference Format:
Jeremiah Blocki, Ling Ren, and Samson Zhou. 2018. Bandwidth-Hard Func-

tions: Reductions and Lower Bounds. In 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’18), October 15–19, 2018,
Toronto, ON, Canada. ACM, New York, NY, USA, 20 pages. https://doi.org/

10.1145/3243734.3243773

1 INTRODUCTION
Memory Hard Functions (MHFs) [1, 28] are a crucial building block

in the design of password hashing functions, moderately hard key-

derivation functions and egalitarian proofs of work [9, 19]. For

example, in password hashing it is critically important to ensure

that it is prohibitively expensive for an offline attacker to evaluate

the function millions or billions of times to check each password in

a large cracking dictionary. The development of improved Appli-

cation Specific Integrated Circuits (ASICs) or Field Programmable

Gate Arrays (FPGAs) for computing cryptographic hash functions

such as SHA256 makes this goal increasingly challenging. For ex-

ample, the Antminer S9, an ASIC Bitcoin [27] miner, is able to

compute SHA256 hashes at a rate of 13.6 trillion hashes per second

using just 1274 Joules of energy per second (Watts). By contrast,

the energy needed to compute SHA256 13.6 trillion times on a stan-

dard CPU would be about six orders of magnitude higher! In fact,

Blocki et al. [14] recently argued that non-memory hard key deriva-

tion functions (e.g., PBKDF2-SHA256 and BCRYPT are based on

hash iteration) cannot provide sufficient protection against a ratio-

nal (economically motivated) offline attacker without introducing

unacceptably long authentication delays.

MHFs are based on the observation that memory costs (e.g., la-

tency, bandwidth, energy consumption) tend to be equitable across

different architectures. Thus, to develop an “egalitarian” function

we want to design a function where evaluation costs are dominated

by memory costs. Two of the most prominent approaches to mea-

sure the “evaluation cost” of MHFs are memory hardness [8, 28] and

bandwidth hardness [30]. Memory hardness [28] seeks to quantify

construction costs i.e., the cost to build/obtain the hardware neces-

sary to compute the MHF. By contrast, bandwidth hardness [30]

seeks to quantify the energy costs per evaluation i.e., the cost of

running the hardware. Ideally, one would hope to design an MHF

that is both bandwidth hard and memory hard.

Broadly speaking there are two types of MHFs: data-dependent

memory hard functions (dMHFs) and data-independent memory

hard functions (iMHFs). As the name suggests an iMHF induces

https://doi.org/10.1145/3243734.3243773
https://doi.org/10.1145/3243734.3243773
https://doi.org/10.1145/3243734.3243773

a memory access pattern that is independent of the sensitive in-

put (e.g., password), which makes them naturally resistant to cer-

tain side channel attacks e.g., cache-timing [10]. Meanwhile, while

dMHFs with high memory/bandwidth hardness are potentially eas-

ier to construct [2, 6], they are also more vulnerable to side channel

attacks. Argon2 [12], winner of the recently completed Password

Hashing Competition [29], includes a data-independent mode of op-

eration (Argon2i), a data-dependent mode (Argon2d) and a hybrid

mode (Argon2id).

To a large extent, most of the recent cryptanalysis of MHF can-

didates has focused on memory hardness. In particular, cumulative
memory complexity (CMC) [8] and the closely related metric amor-
tized area-time complexity (aAT) [2, 4] aim to approximate the cost

of constructing enough chips to evaluate the function T times per

year. For example, if evaluating the function one time requires us to

lock up 1GB of DRAM for 1 second then, at minimum, an attacker

would need to buy roughly 32 (1GB) DRAM chips to evaluate the

function a billion times per year. Alwen et al. [6] showed that the

dMHF scrypt [28] has maximal CMC Ω(n2) i.e., the amortized area-

time complexity scales quadratically with the running time n. By
contrast, Alwen and Blocki [2, 3] showed that any iMHF has cumula-

tive memory complexity at most O
(
n2

log logn
logn

)
and they exhibited

even stronger amortization attacks against Password Hashing Com-

petition [29] (PHC) winner Argon2i [12] along with other candidate

MHFs such as balloon hashing [17]. Blocki and Zhou [15] showed

that Argon2i has CMC at most O
(
n1.767

)
and at least Ω̃

(
n1.75

)
.

Alwen et al. [5] also gave a theoretical construction of an iMHF

with CMC at least Ω
(

n2

logn

)
, which is essentially optimal in an

asymptotic sense. More recently, Alwen et al. [4] designed two

practical iMHFs called DRSample and aATSample with the same

asymptotic complexity.

By contrast, the notion of bandwidth-hardness was only intro-

duced recently [30] with the intention of lower bounding the energy

required to evaluate the function. Ren and Devadas [30] observed

that metrics such as CMC or aAT do not provide an accurate pic-

ture of energy consumption. For example, certain types of memory

consume very little energy when idle, but cache misses are costly

because we must retrieve data from RAM. Memory Bound Func-

tions [1] are functions whose computation always requires a large
number of cache-misses regardless of computation time. Bandwidth

hardness [30] relaxes this notion by requiring that any attacker who

evaluates the function must either 1) incur a large number of expen-

sive cache misses, or 2) must perform a larger (e.g., super-linear)

amount of computation.

Ren and Devadas proposed to cryptanalyze an iMHF using a

variant of the red-blue pebbling game in which red-moves (repre-

senting computation performed using data in cache) have a smaller

cost cr than blue-moves cb (representing data movements to/from

memory) [30]. Ren and Devadas also proved that the bit rever-

sal graph [25], which forms the core of iMHF candidate Catena-

BRG [22], is maximally bandwidth hard in the sense that any red-

blue pebbling has cost Ω(n · cb). However, Ren and Devedas [30]

did not prove that any attacker in the parallel random oracle model

(pROM) can be viewed as a red-blue pebbling so it was not clear

whether or not a graph (e.g., Catena-BRG [22]) with high red-blue

pebbling cost is necessarily bandwidth hard in the pROM model.

Similarly, Ren and Devedas [30] showed that scrypt is bandwidth

hard under a restrictive assumption about the cache-architecture

adopted by the attacker e.g., they need to assume data from RAM

can only be retrieved in large chunks. Prior to our work nothing was

known about the bandwidth hardness of key MHF candidates such

as PHC winner Argon2i [12, 29], DRSample and aATSample [4].

Our Contributions. We formalize the notion of bandwidth hard-

ness in the parallel random oracle model and show that bandwidth

hardness is indeed captured by the red-blue pebbling game. This

does for bandwidth hardness what Alwen and Serbinenko [8] did

for CMC when they showed that CMC is captured by the parallel

black pebbling game.

Second, we demonstrate that CMC lower bounds can be used

to directly lower bound energy costs. In particular, we show that

energy costs are at least Ω
(√

cbcrCMC − cb ·m
)
. Intuitively, an

attacker running in time t will pay computation costs at least t · cr

and energy cost at least
(
CMC
t ·w −m

)
· cb where m denotes the

number ofw-bit words that can be stored in cache. Alwen et al. [6]
show that scrypt has CMC at least Ω(n2 ·w). Combined with our

result this implies that scrypt has energy cost at least Ω
(√
cbcrn

)
.

While we would ideally hope for a lower bound of Ω(n · cb), we
stress that this is the first lower bound for scrypt that does not
require any restrictive assumptions about cache-architecture [30].

The result also demonstrates that the goals of high CMC and high

bandwidth hardness are well aligned.

Third, we introduce a new technique to lower-bound the red-

blue pebbling cost of a DAG and we use this new technical hammer

to lower-bound the reb-blue pebbling cost of several important

iMHF candidates including: Argon2iB (the current version of PHC

winner Argon2i [12]), Argon2iA (an older version of Argon2, which

is similar to balloon hashing [17] , DRSample and aATSample. In

particular, we show that ifm = O
(
n2/3−ϵ

)
then any pROM attacker

with cache-sizem ·w bitsmust incurs costmin{Ω (n · cb) ,ω(n ·cr)}.
In particular, Argon2iB is maximally bandwidth hard whenever the

attacker’s cache size is sufficiently small. Argon2iB uses a round

function with word sizew = 2
10

Bytes. Assuming that we set our

memory hardness parameter n = 2
20

(filling nw = 1GB of RAM

in about 1 second according to Argon2 benchmarks [12]) then

n2/3 ·w corresponds to a cache-size of 10MB— our lower bounds

would not apply if the attacker’s cache size is larger. We prove even

stronger lower bounds forDRSample and aATSample. In particular,

we prove that these functions are maximally bandwidth hard as

long as m = O
(
n1−ϵ

)
. Interestingly, DRSample and aATSample

have asymptotically higher CMC as well, which is consistent with

our observation that the goals of designing a MHF with high CMC

is well aligned with the goal of designing an maximally bandwidth

hard function.

While we prove that DRSample, aATSample and Argon2iB are

all maximally bandwidth hard in an asymptotic sense, it would be

nice to gain a more precise understanding of the constant factors in

these bounds. To this end it would be useful to develop an efficient

algorithm to determine the minimum cost red-blue pebbling of a

DAG G. However, our final result is a negative one. We show that

2

it is NP-Hard to compute the minimum cost red-blue pebbling of a

DAG G.

1.1 Graph Pebbling and iMHFs
An iMHF fG,H is defined by a labeling game over a DAG G and a

random oracle H : {0, 1}∗ → {0, 1}w . In particular, the label ℓv of

an intermediate node v is computed as ℓv = H
(
v, ℓv1

, . . . , ℓvindeg

)
where v1, . . . ,vindeg are the parents of node v in G. The output of
the function is the label of the final sink node. Before we provide an

overview of our technical results it is necessary to first (informally)

introduce the black pebbling game and the red-blue pebbling game.

Black Pebbling. Given a directed acyclic graph (DAG)G = (V ,E),
the goal of the (parallel) black pebbling game is to place pebbles

on all sink nodes of G (not necessarily simultaneously). The game

is played in rounds and we use Pi ⊆ V to denote the set of cur-

rently pebbled nodes on round i . Initially all nodes are unpebbled,

P0 = ∅, and in each round i ≥ 1 we may only include v ∈ Pi
if all of v’s parents were pebbled in the previous configuration

(parents(v) ⊆ Pi−1) or if v was already pebbled in the last round

(v ∈ Pi−1). In the sequential pebbling game we can place at most

one new pebble on the graph in any round (i.e., |Pi\Pi−1 | ≤ 1), but

in the parallel pebbling game no such restriction applies. The space

cost of the pebbling is defined to be maxi |Pi |, which intuitively

corresponds to minimizing the maximum space required during

computation of the associated function, and relates to the space-

complexity of the black-pebbling game. Gilbert et al. [23] studied
the space-complexity of the black-pebbling game and showed that

this problem is PSPACE − Complete by reducing from the truly

quantified boolean formula (TQBF) problem. Given a (parallel) legal

black pebbling P1, . . . , Pt of a DAG G, we define the cumulative

cost to be |P1 |+ . . .+ |Pt |. Then we define Πcc (G) (resp. Π
∥
cc (G)) as

the minimum cumulative cost of any legal sequential (resp. parallel)

black pebbling of G.

PebblingReduction in the pROMModel.Alwen and Serbinenko
[8] show that under the parallel random oracle model (pROM) of

computation, the cryptanalysis of an iMHF, under the amortized

time-space metric, can be approximately reduced to the cumulative

cost of a pebbling strategy. The result is significant in that it allows

future cryptanalysis of iMHF candidates to focus on understanding

the (parallel) black pebbling costs of the underlying DAG. In partic-

ular, a lower bound on the aAT complexity of the best pebbling for

a DAGG immediately yields a lower bound on the aAT complexity

of any pROM attacker evaluating the function fG,H . Intuitively,

this means that if G has sufficiently high (parallel) black pebbling

cost then it will be expensive for the attacker to obtain enough

hardware to compute the function fG,H millions/billions of times

per year e.g., an offline password cracking adversary.

Red-Blue Pebbling. Given a DAG G = (V ,E), the goal of the red-
blue pebbling game [24] is again to place pebbles on all sink nodes

ofG (not necessarily simultaneously) from a starting configuration

that contains no pebbles on any nodes. The game is again played

in rounds, with each node possibly containing a blue pebble or a

red pebble at each time step. Informally, at each time step, for any

node v we can swap between a red pebble at v and a blue pebble at

v (and vice versa). Each swap is called a blue move, and while there

is no limit to the number of blue moves at a single time step, they

each have an associated cost cb . Simultaneously, we may place a red

pebble at a node v if all of v’s parents contained red pebbles in the

previous configuration. This manner of placing a new red pebble is

a red move and each occurrence incurs cost cr . We are allowed to

have at mostm (cache-size) red-pebbles on the graph at any point

in time. In a sequential red-blue pebbling we are allowed to place at

most one new red pebble on the graph during each round, while no

such constraint applies to a parallel red-blue pebbling. Finally, there

is a parameterm that denotes a threshold on the number of nodes

that can contain red pebbles at each time step. The total cost of the

red-blue pebbling is the sum of the costs induced by the blue moves

and the red moves. We define rbpeb∥(G,m) (resp. rbpeb(G,m)) to
be the minimum cost of any legal parallel (resp. sequential) red-blue
pebbling of G that places at mostm red-pebbles on the graph at

any point in time.

1.2 Overview of Our Results
Proving that the Red-Blue Pebbling Game Captures Band-
width Hardness.We consider the variant of the red-blue pebble

game proposed by Ren and Devadas [30] in which red moves have

cost cr and blue moves have cost cb — note that if cr = 0 then

we recover the traditional goal of minimizing the number of cache

misses. Ren and Devadas [30] proposed the adoption of red-blue

pebbling to model the bandwidth-complexity of iMHFs, with the

idea that red moves correspond to hash computations and blue

moves correspond to (more expensive) swaps between cache and

memory. However, they did not prove any connection between

red-blue pebbling costs and the actual bandwidth-costs of a pROM
attacker.

Our contributions are two-fold. First, we formalize the notion

of energy cost of a function fG,H in the parallel random oracle

model. Second, we prove that ecost
(
fG,H

)
the energy cost of fG,H

is closely related to red-blue pebbling costs. In particular, we prove

that any pROM machine computing fG,H with cache-sizemw-bits

has energy costs Ω(rbpeb∥(G, 8m)). This resolves an open question

of [30], and shows that future cryptanalysis of the bandwidth hard-
ness of iMHF candidates can focus on the red-blue pebbling cost of

the underlying DAG G.

Theorem 1.1. (Informal, see Theorem 3.3.) fG,H has energy cost

at least ecost
(
fG,H ,mw

)
∈ Ω

(
rbpeb∥(G, 8m)

)
.

While Theorem 3.3 is similar to a result of Alwen and Serbinenko

who showed that the cumulative memory complexity of fG,H is

captured by the black pebbling game [8], we stress that there are

several unique challenges in our reduction. In particular, it is easier

to extract a black pebbling from the execution trace of a pROM
attacker since each new pebble that is placed on the graph during

round i corresponds directly to a random oracle query that was

made during the previous round. However, in the red-blue pebbling

model only red moves correspond to random oracle queries. In-

tuitively, we expect that blue moves correspond to labels that are

transferred to/from memory, but an attacker may encode each of

these labels in an unexpected way (e.g., encryption). Thus, even if

3

we can observe the data values being transferred to/from memory

we stress that we cannot directly infer which labels are being trans-

ferred making it difficult to extract a legal red-blue pebbling from

the execution trace.

We overcome this difficulty by allowing the red-blue pebbling

to use a little bit of extra memory (e.g., if the pROM attacker has

m ·w bits of cache then the red-blue pebbling is allowed to use 8m
red-pebbles) and by introducing the notion of a red-blue extension
pebbling of a legal black pebbling P = (P1, . . . , Pt). Given a legal

black pebbling extracted from the execution trace of the pROM
attacker running in time t we can partition time into intervals [t0 =
1, t1), [t1, t2), . . . [tk−1, tk = t] such that 1) during each interval

[ti , ti+1) the pROM attacker transfers at leastmw bits frommemory

(at costm · cb), and 2) there is a red-blue extension pebbling that

makes at most O (m) blue moves during each interval [ti , ti+1).
To partition time into intervals we introduce a setQueryFirst(x ,y)

that intuitively corresponds to the data-labels that appear first as
input to a random oracle query during the time interval [x ,y) before
the label appears as the output of some random oracle query during

the same interval. We then define t1 to be the minimum pebbling

round such that there exists 1 ≤ j1 < t1 such thatQueryFirst(j1, t1)
has size at least 3m. Similarly, once t1 < . . . < ti−1 have been de-

fined we can define ti > ti−1 to be the minimum pebbling round

such that there exists ti > ji ≥ ti−1 s.t. QueryFirst(ji , ti) has size
at least 3m. At the beginning of each interval [ti , ti+1) our red-blue
extension pebbling will place red pebbles on all nodes in the set

QueryFirst(ji , ti) (e.g., to “load” these values into cache). We can

accomplish this legally since the extension pebbling is allowed to

use up to 8m red-pebbles. Once we have red pebbles placed on all

of these nodes the extension pebbling is able to finish this interval

without changing any other blue nodes into red-nodes (i.e., zero

cache misses).

To prove that the pROM attacker must transfer at leastmw bits

from memory during each interval we rely on an extractor argu-

ment. In particular, let γi encode the messages transferred to/from

cache during the interval [ti , ti+1). Our extractor will extract 3m
labels (without querying the random oracle at these points) by

simulating the pROM attacker starting with a hint. The labels we

will extract correspond to the nodes in the setQueryFirst(ti , ti+1)).
The hint consists of γi along with other information such as the

current state of the cache (at mostmw bits), indices of the 4m labels

that we want to extract (4m logn bits to encode), and the index of

the first query in which each label appears as input to a random

oracle query (4m logq bits to encode where q is an upper bound on

number of queries made by the attacker). Since a random oracle

is incompressible, the extractor’s hint must have length at least

4mw if we expect the extractor to output 4m labels (i.e., 4m distinct

random oracle outputs of length w assuming there are no hash

collisions) without querying the random oracle at these points so it

follows that |γi | ≥ m ·w .

On the Relationship between Bandwidth Complexity and
Cumulative Memory Complexity. We show that bandwidth

complexity and cumulative memory complexity are intricately re-

lated concepts. If rbpeb∥(G,m) is the minimum energy cost
1
of any

1
In contrast to [3], we use energy cost to refer to bandwidth cost.

legal parallel reb-blue pebbling of G with cache sizem and Πcc is

the cumulative complexity of sequential black pebbling, then

Theorem 1.2.

rbpeb∥(G,m) ≥ 2cb

(
Πcc (G)

t
− 2m

)
+cr t ∈ Ω

(√
cb · cr · Πcc (G)

)
,

wherem is the cache size, t is the number of steps in the pebbling, cb
is the cost of a blue move and cr is the cost of a red move.

Theorem 1.2 demonstrates that the goals of designing an MHF

with high cumulative complexity and high bandwidth complexity

are well aligned. In fact, we use Theorem 1.2 to show that a family

{Gn }
∞
n=1 of constant indegree DAGs constructed by Schnitger [31]

has high energy costs because Πcc (Gn) ∈ Ω(n
2) [7]. As an interme-

diate step to proving Theorem 1.2 we show that rbpeb∥(G,m) ≥
rbpeb(G, 2m). This result is interesting as it suggests that an at-

tacker will not be able to dramatically decrease energy costs by

exploiting parallelism. By contrast, for any constant indegree DAG

G it is known that the parallel cumulative pebbling cost is at most

Π
∥
cc (G) ∈ O

(
n2

log logn
logn

)
[2] while it is known that Πcc (Gn) ∈

Ω(n2) for the constant indegree DAGs constructed by Schnitger [31].
We also prove a similar theorem that directly relates ecost and

cmc. In particular, we show that

ecost
(
fG,H

)
∈ Ω

(√
cbcr cmc

(
fG,H

)
− cbm

)
.

Crucially, this bound applies to anyMHF not just for iMHFs. For

iMHFs we could use our pebbling reduction to relate ecost
(
fG,H

)
to rbpeb∥(G) and we could use [8] to relate cmc

(
fG,H

)
to Πcc (G),

but no such pebbling reduction is known for dMHFs. Combining our

result with a result of Alwen et al. [6] we obtain the following lower

bound for scrypt: ecost (scrypt) ∈ Ω
(√
cbcrn

)
. While Ren and

Devadas [30] previously proved that ecost (scrypt) ∈ Ω (n · cb)
their result assumes that the attacker must transfer data to/from
cache in blocks of size w . While our lower bound is weaker, it is

the first unconditional lower bound on the bandwidth hardness of

scrypt. We conjecture that our results could be extended to show

that ecost (scrypt) ∈ Ω (n · cb) without condition.

On the Bandwidth Hardness of Important iMHF Candidates.
In Section 5, we provide lower bounds on the bandwidth hardness

of several important iMHF candidates including Argon2iA, Ar-

gon2iB [12], aATSample and DRSample [4]. We use Argon2iA to

refer to v1.1 and we use Argon2iB to refer to versions v1.2+
2
. Thus,

Argon2iB (the current version of Argon2i) is particularly important

to cryptanalyze as it won the password hashing competition and is

being considered for standardization by the Cryptography Form

Research Group (CFRG) of the IRTF [13].

2
The specification of Argon2i has changed several times, but the only changes that

affect are analysis are changes that affect the underlying DAG G . A change to the

edge distribution was introduced in v1.2 where a non-uniform indexing was intro-

duced. We use Argon2iB to refer to the version that is currently being considered for

standardization by the Cryptography Form Research Group (CFRG) of the IRTF[13].

4

aATSample and DRSample are important to study as they are

the first practical iMHF candidate with nearly asymptotically opti-

mal cmc3. For the families of graphs generated by aATSample and
DRSample [4] we show the following:

Theorem 1.3. Let G be a graph generated by aATSample. Then
there exists a constant C > 0 so that for allm ≤ Cn

logn ,

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n logn)cr),

holds with high probability.

Theorem 1.4. Let G be a graph generated by DRSample and
0 < ρ < 1. Then there exists a constantC > 0 so that for allm ≤ Cnρ ,
with high probability,

rbpeb∥(G,m) ≥ min

(
Ω(n)cb ,Ω(n

3/2−ρ/2)cr
)
.

We provide lower bounds on the bandwidth hardness on the

family of graphs generated by Argon2iB. The bounds are slightly

weaker for Argon2iB in that they only hold if the attacker has cache

sizem ≤ Cn2/3−ϵ .

Theorem 1.5. Let G be a graph generated by Argon2iB. Then
there exists a constant C > 0 so that for any 0 < ϵ < 2/3 and for all
m ≤ Cn

2

3
−ϵ , with high probability,

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n
5/3)cr).

At a technical level our template to establish each of these lower

bounds is similar. First, we show that the underlying DAG is “block-

depth robust.” Second, we show that the graph is “well dispersed.”

Essentially, if our block size is b, then we show that for every in-

terval I = [i, j] ⊆ [n/2,n] of Ω(n/b) nodes in the second half and

almost every block B of b consecutive nodes in [n/2] there is an
edge from B to I . We then consider the pebbling interval [ti , tj]
beginning at the time ti during which a pebble is first placed on

node i and ending at the time tj during which a pebble is first placed
on node j. Because the graph is “well dispersed” we will need to

place a red pebble on at least one node from almost every block. If

the cache size ism ∈ o (n/b) then most of these Ω(n/b) blocks will
begin with no pebbles in cache. Thus, it is either the case that 1)

we make Ω(n/b) blue moves, or 2) we must re-pebble almost every
block at some point during the interval [ti , tj]. Because the DAG is

block-depth robust this second step will be prohibitively expensive.

On the Computational Complexity of Minimum Cost Red-
Blue Pebbling. While we can establish asymptotic lower bounds

on the energy cost of important iMHF candidates, one would ideally

want to find the precise energy cost for each function. In particular,

given a graphG and a cache parameterm we would like to compute

rbpeb∥(G,m) precisely. However, we show in Appendix D that,

unfortunately, exactly computing the red-blue pebbling cost of a

DAGG is NP − Hard, even under realistic assumptions about cb and

cr :

Theorem 1.6 (Informal). Even for cb ≤ 3ncr , the problem of
determining the red-blue pebbling cost of a directed acyclic graph G
is NP − Hard.
3
In particular, cmc (DRSample) ∈ Ω

(
n2 ·w
logn

)
and cmc (aATSample) ∈ Ω

(
n2 ·w
logn

)
[4]

while any iMHF fG,H has cmc at most cmc
(
fG,H

)
∈ O

(
n2 ·w ·log logn

logn

)
.

A result of Demaine and Liu [18, 26] implies that it is PSPACE

hard to compute rbpeb∥(G,m) when cr = 0 (computation is free)
4

However, we stress that in practice we have cr > 0 (computation

may be cheap, but it is not free). Furthermore, the decision problem

rbpeb∥ = “is rbpeb∥(G,m) ≤ k” is in NP5 so the decision problem is

fundamentally different when we require cr > 0. While the decision

problem rbpeb∥ is important for the cryptanalysis of MHFs to the

best of our knowledge nothing was known about the complexity

of this problem prior to our paper.

Gilbert et al. [23] previously showed that the following decision

problem was PSPACE complete: Given a DAGG decide if there is a

legal black pebbling with space complexity at mostm i.e., during

every pebbling round there are at most m pebbles on the graph.

Gilbert et al. showed that the minimum space black pebbling prob-

lem was PSPACE − Hard by reduction from the Truly Quantified

Boolean Formula (TQBF) problem. Observing that any 3 − SAT in-

stance ϕ with n variables is also a TQBF instance (albeit with no ∀
quantifiers) their reduction allows us to transform ϕ into a DAGGϕ .

The graph Gϕ has the property that it can be pebbled with at most

m = 3n+ 3 black pebbles if and only if ϕ is satisfiable. In we detail a

gadget to append toGϕ to create a graphHϕ so that rbpeb∥(H) = x1

if ϕ is a satisfiable assignment, but rbpeb∥(Hϕ) > x1 if ϕ is not a

satisfiable assignment.

2 PRELIMINARIES
We use [n] to denote the set {1, 2, . . . ,n} and [a,b] = {a,a +
1, . . . ,b} where a,b ∈ N with a ≤ b. Similarly, we use (a,b] to
denote the set [a,b] − {a}.

We assume a given directed acyclic graph (DAG) G = (V ,E) is
labeled in topological order and when G has size n we will use V =
[n] to denote the set of vertices. We say a node v ∈ V has indegree

δ = indeg(v) if there exist δ incoming edges δ = |(V × {v}) ∩ E |.
We say thatG has indegree δ = indeg(G) if the maximum indegree

of any node of G is δ . A node with indegree 0 is called a source

node and a node with no outgoing edges is called a sink. We use

parentsG (v) = {u ∈ V : (u,v) ∈ E} to denote the parents of a

node v ∈ V and similarly for a set S ⊆ V , we define parentsG (S) =
{u ∈ V : (u,v) ∈ E,v ∈ S}. In general, we use ancestorsG (v) =⋃
i≥1 parents

i
G (v) to denote the set of all ancestors of v — here,

parents2G (v) = parentsG
(
parentsG (v)

)
denotes the grandparents

ofv and parentsi+1G (v) = parentsG
(
parentsiG (v)

)
. WhenG is clear

from context we will simply write parents (resp. ancestors). We

denote the set of all sinks of G with sinks(G) = {v ∈ V : @(v,u) ∈
E}, the nodes with no incoming edges.

We often consider the set of all DAGs of equal size Gn = {G =
(V ,E) : |V | = n} and often will bound the maximum inde-

gree Gn,δ = {G ∈ Gn : indeg(G) ≤ δ }. For directed path p =
(v1,v2, . . . ,vz) in G, its length is the number of nodes it traverses,

length(p) := z (as opposed to the number of edges). We say the

4
In particular, rbpeb∥ (G,m) = 0 if and only if there is a legal black pebbling ofG using

at mostm black pebbles where the latter decision problem is PSPACE complete [23].

5
In particular, for a DAG with indeg(G) = O (1) there is always a red-blue pebbling
with cost at most O (n · cr + n · cb) — pebble nodes in topological order and never

remove a pebble from a node. Thus, the optimal red-blue pebbling runs in time at

most t ∈ O
(
n +

n ·cb
cr

)
since any red-blue pebbling running in time t in the parallel

random oracle model has cost at least t · cr .

5

depth d = depth(G) of DAG G is the length of the longest directed

path in G.
An iMHF can be specified by a DAG G and a random oracle H

as in the next definition.

Definition 2.1. Given a directed acyclic graph G = (V = [n],E)
with a set of sink nodes sinks(G) and a random oracle function

H : Σ∗ → Σℓ over an alphabet Σ, we define the labeling of graphG
as labG,H : Σ∗ → Σ∗. We omit the subscriptsG,H when the depen-

dency on the graph G and hash function H is clear. In particular,

given an input x the (H ,x) labeling of G is defined recursively by

labH,x (v) =

{
H (v,x), indeg(v) = 0

H
(
v, labH,x (v1), . . . , labH,x (vd)

)
, indeg(v) > 0,

where v1, . . . ,vd are the parents of v in G, according to some pre-

determined lexicographical order. We define

fG,H (x) = {labH,x (s)}s ∈sinks(G).

If there is a single sink node sG then fG,H (x) = labH,x (sG).

We will often consider graphs obtained from other graphs by

removing subsets of nodes. Thus if S ⊂ V , then let G − S be the

DAG obtained from G by removing nodes S and incident edges.

Given a directed acyclic graph (DAG) G = (V ,E) the goal of the
red-blue pebbling game is to place pebbles on all sink nodes of G
(not necessarily simultaneously).

LetRB = ((B0,R0), (B1,R1), . . . , (Bt ,Rt)) (resp.RB
∥
) denote the

set of all sequential (resp. parallel) red-blue pebblings of a DAG G.
The game is played in rounds and we use Bi ⊆ V (resp. Ri ⊆ V) to

denote the set of nodeswith blue pebbles (resp. red pebbles) in round

i . Initially, no nodes contain pebbles, so that B0∪R0 = ∅. The goal is
to eventually place a red-pebble on every node inV (not-necessarily

simultaneously) so we require thatV ⊆
⋃
i Ri . We also require that

in every round i > 0 we have (1) parents (Ri \ (Ri−1 ∪ Bi−1)) ⊆
Ri−1, (2) Bi \Bi−1 ⊆ Ri−1 and (3) |Ri | ≤ m during every time step i .

We let RB ∥(G,m) be the set of all valid parallel red-blue peb-

blings of G with a cache-size of m pebbles. Intuitively, in each

round i ≥ 1 we may place a red pebble on a node v ∈ V if either

parents(v) ⊆ Ri−1 all of v’s parents contain red pebbles in the pre-

vious configuration (called a red move) or v contained a blue pebble

in the previous round (called a blue move). On the other hand, we

may place a blue pebble at v ∈ Pi (also called a blue move) if v
contained a red pebble in the previous round. Blue moves repre-

sent data transfer to/from memory and are more expensive than

red-moves (computation).

We say that a pebbling ((B0,R0), (B1,R1), . . . , (Bt ,Rt)) is sequen-
tial if |Ri \ Ri−1 | ≤ 1 for all 0 < i ≤ t , while for a parallel pebbling

we make no such restriction. Note that RB ⊆ RB ∥ since any se-

quential pebbling is a legal parallel pebbling.

Let #BMi and #RMi denote the number of blue moves and the

number of red moves, respectively, during round i .6 Formally,

#BMi = |{v ∈ Ri \ Ri−1 : parents(v) 1 Ri−1}| + |Bi \ Bi−1 |

#RMi = |Ri \ Ri−1 | − |{v ∈ Ri \ Ri−1 : parents(v) 1 Ri−1}|

6
In some cases we may have v ∈ Bi−1 and parents(v) ⊂ Ri−1 so that we could

place a pebble on node v using either a red move or a blue move. In such cases we

will assume that this is accomplished by a red move, since blue moves will be more

expensive.

Given cost parameters cr and cb , we define the energy cost of a

red-blue pebbling (R,B) = ((R1,B1), . . . , (Rt ,Bt)) to be

rbpeb∥ ((R,B)) =
t∑
i=1

cb#BMi + cr #RMi .

Generally, we assume cb is much larger than cr . Finally, we define

rbpeb∥ (G,m) = min

(R,B)∈RB ∥ (G,m)
rbpeb∥ ((R,B))

to be the cost of the optimal red-blue pebbling ofG with maximum

cache-size ofm red pebbles.

2.1 Depth-Robustness
Definition 2.2 (Block Depth-Robustness). Given a nodev , letN (v,b) =

{v − b + 1, . . . ,v} denote a segment of b consecutive nodes ending

atv . Similarly, given a set S ⊆ V , let N (S,b) = ∪v ∈SN (v,b). We say

that a DAG G is (e,d,b)-block-depth-robust if for every set S ⊆ V
of size |S | ≤ e , we have depth(G −N (S,b)) ≥ d . If b = 1, we simply

say G is (e,d)-depth-robust and if G is not (e,d)-depth-robust, we
say that G is (e,d)-depth-reducible.

Note that whenb > 1, (e,d,b)-block-depth robustness is a strictly
stronger notion than (e,d)-depth-robustness since for any set S
with |S | ≤ e), it follows that N (S, 1) ⊂ N (S,b). Hence, (e,d,b ≥ 1)-

block depth robustness implies (e,d)-depth robustness. On the other
hand, (e,d)-depth robustness only implies (e/b,d,b)-block depth

robustness.

The cumulative memory complexity of an iMHF is very closely

related to the notion of depth-robustness [2, 4, 5, 15]. In particu-

lar, we know that Π
∥
cc (G) ≥ ed for a depth-robust DAG and that

Π
∥
cc (G) ∈ O

(
en + n ·

√
dn

)
. We will show that Π

∥
cc (G) can be used

to lower bound rbpeb∥(G,m), thus depth-robustness can also be a

useful tool in bandwidth hardness.

2.2 Metagraphs
Wewill also frequently use the notion of ametagraph in our analysis.

For a fixed integer m ∈ [n], let n′ = ⌊n/m⌋. For all i ∈ [n′], let
Mi = [(i − 1)m + 1, im] ⊆ V . Moreover, we denote the first and last

thirds respectively ofMi with

MF
i =

[
(i − 1)m + 1, (i − 1)m +

⌊m
3

⌋]
⊆ Mi ,

ML
i =

[
(i − 1)m +

⌈
2m

3

⌉
+ 1, im

]
⊆ Mi .

Given a DAG G, we call a DAG Gm = (Vm ,Em) with the following

properties a metagraph of G.

• Nodes: Vm contains one node vi per set Mi , i.e., Vm = {vi :
i ∈ [n′]}. We call vi the simple node andMi its meta-node.
• Edges: If the end of a meta-node ML

i is connected to the

beginningMF
j of anothermeta-node, we connect their simple

nodes, i.e., Em = {(vi ,vj) : E ∩ (M
L
i ×M

F
j) , ∅}.

6

3 MODELING ENERGY COMPLEXITY AS
RED-BLUE PEBBLING

In this section we show that the energy cost of the function fG,H is

characterized by the reb-blue pebbling cost rbpeb∥(G,m) in the par-

allel random oracle model just as Alwen and Serbinenko [8] showed

that cumulative memory complexity can be characterized by the

black pebbling game. Similar to [8] our reduction uses Lemma 3.1

as a core building block. In particular, if the energy cost is signifi-

cantly smaller than rbpeb∥(G, 8m) for a pROM attacker withm ·w
bits of cache then we can build an extractor that receives a small

hint and predicts the random oracle output on a larger set of in-

dices contradicting Lemma 3.1. One of the unique challenges we

face when designing our extractor is that it is not obvious how

to relate messages between cache and main memory to specific

blue pebbling moves. By contrast, a black pebbling move always

corresponds to a specific random oracle query.

Lemma 3.1. [21] Let H be a set of hints that can be given, B be a
series of random bits and A be an algorithm that receives as input
some hint h ∈ H and can adaptively query B at specific indices. Let
WINA,h denote the event that A, given h ∈ H as input, eventually
outputs a subset ofk indices i1, . . . , ik that were not previously queried
as well as the corresponding values B[i1], . . . ,B[ik] of each bit then

Pr

[∃h ∈ H .WINA,h
]
≤
|H |

2
k
,

where the randomness is taken over the selection of B.

3.1 Memory and Cache in the Parallel Random
Oracle Model

Before we present our reduction it is first necessary to give a formal

definition of energy costs in the pROM model.

We define a state of an algorithm AH (.)
to be the tuple (σ , ξ),

where σ contains the contents of the cache and has size at most

mw bits, and ξ contains the contents of the memory. We consider

a pROM attacker AH (.)
with cache sizem ·w who is given oracle

access to a random oracle H : {0, 1}∗ → {0, 1}w . In particular, the

cache is large enough to storem labels. An execution of AH (.)
on

input x proceeds in rounds as follows. Initially, the state at time

0 is (σ0, ξ0) where ξ0 is empty and σ0 encodes the initial input

x . At the beginning of round i the attacker is given the initial

state (σi−1, ξi−1) as well as the answers Ai−1 to any random oracle

queries that were asked at the end of the last round. The algorithm

AH (.)
may then perform arbitrary computation and/or transfer data

between memory and cache. The round ends when the attacker

outputs a new state (σi , ξi) along with a batch of queries Qi =

{qi
1
,qi

2
, . . . ,qiki

}. Since the attacker only has cache-sizem ·w we

only allow the attacker to make at most |Qi | ≤ m queries during a

single step (otherwise the attacker won’t even have room to store

all of the responses).

We allow the attacker to specify arbitrary functions F1, F2, F3
and F4 for communication between cache and memory during each

round so long as the specification of each function is independent

of the random oracle H (e.g., we cannot query the random oracle

in between rounds). In particular, the function F1 (σi−1,Ai−1) = r
1

i
is used to specify the first message we will send to memory during

round i — in the event that we don’t send any message to memory

we define F1 (σi−1) = ⊥. Similarly, the function F2(ξi−1, r
1

i) = s1i
specifies the response from memory (or ⊥ if there is no response).

Once r1i , s
1

i , . . . , r
j−1
i , s

j−1
i have been defined we set

r
j
i = F1

(
σi−1,Ai−1, r

1

i , s
1

i , . . . , r
j−1
i , s

j−1
i

)
,

s
j
i = F2

(
ξi−1, r

1

i , s
1

i , . . . , r
j−1
i , s

j−1
i , r

j
i

)
.

We terminate when r
j
i = ⊥ or when s

j
i = ⊥.

We let Ri = {r
1

i , r
2

i , . . . , r
ℓi
i } denote the sequence of messages

sent from cache to memory during round i and we let

Si = {s
1

i , s
2

i , . . . , s
ℓi
i } denote the responses sent from memory

back to the cache. Finally, the round ends when the attacker uses the

function F3 (ξi−1,Ri , Si) = ξi to output a new state ξi for memory

and F4 (σi−1,Ri , Si) to output a new state σi for cache and a new

batch Qi of at mostm random oracle queries. At this point AH (.)

outputs the next state (σi , ξi) along with the next batch of queries

Qi
Crucially, the functions F2 and F3, which are used to generate

response from main memory and update the state of main memory

at the end of the round, do not have access to σi−1 (the state of
cache) orAi−1 (the answers to random oracle queries). In particular,

any information about σi−1 (cache-state) and Ai−1 (most recent

answers to random oracle queries) that main memory receives

must be communicated through one of the messages in the set Ri .
Similarly, the functions F1 and F4 are used to generate the requests

sent from cache to main memory, to update the state of cache σi
at the end of the round and to output the next batch Qi of random

oracle queries. Crucially these functions do not have access to ξi−1
(the state of memory). Thus, any information about ξi−1 must be

communicated through one of the responses in the set Si .
Dziembowski et al. [20] also addresses communication between

two parties, Asmall (e.g., a space-bounded virus) and Abiд , over a
bounded channel. However, both parties in this model can query

the random oracle. This is a crucial difference, since one of the

parties in our model, the main memory, is strictly forbidden from

querying the random oracle to avoid trivialization of the problem

(e.g., the attacker can perform all computation in RAMwith no blue

moves).

Execution Trace. We define the execution trace of the algorithm

AH (.)
by the sequence of cache states, memory states, messages

passed between cache and memory, and queries made to the ran-

dom oracle H . Formally, the execution trace is TraceA,R,H (x) =
{(σi , ξi ,Ri , Si ,Qi)}

t
i=1, where the trace TraceA,R,H (x) is depen-

dent on the algorithm AH (.)
, random oracle H , internal random-

ness R, and input value x . Then we say the cost of the execution

trace is

cost(TraceA,R,H (x)) =
t∑
i=1

©«crki +
ℓi∑
j=1

cb
w

(
|r
j
i | + |s

j
i |
)ª®¬ .

Intuitively, the cr term is the cost of all of the queries we make to

the random oracle H and the cb terms result from the messages

passed between cache and memory — here cb denotes the cost of

transferringw bits between cache and memory.

7

We now formally define the energy cost of computing a function

based on its execution trace.

Definition 3.2. Given constants cb and cr , the energy cost ecost
of a function fG,H is defined by

ecostq,ϵ (fG,H ,m ·w) = min

A,x
E

[
cost(TraceA,R,H (x))

]
,

where the minimum of the expected cost is taken over all valid

inputs x and all algorithms A with cache sizem ·w bits making at

most q queries that compute fG,H (x) correctly with probability at

least ϵ .

3.2 Red-Blue Extension Pebbling
We are now ready to prove our main result in this section. The-

orem 3.3 lower bounds the energy cost ecostq,ϵ (fG,H ,m · w) of
the function fG,H with cache sizem ·w using rbpeb∥(G, 8m) the
red-blue pebbling cost of the DAG G with 8m red pebbles.

Theorem 3.3. For anyDAGG withn nodes and anyAH (.)
mw making

at most q < 2
w/20 queries, then for 4 logn < w ,

ecostq,ϵ
(
fG,H ,m ·w

)
≥

ϵ

16

rbpeb∥ (G, 8m) .

Given a DAG G and a legal black pebbling P = (P1, . . . , Pt) ∈

P ∥(G) with |Pi+1 \ Pi | ≤ m we say that a (legal) red-blue peb-

bling ((B1,R1) , . . . , (Bt ,Rt)) ∈ RB
∥(G,m) is a k-extension of a

black pebbling P if for all i ∈ [t] we can find a small set Ei ⊆
V (G) such that |Ei | ≤ k , Pi ⊆ Bi ∪ Ri and Ri ∪ Bi = Pi ∪ Ei .
We let RBExt(P ,m,k) ⊆ RB ∥ (G,m) denote the set of all possi-

ble k-extensions of P . To prove Theorem 3.3 we extract a legal

black pebbling P = (P1, . . . , Pt) ∈ P
∥(G) from the execution

trace of AH (.)
, and then use P to build a legal extension pebbling

((B1,R1) , . . . , (Bt ,Rt)) ∈ RBExt(P ,m, 7m). Our extension pebbling

may use up to 8m = (m + 7m) red-pebbles, but the pROM attacker

A has a cache sizemw bits — enough to store exactlym labels. We

then show how to upper bound the cost of the extension pebbling

and lower bound the energy cost of of the attackerA in the random

oracle model.

Step 1: Since the ϵ term is needed to account for algorithms

that fail cheaply, we focus on the instances in which A
H (.)
mw cor-

rectly computes fG,H . We start by using A
H (.)
mw to extract a legal

black pebbling following Alwen and Serbinenko [8]. Given an ex-

ecution trace TraceA,R,H (x), the corresponding black pebbling

BlackPebbleH
(
TraceA,R,H (x)

)
= P0, . . . , Pt is defined by setting

P0 = ∅ and the pebbles Pi at each subsequent time step i based on

the corresponding batch of queries qi and the following rules:

• For each query q in batch qi , if the query has the form

v, labH,x (v1), . . . , labH,x (vd) for some vertex v and its par-

ents v1, . . . ,vd , then we add a pebble to node v in Pi .
• If v is never used as input for a query in the remaining

execution or if there exists another query for v before v is

used, then v is deleted from Pi .

Intuitively, at each time j, Pj contains all nodes v whose label

will appear as input to a future random oracle query before the
label appears as the output of a random oracle query. Alwen and

Serbineneko showed that the black pebbling constructed this way

is legal with overwhelming probability.

Theorem 3.4. [8] The pebbling extracted from an execution trace,

BlackPebbleH
(
TraceA,R,H (x)

)
∈ P ∥(G),

is a legal black pebbling with probability at least 1 − q
2
w , wherew is

the label size and q is the number of queries made by TraceA,R,H .

Once our black pebbling has been defined we can define the

set QueryFirst(t1, t2) to be the vertices whose data-labels that will

appear as input to a random oracle query during rounds [t1, t2]
before the data-label appears as the output of some random oracle

query made during the same interval. Formally, given P and an

interval [t1, t2] we let

QueryFirst(t1, t2) =
t2⋃
i=t1

©«parents (Pi \ Pi−1) \ ©«
i−1⋃
j=t1

(
Pj \ Pj−1

)ª®¬ª®¬ .
We present a few properties about QueryFirst that we will use

in the rest of the proof.

Lemma 3.5. ∀0 ≤ x < y < z ≤ t ,

QueryFirst(y, z) \QueryFirst(x , z) ⊆
y⋃
i=x
(Pi \ Pi−1).

By definition, any node in the setQueryFirst(y, z) but not in the

set QueryFirst(x , z) for y > x must appear as input to a random

oracle query during rounds [x ,y]. Hence, the left-hand side is a

subset of the nodes that are newly pebbled between rounds [x ,y].
Step 2: We partition the pebbling rounds [t] into sub time-

intervals (t0 = 0, t1], (t1, t2], . . . recursively as follows. Let t1 be

the minimum pebbling round such that there exists j < t1 such that

|QueryFirst(j, t1)| ≥ 3m. As a special case, if |QueryFirst(i, j)| ≤
3m for all i < j ≤ t (i.e., no such intervals exist), then set t1 = t and
output (t0, t1]. In this case, there is a red-blue extension pebbling in

RBExt(P , 8m,k) that requires 0 blue moves at at most

∑
i |Pi \ Pi−1 |

red-moves.

Once t1 < . . . < ti−1 have been defined we inductively define

ti > ti−1 to be the minimum round such that there exists ti−1 ≤
j < ti such that |QueryFirst(j, ti)| ≥ 3m — if no such ti exists then
we set ti = t .

Step 3: We will show that there is an extension pebbling that

makes at most 4m blue moves during each interval (except for

the first one where it needs 0). In particular, we set k = 7m and

we will define an extension pebbling (B∗,R∗) ∈ RBExt(P , 8m,k)
by dividing the cache into two sets of size 4m denoted as Rinteri
and R

legal
i , respectively. We will show that Ri = R

legal
i ∪ Rinteri and

Bi ⊃ Pi give a legal red-blue pebbling and then bound its cost.

We set Rinterti = {} at the start of each time interval (ti , ti+1] and

for each j ∈ (ti , ti+1] we have

Rinterj =
(
Rinterj−1 ∪ (Pj \ Pj−1)

)
∩QueryFirst(j, ti+1).

Intuitively, Rinterj stores all of the red-pebbles we have computed

during the interval (ti , j] that are later needed in the interval [j +
1, ti+1). Thus, any node that is pebbled during rounds (ti , j] and
subsequently needed in round (j + 1, ti+1) must be in Rinterj , which

we will keep in cache. This yields the following invariant.

8

Invariant 1. For any j ∈ (ti , ti+1),

QueryFirst(j + 1, ti+1) ∩
j⋃

i=ti

(Pi \ Pi−1) ⊆ Rinterj

To maintain legality across all time steps, we add a few rules

about blue moves:

(1) We convert a pebbled node v from blue to red if node v is in

QueryFirst(ti , ti+1). That is for any j ∈ [ti , ti+1), we define

R
legal
j =QueryFirst(ti , ti+1).

(2) We convert a pebbled node v ∈ Rj from red to blue at time

j if node v is in QueryFirst(ti , ti+1) for some later interval

(ti , ti+1) with j < ti and if v < Bj is not already stored in

memory. In this case it will be helpful to “charge” the cost

cb of this blue move to the future interval (ti , ti+1).

We show the following bound on the size of QueryFirst(j, ti+1).

Lemma 3.6. ∀j ∈ (ti , ti+1), |QueryFirst(j, ti+1)| ≤ 4m.

Proof. By the definition of QueryFirst, QueryFirst(j, ti+1) ⊆
QueryFirst(j, ti+1−1)∪parents

(
Pti+1 \ Pti+1−1

)
. Due to our choice

of ti+1,QueryFirst(j, ti+1−1) ≤ 3m. Since parallelism is bounded by

cache size, parents
(
Pti+1 \ Pti+1−1

)
≤ m. The lemma then follows.

�

Lemma 3.7. {Ri } = {R
legal
i ∪ Rinteri } is a legal pebbling.

Proof. First observe parents(Pj+1 \ Pj) ⊆ QueryFirst(j, ti+1).
We now prove QueryFirst(j, ti+1) ⊆ Rj . Note that any node in

QueryFirst(j, ti+1) must either be in QueryFirst(ti , ti+1) or have
been pebbled at some point during time steps (ti , j). In the former

case, the node would be in R
legal
j , and in the latter case, the node

would be in Rinterj . Thus, parents(Pj+1 \Pj) ⊆QueryFirst(j, ti+1) ⊂
Rj , and the pebbling is legal. �

Lemma 3.8.

���Rinterj

��� ≤ 4m.

Proof. Observe that Rinterj ⊆ QueryFirst(j + 1, ti+1) since el-

ements are only kept in Rinterj if they are needed for some later

pebbling round. |QueryFirst(j + 1, ti+1)| ≤ 4m by Lemma 3.6. �

Also note that |R
legal
ti | = |QueryFirst(ti , ti+1)| ≤ 4m. So the

extension red-blue pebbling we constructed stores at most 8m labels

in cache at any time.

We now bound the cost of the above extension pebbling. Since

we never discard necessary red pebbles from Rinterti , the only cache-

misses we incur come from R
legal
ti , at most 4m. We “charge” double

for every cache-miss to account for the previous blue move that

initially placed a blue pebble on a node. This way, we can also charge

the cost of placing new blue pebbles to future rounds. Therefore,

the above extension pebbling has cost at most

8mcb +
∑

j ∈(ti ,ti+1]

cr
��Pj \ Pj−1�� .

Step 4: To complete the proof, we show that during each in-

terval any algorithm A must pay red-blue cost at least mcb +

∑
j ∈(ti ,ti+1] cr

��Pj \ Pj−1��. Roughly speaking, we will set up an ex-

tractor that extracts 3m random oracle labels (i.e., 3mw truly ran-

dom bits) by simulating A during this time interval. The extractor

needs a hint of size mw + w(#wordsi) where #wordsi is the to-

tal amount of data A transfers to/from cache. If #wordsi ≤ m
then we will arrive at a contradiction as we compressed a random

string of length 3mw — contradicting Lemma 3.1. Thus, A must

pay blue cost at leastmcb during each interval, and by construc-

tion of P = BlackPebbleH
(
TraceA,R,H (x)

)
the red cost is at least∑

j ∈(ti ,ti+1] cr
��Pj \ Pj−1��. We detail this step in the next section.

3.3 Extractor
We now show that if an attacking strategy does not yield a corre-

sponding legal red-blue pebbling, then it can be modified to form

an extractor for the labels of a subset of nodes. That is, an extractor

with access to the attacking strategy, the state of the cache, and a

few select hints can successfully predict a large number of random

bits, contradicting Lemma 3.1. The hints we give the extractor will

dictate the location of the random bits, and ensure these bits remain

“random” (that is, not queried by the extractor). Figure 1 illustrates

this setup. In particular, the extractor will use a hint to simulate

AH (.)
but this hint does not include the current state of memory

ξi . Instead, the hint will encode the messages that the attacker ex-

pects to receive from main memory which allows us to simulate
the attacker without storing the entire (large) state ξi .

AttackerA

Cache: σi

H (·)

M
e
m
o
r
y
:
ξ i

−→

AttackerA

Cache: σi

H
i
n
t
:
σ
i,

.
.
.

RO Pairs:

(x, H (x))
Extractor

H (·)

Fig. 1: Using the attacker to create an extractor that tries to
predict 3m distinct outputs of random oracle H (·).

Lemma 3.9. Given a randomly sampled execution trace

TraceA,R,H (x) = {(σi , ξi ,Ri , Si ,Qi)}
t
i=1,

let BlackPebbleH (TraceA,R,H (x)) be the extracted black pebbling
and (ti , ti+1) be defined as above. If q < 2

w/20 and 4 logn < w , then
with probability at least 1 − 2

2
w/2 , the following holds for all i :

ti+1∑
i=ti

©«crki +
ℓi∑
j=1

cb
w

(
|r
j
i | + |s

j
i |
)ª®¬ ≥ m,

where q is the total number of random oracle queries made in the
execution trace, n is the number of nodes in the underlying DAG, and
the probability is taken over the random coins of A and the selection
of the random oracle H .

Proof. Suppose, byway of contradiction, that for interval (ti , ti+1),
an attacker transfers less thanmw bits between cache and memory.

We define an extractor that can predict 3m labels given access to

9

the attacker’s algorithm, the random oracle, and a small set of hints

to help the extractor. Recall that

labH,x (v) = H
(
v, labH,x (v1), . . . , labH,x (vd)

)
for all nodes after the first node. Thus for nodes y , z, the values
of labH,x (y) and labH,x (z) correspond to different inputs to H .

That is, there are no input collisions and so the adversary must

separately determine the hash outputs for each of the 3m inputs,

which correspond to 3mw truly random bits in total.

The hint given to help the extractor consists of five components:

(1) The setQueryFirst(ti , ti+1) is given as a hint to denote the

indices that form the string that the extractor will ultimately

predict. Since |QueryFirst(ti , ti+1)| ≤ 4m, this component

of the hint is at most 4m logn bits.

(2) For eachv ∈QueryFirst(ti , ti+1), the index of the first query
that appears in which lab(v) is needed as input. This compo-

nent of the hint tells the extractor the queries that require the

prediction of random strings, and has size at most 4m logq
bits, where q is the total number of queries made by the

attacker.

(3) For eachv ∈QueryFirst(ti , ti+1), the index of the first query
when lab(v) might be compromised. Observe that if the ex-

tractor successfully predicts a random string at a location v ,
but then lab(v) is later queried by the attacker, we cannot

distinguish this case at the end from the case that the extrac-

tor simply read lab(v) after making the query. In the later

case, the extractor is not predicting a random string at all!

To avoid this, we give the extractor a hint of the queries that

would compromise the randomness of the desired locations.

Formally, the hint is the minimal index i such that q
j
i = v ,

which returns the query H (q
j
i) = lab(v). This component

of the hint tells the extractor the locations of the random

strings to be predicted, and has size at most 4m logq bits.

(4) The cache state at ti is given as a hint to the extractor to

simulate the attacker beginning at time step ti . Since the

cache has sizem, each containing w-bit words, the size of

this component of the hint is at mostmw bits.

(5) Messages between the cache and memory during time steps

(ti , ti+1) are also given as a hint to the extractor to simulate

the attacker beginning at time step ti . By assumption, the

attacker transfers less thanmw bits between cache and mem-

ory, so the size of this component of the hint is at mostmw
bits in total.

Since q < 2
w/20

and 4 logn < w , then the total size, in bits, of the

hint is at most

4m logn + 4m logq + 4m logq +mw +mw ≤
13

5

mw .

However, |QueryFirst(ti , ti+1)| ≥ 3m, so the extractor must suc-

cessfully predict the output of 3m hash outputs, each of size w ,

given a hint of size at most
13

5
mw bits. Thus, the extractor must

predict 3mw − 13

5
mw = 2

5
mw random bits. The probability that the

extractor predicts
2

5
mw random bits is 2

−2mw/5
, so the probability

that the extractor does not predict
2

5
mw random bits over any set

of time intervals (ti , ti+1) is at least 1 −
n2

2
2mw/5 > 1 − 1

2
mw/5 , for

sufficiently largem, by a union bound over the intervals. Since the

probability that the execution does not yield a legal black pebbling

is
q
2
w by Theorem 3.4, then the probability that an attacker must

transfermw bits between cache and memory for each time interval

(ti , ti+1) is at least 1 −
1

2
mw/5 −

q
2
w > 1 − 2

2
w/2 . �

We now justify the correctness of Theorem 3.3.

Proof of Theorem 3.3: Recall that ecostq,ϵ (fG,H ,m ·w) is taken
over algorithms that compute fG,H (x) correctly with probability

at least ϵ . Thus, ecostq,ϵ (fG,H ,m · w) is at least ϵ times the ex-

pected cost of an execution trace that correctly computes fG,H (x).
Lemma 3.9 implies that an execution trace that correctly computes

fG,H (x)must transfer at leastm words between memory and cache

for each interval (ti , ti+1) with probability at least

(
1 − 2

2
w/2

)
> 1

2
.

Recall that by construction, the red-cost for each interval is at least∑
j ∈(ti ,ti+1] cr

��Pj \ Pj−1��. Therefore with probability at least
1

2
, the

energy cost of an execution trace that correctly computes fG,H (x)

is at leastmcb +
∑
j ∈(ti ,ti+1] cr

��Pj \ Pj−1�� for each interval (ti , ti+1].
On the other hand, recall that

rbpeb∥
(
B∗,R∗

)
≤

∑
i

©«8mcb +
∑

j ∈(ti ,ti+1]

cr
��Pj \ Pj−1��ª®¬ .

Hence,

ecostq,ϵ (fG,H ,m ·w) >
ϵ

16

rbpeb∥
(
B∗,R∗

)
.

✷

4 RELATING MEMORY HARDNESS AND
BANDWIDTH HARDNESS

In this section, we show that any function with high cumulative

memory complexity also has high energy costs. Namely,

Reminder of Theorem 1.2.

rbpeb∥(G,m) ≥ 2cb

(
Πcc (G)

t
− 2m

)
+cr t ∈ Ω

(√
cb · cr · Πcc (G)

)
,

wherem is the cache size, t is the number of steps in the pebbling, cb
is the cost of a blue move and cr is the cost of a red move.

We also show that this connection can be exploited to design a

maximally bandwidth hard iMHF. Thus, the goals of designing an

MHF with high cumulative memory complexity/bandwidth hard-

ness are well aligned.

Lemma 4.1. rbpeb∥(G,m) ≥ mint

(
2cb

(
Π∥cc (G)

t −m

)
, tcr

)
.

Proof. For any red-blue pebbling P of DAG G, let Ri be the set
of red pebbles at time step i and let Bi be the set of blue pebbles at
time step i . Setting Di = Bi ∪ Ri we remark that (D1, . . . ,Dt) is a

valid black pebbling of G. Thus, by the optimality of Π
∥
cc (G),

Π
∥
cc (G) ≤

t∑
i=1
|Ri ∪ Bi | ≤

t∑
i=1
|Ri | +

t∑
i=1
|Bi | ≤ t max |Bi | + tm

Rearranging terms we have

max

i
|Bi | ≥

Π
∥
cc (G)

t
−m .

10

In the optimal red-blue pebbling, each blue pebble must eventu-

ally be converted back to a red pebble, or else it should be discarded.

Additionally, without loss of generality, we can assume that during

each step we make at least one red move. Otherwise, we could

combine consecutive steps into one single step. Thus,

rbpeb∥(G,m) ≥ 2

��∪ti=1Bi �� cb + tcr
≥ 2max

i
|Bi |cb + tcr

≥ 2

(
Π
∥
cc (G)

t
−m

)
cb + tcr

≥ min

t

(
2

(
Π
∥
cc (G)

t
−m

)
cb , tcr

)
�

Corollary 4.2. For an (e,d)-depth robust graph G,

rbpeb∥(G,m) ≥ min

t

(
2

(
ed

t
−m

)
cb , tcr

)
.

Proof. An (e,d)-depth robust DAG G has ed ≤ Π
∥
cc (G) [5]. �

We show that there exists a similar relationship between sequen-

tial black pebbling cost and sequential red-blue pebbling cost.

Theorem 4.3.

rbpeb(G) ≥ 2cb

(
Πcc (G)

t
−m

)
+ cr t ,

wherem is the cache size, t is the number of steps in the pebbling, cb
is the cost of a blue move and cr is the cost of a red move.

Proof. Given a sequential black pebbling P1, . . . , Pt ofG , let Bi
be the set of blue pebbles at time step i . Then

max

i
|Bi | ≥ max

i
(|Pi | −m) ≥

(
Πcc (G)

t
−m

)
,

where the last step results from a simple averaging argument over

all t steps. Finally, each item in Bi requires cost cb to load into

cache and another cost cb to be stored in memory (if the item is not

ever retrieved from memory, it would not be in Bi for an optimal

pebbling). �

Theorem 1.2 can also be related to parallel pebbling through the

following lemma:

Lemma 4.4. rbpeb(G, 2m) ≤ rbpeb∥(G,m) ≤ rbpeb(G,m).

Proof. rbpeb∥(G,m) ≤ rbpeb(G,m) follows immediately from

definition.
7
Now consider rbpeb(G, 2m) and rbpeb∥(G,m). Any par-

allel pebbling with cache sizem can be performed by a sequential

pebbling with cache size 2m. Note that at any step, a parallel peb-

bling with cache size m can have at most m labels stored and m
new pebbles placed in each step. Thus, a sequential pebbling with

7
To see that rbpeb∥ (G,m) and rbpeb(G,m) are not identically equivalent quantities,

consider the complete directed bipartite graph Km,m withm sources A andm sink

nodes B(m is also the cache size). In the parallel model we can finish in two steps

with zero blue moves: R0 = ∅, R1 = A, R2 = B . In the sequential pebble game we

would have to keep pebbles on A while we begin placing pebbles on B one by one.

Each time we place a red-pebble on a node y ∈ B we need to evict some node x ∈ A
by converting x into a blue node (and then bring it back into the cache-later).

cache size 2m can emulate this by retaining the stored labels while

adding the new pebbles one by one. �

Combining Theorem 4.3 and Lemma 4.4 yields Theorem 1.2.

Alwen and Blocki [2] show Π
∥
cc (G) = O

(
n2

log logn
logn

)
for any

graph G with constant indegree. Moreover, there exists a family

of DAGs {Gn }
∞
n=1 with constant indegree with Πcc (Gn) ∈ Ω(n2)

[7, 31].

We now show a relationship similar to Theorem 1.2 between the

energy cost and cumulative memory cost [8] of an execution trace,

where the cumulative memory cost of an execution trace is defined

as:

cmc(TraceA,R,H (x)) =
∑
|αi |,

where αi encodes the state of the attacker at round i . Similarly,

cmcq,ϵ (fG,H) = minA,R,x cmc(TraceA,R,H (x)) where the mini-

mum is taken over all A making at most q random oracle queries

that compute fG,H correctly with probability at least ϵ . While there

is no notion of a cache in their pROM model, we could trivially set

αi = (σi , ξi). We note that for ecostq,ϵ
(
fG,H

)
minimum is taken

over all A making at most q random oracle queries that compute

fG,H correctly with probability at least ϵ and having cache size at
mostmw bits, which means that the set of attackers we consider

is even more restrictive. We emphasize that A can be an arbitrary

pROM algorithm, so that the following result also applies to dMHFs

such as scrypt.

Theorem 4.5. For any execution trace TraceA,R,H (x) of an algo-
rithm A with cache sizemw bits

ecost(TraceA,R,H (x)) ≥
(
cmc(TraceA,R,H (x))

tw
−m

)
cb + tcr ,

wherem is the cache size, t is the number of steps, cb is the cost of a
blue move and cr is the cost of a red move.

Proof. Recall that the energy cost of an execution trace

TraceA,R,H (x) = {(σi , ξi ,Ri , Si ,Qi)}
t
i=1 is defined as

ecost(TraceA,R,H (x)) =
t∑
i=1

(
cr |Qi | +

cb
w
(|Ri | + |Si |)

)
≥ max

i

|ξi |

w
cb + tcr ≥

(
cmc(TraceA,R,H (x))

tw
−m

)
cb + tcr

The second step above follows from the observation that for all

j we have
��ξ j �� ≤ ∑j

i=1 (|Ri | + |Si |), and the third step follows from

the observation that

cmc(TraceA,R,H (x)) −mtw =
t∑
i=1
(|σ | + |ξ |) −mtw ≤ t max

i
|ξi | .

�

In particular, by minimizing over all t it follows that for any trace
TraceA,R,H (x) we have

ecost(TraceA,R,H (x)) ∈ Ω

(√
cmc(TraceA,R,H (x)) · cb · cr

w
−mcb

)
Since Alwen et al. [6] show that cmcq,ϵ (scrypt) ∈ Ω(ϵn2 ·w) for
any q > 0 and ϵ > 2

−w/2 + 2−n/20+1 it follows that

11

Corollary 4.6. For any q > 0 and ϵ > 2
−w/2 + 2−n/20+1,

ecostq,ϵ (scrypt) ∈ Ω
(
n
√
cb · cr

)
.

5 BANDWIDTH HARDNESS OF CANDIDATE
IMHFS

In this section, we provide lower bounds on the bandwidth hardness

on the family of graphs generated by Argon2i [11], aATSample, and
DRSample [4]. Given a DAG G = ([n],E), a target set T ⊂ [n] and

red/blue subsetsB,R ⊆ [n]with |R | ≤ mwe let rbpeb∥(G,m,T ,B,R)
denote the red-blue cost to place red pebbles on a target set T start-

ing from an initial red-blue pebbling configuration B,R.

5.1 Analysis Framework
We follow a similar strategy for each candidate construction by

defining a target setTi = ((i−1)cℓ, icℓ], and analyzing the structure
of the DAG to lower bound the following quantity for that DAG:

min

R,B′⊆[(i−1)cℓ]: |R | ≤m

(��B′�� cb + |ancestorsG−R−B′(Ti)| cr)
We show in Theorem 5.2 that this quantity suffices to lower bound

the bandwidth hardness.

Lemma 5.1. ∀T ,B,R ⊆ [n] such that |R | ≤ m we have

rbpeb∥(G,m,T ,B,R) ≥ min

B′⊆B

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ,
where cb is the cost of a blue move and cr is the cost of a red move.

Proof. Let P = (B0,R0) , (B1,R1) . . . , (Bt ,Rt) denote a legal red-
blue pebbling sequence given starting configuration B0 = {v ∈
B : ∃j ≤ t .v ∈ Rj } (e.g., B0 is the subset of all blue pebbles in B
that we will use at some point during the pebbling) and R0 = R. By
construction of B0 the pebbling contains at least B0 blue moves at

cost |B0 | cb . Similarly, we remark that we must place a red-pebble

on all of the nodes in ancestorsG−R−B′(T) at some point. Thus, we

have at least |ancestorsG−R−B′(T)| cr red-moves. It follows that

rbpeb∥(G,m,T ,B,R) ≥ min

B′⊆B

(��B′�� cb + |ancestorsG−R−B′(T)| cr) .
�

Theorem 5.2. LetG = ([n],E) be any DAG such that (i, i + 1) ∈ E
for each i < n, let c be a positive integer and Ti = ((i − 1)cℓ + 1, icℓ],

rbpeb∥(G,m) ≥
⌊ ncℓ ⌋∑
i=1

min

R,B′⊆[(i−1)cℓ]: |R | ≤m(��B′�� cb + |ancestorsG−R−B′(Ti)| cr) .
To prove Theorem 5.2, consider an optimal red-blue pebbling

and let ti denote the first time we place a pebble on node icℓ. For
each i , we use Lemma 5.1 to lower bound the red-blue cost incurred

between steps ti−1 + 1 and ti . See Appendix A for more details.

As expected, if m = n then we have red-blue cost at most

rbpeb∥(G,m) ≤ ncr for any graph G . Thus, we require some upper

bound onm to establish lower-bounds for red-blue pebbling cost.

5.2 Underlying DAGs
We now describe each of the underlying DAGs whose energy com-

plexity we analyze.

The underlying graph for Argon2iB [12] has a directed path of

length n nodes. Each node i has parents i − 1 and r (i) = i
(
1 − x 2

N 2

)
,

where N ≫ n (in the implementation of N = 2
32
) and x is chosen

uniformly at random from [N]. See Algorithm 3 in Appendix C for

a more formal description.

While Argon2iA (v1.1) is an outdated version of the password

hash function it is still worthwhile to study for several reasons.

First, the uniform edge distribution is a natural one which has been

adopted by other iMHF constructions [17]. Second, it is possible

that this older version of Argon2i may have seen some adoption.

Each node i in Argon2iA has two parents: i−1 and r (i) = i
(
1 − x

N
)
,

where N = 2
32

and x is chosen uniformly at random from [N].
Thus, the parents in Argon2iA are slightly less biased towards

closer nodes than in Argon2iB. See Algorithm 4 in Appendix C for

a more formal description.

DRSample is a family of graphs Gn with Π
∥
cc (G) ∈ Ω

(
n2

logn

)
with high probability for any G ∈ Gn . Like Argon2i and Argon2iB,

the underlying graph for DRSample has a directed path of length n
nodes. Each node i has parents i−1 and r (i), but the distribution for

r (i) differs greatly from Argon2i and Argon2iB. Roughly speaking,

DRSample samples an index j uniformly at random from [1, log i],
an index k uniformly at random from [1, 2j], and sets r (i) = i − k .
See Algorithm 1 in Appendix C for a more formal description.

A close relative to DRSample, aATSample [4] is also a family of

graphs Gn with Π
∥
cc (G) ∈ Ω

(
n2

logn

)
with high probability for any

G ∈ Gn . aATSample modifies DRSample by appending another

directed path with n nodes that strategically connects to the first

half of the graph so that the resulting computational complexity is

high. See Algorithm 2 in Appendix C for a more formal description.

5.3 Argon2iB
Let G be a graph generated by Argon2iB and Gk be the metagraph

with
n
k nodes, so that each meta-node in Gk represents k nodes in

G. Again, we connect two meta-nodes i < j in Gk if there exists a

node in the last k/3 nodes of i to a node in the first k/3 nodes of j.
Then Gk has the following property:

Lemma 5.3. [15] For any two meta-nodes x < y of Gk , the last
third of x is connected to the first third of y with probability at least

k
√
k

k
√
k+36
√
n(y−x+1)

.

Lemma 5.4. Suppose there exists a C > 0 and 0 < ϵ < 2/3 so that
m = Cn

2

3
−ϵ . Let i > n

2
and let T = [i, i + ℓ − 1] be an interval of

length ℓ = O
(
n

2

3
−ϵ

)
. Then a graph generated by Argon2iB satisfies

the following with high probability:

min

R,B′⊆[i−1]: |R | ≤m

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω(n

1

3
−ϵ)cb ,Ω(n)cr

)
.

Proof. Consider the metagraphGk with
n
k nodes for some con-

stant k that we shall define. Let B be the set of nodes inG that have

12

a blue pebble at some point, and let Bm be the set of meta-nodes

that contain some node in B. Partition the second half of graph

G into intervals of size ℓ = n
k : [i, i + ℓ − 1]. By Lemma 5.3, there

exists a constant α such that for k = αn
2

3
+ϵ

, the meta-nodes in

[i, i + ℓ − 1] are connected to Ω
(
n
k

)
meta-nodes in Gk with high

probability. Thus, pebbling the interval [i, i + ℓ − 1] requires peb-
bling at least βn/k −m − |Bk | meta-nodes inGk for some constant

β . Noting that m = O
(
n

2

3
−ϵ

)
and that the middle k/3 nodes of

a meta-node must be pebbled for two meta-nodes that are con-

nected in Gk , it follows that at least
(
c1n
k − |Bk |

)
k
3
= Ω(n) nodes

must be pebbled. Thus, the cost of pebbling [i, i + ℓ − 1] is at least
min(Ω(n/k)cb ,Ω(n)cr). �

Reminder of Theorem 1.5. Let G be a graph generated by Ar-
gon2iB. Then there exists a constantC > 0 so that for any 0 < ϵ < 2/3

and for allm ≤ Cn
2

3
−ϵ , with high probability,

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n
5/3)cr).

Proof of Theorem 1.5: Applying Lemma 5.4 to each of the dis-

joint
n
ℓ = k = O

(
n

2

3
+ϵ

)
intervals in the second half of graph G,

the theorem follows from Theorem 5.2. ✷

5.4 DRSample
A DRSample graph can be viewed as a metagraph Gb with Ω(n/b)
meta-nodesMi . Recall that we connect two meta-nodes i < j inGb
if there exists a node in the last b/3 nodes of i to a node in the first

b/3 nodes of j.

Lemma 5.5. Suppose m = O (nρ) for some constant 0 < ρ < 1

and i > n
2
. Let T = [i, i + ℓ − 1] be an interval of length ℓ = O (nρ).

Then a graph generated by DRSample satisfies the following with
high probability:

min

R⊆[i−1]: |R | ≤m
min

B′⊆[i−1]

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω(nρ)cb ,Ω(n

1/2+ρ/2)cr
)
.

Using Lemma 5.5, whose proof appears in Appendix A.2, we

have:

Reminder of Theorem1.4. LetG be a graph generated byDRSample

and 0 < ρ < 1. Then there exists a constant C > 0 so that for all
m ≤ Cnρ , with high probability,

rbpeb∥(G,m) ≥ min

(
Ω(n)cb ,Ω(n

3/2−ρ/2)cr
)
.

Proof of Theorem 1.4: Applying Lemma 5.5 to each of the dis-

joint
n
ℓ intervals in the second half of graph G and observing that

ℓ = O (nρ), it follows from Theorem 5.2 that

rbpeb∥(G,m) ≥ min

(
Ω(n)cb ,Ω(n

3/2−ρ/2)cr
)
.

✷

We also give a stronger bound for DRSample when the cache

has size O (nρ/logn) for any 0 < ρ < 1 in Appendix A.2.

5.5 aATSample
Alwen et al. showed the first half of the nodes of aATSample is a
(e,d,b)-block depth robust graph with e = Ω(n/logn), d = Ω(n)
and b = Ω(logn) [4]. This graph can be viewed as a metagraph Gk
with Ω(n/b) meta-nodes Mi . Recall we connect two meta-nodes

i < j inGk if there exists a node in the last k/3 nodes of i connected
to a node in the first k/3 nodes of j . The second half of the nodes of
aATSample is a chain of n/2 nodes so that parents([v,v + ℓ − 1])
contains some node in the last k/3 nodes ofMi for each meta-node

Mi and each interval [v,v + ℓ − 1] of length ℓ = Ω(n/b) in the

second half of the graph. To move a pebble from node v to node

v + ℓ − 1, either the starting configuration must have at least e/2
pebbles on the graph, or a significant fraction of the block depth

robust graph in the first half of the graph must be re-pebbled.

Lemma 5.6. Let i > n
2
andT = [i, i+ℓ−1] be an interval of length

ℓ = n
logn . Then there exists a constant C > 0 so that form ≤ Cn

logn ,
a graph generated by aATSample satisfies the following with high
probability:

min

R,B′⊆[i−1]: |R | ≤m

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω

(
n

logn

)
cb ,Ω(n)cr

)
.

We now use Lemma 5.6, whose proof appears in Appendix A.1.

Reminder of Theorem1.3. LetG be a graph generated by aATSample.

Then there exists a constant C > 0 so that for allm ≤ Cn
logn ,

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n logn)cr),

holds with high probability.

Proof of Theorem 1.3: Applying Lemma 5.6 to each of the dis-

joint logn intervals in the second half of graph G, the theorem

follows from Theorem 5.2. ✷

ACKNOWLEDGEMENTS
The authors would like to thank DanielWichs for helpful discussion

and anonymous reviewers for important comments that improved

the presentation of the paper.

REFERENCES
[1] Martín Abadi, Michael Burrows, Mark S. Manasse, and Ted Wobber. 2005. Mod-

erately hard, memory-bound functions. ACM Trans. Internet Techn. 5, 2 (2005),
299–327.

[2] Joël Alwen and Jeremiah Blocki. 2016. Efficiently Computing Data-Independent

Memory-Hard Functions. In CRYPTO 2016, Part II (LNCS), Matthew Robshaw

and Jonathan Katz (Eds.), Vol. 9815. Springer, Heidelberg, 241–271. https://doi.

org/10.1007/978-3-662-53008-5_9

[3] Joël Alwen and Jeremiah Blocki. 2017. Towards practical attacks on argon2i

and balloon hashing. In Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on. IEEE, 142–157.

[4] Joël Alwen, Jeremiah Blocki, and Ben Harsha. 2017. Practical Graphs for Optimal

Side-Channel Resistant Memory-Hard Functions. In ACM CCS 17, Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press,

1001–1017.

[5] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. 2017. Depth-Robust Graphs

and Their Cumulative Memory Complexity. In EUROCRYPT 2017, Part III (LNCS),
Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10212. Springer, Hei-

delberg, 3–32.

[6] Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.

2017. Scrypt Is Maximally Memory-Hard. In EUROCRYPT 2017, Part III (LNCS),
Jean-Sébastien Coron and Jesper Buus Nielsen (Eds.), Vol. 10212. Springer, Hei-

delberg, 33–62.

13

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1007/978-3-662-53008-5_9

[7] Joël Alwen, Susanna F. de Rezende, Jakob NordstrÃűm, and Marc Vinyals. 2016.

Cumulative Space in Black-White Pebbling and Resolution. In Proceedings of
the 2016 ACM Conference on Innovations in Theoretical Computer Science, 9-11
January 2017, Berkeley, California USA.

[8] Joël Alwen and Vladimir Serbinenko. 2015. High Parallel Complexity Graphs

and Memory-Hard Functions. In 47th ACM STOC, Rocco A. Servedio and Ronitt

Rubinfeld (Eds.). ACM Press, 595–603.

[9] Adam Back. 2002. Hashcash-a denial of service counter-measure.

[10] Daniel J. Bernstein. 2005. Cache-Timing Attacks on AES.

[11] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2015. Fast and Tradeoff-

Resilient Memory-Hard Functions for Cryptocurrencies and Password Hashing.

IACR Cryptology ePrint Archive 2015 (2015), 430. http://eprint.iacr.org/2015/430

[12] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. 2016. Argon2: NewGener-

ation of Memory-Hard Functions for Password Hashing and Other Applications.

In IEEE European Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken,
Germany, March 21-24, 2016. 292–302. https://doi.org/10.1109/EuroSP.2016.31

[13] Alex Biryukov, Daniel Dinu, Dmitry Khovratovich, and Simon Josefsson. 2016.

The memory-hard Argon2 password hash and proof-of-work function.

[14] Jeremiah Blocki, Ben Harsha, and Samson Zhou. 2018. On the Economics of

Offline Password Cracking. In IEEE Symposium on Security and Privacy, SP. 35–53.
[15] Jeremiah Blocki and Samson Zhou. 2017. On the Depth-Robustness and Cumula-

tive Pebbling Cost of Argon2i. In TCC 2017, Part I (LNCS), Yael Kalai and Leonid

Reyzin (Eds.), Vol. 10677. Springer, Heidelberg, 445–465.

[16] Jeremiah Blocki and Samson Zhou. 2018. On the Computational Complexity of

Minimal Cumulative Cost Graph Pebbling. Financial Cryptography and Data
Security, 22nd International Conference, FC (2018). (to appear).

[17] Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. 2016. Balloon

Hashing: A Memory-Hard Function Providing Provable Protection Against

Sequential Attacks. In ASIACRYPT 2016, Part I (LNCS), Jung Hee Cheon and

Tsuyoshi Takagi (Eds.), Vol. 10031. Springer, Heidelberg, 220–248. https:

//doi.org/10.1007/978-3-662-53887-6_8

[18] Erik D. Demaine and Quanquan C. Liu. 2017. Inapproximability of the Standard

Pebble Game and Hard to Pebble Graphs. In Algorithms and Data Structures - 15th
International Symposium, WADS 2017, St. John’s, NL, Canada, July 31 - August 2,
2017, Proceedings. 313–324.

[19] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk

Mail. In Advances in Cryptology - CRYPTO, 12th Annual International Cryptology
Conference, Proceedings. 139–147.

[20] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. 2011. Key-Evolution

Schemes Resilient to Space-Bounded Leakage. In Advances in Cryptology -
CRYPTO - 31st Annual Cryptology Conference, Proceedings. 335–353.

[21] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. 2011. One-Time Com-

putable Self-erasing Functions. In Theory of Cryptography - 8th Theory of Cryp-
tography Conference, TCC Proceedings. 125–143.

[22] Christian Forler, Stefan Lucks, and Jakob Wenzel. 2013. Catena: A Memory-

Consuming Password Scrambler. Cryptology ePrint Archive, Report 2013/525.

http://eprint.iacr.org/2013/525.

[23] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. 1979. The Pebbling

Problem is Complete in Polynomial Space. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing (STOC). 237–248.

[24] Jia-Wei Hong and H. T. Kung. 1981. I/O Complexity: The Red-Blue Pebble Game.

In Proceedings of the 13th Annual ACM Symposium on Theory of Computing, May
11-13, 1981, Milwaukee, Wisconsin, USA. 326–333.

[25] Thomas Lengauer and Robert E. Tarjan. 1982. Asymptotically Tight Bounds on

Time-space Trade-offs in a Pebble Game. J. ACM 29, 4 (Oct. 1982), 1087–1130.

https://doi.org/10.1145/322344.322354

[26] Quanquan Liu. 2017. Red-Blue and Standard Pebble Games: Complexity and
Applications in the Sequential and Parallel Models. Master’s thesis. Massachusetts

Institute of Technology. http://erikdemaine.org/theses/qliuM.pdf

[27] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.

[28] Colin Percival. 2009. Stronger key derivation via sequential memory-hard func-

tions. BSDCan (2009).

[29] PHC 2013–2015. Password Hashing Competition. https://password-hashing.net/

[30] Ling Ren and Srinivas Devadas. 2017. Bandwidth Hard Functions for ASIC

Resistance. In TCC 2017, Part I (LNCS), Yael Kalai and Leonid Reyzin (Eds.),

Vol. 10677. Springer, Heidelberg, 466–492.

[31] Georg Schnitger. 1983. On Depth-Reduction and Grates. In 24th Annual Sympo-
sium on Foundations of Computer Science. 323–328.

A MISSING PROOFS
Reminder of Theorem 5.2. Let G = ([n],E) be any DAG such

that (i, i + 1) ∈ E for each i < n, let c be a positive integer and

Ti = ((i − 1)cℓ + 1, icℓ],

rbpeb∥(G,m) ≥
⌊ ncℓ ⌋∑
i=1

min

R,B′⊆[(i−1)cℓ]: |R | ≤m(��B′�� cb + |ancestorsG−R−B′(Ti)| cr) .
Proof of Theorem 5.2: (Sketch) Repeatedly invoke the previous

lemma. Consider an optimal red-blue pebbling and let ti denote the
first time we place a pebble on node icℓ. For each i the red-blue cost
incurred between steps ti−1 + 1 and ti starting from some red-blue

configuration Bti−1 ,Rti−1 is at least

rbpeb∥(G,m,Ti ,Bti−1 ,Rti−1)

≥ min

B′⊆[(i−1)cℓ]

(��B′�� cb + |ancestorsG−R−B′(Ti)| cr)
≥ min

R,B′⊆[(i−1)cℓ]: |R | ≤m

(��B′�� cb + |ancestorsG−R−B′(Ti)| cr) .
To complete the proof we observe that

rbpeb∥(G,m) ≥
⌊ ncℓ ⌋∑
i=1

rbpeb∥(G,m,Ti ,Bti−1 ,Rti−1) .

✷

A.1 aATSample

Reminder of Lemma 5.6. Let i > n
2
and T = [i, i + ℓ − 1] be an

interval of length ℓ = n
logn . Then there exists a constant C > 0 so

that for m ≤ Cn
logn , a graph generated by aATSample satisfies the

following with high probability:

min

R,B′⊆[i−1]: |R | ≤m

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω

(
n

logn

)
cb ,Ω(n)cr

)
.

Proof of Lemma 5.6: Consider the metagraph Gk with
n

logn
nodes and recall that Gk is (Ω(n/logn),Ω(n/logn)) depth robust.

Let B be the set of nodes inG that have a blue pebble at some point,

and let Bk be the set of meta-nodes that contain some node in B.
Then by depth-robustness, there exists a path of length at least

c1n/logn − |Bk | in Gk .

Now, partition the second half of graph G into intervals of size

ℓ = n/logn: [i, i + ℓ − 1]. Since parents([i, i + ℓ − 1]) ∩ Mi , ∅,
then pebbling the interval [i, i + ℓ − 1] requires pebbling at least

c1n/logn −m − |Bk | meta-nodes in Gk . Noting thatm = O
(

n
logn

)
and the middle logn/3 nodes of a meta-node must be pebbled for

two meta-nodes that are connected in Gk , it follows that at least(
c1n
logn − |Bk |

)
logn
3
= Ω(n) nodes must be pebbled. Thus, the cost

of pebbling [i, i + ℓ − 1] is at leastmin

(
Ω

(
n

logn

)
cb ,Ω(n)cr

)
nodes.

✷

14

http://eprint.iacr.org/2015/430
https://doi.org/10.1109/EuroSP.2016.31
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1007/978-3-662-53887-6_8
http://eprint.iacr.org/2013/525
https://doi.org/10.1145/322344.322354
http://erikdemaine.org/theses/qliuM.pdf
https://password-hashing.net/

A.2 DRSample

Reminder of Lemma 5.5. Supposem = O (nρ) for some constant
0 < ρ < 1 and i > n

2
. Let T = [i, i + ℓ − 1] be an interval of

length ℓ = O (nρ). Then a graph generated by DRSample satisfies
the following with high probability:

min

R⊆[i−1]: |R | ≤m
min

B′⊆[i−1]

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω(nρ)cb ,Ω(n

1/2+ρ/2)cr
)
.

Proof of Lemma 5.5: Let T = [i, i + ℓ] where ℓ = Ω(nρ) for
some constant

1

2
< ρ < 1 and let r (j) denote the predecessor of a

node j in the graph (besides j − 1). Let X j be an indicator random

variable for the event far(j), which we define to be the event that

|r (j) − r (k)| > b =
√

n
16ℓ for all k ∈ [1, j − 1]. Observe that

Pr [far(j)] ≥

Pr [far(j)|r (i) = i − b, r (i + 1) = i − 2b, . . . , r (j − 1) = i − (j − i + 1)b]

since the conditioned event has the maximum number of invalid

nodes for r (j), and with the highest probability of hitting each of

these invalid nodes, since they are the closest to i . Thus,

Pr [far(j)] ≥ Pr [r (j) < i − (j − i + 1)b]

≥ Pr [j − r (j) > ℓ + (j − i + 1)b]

≥ Pr [j − r (j) > ℓ + (ℓ + 1)b]

≥ Pr

[
j − r (j) >

√
nℓ

2

]
since j ≤ i + ℓ and b =

√
n
16ℓ . Hence,

Pr [far(j)] ≥
log(j) − log

√
nℓ

log(j)

≥ 1 −

(
1

2

−
ρ

2

) (
log(n)

log(n) − 1

)
≥

1

2

−
ρ

2

− o(1) = Ω(1).

Let X =
∑i+ℓ
k=i Xk . With high probability, X > cℓ for some constant

c that depends on ρ. Picking ℓ to satisfym < cℓ
4
, then with high

probability, the number of ancestors of T in G − R − B′ is at most

(X − |R | − |B′ |)b ≥ (X −m − |B′ |)b

≥

(
cℓ

4

) √
n

16ℓ
.

Thus to pebble T , either cℓ
2

blue moves are required, or at least(
cℓ
4

) √
n
16ℓ red moves are required, to pebble the ancestors of T

in G − R − B′. Hence, the cost is at least min

(
cℓ
2
cb ,

(
cℓ
4

) √
n
16ℓ cr

)
.

Since ℓ = Ω(nρ), then the cost is at least

min

(
Ω(nρ)cb ,Ω(n

1/2+ρ/2)cr
)
.

✷

We now give a stronger bound for DRSample when the cache

has size O (nρ/logn) for any 0 < ρ < 1.

Lemma A.1. For each x ,y ∈ Gb with y > x and node i in meta-
node y, there exists an edge from the last third of meta-node x to node
i with probability at least 1

6 |y−x | logy .

Proof. Recall that for node i , DRSample creates an edge from

i to parent node r (i) by first sampling j from [1, ⌊log i⌋]. Then
DRSample sets r (i) = i −k by randomly sampling k from (2j−1, 2j].

Thus, for nodes i, j ∈ G with i > j , there exists an edge from node j
to i with probability at least

1

2b |y−x | log i . Taking the union bound

over all
b
3
nodes in the last third of meta-node x and observing that

i < y yields the desired result. �

Lemma A.2. For any two meta-nodes x ,y ∈ Gb with x < y, the
last third of x is connected to the first third of y with probability at
least b

b+18 |y−x | logn .

Proof. Let p be the probability that the final third of x is con-

nected to the first third of y. Let Ei be the event that the i
th
node

of meta-node y is the first node in y to which there exists an

edge from the last third of meta-node x , so that by Lemma A.1,

Pr [E1] ≥ 1

6 |y−x | logy . Note that furthermore, Pr [Ei] is the proba-
bility that there exists an edge from the last third of meta-node x to

the i th node of meta-node y and no previous meta-node of y. Hence,
Pr [Ei] ≥ 1

6 |y−x | logy (1 − p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
Eb/3

]
≥

(
b

3

)
1

6|y − x | logy
(1 − p).

Setting α =
(
b
3

)
1

6 |y−x | logy , then it follows that p +αp ≥ α , so that

p ≥ α
1+α . Since y ≤

n
b ,

p ≥
b

b + 18|y − x | logy
≥

b

b + 18|y − x | logn
.

�

Lemma A.3. Suppose m = O (nρ/logn) and i > n
2
. Let T =

[i, i + ℓ − 1] be an interval of length ℓ = O (nρ) for some 0 < ρ < 1.
Then a graph generated by DRSample satisfies the following with
high probability:

min

R⊆[i−1]: |R | ≤m
min

B′⊆[i−1]

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min(Ω̃(nρ)cb , Ω̃(n)cr).

Proof. Let T be an interval of length ℓ. Consider a metagraph

Gn/ℓ with ℓ nodes. Then by Lemma A.2, a meta-nodey inGℓ is con-

nected to a previous meta-node x with probability
ℓ

ℓ+18 |y−x | logn =

Ω(1) for |y − x | = O
(
nρ
logn

)
, since ℓ = Ω(nρ). Thus in expectation,

y is connected to
Cnρ
logn previous meta-nodes for some constant y.

Now, partition the second half of graph G into intervals of size

n/ℓ. For each interval of length n/ℓ, to pebble a meta-node, either

there already exists a blue pebble in the previous meta-node or

we must spend
2n
3ℓ red moves to repebble the previous meta-node.

Applying the same argument for
Cnρ
logn −m of the previous meta-

nodes, and noting that ℓ = O (nρ) and m = O (nρ/logn), then

15

the cost of pebbling [i, i + ℓ − 1] is at least Ω̃(nρ)min

(
cb ,

2n
3ℓ cr

)
=

min(Ω̃(nρ)cb , Ω̃(n)cr). �

Theorem A.4. Let G be a graph generated by DRSample and
0 < ρ < 1. Then there exists a constant C > 0 so that for allm ≤
Cnρ/logn, it follows that

rbpeb∥(G,m) ≥ min(˜Ω(n)cb , Ω̃(n
2−ρ)cr)

with high probability.

Proof. Applying Lemma A.3 to each of the disjoint
n
ℓ intervals

in the second half of graph G and observing that ℓ = O (nρ), it
follows from Theorem 5.2 that

rbpeb∥(G,m) ≥ min(Ω̃(n)cb , Ω̃(n
2−ρ)cr).

�

A.3 Argon2iA
We now consider the family of graphs generated by Argon2iA

(Algorithm 4) [11]. Notably, the same underlying graph is also used

in Balloon Hashing (Boneh et al. [17]) LetG be a graph generated

by Argon2i and Gb be the metagraph with
n
b nodes, so that each

meta-node in Gb represents b nodes in G. Again, we connect two
meta-nodes i < j in Gb if there exists a node in the last b/3 nodes
of i to a node in the first b/3 nodes of j.

Lemma A.5. For each x ,y ∈ Gb with y > x and node i in meta-
node y, there exists an edge from the last third of meta-node x to node
i with probability at least 1

6y .

Proof. Recall that for node i , Argon2i creates an edge from i

to parent node i
(
1 − k

N

)
, where k ∈ [N] is picked uniformly at

random. Thus, for nodes i, j ∈ G with i > j, there exists an edge

from node j to i with probability at least

Pr
[
(x − 1)m + 1 ≤ i

(
1 −

k
N

)
≤

(
x − 1 +

1

3

)
m

]
= Pr

[(
x − 1 +

1

6

)
m ≤ ym

(
1 −

k
N

)
≤

(
x − 1 +

1

3

)
m

]
≥ Pr

[
y − x + 5

6

y
≥

k
N
≥
y − x + 2

3

y

]
≥

(
y − x + 5

6

y

)
−

(
y − x + 2

3

y

)
≥

1

6y
.

�

Lemma A.6. For any two meta-nodes x ,y ∈ Gb with x < y, the
last third of x is connected to the first third of y with probability at
least b2

9y logy+b2
.

Proof. Let p be the probability that the final third of x is con-

nected to the first third of y. Let Ei be the event that the i
th
node of

meta-nodey is the first node iny to which there exists an edge from

the last third of meta-node x , so that by Lemma A.5, Pr [E1] ≥ 1

6y .

Note that furthermore, Pr [Ei] is the probability that there exists an

edge from the last third of meta-node x to the i th node of meta-node

y and no previous meta-node of y. Hence, Pr [Ei] ≥ 1

6y (1−p). Thus,

p = Pr [E1] + Pr [E2] + . . . + Pr
[
Eb/3

]
≥

(
b

3

)
1

6y
(1 − p).

Setting α =
(
b
3

)
1

6y , then it follows thatp+αp ≥ α , so thatp ≥ α
1+α .

Since y ≤ n
b , then p ≥

b
18y+b ≥

b2

18n+b2
. �

Lemma A.7. Let i > n
2
andT = [i, i+ℓ−1] be an interval of length

ℓ = O
(
n1/2

)
. There exists a constant C > 0 so that for 0 < ϵ < 1/2

andm ≤ Cn1/2, a graph generated by Argon2i satisfies the following
with high probability:

min

R⊆[i−1]: |R | ≤m
min

B′⊆[i−1]

(��B′�� cb + |ancestorsG−R−B′(T)| cr) ≥
min

(
Ω(n1/2)cb ,Ω(n)cr

)
.

Proof. Consider the metagraphGk with
n
k nodes for some con-

stant k that we shall define. Let B be the set of nodes inG that have

a blue pebble at some point, and let Bm be the set of meta-nodes

that contain some node in B. Partition the second half of graph G
into intervals of size ℓ = n

k : [i, i + ℓ− 1]. By Lemma A.6, there exists

a constant α such that for k = αn1/2, the meta-nodes in [i, i + ℓ − 1]

are connected to Ω
(
n
k

)
meta-nodes in Gk with high probability.

Thus, pebbling the interval [i, i + ℓ − 1] requires pebbling at least
βn/k −m− |Bk | meta-nodes inGk for some constant β . Noting that
m = O (n/k) and that the middle k/3 nodes of a meta-node must

be pebbled for two meta-nodes that are connected in Gk , it follows

that at least

(
c1n
k − |Bk |

)
k
3
= Ω(n) nodes must be pebbled. Thus,

the cost of pebbling [i, i + ℓ − 1] is at least min(Ω(n/k)cb ,Ω(n)cr)
nodes. �

Theorem A.8. LetG be a graph generated by Argon2i. Then there
exists a constant C > 0 so that for allm ≤ Cn1/2, it follows that

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n
3/2)cr),

with high probability.

Proof of Theorem A.8: Applying Lemma A.7 to each of the

disjoint
n
ℓ = k = O

(
n1/2

)
intervals in the second half of graph G,

it follows from Theorem 5.2 that

rbpeb∥(G,m) ≥ min(Ω(n)cb ,Ω(n
1/2)cr).

✷

B BACKGROUND ON THE GILBERT
ET AL.BLACK PEBBLING REDUCTION

Recall that Gilbert et al. [23] showed that the minimum space

black pebbling problem was PSPACE − Hard by reduction from

the Truly Quantified Boolean Formula (TQBF) problem. Gilbert

et al. [23] provide a construction from any instance of TQBF to

a DAG GTQBF with pebbling number 3n + 3 if and only if the

instance is satisfiable. Here, the pebbling number of a DAG G is

minP=(P1, ...,Pt)∈P ∥ maxi≤t |Pi | is the number of pebbles necessary

16

to pebble G. An important gadget in their construction is the so-

called pyramidDAG.We use both∆k and a trianglewith the number

k inside to denote a k-pyramid (see Figure 2 for an example of a

3-pyramid). The key property of these DAGs is that any legal peb-

bling P = (P0, . . . , Pt) ∈ P
∥(∆k) of a k-pyramid requires at least

mini |Pi | ≥ k pebbles on the DAG at some point in time.

≡

k

Fig. 2: A 3-Pyramid.

Another gadget, which appears in Figure 3, is the existential

quantifier gadget, which requires that si , si − 1, and si − 2 pebbles
must be placed in each of the pyramids to ultimately pebble qi .

si − 1

si − 2

si

qi+1

qi

x ′i

xi

x ′i

x i

si − 1

si − 2

si

qi+1

qi

x ′i

xi

x ′i

x i

Fig. 3: An existential quantifier, with xi set to true in the left
figure and xi set to false in the right figure.

Any instance of TQBF in which each quantifier is an existential

quantifier requires at most a quadratic number of pebbling moves.

Specifically, we look at instances of 3-SAT, such as in Figure 4. In

such a graph representing an instance of 3-SAT, the sink node to

be pebbled is qn . By design of the construction, any true statement

requires exactly three pebbles for each pyramid representing a

clause. On the other hand, a false clause requires four pebbles, so

that false statements require more pebbles. Thus, by providing

extraneous additions to the construction which force the number of

pebbling moves to be a known constant, we can extract the pebbling

number, given the space-time complexity. For more details, see the

full description in [23].

Lemma B.1. [23] The quantified Boolean formula

Q1x1Q2x2 · · ·QnxnFn

is true if and only if the corresponding DAG GTQBF has pebbling
number 3n + 3.

Lemma B.2. [16] Suppose that we have a satisfiable TQBF formula
Q1x1Q2x2 · · ·QnxnFn with Qi = ∃ for all i ≤ n. Then there is a

legal sequential pebbling P = (P0, . . . , Pt) ∈ P
(
GTQBF

)
of the corre-

sponding DAGGTQBF from [23] with t ≤ 6n2 + 33n pebbling moves
and maxi≤t |Pi | ≤ 3n + 3.

Proof. We repeat the proof of [16] for completion. We describe

the pebbling strategy of Gilbert et al. [23], and analyze the pebbling
time of their strategy. LetT (i) be the time it takes to pebble qi in the

proposed construction for any instance with i variables, i clauses,
and only existential quantifiers.

Suppose that xi is allowed to be true for the existential quantifier
Qi = ∃. Then vertex x ′i is pebbled using si moves, where si =
3n − 3i + 6. Similarly, vertices di and fi are pebbled using si − 1
and si − 2 moves respectively. Additionally, fi is moved to x ′i and
then xi is moved to x ′i in the following step, for a total of two more

moves. We then pebble qi+1 using T (i + 1) moves and finish by

placing a pebble on x i and moving it to ci , bi , ai , and qi , for five
more moves. Finally, we use six more moves to pebble an additional

clause. Thus, in this case,

Ttrue (i) = si + (si − 1) + (si − 2) + 13 +T (i + 1).

On the other hand, if xi is allowed to be false for the existential

quantifier Qi = ∃, then first we pebble x ′i , di , and fi sequentially,
using si , si − 1, and si − 2 moves respectively. We then move the

pebble from fi to x
′
i and then to x i , for a total of two more moves.

We then pebble qi+1 using T (i + 1) moves. The pebble on qi+1
is subsequently moved to ci and then bi , using two more moves.

Picking up all pebbles except those on bi and x
′
i , and using them to

pebble fi takes si − 2 more moves. Additionally, the pebble on fi
is moved to x ′i and then ai , while the pebble on x ′i is moved to xi
and then qi , for four more moves. Finally, we use six more moves

to pebble an additional clause. In total,

Tf alse (i) = si + (si − 1) + (si − 2) + (si − 2) + 14 +T (i + 1).

Therefore,

T (i) ≤ 4si + 10 +T (i + 1),

where si = 3n − 3i + 6. Thus,

T (i) ≤ 12(n − i) + 34 +T (i + 1).

Writing R(i) = T (n − i) then gives

R(i) ≤ 12i + 34 + R(i − 1),

so that R(n) ≤
∑n
i=1(12i + 34) = 6n2 + 40n. Hence, it takes at most

6n2 + 40n moves to pebble the given construction for any instance

of TQBF which only includes existential quantifiers. �

C SPECIFICATION OF CANDIDATE IMHFS
In this section we give provide detailed descriptions of the iMHFs

analyzed in the main body of the paper. DRSample is described in

Algorithm 1, aATSample is described in Algorithm 2, Argon2iB is

described in Algorithm 3 and Argon2iA is described in Algorithm 4.

D NP-HARDNESS OF THE RED-BLUE
PEBBLING COST

In this section, we consider the computational complexity of com-

puting rbpeb∥ (G,m), defining a decision version below and show-

ing it is NP − Hard.

17

Algorithm 1: An algorithm for sampling depth-robust

graphs. [4]

Function DRSample(n ∈ N≥2):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges
E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

u := i − 1
else

д′←[1,
⌊
log

2
(v)

⌋
+ 1] // Get random range

size.

д := min(v, 2д
′

) // Don’t make edges too long.

r←[max(д/2, 2),д] // Get random edge length.

end
return v − r

Algorithm 2: An algorithm for sampling a high aAT graph.

[4]

Function aATSample(H = (V̄ = [n], Ē), c ∈ (0, 1)):
V := [2n]

E := Ē ∪ {(i, i + 1) : i ∈ [2n − 1]}

for v ∈ [n + 1, 2n] and i ∈ [2] do // Populate new

edges of graph.
E := E ∪ {(v,GetParentc (v, i))} // Get ith parent

of node v

end
return G := (V ,E).

Function GetParentc(v ,i):
if i = 1 then

u := i − 1

end
else if v ≤ n then

u := GetParentH (v, i)
// DRSample

end
else

m := ⌊c log(n)⌋

b := (v − n) mod ⌊n/m⌋

u := bm

end
return u

The decision problem rbpeb∥ is defined as follows:

Input: a DAGG onn nodes, parameter cb , cr , and integersm,d > 0.

Output: Yes, if rbpeb∥(G,m) ≤ d ; otherwise No.

Algorithm 3: An algorithm for sampling depth-robust

graphs. [11]

Function Argon2iB(n ∈ N≥2):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges
E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

u := i − 1
else

N := 2
32 // Set sample range.

д←[1,N] // Get random range length.

r :=
[
д2

N 2
v
]

// Set quadratic dependency.

end
return v − r

Algorithm 4: An algorithm for sampling depth-robust

graphs. [11]

Function Argon2iA(n ∈ N≥2):

V := [v]

E := {(1, 2)}

for v ∈ [3,n] and i ∈ [2] do // Populate edges
E := E ∪ {(v,GetParent(v, i))} // Get ith parent

end
return G := (V ,E).

Function GetParent(v ,i):
if i = 1 then

u := i − 1
else

N := 2
32 // Set sample range.

д←[1,N] // Get random range length.

r :=
[д
N v

]
// Set linear dependency.

end
return v − r

We now show that it is NP − Hard to compute rbpeb∥(G,m).
Quanquan Liu [26] observed that when cr = 0 the problem is

PSPACE − Hard via a straightforward reduction from minimum

space black pebbling. As we observed previously, when cb/cr ∈
O (poly(n)) the decision problem is in NP and has a fundamentally

different structure. We show that even when the cost of red moves

is significant, the problem remains NP − Hard.

Theorem D.1. For cb ≤ 3ncr , the problem rbpeb∥ is NP − Hard.

Gilbert et al. showed that the minimum space black pebbling

problem was PSPACE − Hard by reduction from the Truly Quan-

tified Boolean Formula (TQBF) problem. For more details about

the Gilbert et al. [23] reduction, we refer an interested reader to

18

5

4

6

q4

x4
x4

8

7

9

q3

x3
x3

11

10

12

q2

x2
x2

14

13

15

q1: Sink

x1
x1

p0

p1

p2 = q5

Fig. 4: GraphGTQBF for ∃x1,x2,x3,x4 s.t. (x1 ∨ x2 ∨ x4) ∧ (x2 ∨
x3 ∨ x4).

Appendix B. We note that an instance ϕ of 3 − SAT with n vari-

ables is still a TQBF instance (albeit with no ∀ quantifiers). Thus,

given an instance ϕ of 3 − SAT with n variables, we can create the

corresponding DAG Gϕ , as described in the reduction of Gilbert

et al. [23]. The graph Gϕ has the property that it can be pebbled

with at most 3n + 3 black pebbles if and only if ϕ is satisfiable.

We detail a gadget to append to Gϕ to create a graph Hϕ so that

rbpeb∥(H) = x1 if ϕ is a satisfiable assignment, but rbpeb∥(Hϕ) >

x1 if ϕ is not a satisfiable assignment. The key goal of the additional

gadget is to ensure that we cannot significantly reduce the number

of red moves (computation costs) by including a few blue move.

Since an instance ϕ of 3 − SAT with n variables is still a TQBF

instance (albeit with no ∀ quantifiers), we can create the correspond-

ing DAGGϕ , as described in the reduction of Gilbert et al. [23]. For
DAG Gϕ with t vertices, there exist unique pyramid gadgets with

3n+3, 3n+2, 3n+1, . . . , 1 vertices in the bottom layer. Let ∆i be the
pyramid gadget with ϕ vertices in the bottom layer. Additionally,

let αi be the vertex above the apex of pyramid ∆i . Create a directed
path P1 with 3n + 3 vertices so that for each 1 ≤ i ≤ 3n + 3, connect
an edge to vertex 3i − 2 of P1 from the top vertex of ∆3n+4−i .

We then connect the final vertex of P1 to a directed path P2 with(
(3n + 1)(3n)

2

+ 1

)
+

(
(3n − 2)(3n − 3)

2

+ 1

)
+ . . .+

(21 + 1) + (6 + 1) =
3

2

n(n + 1)2 + n

4

5

6

7

8

9

P

Fig. 5: Path P for Hϕ .

vertices. Moreover, the first
(3n+1)(3n)

2
vertices of P2 each have an

edge from separate vertices of ∆3n+1, starting with the vertices in

the bottom layer and moving upwards. We also create an edge to

the following vertex from the vertex α3n+1. The next
(3n−2)(3n−3)

2

vertices of P2 each have an edge from separate vertices of ∆3n−2,

starting with the vertices in the bottom layer and moving upwards.

We also create an edge to the following vertex from the vertex

α3n−2. We continue this process until all vertices from all pyramids

of the form ∆3i+1 are connected to P2, as well as the vertices α3i+1.
Finally, we connect P2 to a sink node. Then by setting P to be the

path P1 concatenated with P2, we have the following result:

Lemma D.2. P contains exactly 3n + 3 +
∑n
i=1

(
(3i+1)(3i)

2
+ 1

)
=

4n + 3 + 3

2
n(n + 1)2 = 3n3+6n2+11n+6

2
vertices.

See Figure 5 for an example. Let Hϕ = Gϕ ∪ P . We claim that Hϕ
with capacity 3n + 4 will have a certain pebbling cost if and only

if ϕ is satisfiable. Thus, if ϕ is satisfiable, the optimal pebbling will

correspond to the minimum space black pebbling and will require

0 blue moves.

Lemma D.3. If ϕ is satisfiable, then there exists a pebbling strategy
of Hϕ with capacity 3n + 4 and cost exactly(

3n3 + 15n2 + 40n + 14 + 12c

2

)
cr .

19

Proof. The total number of nodes in Gϕ corresponding to vari-

able assignments from the GLT construction is

6n +
3n+3∑
i=4

i =
9n2 + 33n + 12

2

.

This can be visualized in Figure 4 by the nodes on the left hand

side, excluding the nodes qi . Additionally, there are n nodes qi , six
nodes for each of the c clauses pi for 1 ≤ i ≤ c , and an additional

node for p0. Thus,

6c + 1 + 7n +
3n+3∑
i=4

i =
9n2 + 35n + 14

2

+ 6c

nodes must be pebbled in Gϕ .

By Lemma D.2, the number of nodes in the additional path P

is
3n3+6n2+21n+18

2
. However, pebbling P requires that each of the

pyramids ∆3i+1 are pebbled a second time, as well as each α3i+1,
requiring an additional

n∑
i=1

(
(3i + 1)(3i)

2

+ 1

)
= n +

3

2

n(n + 1)2 =
3n3 + 6n2 + 5n

2

steps.

Thus, the total number of steps required to pebble Hϕ is

9n2 + 35n + 14

2

+6c+
3n3 + 6n2 + 5n

2

=
3n3 + 15n2 + 40n + 14 + 12c

2

.

The GLT construction has pebbling number 3n + 3. Since the

nodes in P are ordered corresponding to the natural pebbling order

inGϕ , a single additional pebble suffices for P . Thus, if the capacity
of Gϕ is 3n + 4, then all pebbling moves can be achieved with

red moves, so there exists a pebbling strategy with total cost is(
3n3+15n2+40n+14+12c

2

)
cr .

By construction, the pebbling strategy of Lemma D.3 is the opti-

mal pebbling with only red moves. Thus, it remains to show that

no strategy containing any blue pebbles has better cost.

Since blue pebbles are more expensive than red pebbles, the

only place the above strategy can be possibly improved would

be using blue pebbles on nodes in Hϕ that are pebbled multiple

times in the strategy of Lemma D.3. As it turns out, the only nodes

that are pebbled multiple times are the pyramids ∆3i+1, which

are each pebbled twice, as well as the vertices α3i+1. However, all
of the vertices in ∆3i+1 are parents of vertices in P . Thus, a blue
pebble on any of these nodes must be returned to red, and then

subsequently discarded. That is, a blue pebble will replace at most

one red move in the pebbling strategy of Lemma D.3. The number

of the other red moves is unaffected so that the overall cost cannot

be cheaper. Therefore, no pebbling strategy has a better cost than(
3n3+15n2+40n+14+12c

2

)
cr . �

Lemma D.4. If ϕ is unsatisfiable, then the pebbling cost of Hϕ with
capacity 3n + 4 is greater than(

3n3 + 15n2 + 40n + 14 + 12c

2

)
cr .

Proof. By the construction of the DAG Hϕ , if ϕ is unsatisfiable,

thenHϕ has pebbling number at least 3n+5. Thus, ifHϕ has capacity

3n+4, any pebbling strategy must have a blue pebble at some point.

As in the proof of Lemma D.3, any optimal strategy only places

blue pebbles on nodes that the strategy of Lemma D.3 pebbles

twice. Again, the only nodes that are pebbled multiple times are

the pyramids ∆3i+1, which are each pebbled twice, as well as the

vertices α3i+1. Since each vertex in ∆3i+1 is a parent of a vertex

in P , a blue pebble on any of these nodes must be returned to

red, and then subsequently discarded. Thus, a blue pebble will

replace at most one red move in the pebbling strategy of Lemma D.3.

The remaining red moves are unaffected, so the overall cost is

more expensive, under the assumption that blue pebbles are more

expensive than red moves. Therefore, any pebbling strategy has a

cost greater than

(
3n3+15n2+40n+14+12c

2

)
cr . �

Together, Lemma D.3 and Lemma D.4 imply Theorem D.1.

Reminder of Theorem D.1. For cb ≤ 3ncr , the problem rbpeb∥

is NP − Hard.

Proof of Theorem D.1: First, we remark that given a DAG Hϕ
with some capacitym, as well as a complete pebbling strategy as

the certificate, the certificate can be verified in polynomial time by

checking the validity of each step in the pebbling strategy. Thus,

the computation of rbpeb∥(Hϕ) is in NP.

We now reduce 3 − SAT to the computation of rbpeb∥(Hϕ). Now,

given an instance ϕ of 3 − SAT with n variables, we construct the

above DAGHϕ . This procedure clearly takes polynomial time. More-

over, by Lemma D.3, if ϕ is satisfiable, then the optimal pebbling

cost of Hϕ with capacity 3n + 4 is exactly(
3n3 + 15n2 + 40n + 14 + 12c

2

)
cr .

On the other hand, by Lemma D.4, if ϕ is unsatisfiable, then the

pebbling cost of Hϕ with capacity 3n + 4 is greater than(
3n3 + 15n2 + 40n + 14 + 12c

2

)
cr .

Thus, the computation of rbpeb∥(Hϕ) distinguishes whether ϕ is

satisfiable or not. Since 3 − SAT is NP − Hard, it follows that the
computation of rbpeb∥(Hϕ) is NP − Hard. ✷

20

	Abstract
	1 Introduction
	1.1 Graph Pebbling and iMHFs
	1.2 Overview of Our Results

	2 Preliminaries
	2.1 Depth-Robustness
	2.2 Metagraphs

	3 Modeling Energy Complexity as Red-Blue Pebbling
	3.1 Memory and Cache in the Parallel Random Oracle Model
	3.2 Red-Blue Extension Pebbling
	3.3 Extractor

	4 Relating Memory Hardness and Bandwidth Hardness
	5 Bandwidth Hardness of Candidate iMHFs
	5.1 Analysis Framework
	5.2 Underlying DAGs
	5.3 Argon2iB
	5.4 DRSample
	5.5 aATSample

	References
	A Missing Proofs
	A.1 aATSample
	A.2 DRSample
	A.3 Argon2iA

	B Background on the Gilbert et al.Black Pebbling Reduction
	C Specification of Candidate iMHFs
	D NP-Hardness of the Red-Blue Pebbling Cost

