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ABSTRACT

Motivated by recent experiments, the isotropic-nematic phase transition in chromonic liquid crystals is
studied. As temperature decreases, nematic nuclei nucleate, grow and coalesce, giving rise to tactoid
microstructures in an isotropic liquid. These tactoids produce topological defects at domain junctions
(disclinations in the bulk or point defects on the surface). We simulate such tactoid equilibria and their
coarsening dynamics with a model using degree of order, a variable length director and an interfacial
normal as state descriptors. We adopt Ericksen’s work and introduce an augmented Oseen—Frank
energy, with non-convexity in both interfacial energy and the dependence of the energy on the degree
of order. A gradient flow dynamics of this energy does not succeed in reproducing some simple
expected feature of tactoid dynamics. Therefore, a strategy is devised based on continuum kinematics
and thermodynamics to represent such features. The model is used to predict tactoid nucleation,
expansion and coalescence during the process of phase transition. We reproduce observed behaviours
in experiments and perform an experimentally testable parametric study of the effect of bulk elastic
and tactoid interfacial energy parameters on the interaction of interfacial and bulk fields in the tactoids.
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(a) The initialized tactoid shape and director field. (b) The tactoid shapes and director field at t = 0.1.
Three spherical tactoids with same director fields Three tactoids expand.
are initialized.
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(¢) The tactoid shapes and director field at ¢t = 0.2. (d) The tactoid shapes and director field at ¢ =
The tactoids begin to merge. 0.5. a strength —1 disclination is formed inside
the bulk.
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Figure 1. Experiment observations of isotropic—nematic phase transition from Ref. [1].

1. Introduction

Liquid crystals (LCs) are a state of matter with long-
range orientational order and complete (nematic) or
partial (smectics, columnar phases) absence of long-
range positional order of ‘building units’ (molecules,
viruses, aggregates etc.). LCs can flow like viscous
liquids and also possess features that are characteristic
of solid crystals, such as elasticity and birefringence. In
the simplest liquid crystalline phase, called the nematic,
the molecules have no positional order but tend to
point in the same direction. In this work, we focus on
a nematic lyotropic LC (lyotropic chromonic liquid
crystal (LCLC)) that possesses a broad biphasic region
of coexisting nematic and isotropic phases [1].

LCLCs are formed by water-based dispersions of
organic molecules, see the recent reviews [2-4]. The
molecules are of a rigid disc-like or plank-like shape
with polar groups at the periphery. Once in water,
they form elongated aggregates by stacking on top of
each other. The aggregates elongate as the concentration
is increased and the temperature is reduced, which
allows one to trigger phase transitions in the system by
changing either the temperature or concentration [5,6].
In particular, the temperature changes can trigger a first
order isotropic—nematic (I-N) phase transition of the
LCLC. As the temperature increases, the nematic LC
loses orientational order and transits to the isotropic
phase, with molecular aggregates being short and
oriented randomly. On the contrary, if the temperature
decreases, the isotropic phase transits to the nematic
phase. Both phase transitions occur through nucleation
of the so-called tactoids, representing inclusions of one
phase in the other [1,7-9]. Tactoids of the nematic phase
nucleating upon cooling are called positive tactoids [8]

and are the subject of the present work. Tactoids of the
isotropic phase nucleating in the nematic background
upon heating are called negative tactoids [8]. If the
temperature is fixed in the range in which the two
phases coexist, these tactoids expand and merge. The
uniaxial nematic phase allows three types of topologi-
cally stable defects: linear disclinations, point defects
hedgehogs and point defect boojums; the latter can
exist only at the surface of the nematic [10-13]. In
confined volumes, such as droplets and tactoids, some
of the topological defects correspond to the equilibrium
state of the system, thanks to the anisotropic surface
tension that sets a well-defined angle between the direc-
tor and the normal to the interface [14].
The principal objectives of this work are to

e derive a practical equation of evolution for the
degree of orientation based on kinematics and
thermodynamics;

e introduce a dynamic model for the nematic-isotro-
pic phase transition of LCLC with an augmented
Oseen-Frank energy and non-convex interfacial
energy;

e demonstrate the capability of the proposed dyna-
mical model by analysing the results of static
equilibrium and the dynamic behaviours.

The main experimental observations and applications
of LCLC and their computation are reviewed in Refs.
[1-4]. Currently, there is an extensive database on
the principal material parameters of the LCLCs and
defects in them. All three bulk elastic constants (for
splay K, twist Ky; and bend Kj;) have been mea-
sured for two main representatives of LCLCs
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[15-17]. It was found that the elastic constants of
bend and splay can be tuned in a broad range, from
a few pN to 70 pN, by changing temperature or the
chemical composition of the system (e.g. by adding
salts [17]). The director of LCLCs can align either
parallel to the interface with an adjacent medium
[18] or in a perpendicular fashion, with possible
transitions between these two states [19]. At the
interface with its own isotropic melt, the director of
a nematic LCLC aligns parallel to it [7]. The inter-
facial surface tension at the I-N interface was esti-
mated to be on the order of 10™* J/m? [1]. The defect
cores of disclinations in LCLCs extend over long
distances (microns and even tens of microns), much
larger than the cores of disclinations in thermotropic
LCs [20].

In this work, we are primary interested in the obser-
vations reported in Ref. [1] to develop a model for
understanding the behaviour of tactoids during the I-N
transformation. The I-N interface in LCLC favours the
director to be tangential to the tactoid interface. Figure 1
shows the experimental observations of the I-N phase
transition from Ref. [1]. Figure 1(a) shows a single tac-
toid, where the black colour represents the isotropic
phase while the orange colour represents the nematic
phase. The black arrows inside the tactoid represent the
director field. Nontrivial morphologies of tactoids with
surface cusps and director fields are observed. Due to the
surface anisotropy, cusps are associated with surface
defects called boojums, as shown in Figure 1(a).
Figure 1(b-e) represents the phase transition process
from the isotropic to the nematic phase, where the
nematic tactoids expand and merge. Merging tactoids
often produce disclinations via the Kibble mechanism
[11,12,21], as shown in Figure 1(e), where a strength —
1 disclination is formed at the point where tactoids
merge. In addition, integer strength disclinations are
stable only when their cores constitute a large isotropic
inclusion; otherwise, as demonstrated experimentally
and analytically by Kim et al. [1] and numerically in
Ref. [22], the integer strength disclinations split into
pairs of half-integer ones. The motion of an interface
between a nematic LC phase and the isotropic phase is
investigated with a Ginzburg-Landau equation in Ref.
[23]. The confinement of the director field for a spherical
particle that explains the observation of a Saturn ring is
studied in Ref. [24].

In studies of nematic LCs, a classical convention is
to represent the local orientational order by a unit-
length director field [25,26]. Oseen and Frank devel-
oped an energy density of nematic LCs, with constants
representing different director deformations [27,28].

The existence and partial regularity theory of some
boundary-value problems based on Oseen-Frank
energy density are discussed in Ref. [29]. The Oseen-
Frank energy can be augmented by adding an addi-
tional surface energy density to represent the interac-
tion between the LC and an adjacent medium; a
common form of such a surface energy density is the
Rapini-Papoular surface energy.

In this paper, we develop a computational model
for the I-N phase transition accounting for interfacial
energy as an enhancement of Ericksen’s variable
degree of order (s,n) model [26]. We introduce the
pair (s,d) with (d = sn). The state variable s has
the meaning of the degree of order parameter in
Ericksen’s model [26] and d serves for the director
whose magnitude is constrained to be equal to |s|.
Thus, the director is of unit length in the nematic
phase, it vanishes in the isotropic phase, and it is of
variable length at interfaces between the two phases.
This practical device of replacing n by d is essential
in terms of having a setting that is well posed for
computations of a time-dependent non-linear theory,
since leaving the value of the director field undefined
in parts of the domain, that furthermore evolve in
time, does not lead to unique evolution and simply
cannot be practically implemented.

The rest of this paper is organised as follows: In
Section 2, we outline our notation and terminology. In
Section 3, a dynamic model for the phase transition
process based on kinematics as well as thermodynamics
is derived. In Section 4, the results of equilibrium and
dynamic behaviours are shown and discussed. The sig-
nificance of the dynamic model is demonstrated and
explained. In Section 5, we report on a preliminary
parametric study of material constants in the model.
We end with some concluding remarks in Section 6.

2. Notation and terminology

The condition that a is defined to be b is indicated by
the statement a := b. The Einstein summation conven-
tion is implied unless specified otherwise. The symbol
Ab denotes the action of a tensor A on a vector b,
producing a vector. In the sequel, a - b represents the
inner product of two vectors a and b; the symbol AB
represents tensor multiplication of the second-order
tensors A and B.

The symbol div represents the divergence and grad
represents the gradient. In this paper, all tensor or
vector indices are written with respect to the basis e,
i = 1-3, of a rectangular Cartesian coordinate system.
The following component-form notation holds



(axb), =ejajby
(curl @), = ejrax,;

where ey is a component of the alternating ten-
sor X.

The following list describes some of the mathema-
tical symbols we use in this work:

n: the unit vector field representing the director;

s: the degree of orientation, s = 0 represents the iso-
tropic phase while s =1 represents the nematic
phase;

d: the alternative vector field representing the direc-
tor with d = sn and

y: the free energy density.

3. Derivation of dynamic model

3.1. s Evolution equation in Ericksen-Leslie
model

In Ref. [26], Ericksen introduced a variable degree of
orientation s to represent different phase states of a
LC. In his model, s =0 represents the isotropic
phase and s =1, the nematic phase. Also, a unit
length vector field is introduced to represent the
director field, denoted as n. In Ericksen’s model,
the balance law to derive the s evolution equation
is given as

P =div(T) + G' + G,

where y is free energy density, P is a generalised
momentum with P = dy/3ds, T is a generalised stress,
G' represents a kind of internal body force with G/ =
—0y/ds + G and GF is an external effect. Assuming
the free energy density, 1y depends on
(s,grad s,n, grad n), and following the argument in
Ref. [26], we have

y _ o Oy \ Oy o
Os div (8 grad 5> Os FGre
2 2 2 2
v, v - OV, OV
0s? 0s0 grad s grad s = OsOn 0s0 grad n
I S o) N W < AN
“grad n_dw(agrad s) 85+G+G '

After rearranging the terms, s evolution equation in
Ericksen’s model can be written as
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PV, Py
0s? 0s0 grad s grads

. all/ _ % ol E _ 82v/ .
div <8 grad s) Os GG dsom "

v
JsO gradn ~grad n’

In this work, we would like to adopt a simpler evolu-
tion statement since the fundamental basis for
Ericksen’s balance law P = div(T) + G' + G¥ is not
Py

2 may
change sign as the dependence on s of the energy is
non-convex.

clear to us. In particular, the coefficient

3.2. Motivation and derivation of s evolution

We derive a practical model for tactoid and I-N phase
transition dynamics based on continuum kinematics
and thermodynamics. To get the evolution equation
for s, suppose there is a level set of s with normal
velocity field V) along it, travelling from x, to x
during a time interval At, as shown in Figure 2. The
time derivative of s at x; and ¢ is

Os o S(xy 4 A) — s(x,t)
o=l A W

Since the level set of s travels from x,(At) to
X1 := x(At = 0), At>0, during the time interval At,

s(x1,t + At) = s(x2(At),t). Thus, £ may also be
expressed as
Os o s(xa(At), t) = s(x1,t)
Ewhﬂ—gg Al : (2)
s(x2,t) s(xq,t)

Figure 2. A level set of s moving from x, to x; during At.
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Assuming s is differentiable in its arguments and writing
the derivative in the first argument as grad s, we have

s(x2(At),t) — s(x1,t) = grad s(xy, t)[x2(At) — x4]

s(x2(At), t) — s(x1,¢)

+ O(XZ(At) — xl) = Al

= grad s(x, t)Ait [x2(At) — x1] +Aito(x2(At) —x1).

(3)
Substitute Equation (3) in Equation (2), we have
Os B . x(At) —x;
ER (%1, t) = grad s(x1,t) AI}EIO —Ar
+ lim M_ (4)
At—0 At

Denote V) as the velocity of movement of a level set
x1—x,(At)

of s, VI =limp, o & Since
lim O(XZ(AI') — xl) — 1 |O(X2(At) — xl)\ |x2(At) — x1|
At>0 At At=0  |x(AL) — x4 At
=-0-|V¥| =0,

(4) becomes

If the material velocity is v and the change in the value
of s at x; arises from factors more than the pure
advection of the value of s from x, to x; due to material
motion, then we assign the rest of this change as
occurring due to the progress of the phase transition
front. In general, we can decompose VO =y 4V,
where V is the phase front velocity relative to the
material and v is the material velocity. Recall that the
material time derivative of s is defined as

ds_ o
dt Ot

+grad s - v;

therefore, the s evolution is given as
§= —grads- V. (5)

In particular, there are two special cases:

e Suppose this velocity was purely due to s being
transported by the material velocity v. Then, we
haveéz%—i—%-v:o.

o If there is no material velocity but transport is
only due to motion of the phase front, then V' is
just the speed of the phase front transition V.

To get an explicit form of the phase front velocity V,
assume the free energy density per unit mass takes the

form y(n,grad n,s, grad s). Following Refs. [30,31],
take the external power as

P(t) = Jav<AV) - wda + JVpK - wdv,

where A is the couple stress tensor, K is the external
body moment per unit mass, v is the unit normal
vector on the boundary of the body and w is the
director angular velocity (we have ignored material
motion for simplicity). Applying the divergence theo-
rem, we have

J (Av) - wda = J Ajjwivida
v v
= J (Aij,jwi + Aijwiyj)dv.
14
Thus, the external power P can be written as
P(t) = J [div A + pK] - wdv+J A Mdyv,
14 v

where M is defined as director angular velocity gradi-
ent M = grad w. Recall that the balance law of angular
momentum reads as

divA + pK =0,

leading to
P(t) :J A:Mdv.
14

In addition, the second law of thermodynamics
requires the dissipation to be equal or larger than
zero, which is given as

J[A:M]—pl]/]dvzo (6)

\4
[ oy . oy . oy . oy .
Ajw;j — p——n; — — = - —
:>,‘V[ 0 pan,-" p(?(ni,j)n,-,j pass pa(sﬁj)sd dv
>0

As flow is ignored for the moment, the inequality takes
the form

oV Oy L Oy Oy
JV{A"“”J Pom "~ Palmy) ™~ Pas”  Pas) )
>0

Iy
A(nij)

| [asos—p 5 @ xn) = o5 o)
\%4 n;

oy . oy \ .
"’E””<a<s,j>>’4 d”

oy .
- ——5vida > 0.
Javpa(sﬁ S

i




Defining the couple stress A as

Oy
81’1m7j ’

Ajj = peipmNy

and applying the Ericksen identity [32] as

oy oy oy
<8n ant Ogradn (gradn) + (8 grad n) grad n) skew
= 0’
we obtain

9 d
Ajwij — Pa—Z (wxn);—p a(nlfj

~—
N

Then, the dissipation inequality becomes

oy . ay \ . J oy .
—_p—L — ida > 0.
Jvl e +p<8(s,j)> JS‘| dv aVp 8(Sd)sv]da >0

(7)
To fulfil this inequality, recalling Equation (5) that
§= — grad s -V, one requires
Iy < oy > o .
— |lp—=— s;Vi > 0 atinterior points
l’) s P\aisy) |
oy .
—p5——V;s:;Vi >0 atpoints onboundary.
9(s,)

Therefore, the choice of VZ on the boundary pointing
in the direction of

9y
- p(&(grads) : v>grads,

and V7 in the interior pointing in the direction of

o i (O
{P as P div <8(grad s))} grad s

satisfy the non-negative dissipative requirement. In
particular, V' in the interior may be further assumed as

;_ grads o oy oy
V= B| grad s|m[ pdw(@(grad s)) +p85}

where B,, is a material constant required on dimen-
sional grounds related to ‘drag’, and m is a parameter
representing different scenarios, which can be 0, 1 and
2. With § = —grads- V, the evolution equation of s
can be written as

. _L 2—m _@ : 81//
szm|grad s p{ s +dlv<—8(grad 91

(8)
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m =0 is the simplest natural choice representing a
linear kinetic assumption. m = 2 corresponds to the
evolution equation derived from the gradient flow
method. To this is appended the balance laws of linear
momentum and angular momentum, utilising the con-
stitutive equations for couple stress and stress, the
latter arising from the thermodynamic procedure
above when flow is included [33].

Another way to obtain the s evolution equation is
the gradient flow method. The gradient flow dynamics
(for a non-conserved quantity) assumes that all infor-
mation on evolution is directly available (up to a mate-
rial parameter) once the energy function is known.
Consider the total energy

E= J py(n, gradn, s, grads) dv.
14

The first variation of the energy E is

_ | (v oy Iy
6E = JV (@ 5n +m : 5(gradn) + as 65

Iy
+ Jgrads - §(grad s)> dv.

Integrate by parts the term involving §(grad s) to obtain
the s evolution equation based on an L? gradient flow as

oy 61//}

§=y|div -
){ Ograds Os
where y is a dimensional constant. The result from the
energy gradient flow method is equivalent to the evo-
lution equation given in Equation (8) for m = 2.

€)

3.3. Phase transition model formulation

In Ericksen’s model [26], the director field is represented
by a unit length vector field n. To practically implement
the computation of a time-dependent non-linear theory,

we adopt an alternative vector field d to represent the

director field subject to the constraint |d|* = s%.

Assuming the generalised Parodi relation, the gov-
erning equations are an extension of the work in Ref.
[34] and take the form

. , OR T
pv+gradp — d1v<a gradv (gradd) D gradd

ow
~ (grads) ®8 grad s) =
od " od Ogradd -
OR OW ow
E—’_K_dw(@grads)_)\spfs

(10)
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where p is the material density, p and A are Lagrange
multipliers dual to the constraints

div(v) =0 and |dJ*—s*=0,

W is a modified Oseen-Frank energy and R is an
appropriately designed dissipation function.
We introduce the modified Oseen-Frank energy as

W(d, grad d,s, grad s) = %div (d)* + % (d - curl (d))?

+ @ (lgrad d|* — div (d)* — | curl (d)]*)

k
+?3 \d x curl (d)|?

L
+ 2 grad sff +£(s) + glgrads, ),
(11)

where k;, ky, k3 and k4 correspond to the Frank con-
stants, L; is the Leslie parameter and f(s) is a non-
convex function of s indicating the preferred phase
state. The (s, d) modified Oseen-Frank energy function
has been further augmented by the function g(grad s, d)
which is a non-convex function representing interfacial
energy. A natural candidate for g (grads, d) is given as

2
g(grad s,d) = | grad s||oo| 1+ W@Lszd)z g
|grad sTd

(12)

where oy is an isotropic interfacial energy and w is the
anchor coefficient [1]. This is an adaptation of the
Rapini-Papoular function [35]. The analogue of the
Parodi condition has Raleighian

R = (yo/2)(d - DAY + (3,/2)|d © D]’
+(11/2)| AP +,d-Dd + Bid - Dd + (B,/2)3,

where d:=R*4(R""d)=d - Qd is the convected
derivate of d with respect to R* (also called the
Jaumann derivative) and R* satisfies R*"R*T = Q. D
and Q are the symmetric and skew parts of the velocity
gradient. The coefficients may depend upon (s, d, grad
s, grad d) and temperature. Equivalence between
Equation (8) and the s evolution embedded in
Equation (10) is obtained by setting 8, =0 and

B, = B,u/|grads|*™", in which R depends upon grads.
We note here that such a choice implies hydrodynamic
coupling in the evolution of degree of order s (8) and
the dissipation (7) when flow is included, through the
presence of the material time derivative, s, which con-
tains the velocity field.

However, since the non-convexity of interfacial energy
involves grad s, it is possible that the evolution equation
for s is numerically unstable in the cases where w is large.
Recall the s evolution equation in Equation (8) is

= L N A T i
s—Bm|grads| p[ 55+dlv<8(grads) ,

where v is taken as W(d, gradd, s, grads). Then with
Iy

Ograds 18

the energy density given in Equation (11),

calculated as

81// 0o
<8 grads)i 1(grad s); + Tgrads| (grad s);
2UOW
|grads||d|2

oow cos® 0

(d,‘djsyj)

" Tgrads] (grad s); + other terms,

with 0 being the angle between the interface normal
direction and the tactoid interface, i.e. the angle
between the directions grads and d. Thus, after sub-

stituting %, we have

2
c= cdaiv| (1 + -2 V1 w( 25 b,
| grad s| |grad s|

2
— %d@d grads
| grad s||d|

} + other terms,

where C = %. Denote the diffusion tensor A as
A=(L+—2 )1
| grad s|
o 0y cos® 0 B 200 dod
| grad s | grad s||d|2 '

Then, the s evolution equation can be written as

§ = Cdiv(A grads) + other terms. (13)

Since d-grad s is about 0 near the tactoid interface
where grad s is non-zero (note that Equation (12) implies
that d prefers to be perpendicular to grad s to minimise
interfacial energy), the diffusion tensor A in div(A grad s)
may be negative definite depending on the relative mag-
nitude of w, a potential cause for numerical instability.

In order to deal with this problem, we introduce a
new field p representing the interfacial normal whose
reciprocal magnitude roughly represents the width of
the interface. The modified energy density with this
new state descriptor is written as follows:



k k
W (d, gradd, s, grad s,p) = ?ldiv (d)* + 72 (d - curl(d))?

+ @ (|grad d|* — div (d)* — | curl(d)|*)

+%|d x curl(d)|?
Ly 2
5 grads i +£(6) + g(p.d).

where f(s) is still the non-convex function of s in
Equation (11) and g(p,d) is a modified non-convex
function representing interfacial energy given as

¢lord) — Ipl | oo [ L2 DT | (14)
p*|d?

By placing the non-convexity of the interfacial energy
to be a function of p and d, and elastically penalising
the difference between p and grads, we get a stable
system for the phase transition model. The motiva-
tion for this change comes from phase-field like
models of plasticity and phase transitions in solids
that provide a practically useful way of avoiding the
severe ill posedness that arises in problems which
otherwise contain a non-convex energy contribution
in the highest order derivative of a fundamental field
(in the energy) being solved for. Physically, our
assumption separates out the elasticity due to grad s
from the interfacial energy, the latter assumed to be
well-described here by the function g; close to equili-
brium, at least, the elastic energy due to grad s is
instead ascribed to deviations of grad s from the
values of p at which the ground state of the inter-
facial energy g is attained (and not to the absolute
magnitude of grad s), for each fixed value of d. We
also note that when p is perpendicular to d, the
interfacial energy is completely given by the isotropic
contribution from g and our formulation does not
‘double-count’ interfacial energy in this situation if
moreover grad s = p.

With the modified energy density with the new state
descriptor, the dissipation in Equation (6) (we ignore
material motion for simplicity) can be written as

JV[A : M) — pyldv >0

= J {A,-jwij —pa—Wdi —pa—W;—pa—Wﬁ
\% k 861, G(d,]) d,] Os
ow . ow .
RCoTRG Al

Following the same procedure as in Section 3.2, we can
verify that the dissipation is non-negative when p is in
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the direction of —%—V;.

equation of the p field is given as

Thus, the dynamic evolution

) - g
p——Qa— Q|Li(p grads)+8p, (15)

where Q is a material-dependent constant. An example
of the advantage of the modified p model is discussed
in Section 4.

The variables d, s and the anchoring coefficient w are
dimensionless. The variable p has dimension
[p] = Length™'. The physical dimensions of the para-
meters in the modified Oseen-Frank energy are
[k1] = Force, [ky] = Force, [ks;] = Force, [ks] = Force,
[Li] = Force and [0y] = Force x Length™'. The physical
dimensions of the coefficients C in Equation (13) and Q
in Equation (15) are [C] = Length* x Time ! X Force !
and [Q] = Time™! x Force™'.

To non-dimensionalise the above parameters, we
introduce the following dimensionless variables

where [ is the dimensional length, 1 is the dimensionless
length and r is half of a typical tactoid size. In this
work, we assume k; = k; = k3 = k (except in Section
5.1), ks = 0 and L, = k. Therefore, k; = k, = k3 = 1,
I~c4 =0 and L, = 1. The dimensionless &, physically
represents the ratio of the total surface energy and
the total elastic energy, which would be "z—f for a
three-dimensional nematic tactoid [36]. In this work,
we assume 1 to bel0 um, based on the estimate of the
long-axis length of a ‘two-cusp tactoid’ of 20 um given
in Ref. [1]. The physical parameters of LCLCs are
adopted from Ref. [1] as follows: k =2 x 107N and
oo = 107*J/m?, which implies G, = 500. Since we do
not focus on the evolution rates of s and p, we assume
that the time scales in s and p evolutions are similar by

setting Q = r%

4, Tactoid equilibrium and phase transition
results

We explore the capability of the phase transition
model proposed in Sections 3.2 and 3.3 by solving
tactoid equilibrium and dynamic problems. In static
problems, both the initialised shapes from the Wulff
construction and arbitrary initialised shapes are dis-
cussed. In addition, the nematic-isotropic phase
transition and the formation of disclinations are
also studied.
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4.1. Tactoid static equilibrium

We discuss the results of tactoid equilibrium calcula-
tions with different anchor coefficients w. Based on the
Wulff construction of equilibrium shapes of perfect
crystals with the interfacial energy given in Equation
(14), we can construct the equilibrium shapes of tac-
toids under the condition of constant surface area and
a frozen director field [1,37-42]. In the static problem,
we assume that the non-convex function f(s) in the
energy density has identical values at s =0 and s =1
characterising its minimum. Figure 3 shows the initi-
alisations and the corresponding equilibrium results for
various tactoids. The tactoid is initialised in the
nematic s = 1 state and the matrix in the isotropic s =
0 phase. For fixed w, no large-scale evolution is seen to

occur in tactoid shapes, but director reorientation
occurs as the system seeks out a local minima.

The left column in Figure 3 shows the initialisations
of the director field and tactoid shapes for different
anchor coefficients w. The initialised tactoid shapes are
calculated from the Wulff construction and the direc-
tor fields start from a uniform unit vector field where
s = 1. The right column in Figure 3 is the equilibrium
configurations corresponding to the initialisations. It
shows that with increasing w, the single tactoid shape
started from the Wulff construction transforms from
sphere-like to ellipse-like shape. In all cases, given the
interfacial energy in Equation (14), the director field
tends to be perpendicular to the interface normal
grad s.

Figure 3. (Colour online) Initialisations and equilibria of tactoid static problems with different anchor coefficients. The red colour
represents s = 1, the blue colour represents s = 0 and the white dash lines represent the director field. The tactoid initialisations
are calculated from the Wulff construction. (a) The initialized tactoid shape and director field with w = 0.1. (b) The equilibrium of the
tactoid shape and director field with w = 0.1. (c) The initialized tactoid shape and director field with w = 1. (d) The equilibrium of
the tactoid shape director field with w = 1. (e) The initialized tactoid shape and director field with w = 2. (f) The equilibrium of the

tactoid shape and director field with w = 2.
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Figure 4. (Colour online) The initialised tactoid shape is a sphere with w = 2.5. At the equilibrium, the spherical tactoid transforms
to an ellipse-like tactoid and the director field evolves. (a) The spherical initialized tactoid shape with w = 2:5. (b) The equilibrium of

the tactoid shape and director field with w = 2.5.

Figure 5. (Colour online) A spherical tactoid transforms to a rounded-square tractoid with w = 1.5 and a negative disclination of
strength — 1. (@) The spherical initialized tactoid shape with w = 1.5 and the initialized director field corresponds to a negative
disclination of strength —1. (b) The tactoid shape and director field at equilibrium.

Recall that we introduced a new field p and dis-
cussed the theoretical motivation behind it in Section
3.3. In Figure 3(f), the anchor coefficient w is set to be
large, w = 2. In this case, without introducing the p
field, the computation is unstable and an equilibrium
could not be found. With the introduced field p, this
case can be solved with result shown in Figure 3(f). The
results of various tactoid shapes show that cusps are
recovered in our model, matching with experimental
observations [1].

The initialised tactoid shapes in Figure 3 are based
on the Wulff construction. The determined shape from
the Wulff procedure depends on the value of w. In
addition, the calculation shown in Figure 4 explores
the capability of the proposed model with a specified w
and an arbitrary initialised shape. In Figure 4, w is
assumed to be 2.5 but the initialised tactoid shape is a
sphere which clearly does not match with the Wulff
construction. Figure 4(a) is the initialisation of the

tactoid shape and the director field and Figure 4(b) is
the corresponding computed equilibrium state. It
shows that the initialised spherical tactoid shape trans-
forms to an elliptic shape due to the high value of w.
Figure 5 shows another example with a non-Wulff-
constructed initialised shape in which w = 1.5 and the
director field are prescribed with a singularity corre-
sponding to a negative disclination of strength — 1.
Figure 5(a) is the initialised spherical tactoid shape and
the director field with the discontinuity at the centre of
the tactoid. Figure 5(b) shows the final equilibrium state
indicating that the tactoid transforms to a rounded
square, and a negative disclination (with its core in the
isotropic phase s = 0) exists at the centre of the tactoid.

4.2. Dynamics of tactoids interaction

The interaction between two tactoids located close to
each other is computed. Two spherical tactoids are
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Figure 6. (Colour online) Interaction between two tactoids. These two tactoids tend to merge and the director field evolves. (a) The
initialized tactoid shape and director field for two tactoids interaction. (b) Two tactoids begin to merge and the director evolves. (c)
The director keeps evolving. (d) The equilibrium of two tactoid interaction.

initialised with different director orientations, as shown
in Figure 6(a). Since these two tactoids are located very
close to each other, they are expected to interact with
each other. As the calculation progresses, the tactoids
begin to merge and the director field evolves to mini-
mise the total energy, as shown in Figure 6.

In this calculation, m = 0 and the barrier of the
non-convex function f(s) in the energy density
between s =0 and s=1 is low. The shape of the
non-convex function f(s) is shown in Figure 7. In the
tactoid evolution, the effect of m is critical.

e For the static equilibrium problem of a single
tactoid, with higher barrier of f(s), a single tactoid
will evolve to its equilibrium state with no
problem.

e For the static equilibrium problem, with a low
barrier of f(s), and m = 2, the single tactoid will
diffuse into the isotropic matrix and the interface
cannot maintain its shape. On the other hand,
with a low barrier of f(s), and m = 0, the single
tactoid will evolve to its equilibrium state.

90 T T T

Figure 7. (Colour online) The shape of f(s) used in the two
tactoids interaction calculation. The barrier between two wells
ats=0and s=1is low.

e For dynamic problems, such as the tactoid inter-
action discussed in this section, the tactoids are
not able to merge with a high barrier in f(s).



e With a low barrier of f(s) as applied in this
calculation and m = 0, the tactoids are able to
move, expand or merge.

To understand the reason for the effect of the energy
barrier and m value, recall that the s evolution equation
is given as

o= L lgrads |~ W paiv (N
s—Bm|grads| p[ 85+dw<8(grads) .

In the case of high barrier of f(s), regardless of m, s can
barely evolve from their well values because of the high
value of the ‘resisting force’ from %. In the case of low
barrier of f(s), with m = 2, there is no impediment for
s to evolve out of the isotropic well. In the case of low
barrier and with m = 0, although the barrier of f(s) is
low, s cannot evolve where grad s is 0.

This is analogous to a problem in Ref. [22], where
the dissipative dynamic behaviour of disclinations in
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nematic LCs is studied. By observing the effect of m on
low barrier cases, we show that the dynamic model
based on kinematics and thermodynamics is important
for modelling dissipative dynamics.

4.3. Phase transition

We now discuss a problem of evolving phase transition
across the whole domain. Three tactoids with different
director orientations are initialised as shown in Figure 8
(a). The non-convex part f(s) in the energy density is
assumed to prefer the nematic phase, indicating the well
at s = 1 is lower than the well at s = 0. The preference of
the nematic phase of f(s) indicates that the LC should
transit from the isotropic to the nematic phase. Figure 8
(b-d) shows snapshots at different times during the
phase transition. As time increases, the tactoids expand
and merge. In Figure 8(d), a strength — 1 disclination is
formed inside the bulk which matches with experimental
observations [1].

(@)

Figure 8. (Colour online) Snapshots of isotropic—nematic phase transition at different times. As the calculation progresses, the
tactoids expand, merge and a strength — 1 disclination is formed inside the bulk. (a) The initialized tactoid shape and director field.
Three spherical tactoids with same director fields are initialized. (b) The tactoid shapes and director field at t = 0.1. Three tactoids
expand. (c) The tactoid shapes and director field at t = 0.2. The tactoids begin to merge. (d) The tactoid shapes and director field at

t = 0.5. A strength -1 disclination is formed inside the bulk.
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5. Effect of material parameters on tactoid
equilibria

Since the energy proposed in this model is non-convex
and the equilibrium of the tactoid and the director field
depend on the interfacial energy and the Frank con-
stants, it is of interest to explore tactoid equilibria as a
function of material parameters.

5.1. Frank constants k;; and k;;

We consider two cases, k;; > k33 (splay more expensive
than bend) or k;; <ks; (bend more expensive than
splay). In one case, we assume kj; is five times larger
than ks3; in the other, we assume k33 is five times larger

than kj;. The tactoid shape is initialised as a sphere in
both cases.

Figures 9 and 10 show the initial configuration and
the equilibrium state for both cases. In Figure 9, ky; is
larger than k;; and the director in the equilibrium
tends to be perpendicular to the tactoid interface nor-
mal direction and bend is preferred over splay. On the
other hand, in Figure 10, the director tends to be
parallel to the interface normal direction with splay
preferred over bend. The difference between these
two results indicates that the relationship between kj;
and k33 is crucial to the interaction between the direc-
tor and the tactoid interface, which is also discussed in
the experiments reported in Ref. [17].

(b)

Figure 9. (Colour online) The initialisation and equilibrium configuration of the tactoid and director field in the case where k1 > k33.
Since splay is more expensive than bend, the director field tends to be perpendicular to the interface normal. (a) The initialized
tactoid shape and director field. (b) The tactoid shape and director field at the equilibrium.

(b)

Figure 10. (Colour online) The initialisation and equilibrium configuration of the tactoid and director field in the case where
kq1 < ks3. Since bend is more expensive than splay, the director field tends to be parallel to the interface normal. (a) The initialized
tactoid shape and director field. (b) The tactoid shape and director field at the equilibrium.



5.2. Effect of interfacial energy barrier on tactoid
shape

Recall that in Equation (14), the interfacial energy is
given in terms of the cosine of the angle 8 between p
representing the normal of the interface and the direc-
tor field d, which has a minimum at 6 = 7. However,
this approximation of the interfacial energy is only
valid when the angle 6 is close to 7. We now assume
an interfacial energy characterised by a fourth-order
polynomial with two local minima and a local max-
imum as shown in Figure 11. Such a form of the sur-
face anchoring potential was first introduced by
Sluckin and Poniewierski [43] and applied for the
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Interface
energy

Angle between interface
normal and director

Figure 11. (Colour online) The shape of the interfacial energy
with two local minimal and a local maximal.

description of interfacial effects in LCLCs by
) o | 0y Initialized Configuration Energy Equilibrium Configuration Energy
0 0 0 0.86
L R 1.63 1.27
0 1] 05 1.59 1.08
0 5|05 2.86 1.93

Figure 12. (Colour online) The initialisations and static equilibriums of the tactoid shape and director field given different interfacial
energy parameters in the cases where gy = 0, and oo < g,. The total energy for each case is normalised by the energy value for the

initialisation of the case where 09 = 01 = 0, = 0.
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Nazarenko et al. [19]. 6, = 0 is where one local mini-
mum occurs, 0; is the location of the local maximum
and 6, = 7 is the location of the other local minimum.
09, 01 and o, are the interfacial energy values at 0, 0,
and 0,, respectively.

It is clear that the energy barrier between the two
wells 6y and 0,, as well as the values of oy and o, will
influence the equilibrium state of the director field and
the tactoid shape. Here, we explore the relationship
between the energy values of local maximum, as well
as local minima, and the equilibrium of the director
field. We assume 6, = 7 and change 0y, 01 and 0.

Figures 12 and 13 show the initialisations and
equilibria of tactoid shapes and their director fields
given different interfacial energy parameters. In the
first row of Figure 12, gy, 01 and o, are set to be 0 so
the interfacial energy will be zero at any angle
between the director and the interface normal. Thus,
the director field in the equilibrium is the same as the
initialisation. The second row shows the initialised
configuration and static equilibrium corresponding

to a higher o, values. Since the energy barrier between

0o and 0, is high, the director field tends to move to
its local minimum, namely some points being parallel
to the interface normal and some points being per-
pendicular to the interface normal. The last two rows
in Figure 12 show different equilibria with the
increasing energy barrier o; in the case where
09< 0,. With low barrier o; = 1, the director field
can evolve to the lower well at 6, thus the director
field in the equilibrium is parallel to the interface
normal. With high barrier 0, =5, the director field
cannot pass the local maximum between 6, and 6,
and evolve to its local minimum in the equilibrium. In
addition, Figure 12 shows the total energy for each
case, which are normalised by the total energy of the
case where 0y = 0; = 0, = 0.

Similarly, Figure 13 shows the results with increas-
ing energy barrier o, in the case where 0y >0,. With
low barrier o; = 1, the director field can evolve to the
lower well at 6,, and the director field in the equili-
brium is perpendicular to the interface normal. With
high barrier o; = 5, the director field can only evolve
to its local minimum in the equilibrium. Figure 13 also

0y 01| 0y Initialized Configuration Energy Equilibrium Configuration Energy
14.31 9.17
0.5 1 0
05| 2 0 14.64 13.87
05 | 5 0 15.52 12.85

Figure 13. (Colour online) The initialisations and static equilibriums of the tactoid shape and director field given different interfacial
energy parameters in the case where gy > 0,. The total energy for each case is normalised by the energy value for the initialisation

of the case where o9 = 07 = 0, = 0.



shows the total energy for each case, and the values of
the total energy are normalised by the one of the case
where 0y = 0; = 0, = 0.

6. Conclusion

A model based in continuum kinematics and thermo-
dynamics is derived for LCLC I-N phase transition
dynamics. By adopting the order parameter s in Ref.
[26] to represent different phase states, an evolution
equation of s is proposed and discussed. The main
difference between our model and Ericksen’s model
in Ref. [26] is that the model in this work starts from
a kinematic ‘tautology’ with transparent physical/geo-
metric motivation. The evolution of the director field is
described by the formulation in Ref. [34]. A new field p
is introduced in the energy density to resolve the
instabilities in the s evolution resulting from the non-
convex interfacial energy when phrased only in terms
of grad s and d.

Both static equilibrium and dynamic tactoid beha-
viours are studied, including tactoid static microstruc-
tures from different initialised shapes, tactoid
interactions and I-N phase transitions. The signifi-
cance of the introduced evolution equation for s is
discussed in the context of describing tactoid dynamic
behaviours. A parametric study is performed to explore
the effect of nematic elastic constants (splay and bend)
and the interfacial energy parameters on the interac-
tion between the tactoid interface normal and the
director field.
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