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ABSTRACT

Motivated by recent experiments, the isotropic–nematic phase transition in chromonic liquid crystals is
studied. As temperature decreases, nematic nuclei nucleate, grow and coalesce, giving rise to tactoid
microstructures in an isotropic liquid. These tactoids produce topological defects at domain junctions
(disclinations in the bulk or point defects on the surface). We simulate such tactoid equilibria and their
coarsening dynamics with a model using degree of order, a variable length director and an interfacial
normal as state descriptors. We adopt Ericksen’s work and introduce an augmented Oseen–Frank
energy, with non-convexity in both interfacial energy and the dependence of the energy on the degree
of order. A gradient flow dynamics of this energy does not succeed in reproducing some simple
expected feature of tactoid dynamics. Therefore, a strategy is devised based on continuum kinematics
and thermodynamics to represent such features. The model is used to predict tactoid nucleation,
expansion and coalescence during the process of phase transition. We reproduce observed behaviours
in experiments and perform an experimentally testable parametric study of the effect of bulk elastic
and tactoid interfacial energy parameters on the interaction of interfacial and bulk fields in the tactoids.
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1. Introduction

Liquid crystals (LCs) are a state of matter with long-

range orientational order and complete (nematic) or

partial (smectics, columnar phases) absence of long-

range positional order of ‘building units’ (molecules,

viruses, aggregates etc.). LCs can flow like viscous

liquids and also possess features that are characteristic

of solid crystals, such as elasticity and birefringence. In

the simplest liquid crystalline phase, called the nematic,

the molecules have no positional order but tend to

point in the same direction. In this work, we focus on

a nematic lyotropic LC (lyotropic chromonic liquid

crystal (LCLC)) that possesses a broad biphasic region

of coexisting nematic and isotropic phases [1].

LCLCs are formed by water-based dispersions of

organic molecules, see the recent reviews [2–4]. The

molecules are of a rigid disc-like or plank-like shape

with polar groups at the periphery. Once in water,

they form elongated aggregates by stacking on top of

each other. The aggregates elongate as the concentration

is increased and the temperature is reduced, which

allows one to trigger phase transitions in the system by

changing either the temperature or concentration [5,6].

In particular, the temperature changes can trigger a first

order isotropic–nematic (I–N) phase transition of the

LCLC. As the temperature increases, the nematic LC

loses orientational order and transits to the isotropic

phase, with molecular aggregates being short and

oriented randomly. On the contrary, if the temperature

decreases, the isotropic phase transits to the nematic

phase. Both phase transitions occur through nucleation

of the so-called tactoids, representing inclusions of one

phase in the other [1,7–9]. Tactoids of the nematic phase

nucleating upon cooling are called positive tactoids [8]

and are the subject of the present work. Tactoids of the

isotropic phase nucleating in the nematic background

upon heating are called negative tactoids [8]. If the

temperature is fixed in the range in which the two

phases coexist, these tactoids expand and merge. The

uniaxial nematic phase allows three types of topologi-

cally stable defects: linear disclinations, point defects

hedgehogs and point defect boojums; the latter can

exist only at the surface of the nematic [10–13]. In

confined volumes, such as droplets and tactoids, some

of the topological defects correspond to the equilibrium

state of the system, thanks to the anisotropic surface

tension that sets a well-defined angle between the direc-

tor and the normal to the interface [14].

The principal objectives of this work are to

● derive a practical equation of evolution for the

degree of orientation based on kinematics and

thermodynamics;
● introduce a dynamic model for the nematic–isotro-

pic phase transition of LCLC with an augmented

Oseen–Frank energy and non-convex interfacial

energy;
● demonstrate the capability of the proposed dyna-

mical model by analysing the results of static

equilibrium and the dynamic behaviours.

The main experimental observations and applications

of LCLC and their computation are reviewed in Refs.

[1–4]. Currently, there is an extensive database on

the principal material parameters of the LCLCs and

defects in them. All three bulk elastic constants (for

splay K11, twist K22 and bend K33) have been mea-

sured for two main representatives of LCLCs

Figure 1. Experiment observations of isotropic–nematic phase transition from Ref. [1].
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[15–17]. It was found that the elastic constants of

bend and splay can be tuned in a broad range, from

a few pN to 70 pN, by changing temperature or the

chemical composition of the system (e.g. by adding

salts [17]). The director of LCLCs can align either

parallel to the interface with an adjacent medium

[18] or in a perpendicular fashion, with possible

transitions between these two states [19]. At the

interface with its own isotropic melt, the director of

a nematic LCLC aligns parallel to it [7]. The inter-

facial surface tension at the I–N interface was esti-

mated to be on the order of 10−4 J/m2 [1]. The defect

cores of disclinations in LCLCs extend over long

distances (microns and even tens of microns), much

larger than the cores of disclinations in thermotropic

LCs [20].

In this work, we are primary interested in the obser-

vations reported in Ref. [1] to develop a model for

understanding the behaviour of tactoids during the I–N

transformation. The I–N interface in LCLC favours the

director to be tangential to the tactoid interface. Figure 1

shows the experimental observations of the I–N phase

transition from Ref. [1]. Figure 1(a) shows a single tac-

toid, where the black colour represents the isotropic

phase while the orange colour represents the nematic

phase. The black arrows inside the tactoid represent the

director field. Nontrivial morphologies of tactoids with

surface cusps and director fields are observed. Due to the

surface anisotropy, cusps are associated with surface

defects called boojums, as shown in Figure 1(a).

Figure 1(b–e) represents the phase transition process

from the isotropic to the nematic phase, where the

nematic tactoids expand and merge. Merging tactoids

often produce disclinations via the Kibble mechanism

[11,12,21], as shown in Figure 1(e), where a strength �
1
2

disclination is formed at the point where tactoids

merge. In addition, integer strength disclinations are

stable only when their cores constitute a large isotropic

inclusion; otherwise, as demonstrated experimentally

and analytically by Kim et al. [1] and numerically in

Ref. [22], the integer strength disclinations split into

pairs of half-integer ones. The motion of an interface

between a nematic LC phase and the isotropic phase is

investigated with a Ginzburg–Landau equation in Ref.

[23]. The confinement of the director field for a spherical

particle that explains the observation of a Saturn ring is

studied in Ref. [24].

In studies of nematic LCs, a classical convention is

to represent the local orientational order by a unit-

length director field [25,26]. Oseen and Frank devel-

oped an energy density of nematic LCs, with constants

representing different director deformations [27,28].

The existence and partial regularity theory of some

boundary-value problems based on Oseen–Frank

energy density are discussed in Ref. [29]. The Oseen–

Frank energy can be augmented by adding an addi-

tional surface energy density to represent the interac-

tion between the LC and an adjacent medium; a

common form of such a surface energy density is the

Rapini–Papoular surface energy.

In this paper, we develop a computational model

for the I–N phase transition accounting for interfacial

energy as an enhancement of Ericksen’s variable

degree of order (s,n) model [26]. We introduce the

pair (s,d) with (d = sn). The state variable s has

the meaning of the degree of order parameter in

Ericksen’s model [26] and d serves for the director

whose magnitude is constrained to be equal to sj j.
Thus, the director is of unit length in the nematic

phase, it vanishes in the isotropic phase, and it is of

variable length at interfaces between the two phases.

This practical device of replacing n by d is essential

in terms of having a setting that is well posed for

computations of a time-dependent non-linear theory,

since leaving the value of the director field undefined

in parts of the domain, that furthermore evolve in

time, does not lead to unique evolution and simply

cannot be practically implemented.

The rest of this paper is organised as follows: In

Section 2, we outline our notation and terminology. In

Section 3, a dynamic model for the phase transition

process based on kinematics as well as thermodynamics

is derived. In Section 4, the results of equilibrium and

dynamic behaviours are shown and discussed. The sig-

nificance of the dynamic model is demonstrated and

explained. In Section 5, we report on a preliminary

parametric study of material constants in the model.

We end with some concluding remarks in Section 6.

2. Notation and terminology

The condition that a is defined to be b is indicated by

the statement a :¼ b. The Einstein summation conven-

tion is implied unless specified otherwise. The symbol

Ab denotes the action of a tensor A on a vector b,

producing a vector. In the sequel, a � b represents the

inner product of two vectors a and b; the symbol AB

represents tensor multiplication of the second-order

tensors A and B.

The symbol div represents the divergence and grad

represents the gradient. In this paper, all tensor or

vector indices are written with respect to the basis ei,

i = 1–3, of a rectangular Cartesian coordinate system.

The following component-form notation holds
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a� bð Þi ¼ eijkajbk
curl að Þi ¼ eijkak;j
div Að Þi ¼ Aij;j

A : Bð Þ ¼ AijBij

where emjk is a component of the alternating ten-

sor X.

The following list describes some of the mathema-

tical symbols we use in this work:

n: the unit vector field representing the director;

s: the degree of orientation, s ¼ 0 represents the iso-

tropic phase while s ¼ 1 represents the nematic

phase;

d: the alternative vector field representing the direc-

tor with d ¼ sn and

ψ: the free energy density.

3. Derivation of dynamic model

3.1. s Evolution equation in Ericksen–Leslie

model

In Ref. [26], Ericksen introduced a variable degree of

orientation s to represent different phase states of a

LC. In his model, s ¼ 0 represents the isotropic

phase and s ¼ 1, the nematic phase. Also, a unit

length vector field is introduced to represent the

director field, denoted as n. In Ericksen’s model,

the balance law to derive the s evolution equation

is given as

_P ¼ div ðTÞ þ GI þ GE;
where ψ is free energy density, P is a generalised

momentum with P ¼ @ψ=@s, T is a generalised stress,

GI represents a kind of internal body force with GI ¼

�@ψ=@sþ Ĝ and GE is an external effect. Assuming

the free energy density, ψ depends on

ðs; grad s;n; grad nÞ, and following the argument in

Ref. [26], we have

:
@ψ

@s
¼ div

@ψ

@ grad s

� �

�
@ψ

@s
þ Ĝþ GE

)
@2ψ

@s2
_sþ

@2ψ

@s@ grad s
�

:

grad s
þ

@2ψ

@s@n
� _nþ

@2ψ

@s@ grad n

:
:

grad n
¼ div

@ψ

@ grad s

� �

�
@ψ

@s
þ Ĝþ GE:

After rearranging the terms, s evolution equation in

Ericksen’s model can be written as

@2ψ

@s2

� �

_sþ
@2ψ

@s@ grad s
�

:

grad s
¼

div
@ψ

@ grad s

� �

�
@ψ

@s
þ Ĝþ GE �

@2ψ

@s@n
� _n

�
@2ψ

@s@ grad n
:

:

grad n
:

In this work, we would like to adopt a simpler evolu-

tion statement since the fundamental basis for

Ericksen’s balance law _P ¼ div ðTÞ þ GI þ GE is not

clear to us. In particular, the coefficient
@2ψ
@s2 may

change sign as the dependence on s of the energy is

non-convex.

3.2. Motivation and derivation of s evolution

We derive a practical model for tactoid and I–N phase

transition dynamics based on continuum kinematics

and thermodynamics. To get the evolution equation

for s, suppose there is a level set of s with normal

velocity field VðsÞ along it, travelling from x2 to x1
during a time interval Δt, as shown in Figure 2. The

time derivative of s at x1 and t is

@s

@t
ðx1; tÞ ¼ lim

Δt!0

sðx1; t þ ΔtÞ � sðx1; tÞ

Δt
: (1)

Since the level set of s travels from x2ðΔtÞ to

x1 :¼ x2ðΔt ¼ 0Þ, Δt > 0, during the time interval Δt,

sðx1; t þ ΔtÞ ¼ sðx2ðΔtÞ; tÞ. Thus, @s
@t may also be

expressed as

@s

@t
ðx1; tÞ ¼ lim

Δt!0

sðx2ðΔtÞ; tÞ � sðx1; tÞ

Δt
: (2)

Figure 2. A level set of s moving from x2 to x1 during Δt.
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Assuming s is differentiable in its arguments and writing

the derivative in the first argument as grad s, we have

sðx2ðΔtÞ; tÞ � sðx1; tÞ ¼ grad sðx1; tÞ½x2ðΔtÞ � x1�

þ oðx2ðΔtÞ � x1Þ)
sðx2ðΔtÞ; tÞ � sðx1; tÞ

Δt

¼ grad sðx1; tÞ
1

Δt
½x2ðΔtÞ � x1� þ

1

Δt
oðx2ðΔtÞ � x1Þ:

(3)

Substitute Equation (3) in Equation (2), we have

@s

@t
ðx1; tÞ ¼ grad sðx1; tÞ lim

Δt!0

x2ðΔtÞ � x1

Δt

þ lim
Δt!0

oðx2ðΔtÞ � x1Þ

Δt
: (4)

Denote VðsÞ as the velocity of movement of a level set

of s, V ðsÞ ¼ limΔt!0
x1�x2ðΔtÞ

Δt . Since

lim
Δt!0

oðx2ðΔtÞ � x1Þ

Δt

�

�

�

�

�

�

�

�

¼ lim
Δt!0

oðx2ðΔtÞ � x1Þj j

x2ðΔtÞ � x1j j

x2ðΔtÞ � x1j j

Δt

¼ �0 � VðsÞ
�

�

�

� ¼ 0;

(4) becomes

@s

@t
¼ � grad s � VðsÞ:

If the material velocity is v and the change in the value

of s at x1 arises from factors more than the pure

advection of the value of s from x2 to x1 due to material

motion, then we assign the rest of this change as

occurring due to the progress of the phase transition

front. In general, we can decompose VðsÞ ¼ v þ V ,

where V is the phase front velocity relative to the

material and v is the material velocity. Recall that the

material time derivative of s is defined as

_s :¼
ds

dt
¼

@s

@t
þ grad s � v;

therefore, the s evolution is given as

_s ¼ �grad s � V: (5)

In particular, there are two special cases:

● Suppose this velocity was purely due to s being

transported by the material velocity v. Then, we

have _s ¼ @s
@t þ

@s
@x � v ¼ 0.

● If there is no material velocity but transport is

only due to motion of the phase front, then VðsÞ is

just the speed of the phase front transition V.

To get an explicit form of the phase front velocity V,

assume the free energy density per unit mass takes the

form ψðn; grad n; s; grad sÞ. Following Refs. [30,31],

take the external power as

PðtÞ ¼

ð

@V
ðΛνÞ � ωdaþ

ð

V
ρK � ωdv;

where Λ is the couple stress tensor, K is the external

body moment per unit mass, v is the unit normal

vector on the boundary of the body and ω is the

director angular velocity (we have ignored material

motion for simplicity). Applying the divergence theo-

rem, we have
ð

@V
ðΛνÞ � ωda ¼

ð

@V
Λijωiνjda

¼

ð

V
ðΛij;jωi þ Λijωi;jÞdv:

Thus, the external power P can be written as

PðtÞ ¼

ð

V
½div Λþ ρK� � ωdvþ

ð

V
Λ : Mdv;

where M is defined as director angular velocity gradi-

ent M ¼ gradω. Recall that the balance law of angular

momentum reads as

divΛþ ρK ¼ 0;

leading to

PðtÞ ¼

ð

V
Λ : M dv:

In addition, the second law of thermodynamics

requires the dissipation to be equal or larger than

zero, which is given as
ð

V
½Λ : M� � ρ _ψ� dv � 0 (6)

)

ð

V

Λijωi;j � ρ
@ψ

@ni
_ni � ρ

@ψ

@ðni;jÞ

:

ni;j
� ρ

@ψ

@s
_s� ρ

@ψ

@ðs;jÞ

:

s;j

� �

dv

� 0:

As flow is ignored for the moment, the inequality takes

the form
ð

V

Λijωi;j � ρ
@ψ

@ni
_ni � ρ

@ψ

@ðni;jÞ
_ni;j � ρ

@ψ

@s
_s� ρ

@ψ

@ðs;jÞ
_s;j

� �

dv

� 0

)

ð

V
Λijωi;j � ρ

@ψ

@ni
ðω� nÞi � ρ

@ψ

@ðni;jÞ
ðω� nÞi;j

�

� ρ
@ψ

@s
_sþ ρ

@ψ

@ðs;jÞ

� �

; j_s

�

dv

�

ð

@V
ρ

@ψ

@ðs;jÞ
_sνjda � 0:
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Defining the couple stress Λ as

Λij :¼ ρeinmnn
@ψ

@nm;j
;

and applying the Ericksen identity [32] as

@ψ

@n
� nþ

@ψ

@ grad n
ðgrad nÞ þ

@ψ

@ grad n

� �

grad n

� �

skew

¼ 0;

we obtain

Λijωi;j � ρ
@ψ

@ni
ðω� nÞi � ρ

@ψ

@ðni;jÞ
ðω� nÞi;j ¼ 0:

Then, the dissipation inequality becomes

ð

V
�ρ

@ψ

@s
_sþ ρ

@ψ

@ðs;jÞ

� �

;j

_s

" #

dv�

ð

@V
ρ

@ψ

@ðs;jÞ
_sνjda � 0:

(7)

To fulfil this inequality, recalling Equation (5) that

_s ¼ � grad s � V , one requires

� ρ
@ψ

@s
� ρ

@ψ

@ðs;jÞ

� �

; j

" #

s;iVi � 0 at interior points

� ρ
@ψ

@ðs;jÞ
νjs;iVi � 0 at points on boundary:

Therefore, the choice of VB on the boundary pointing

in the direction of

� ρ
@ψ

@ðgrad sÞ
� ν

� �

grad s;

and V I in the interior pointing in the direction of

� ρ
@ψ

@s
� ρ div

@ψ

@ðgrad sÞ

� �� �

grad s

satisfy the non-negative dissipative requirement. In

particular, V I in the interior may be further assumed as

V I ¼ �
grad s

Bmj grad sjm
�ρ div

@ψ

@ðgrad sÞ

� �

þ ρ
@ψ

@s

� �

:

where Bm is a material constant required on dimen-

sional grounds related to ‘drag’, and m is a parameter

representing different scenarios, which can be 0, 1 and

2. With _s ¼ � grad s � V , the evolution equation of s

can be written as

_s ¼
1

Bm
j grad sj2�mρ �

@ψ

@s
þ div

@ψ

@ ðgrad sÞ

� �� �

:

(8)

m ¼ 0 is the simplest natural choice representing a

linear kinetic assumption. m ¼ 2 corresponds to the

evolution equation derived from the gradient flow

method. To this is appended the balance laws of linear

momentum and angular momentum, utilising the con-

stitutive equations for couple stress and stress, the

latter arising from the thermodynamic procedure

above when flow is included [33].

Another way to obtain the s evolution equation is

the gradient flow method. The gradient flow dynamics

(for a non-conserved quantity) assumes that all infor-

mation on evolution is directly available (up to a mate-

rial parameter) once the energy function is known.

Consider the total energy

E ¼

ð

V
ρψðn; grad n; s; grad sÞ dv:

The first variation of the energy E is

δE ¼

ð

V

@ψ

@n
� δnþ

@ψ

@ grad n
: δðgrad nÞ þ

@ψ

@s
δs

�

þ
@ψ

@ grad s
� δðgrad sÞ

�

dv:

Integrate by parts the term involving δðgrad sÞ to obtain

the s evolution equation based on an L2 gradient flow as

_s ¼ γ div
@ψ

@ grad s
�
@ψ

@s

� �

; (9)

where γ is a dimensional constant. The result from the

energy gradient flow method is equivalent to the evo-

lution equation given in Equation (8) for m ¼ 2.

3.3. Phase transition model formulation

In Ericksen’s model [26], the director field is represented

by a unit length vector field n. To practically implement

the computation of a time-dependent non-linear theory,

we adopt an alternative vector field d to represent the

director field subject to the constraint jdj2 ¼ s2.

Assuming the generalised Parodi relation, the gov-

erning equations are an extension of the work in Ref.

[34] and take the form

ρ _vþ gradp�div
@R

@ grad v
�ðgraddÞT

@W

@ grad d

�

�ðgrad sÞ�
@W

@ grad s

�

¼ ρf

@R

@d
þ
@W

@d
�div

@W

@ gradd

� �

þ λd¼ ρm

@R

@ _s
þ
@W

@s
�div

@W

@ grad s

� �

� λs¼ ρfs

(10)
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where ρ is the material density, p and λ are Lagrange

multipliers dual to the constraints

divðvÞ ¼ 0 and jdj2 � s2 ¼ 0;

W is a modified Oseen–Frank energy and R is an

appropriately designed dissipation function.

We introduce the modified Oseen–Frank energy as

Wðd; grad d; s; grad sÞ ¼
k1

2
div ðdÞ2 þ

k2

2
ðd � curl ðdÞÞ2

þ
k2 � k4

2
ðjgrad dj2 � div ðdÞ2 � j curl ðdÞj2Þ

þ
k3

2
jd � curl ðdÞj2

þ
L1

2
j grad sj2 þ f ðsÞ þ gðgrad s; dÞ;

(11)

where k1, k2, k3 and k4 correspond to the Frank con-

stants, L1 is the Leslie parameter and f ðsÞ is a non-

convex function of s indicating the preferred phase

state. The (s, d) modified Oseen–Frank energy function

has been further augmented by the function gðgrad s; dÞ
which is a non-convex function representing interfacial

energy. A natural candidate for g ðgrad s; dÞ is given as

gðgrad s; dÞ ¼ j grad sj σ0 1þ w
ðgrad s � dÞ2

j grad sj2jdj2

 !" #

;

(12)

where σ0 is an isotropic interfacial energy and w is the

anchor coefficient [1]. This is an adaptation of the

Rapini–Papoular function [35]. The analogue of the

Parodi condition has Raleighian

R ¼ ðγ0=2Þðd � DdÞ2 þ ðγ̂2=2Þjd � Ddj2

þ ðγ1=2Þj d
�

j2 þ γ2 d
�

�Dd þ β1 _sd � Dd þ ðβ2=2Þ_s
2;

where d
�

:¼ R	 d
dt
ðR	TdÞ ¼ _d �Ωd is the convected

derivate of d with respect to R	 (also called the

Jaumann derivative) and R	 satisfies R	R	T ¼ Ω. D

and Ω are the symmetric and skew parts of the velocity

gradient. The coefficients may depend upon (s, d, grad

s, grad d) and temperature. Equivalence between

Equation (8) and the s evolution embedded in

Equation (10) is obtained by setting β1 ¼ 0 and

β2 ¼ Bm=jgrad sj
2�m, in which R depends upon grad s.

We note here that such a choice implies hydrodynamic

coupling in the evolution of degree of order s (8) and

the dissipation (7) when flow is included, through the

presence of the material time derivative, _s, which con-

tains the velocity field.

However, since the non-convexity of interfacial energy

involves grad s, it is possible that the evolution equation

for s is numerically unstable in the cases where w is large.

Recall the s evolution equation in Equation (8) is

_s ¼
1

Bm
j grad sj2�mρ �

@ψ

@s
þ div

@ψ

@ðgrad sÞ

� �� �

;

where ψ is taken as Wðd; grad d; s; grad sÞ. Then with

the energy density given in Equation (11),
@ψ

@ grad s is

calculated as

@ψ

@ grad s

� �

i

¼ L1ðgrad sÞi þ
σ0

j grad sj
ðgrad sÞi

þ
2σ0w

j grad sjjdj2
ðdidjs;jÞ

�
σ0w cos2 θ

j grad sj
ðgrad sÞi þ other terms;

with θ being the angle between the interface normal

direction and the tactoid interface, i.e. the angle

between the directions grad s and d. Thus, after sub-

stituting @ψ
@ grad s , we have

_s ¼ C div L1 þ
σ0

j grad sj

� �

I � w
σ0 cos

2 θ

jgrad sj
I

����

�
2σ0

j grad sjjdj2
d � d

!!

grad s

#)

þ other terms;

where C ¼ j grad sj2�mρ
Bm

. Denote the diffusion tensor A as

A ¼ L1 þ
σ0

j grad sj

� �

I

� w
σ0 cos

2 θ

j grad sj
I �

2σ0

j grad sjjdj2
d � d

 !

:

Then, the s evolution equation can be written as

_s ¼ C divðA grad sÞ þ other terms: (13)

Since d � grad s is about 0 near the tactoid interface

where grad s is non-zero (note that Equation (12) implies

that d prefers to be perpendicular to grad s to minimise

interfacial energy), the diffusion tensor A in div(A grad s)

may be negative definite depending on the relative mag-

nitude of w, a potential cause for numerical instability.

In order to deal with this problem, we introduce a

new field p representing the interfacial normal whose

reciprocal magnitude roughly represents the width of

the interface. The modified energy density with this

new state descriptor is written as follows:
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Wðd;gradd; s;grad s;pÞ ¼
k1

2
div ðdÞ2 þ

k2

2
ðd � curlðdÞÞ2

þ
k2 � k4

2
ðjgrad dj2 � div ðdÞ2 � j curlðdÞj2Þ

þ
k3

2
jd� curlðdÞj2

þ
L1

2
jgrad s� pj2 þ f ðsÞ þ gðp;dÞ;

where f ðsÞ is still the non-convex function of s in

Equation (11) and gðp; dÞ is a modified non-convex

function representing interfacial energy given as

gðp; dÞ ¼ pj j σ0
1þ wðp � dÞ2

pj2
�

�

�

�dj2

 !" #

: (14)

By placing the non-convexity of the interfacial energy

to be a function of p and d, and elastically penalising

the difference between p and grads, we get a stable

system for the phase transition model. The motiva-

tion for this change comes from phase-field like

models of plasticity and phase transitions in solids

that provide a practically useful way of avoiding the

severe ill posedness that arises in problems which

otherwise contain a non-convex energy contribution

in the highest order derivative of a fundamental field

(in the energy) being solved for. Physically, our

assumption separates out the elasticity due to grad s

from the interfacial energy, the latter assumed to be

well-described here by the function g; close to equili-

brium, at least, the elastic energy due to grad s is

instead ascribed to deviations of grad s from the

values of p at which the ground state of the inter-

facial energy g is attained (and not to the absolute

magnitude of grad s), for each fixed value of d. We

also note that when p is perpendicular to d, the

interfacial energy is completely given by the isotropic

contribution from g and our formulation does not

‘double-count’ interfacial energy in this situation if

moreover grad s = p.

With the modified energy density with the new state

descriptor, the dissipation in Equation (6) (we ignore

material motion for simplicity) can be written as
ð

V
½Λ : M� � ρ _ψ�dv � 0

)

ð

V
Λijωi;j � ρ

@W

@di
_di � ρ

@W

@ðdi;jÞ

:

di;j
� ρ

@W

@s
_s

�

� ρ
@W

@ðs;jÞ

:

s;j
� ρ

@W

@pi
_pi

�

dv � 0:

Following the same procedure as in Section 3.2, we can

verify that the dissipation is non-negative when _p is in

the direction of � @W
@p . Thus, the dynamic evolution

equation of the p field is given as

_p ¼ �Q
@W

@p
¼ �Q L1ðp� grad sÞ þ

@g

@p

� �

; (15)

where Q is a material-dependent constant. An example

of the advantage of the modified p model is discussed

in Section 4.

The variables d, s and the anchoring coefficient w are

dimensionless. The variable p has dimension

½p� ¼ Length�1. The physical dimensions of the para-

meters in the modified Oseen–Frank energy are

½k1� ¼ Force, ½k2� ¼ Force, ½k3� ¼ Force, ½k4� ¼ Force,

½L1� ¼ Force and ½σ0� ¼ Force� Length�1. The physical

dimensions of the coefficients C in Equation (13) and Q

in Equation (15) are ½C� ¼ Length2 � Time�1 � Force�1

and ½Q� ¼ Time�1 � Force�1.

To non-dimensionalise the above parameters, we

introduce the following dimensionless variables

~p ¼ rp; ~ki ¼
ki

k1
; ~L1 ¼

L1

k1
; ~σ0 ¼ r

σ0

k1
; ~l ¼

l

r
;

where l is the dimensional length,~l is the dimensionless

length and r is half of a typical tactoid size. In this

work, we assume k1 ¼ k2 ¼ k3 ¼ k (except in Section

5.1), k4 ¼ 0 and L1 ¼ k. Therefore, ~k1 ¼ ~k2 ¼ ~k3 ¼ 1,
~k4 ¼ 0 and ~L1 ¼ 1. The dimensionless ~σ0 physically

represents the ratio of the total surface energy and

the total elastic energy, which would be σ0r
2

kr
for a

three-dimensional nematic tactoid [36]. In this work,

we assume r to be10 µm, based on the estimate of the

long-axis length of a ‘two-cusp tactoid’ of 20 µm given

in Ref. [1]. The physical parameters of LCLCs are

adopted from Ref. [1] as follows: k ¼ 2� 10�12N and

σ0 ¼ 10�4J=m2, which implies ~σ0 ¼ 500. Since we do

not focus on the evolution rates of s and p, we assume

that the time scales in s and p evolutions are similar by

setting Q ¼ C
r2
.

4. Tactoid equilibrium and phase transition

results

We explore the capability of the phase transition

model proposed in Sections 3.2 and 3.3 by solving

tactoid equilibrium and dynamic problems. In static

problems, both the initialised shapes from the Wulff

construction and arbitrary initialised shapes are dis-

cussed. In addition, the nematic–isotropic phase

transition and the formation of disclinations are

also studied.
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4.1. Tactoid static equilibrium

We discuss the results of tactoid equilibrium calcula-

tions with different anchor coefficients w. Based on the

Wulff construction of equilibrium shapes of perfect

crystals with the interfacial energy given in Equation

(14), we can construct the equilibrium shapes of tac-

toids under the condition of constant surface area and

a frozen director field [1,37–42]. In the static problem,

we assume that the non-convex function f ðsÞ in the

energy density has identical values at s ¼ 0 and s ¼ 1

characterising its minimum. Figure 3 shows the initi-

alisations and the corresponding equilibrium results for

various tactoids. The tactoid is initialised in the

nematic s ¼ 1 state and the matrix in the isotropic s ¼
0 phase. For fixed w, no large-scale evolution is seen to

occur in tactoid shapes, but director reorientation

occurs as the system seeks out a local minima.

The left column in Figure 3 shows the initialisations

of the director field and tactoid shapes for different

anchor coefficients w. The initialised tactoid shapes are

calculated from the Wulff construction and the direc-

tor fields start from a uniform unit vector field where

s ¼ 1. The right column in Figure 3 is the equilibrium

configurations corresponding to the initialisations. It

shows that with increasing w, the single tactoid shape

started from the Wulff construction transforms from

sphere-like to ellipse-like shape. In all cases, given the

interfacial energy in Equation (14), the director field

tends to be perpendicular to the interface normal

grad s.

(a) (b)

(c) (d)

(e) (f)

Figure 3. (Colour online) Initialisations and equilibria of tactoid static problems with different anchor coefficients. The red colour
represents s ¼ 1, the blue colour represents s ¼ 0 and the white dash lines represent the director field. The tactoid initialisations
are calculated from the Wulff construction. (a) The initialized tactoid shape and director field with w = 0.1. (b) The equilibrium of the
tactoid shape and director field with w = 0.1. (c) The initialized tactoid shape and director field with w = 1. (d) The equilibrium of
the tactoid shape director field with w = 1. (e) The initialized tactoid shape and director field with w = 2. (f) The equilibrium of the
tactoid shape and director field with w = 2.
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Recall that we introduced a new field p and dis-

cussed the theoretical motivation behind it in Section

3.3. In Figure 3(f), the anchor coefficient w is set to be

large, w ¼ 2. In this case, without introducing the p

field, the computation is unstable and an equilibrium

could not be found. With the introduced field p, this

case can be solved with result shown in Figure 3(f). The

results of various tactoid shapes show that cusps are

recovered in our model, matching with experimental

observations [1].

The initialised tactoid shapes in Figure 3 are based

on the Wulff construction. The determined shape from

the Wulff procedure depends on the value of w. In

addition, the calculation shown in Figure 4 explores

the capability of the proposed model with a specified w

and an arbitrary initialised shape. In Figure 4, w is

assumed to be 2:5 but the initialised tactoid shape is a

sphere which clearly does not match with the Wulff

construction. Figure 4(a) is the initialisation of the

tactoid shape and the director field and Figure 4(b) is

the corresponding computed equilibrium state. It

shows that the initialised spherical tactoid shape trans-

forms to an elliptic shape due to the high value of w.

Figure 5 shows another example with a non-Wulff-

constructed initialised shape in which w ¼ 1:5 and the

director field are prescribed with a singularity corre-

sponding to a negative disclination of strength � 1.

Figure 5(a) is the initialised spherical tactoid shape and

the director field with the discontinuity at the centre of

the tactoid. Figure 5(b) shows the final equilibrium state

indicating that the tactoid transforms to a rounded

square, and a negative disclination (with its core in the

isotropic phase s ¼ 0) exists at the centre of the tactoid.

4.2. Dynamics of tactoids interaction

The interaction between two tactoids located close to

each other is computed. Two spherical tactoids are

(a) (b)

Figure 4. (Colour online) The initialised tactoid shape is a sphere with w ¼ 2:5. At the equilibrium, the spherical tactoid transforms
to an ellipse-like tactoid and the director field evolves. (a) The spherical initialized tactoid shape with w = 2:5. (b) The equilibrium of
the tactoid shape and director field with w = 2.5.

(a) (b)

Figure 5. (Colour online) A spherical tactoid transforms to a rounded-square tractoid with w ¼ 1:5 and a negative disclination of
strength � 1. (a) The spherical initialized tactoid shape with w = 1.5 and the initialized director field corresponds to a negative
disclination of strength –1. (b) The tactoid shape and director field at equilibrium.
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initialised with different director orientations, as shown

in Figure 6(a). Since these two tactoids are located very

close to each other, they are expected to interact with

each other. As the calculation progresses, the tactoids

begin to merge and the director field evolves to mini-

mise the total energy, as shown in Figure 6.

In this calculation, m ¼ 0 and the barrier of the

non-convex function f ðsÞ in the energy density

between s ¼ 0 and s ¼ 1 is low. The shape of the

non-convex function f ðsÞ is shown in Figure 7. In the

tactoid evolution, the effect of m is critical.

● For the static equilibrium problem of a single

tactoid, with higher barrier of f ðsÞ, a single tactoid
will evolve to its equilibrium state with no

problem.
● For the static equilibrium problem, with a low

barrier of f ðsÞ, and m ¼ 2, the single tactoid will

diffuse into the isotropic matrix and the interface

cannot maintain its shape. On the other hand,

with a low barrier of f ðsÞ, and m ¼ 0, the single

tactoid will evolve to its equilibrium state.

● For dynamic problems, such as the tactoid inter-

action discussed in this section, the tactoids are

not able to merge with a high barrier in f ðsÞ.

(a) (b)

(c) (d)

Figure 6. (Colour online) Interaction between two tactoids. These two tactoids tend to merge and the director field evolves. (a) The
initialized tactoid shape and director field for two tactoids interaction. (b) Two tactoids begin to merge and the director evolves. (c)
The director keeps evolving. (d) The equilibrium of two tactoid interaction.
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Figure 7. (Colour online) The shape of fðsÞ used in the two
tactoids interaction calculation. The barrier between two wells
at s ¼ 0 and s ¼ 1 is low.
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● With a low barrier of f ðsÞ as applied in this

calculation and m ¼ 0, the tactoids are able to

move, expand or merge.

To understand the reason for the effect of the energy

barrier and m value, recall that the s evolution equation

is given as

_s ¼
1

Bm
jgrad sj2�mρ �

@ψ

@s
þ div

@ψ

@ ðgrad sÞ

� �� �

:

In the case of high barrier of f ðsÞ, regardless of m, s can

barely evolve from their well values because of the high

value of the ‘resisting force’ from
@ψ
@s . In the case of low

barrier of f ðsÞ, with m ¼ 2, there is no impediment for

s to evolve out of the isotropic well. In the case of low

barrier and with m ¼ 0, although the barrier of f ðsÞ is
low, s cannot evolve where grad s is 0.

This is analogous to a problem in Ref. [22], where

the dissipative dynamic behaviour of disclinations in

nematic LCs is studied. By observing the effect of m on

low barrier cases, we show that the dynamic model

based on kinematics and thermodynamics is important

for modelling dissipative dynamics.

4.3. Phase transition

We now discuss a problem of evolving phase transition

across the whole domain. Three tactoids with different

director orientations are initialised as shown in Figure 8

(a). The non-convex part f ðsÞ in the energy density is

assumed to prefer the nematic phase, indicating the well

at s ¼ 1 is lower than the well at s ¼ 0. The preference of

the nematic phase of f ðsÞ indicates that the LC should

transit from the isotropic to the nematic phase. Figure 8

(b–d) shows snapshots at different times during the

phase transition. As time increases, the tactoids expand

and merge. In Figure 8(d), a strength � 1 disclination is

formed inside the bulk which matches with experimental

observations [1].

(a) (b)

(c) (d)

Figure 8. (Colour online) Snapshots of isotropic–nematic phase transition at different times. As the calculation progresses, the
tactoids expand, merge and a strength � 1 disclination is formed inside the bulk. (a) The initialized tactoid shape and director field.
Three spherical tactoids with same director fields are initialized. (b) The tactoid shapes and director field at t = 0.1. Three tactoids
expand. (c) The tactoid shapes and director field at t = 0.2. The tactoids begin to merge. (d) The tactoid shapes and director field at
t = 0.5. A strength –1 disclination is formed inside the bulk.
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5. Effect of material parameters on tactoid

equilibria

Since the energy proposed in this model is non-convex

and the equilibrium of the tactoid and the director field

depend on the interfacial energy and the Frank con-

stants, it is of interest to explore tactoid equilibria as a

function of material parameters.

5.1. Frank constants k11 and k33

We consider two cases, k11 > k33 (splay more expensive

than bend) or k11 < k33 (bend more expensive than

splay). In one case, we assume k11 is five times larger

than k33; in the other, we assume k33 is five times larger

than k11. The tactoid shape is initialised as a sphere in

both cases.

Figures 9 and 10 show the initial configuration and

the equilibrium state for both cases. In Figure 9, k11 is

larger than k33 and the director in the equilibrium

tends to be perpendicular to the tactoid interface nor-

mal direction and bend is preferred over splay. On the

other hand, in Figure 10, the director tends to be

parallel to the interface normal direction with splay

preferred over bend. The difference between these

two results indicates that the relationship between k11
and k33 is crucial to the interaction between the direc-

tor and the tactoid interface, which is also discussed in

the experiments reported in Ref. [17].

(a) (b)

Figure 9. (Colour online) The initialisation and equilibrium configuration of the tactoid and director field in the case where k11 > k33.
Since splay is more expensive than bend, the director field tends to be perpendicular to the interface normal. (a) The initialized
tactoid shape and director field. (b) The tactoid shape and director field at the equilibrium.

(a) (b)

Figure 10. (Colour online) The initialisation and equilibrium configuration of the tactoid and director field in the case where
k11 < k33. Since bend is more expensive than splay, the director field tends to be parallel to the interface normal. (a) The initialized
tactoid shape and director field. (b) The tactoid shape and director field at the equilibrium.
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5.2. Effect of interfacial energy barrier on tactoid

shape

Recall that in Equation (14), the interfacial energy is

given in terms of the cosine of the angle θ between p

representing the normal of the interface and the direc-

tor field d, which has a minimum at θ ¼ π
2
. However,

this approximation of the interfacial energy is only

valid when the angle θ is close to π
2
. We now assume

an interfacial energy characterised by a fourth-order

polynomial with two local minima and a local max-

imum as shown in Figure 11. Such a form of the sur-

face anchoring potential was first introduced by

Sluckin and Poniewierski [43] and applied for the

description of interfacial effects in LCLCs by

Figure 12. (Colour online) The initialisations and static equilibriums of the tactoid shape and director field given different interfacial
energy parameters in the cases where σ0 ¼ σ2 and σ0 < σ2. The total energy for each case is normalised by the energy value for the
initialisation of the case where σ0 ¼ σ1 ¼ σ2 ¼ 0.

Figure 11. (Colour online) The shape of the interfacial energy
with two local minimal and a local maximal.
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Nazarenko et al. [19]. θ0 ¼ 0 is where one local mini-

mum occurs, θ1 is the location of the local maximum

and θ2 ¼
π
2
is the location of the other local minimum.

σ0, σ1 and σ2 are the interfacial energy values at θ0, θ1
and θ2, respectively.

It is clear that the energy barrier between the two

wells θ0 and θ2, as well as the values of σ0 and σ1, will

influence the equilibrium state of the director field and

the tactoid shape. Here, we explore the relationship

between the energy values of local maximum, as well

as local minima, and the equilibrium of the director

field. We assume θ1 ¼
π
4
and change σ0, σ1 and σ2.

Figures 12 and 13 show the initialisations and

equilibria of tactoid shapes and their director fields

given different interfacial energy parameters. In the

first row of Figure 12, σ0, σ1 and σ2 are set to be 0 so

the interfacial energy will be zero at any angle

between the director and the interface normal. Thus,

the director field in the equilibrium is the same as the

initialisation. The second row shows the initialised

configuration and static equilibrium corresponding

to a higher σ1 values. Since the energy barrier between

θ0 and θ2 is high, the director field tends to move to

its local minimum, namely some points being parallel

to the interface normal and some points being per-

pendicular to the interface normal. The last two rows

in Figure 12 show different equilibria with the

increasing energy barrier σ1 in the case where

σ0 < σ2. With low barrier σ1 ¼ 1, the director field

can evolve to the lower well at θ0, thus the director

field in the equilibrium is parallel to the interface

normal. With high barrier σ1 ¼ 5, the director field

cannot pass the local maximum between θ0 and θ2
and evolve to its local minimum in the equilibrium. In

addition, Figure 12 shows the total energy for each

case, which are normalised by the total energy of the

case where σ0 ¼ σ1 ¼ σ2 ¼ 0.

Similarly, Figure 13 shows the results with increas-

ing energy barrier σ1 in the case where σ0 > σ2. With

low barrier σ1 ¼ 1, the director field can evolve to the

lower well at θ2, and the director field in the equili-

brium is perpendicular to the interface normal. With

high barrier σ1 ¼ 5, the director field can only evolve

to its local minimum in the equilibrium. Figure 13 also

Figure 13. (Colour online) The initialisations and static equilibriums of the tactoid shape and director field given different interfacial
energy parameters in the case where σ0 > σ2. The total energy for each case is normalised by the energy value for the initialisation
of the case where σ0 ¼ σ1 ¼ σ2 ¼ 0.
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shows the total energy for each case, and the values of

the total energy are normalised by the one of the case

where σ0 ¼ σ1 ¼ σ2 ¼ 0.

6. Conclusion

A model based in continuum kinematics and thermo-

dynamics is derived for LCLC I–N phase transition

dynamics. By adopting the order parameter s in Ref.

[26] to represent different phase states, an evolution

equation of s is proposed and discussed. The main

difference between our model and Ericksen’s model

in Ref. [26] is that the model in this work starts from

a kinematic ‘tautology’ with transparent physical/geo-

metric motivation. The evolution of the director field is

described by the formulation in Ref. [34]. A new field p

is introduced in the energy density to resolve the

instabilities in the s evolution resulting from the non-

convex interfacial energy when phrased only in terms

of grad s and d.

Both static equilibrium and dynamic tactoid beha-

viours are studied, including tactoid static microstruc-

tures from different initialised shapes, tactoid

interactions and I–N phase transitions. The signifi-

cance of the introduced evolution equation for s is

discussed in the context of describing tactoid dynamic

behaviours. A parametric study is performed to explore

the effect of nematic elastic constants (splay and bend)

and the interfacial energy parameters on the interac-

tion between the tactoid interface normal and the

director field.
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