

1 **Calibration of Na partitioning in the calcitic foraminifer**

2 ***Operculina ammonoides* under variable Ca**

3 **concentration: Toward reconstructing past seawater**

4 **composition**

5

6

7 Hagar Hauzer¹, David Evans^{2,3}, Wolfgang Müller^{4,5}, Yair Rosenthal⁶, Jonathan Erez¹

8 Corresponding author: Hagar.Hauzer@mail.huji.ac.il

9

10 1. Institute of Earth Sciences, the Hebrew University, Jerusalem, Israel

11 2. Department of Geology and Geophysics, Yale University, New Haven, Connecticut, USA

12 3. School of Earth and Environmental Sciences, University of St Andrews, St Andrews, UK

13 4. Department of Earth Sciences, Royal Holloway University of London, Egham, UK

14 5. Institute of Geosciences, Goethe University, Frankfurt, Germany

15 6. Department of Marine and Coastal Sciences and Department of Earth and Planetary

16 Sciences, Rutgers University, New Brunswick, USA

17

18

19

20 Keywords: seawater calcium proxy, Na/Ca calibration, live-foraminifera, ocean

21 paleochemistry

22

23

24 **Abstract**

25 Reconstructions of past changes in the seawater calcium concentration (Ca_{sw}) are critical for
26 understanding long-term changes in the carbon cycle and for accurate application of
27 elemental proxies ($\text{El}/\text{Ca}_{\text{CaCO}_3}$) in foraminifera (e.g., Mg/Ca as a proxy of temperature). Here
28 we show that Na/Ca ratios in foraminifera shells could be used for reconstructing seawater
29 Ca_{sw} concentrations in the past. Ca has a short residence time in the ocean (~ 1 My), whereas
30 Na in seawater has a residence time of ~ 100 My. Hence it may be reasonably assumed that
31 Na_{sw} is invariant over the Cenozoic, enabling variations in oceanic Ca to be deduced from
32 foraminiferal Na/Ca ($\text{Na}/\text{Ca}_{\text{shell}}$) if Na incorporation into foraminiferal shells depends on
33 Na/Ca in seawater. Furthermore, the paleo-concentrations of other major and minor elements
34 may then be calculated relative to the Ca in the shells, provided that other environmental or
35 biological factors do not present a further complication. To evaluate this hypothesis, we
36 cultured the benthic foraminifer *Operculina ammonoides*, an extant relative of the Eocene
37 *Nummulites*, under varying Ca_{sw} and temperature. The foraminifera grew well under the
38 experimental conditions and increased their weight by 40-90%. The newly grown calcite
39 (identified using a ^{135}Ba labeling in the experimental seawater) was analyzed by Laser-
40 Ablation ICP-MS for Li , Na , Mg and Sr to Ca ratios. The relationships between Na/Ca and
41 Mg/Ca in the shell and their ratio in the solution are best described as a power function,
42 where the instantaneous distribution coefficient, defined here as D_f , is the derivative of the
43 power fit to the $\text{El}/\text{Ca}_{\text{shell}}$ versus $\text{El}/\text{Ca}_{\text{sw}}$. In contrast, D_{Sr} and D_{Li} are invariant with $\text{El}/\text{Ca}_{\text{sw}}$.
44 The influence of temperature on Li , Na and Sr incorporation was smaller than the uncertainty
45 of our measurements. We conclude that Na/Ca in foraminiferal shells can be used to calculate
46 paleo-calcium concentrations in the oceans and also other elements that may change relative
47 to calcium (e.g., Mg , Sr , Li and others).

48 **1. Introduction**

49 **1.1. Past changes in ocean chemistry**

50 Evidence for large secular shifts in seawater chemistry are abundant throughout the
51 geological record (e.g., Stanley and Hardie, 1998). Most of these studies have focused on
52 oscillations in the magnesium to calcium ratio of seawater (Mg/Ca_{sw}), which indicate quasi-
53 periodic shifts between ‘calcite seas’ and ‘aragonite seas’ (e.g., Stanley and Hardie, 1998).

54 For this reason, it has been proposed that Mg/Ca_{sw} changes have also influenced the
55 biomineralization and evolution of calcifying marine organisms. Mg/Ca_{sw} may also be
56 important in determining the differential response of calcite and aragonite producing
57 organisms to past and future climatic perturbations (Katz et al., 2010). Elemental ratios in
58 biogenic carbonates have played a major tool in paleoceanographic research (see review in
59 Katz et al. 2010). Mg/Ca ratio is the most studied elemental proxy and is widely utilized as a
60 paleothermometer due to temperature dependence of Mg incorporation. However, Mg
61 incorporation in foraminifera also depends on the seawater Mg/Ca ratio (Evans et al., 2015;
62 Hasiuk and Lohmann, 2010; Segev and Erez, 2006), which has hampered the accuracy of
63 these temperature reconstructions before the Pleistocene, when Mg/Ca_{sw} cannot be assumed
64 equal to that of today (Evans et al., 2016; Lear et al., 2010). Similarly, the use of other
65 geochemical proxies, such as Sr/Ca (e.g., Sosdian et al. 2012) and Li/Ca (Delaney and Boyle,
66 1986; Lear et al., 2010) is also confounded by the effects of changing seawater chemistry in
67 general and calcium in particular, on their partitioning in biogenic carbonates. Because of the
68 relatively short residence time of Ca in the ocean (~ 1 My), on time scales of few million
69 years, variations in foraminiferal El/Ca ratios are likely driven primarily by changes in
70 seawater Ca. However, in the longer time scales (Phanerozoic) the ratio (Mg/Ca) is
71 influenced by changes in both elements.

73 Reconstruction of changes in the concentration of Ca_{sw} is also important for understanding
74 past variability in the processes that influence the ocean calcium cycle. Calcium is delivered
75 to the ocean predominantly by weathering and is removed mainly by burial of CaCO_3 on
76 carbonate platforms and the open ocean. However, dolomitisation and the interaction of
77 seawater with newly formed oceanic crust, also contribute to the long-term changes in
78 seawater Mg/Ca. This implies that the concentration of these elements in seawater may be
79 sensitive to both sea level and seafloor spreading rates (Berner, 2004). However,
80 notwithstanding the important information derived from such seawater chemistry
81 reconstructions, existing techniques are hampered by large uncertainties (e.g., Broecker,
82 2013).

83 Direct proxy reconstructions of Ca_{sw} are available from the modeling of fluid inclusion data
84 in marine halite (e.g., Horita et al., 2002) and from calcium isotope measurements of
85 carbonate oozes and marine barite (e.g., Fantle and DePaolo, 2005). Fluid inclusions are
86 known only from a handful of time intervals (e.g., Brennan et al. 2013), but because CaCO_3
87 and gypsum are the first minerals to precipitate, the remaining solution does not contain Ca, it
88 can only be calculated by assuming a constant relationship between Ca and SO_4
89 concentrations (Brennan et al., 2013; Broecker, 2013). Hence, estimates of Ca concentrations
90 are associated with large uncertainties (Horita et al., 2002). Likewise, data from Ca isotopes
91 are difficult to interpret given that the isotopic composition of the sources of calcium to the
92 ocean may have changed through time and pore-water sediment interaction must be
93 accounted for (Fantle and DePaolo, 2005). In addition, there is relatively large fractionation
94 of Ca isotopes in biogenic carbonates (Gussone et al., 2016) which may complicate this
95 method. As a result, there is no proxy for Ca_{sw} with an uncertainty suitable for examining the
96 potential fine-scale changes in the calcium cycle through the Cenozoic.

97

98 Here we propose a new proxy, namely the Na/Ca ratio of foraminifera shells, as a direct
99 method of reconstructing past changes in Ca_{sw} . Because Na has a residence time of ~ 100 My
100 in seawater (Broecker et al., 1982), we hypothesize that Cenozoic variations in foraminiferal
101 Na/Ca should principally reflect changes in Ca_{sw} . Given the abundance of dated foraminifera
102 in sediment cores, this presents the possibility of accurately reconstructing the Ca cycle, C
103 cycle and other seawater cations at unprecedented temporal resolution. This hypothesis
104 cannot be tested using field calibrations because the Na/Ca_{sw} ratio in today's ocean is nearly
105 constant. Therefore, we use culturing experiments of the benthic foraminifer *Operculina*
106 *ammonoides* under a range of Ca_{sw} and temperatures with the prime goal of calibrating the
107 potential Na/Ca proxy in foraminifera. By simultaneously measuring the Li, Mg and Sr/Ca
108 ratios in the same specimens, we also present our findings of the response of these trace
109 element systems to varying Ca_{sw} .

110 **1.2. Empirical determination of distribution coefficients**

111 Distribution coefficients of elements (DEl) that are incorporated into the lattice of inorganic
112 and biogenic carbonates (including foraminifera) can be determined only when the
113 experimental solutions contain different El/Ca ratios. The distribution coefficient can thus be
114 calculated as the change in the El/Ca ratio of the CaCO_3 mineral versus the change in the
115 experimental solution i.e., the slope or the derivative of the curve describing the $\text{El/Ca}_{\text{CaCO}_3}$
116 versus $\text{El/Ca}_{\text{solution}}$. To achieve this goal, one needs at least three data points and an intercept
117 that goes through zero (Figure 1A). A single point of $\text{El/Ca}_{\text{CaCO}_3}$ divided by $\text{El/Ca}_{\text{solution}}$
118 should be considered as an "apparent distribution coefficient" ("DEl") and not used to
119 describe the distribution coefficient. The regression fit of $\text{El/Ca}_{\text{CaCO}_3}$ versus $\text{El/Ca}_{\text{solution}}$ is
120 often not linear with a non-zero intercept (Evans et al., 2015; Hasiuk and Lohmann, 2010;
121 Segev and Erez, 2006). We therefore propose that a proper fit that goes through the origin
122 should be an equation of the type:

123 (Equation 1) $y=a \cdot x^H$

124 Where y is EI/ Ca_{CaCO_3} , x is $EI/ Ca_{solution}$ and a and H are constants that are obtained from the
125 power curve fit of the set of values of y versus x and cannot be obtained from a single y/x
126 ratio (unless $H=1$).

127 This approach is following Ries (2004), Segev and Erez (2006), De Choudens-Sanchez and
128 Gonzalez (2009) and Hasiuk and Lohmann (2010) who used it for Mg in biogenic and
129 inorganic calcite. The theoretical basis for such relations is derived originally from Langmuir
130 (1917) adsorption curves as modified by Freundlich (1932), providing an empirical relation
131 between the concentration of a solute on the surface of an adsorbent to the concentration of
132 the solute in the liquid with which it is in contact. This formulation of the equation describes
133 integrated multi-layered adsorption as presented in Stumm and Morgan (1996, Chapter 9,
134 Equation 14). What has often been calculated in previous studies is a linear regression of the
135 above variables with a non-zero intercept, which is physically impossible outside of the
136 calibrated range. Therefore, the distribution coefficient should be calculated as the derivative
137 of the power function (Figure 1B):

138 (Equation 2) $D=y'=a \cdot H \cdot x^{(H-1)}$

139 A classic example for this behavior is the inorganic experiments of Mucci and Morse (1983)
140 for Mg as calculated from their data by De Choudens-Sanchez and Gonzalez (2009). Note
141 however that the latter did not calculate the derivative properly but instead have plotted the
142 “ D_{EI} ” (i.e., $EI/ Ca_{calcite}$ divided by $EI/ Ca_{solution}$) as the distribution coefficient, and fitted a
143 power regression through the points. Similar approach was exercised by other authors (e.g.,
144 Evans and Müller, 2012; Hasiuk and Lohmann, 2010; Morse and Bender, 1990; Mucci and
145 Morse, 1983; Segev and Erez, 2006). In Figure 1B we show that the distribution coefficient
146 functions as calculated in Equation 2, does not fit the “ D_{EI} ” both for the inorganic and

147 biogenic calcites (Mucci and Morse 1983 and Segev and Erez 2006, respectively). Although
148 these previous treatments are mathematically incorrect, in most cases a serious error is
149 unlikely to have been propagated through to fossil reconstructions as these are typically based
150 on a calibration between an El/Ca ratio to an environmental variable (e.g., temperature).

151 **1.3. Prior foraminiferal Na/Ca studies**

152 Investigations of the paleoceanographic utility of Na in biogenic calcites date back several
153 decades. Early observations of major changes in the Na content of marine carbonates have
154 led to the suggestion that they may reflect changes in paleosalinity, an idea which was not
155 borne out by inorganic precipitation experiments (Veizer et al., 1978). Subsequent work
156 documented large changes in the Na composition of planktonic foraminifera throughout the
157 Cenozoic, which were initially attributed to major changes in seawater composition (Graham
158 et al., 1982). However, based on the distribution coefficients deduced from inorganic
159 precipitation experiments (e.g., Kitano et al., 1975; White, 1978), it was concluded that the
160 changes in seawater calcium required to account for the observed Na/Ca changes were too
161 large and thus other factors might have contributed to the observed trends. These authors
162 concluded that Na is likely to be situated in an interstitial site in the calcite lattice. However,
163 recent studies using synchrotron X-ray spectroscopy and K-edge X-rays absorption spectral
164 analyses, suggest that Na is structurally substituting Ca in CaCO_3 lattice, both in inorganic
165 and biogenic carbonates (including foraminifera, Yoshimura et al., 2017). Early laboratory
166 culturing work of *Trilobatus sacculifer* indicated no resolvable response of $\text{Na/Ca}_{\text{shell}}$ to Na_{sw}
167 at constant Ca_{sw} and no resolvable temperature dependence (Delaney et al., 1985), leading
168 Delaney et al., (1986) to conclude that the decreasing trends in mixed planktonic Na/Ca
169 reconstructed for the past 40 My were likely due to diagenetic recrystallization rather than
170 changes in Ca_{sw} concentration. This interpretation was recently adopted also by Yoshimura et

171 al., (2017) for a 3 My record of the planktonic foraminifera *Globorotalia tumida* from the
172 West Caroline Basin.

173 Other studies suggested that salinity may exert a systematic control on foraminiferal Na/Ca
174 by the changes in activity of free Na^+ , based on laboratory cultures of the benthic foraminifer
175 *Ammonia tepida* (Wit et al., 2013). This has been tentatively confirmed in the planktonic
176 species *G. ruber* (Allen et al., 2016), although additional effects of temperature and carbonate
177 ion were also identified. Nonetheless, these data indicate that Na/Ca warrants further
178 investigation as a salinity proxy and may have utility in regions where large salinity
179 fluctuations are expected in time intervals shorter than the residence time of calcium. This
180 salinity proxy has been field calibrated also by Mezger et al. (2016) for living *G. ruber* and
181 *G. sacculifer* utilizing the salinity gradient of the Red Sea and compared to previous
182 planktonic data of Delaney et al. (1985) and Allen et al. (2016).

183 In the present study, we investigate the factors affecting Na, Li, Mg and Sr incorporation into
184 the shells of cultured *O. ammonoides* in a set of experiments aiming to assess the role of
185 changes in Ca concentrations and temperature on trace element distribution functions in this
186 important group of foraminifera (Evans et al., 2015).

187 **2. Material and methods:**

188 **2.1. Laboratory culturing**

189 *Operculina ammonoides* were collected from the North Beach, Eilat, Israel. These
190 foraminifera are large benthic, symbiont-bearing (usually found at less than 100 m depth) and
191 collected at a depth of ~20-25 m. Foraminifera were taken from the 475-690 μm size fraction.
192 Live individuals were identified as those that climbed vertical glass slides placed on the
193 sediment once returned to the laboratory.

194 In total, three sets of experiments were conducted which overlapped in scope. An initial proof
195 of concept study was followed by in-depth work examining the simultaneous effect of
196 changing Ca_{sw} and temperature, as detailed in Table 1. Prior to the experiment initiation, the
197 foraminifera were placed in seawater labeled with 40 μM Calcein for 4-5 days and only those
198 that showed fluorescent chamber were selected for the experiment. Immediately after
199 labeling, three control groups of 75 specimens each, were dried and weighed. The mean
200 weight per specimen of all control groups is $516 \pm 24 \mu\text{g specimen}^{-1}$. The fluorescence
201 emission at 515 nm was observed using a Leica Z16 APO A MacroFluo fluorescent
202 monocular using 480 nm excitation. The detection was monitored with a Leica CCD color
203 camera DFC 310 FX.

204 For the final analysis using LA-ICP-MS (see below), we used only non-fluorescent chambers
205 following those labelled with Calcein, that grew in the experimental conditions (Figure 2). In
206 addition, the culture seawater medium was labeled with 74 nM ^{135}Ba (giving $^{135}\text{Ba}/^{138}\text{Ba}$
207 $\sim 10 \times$ natural) in order to unambiguously identify material precipitated in culture by laser-
208 ablation, as previously described (Evans et al., 2016). No inorganic CaCO_3 precipitation was
209 observed in the experimental jars or on the foraminifera shells which were all inspected using
210 the fluorescent monocular.

211 The proof of concept experiment (those labeled DE2013 in Table 1) was conducted for 20
212 days and the remainder (HH2015) were conducted for 140 days. All treatments were kept
213 under a weak fluorescent light and near a window for a more natural light spectrum. The
214 overall light intensity was $\sim 10 \mu\text{mol photons m}^{-2} \text{ sec}^{-1}$. In all cases, unfiltered Eilat seawater
215 (salinity of 40.65 psu) was used as the basis for the experimental seawaters, diluted to salinity
216 of 37 in the case of the DE2013 experiments and 35 for HH2015 using deionized water.
217 Ca_{sw} was modified by the addition of CaCl_2 which, given the relatively low concentration of
218 calcium in seawater, had a negligible effect on the Cl concentration. The carbonate chemistry

219 of the experimental seawaters was not modified from Gulf of Eilat seawater, except for the
220 dilution of alkalinity and DIC proportional to the salinity. Each batch of seawater was spiked
221 with the CaCl₂ (≥ 99.5%, Merck) to the proper concentration (Table 1) and was Immediately
222 pumped into SUPELCO gas tight bags (coated with aluminum foil) which served as
223 reservoirs for the entire experiment.

224 On commencement of the experiment, each group of foraminifera (~70 specimens) was
225 sealed in an Erlenmeyer flask (135 ml) and the water solutions were sampled and changed
226 every 1-2 weeks. The flasks were kept at constant temperature in water baths with
227 simultaneous cooling and heating. In the HH2015 experiment (representing most of the data),
228 the foraminifera were fed with different species of frozen algae after 28 days and then with
229 each change of water (Figure 3A).

230 **2.2 Analytical methods**

231 The growth rate was monitored by alkalinity depletion in each water change and weight
232 measurements of control groups at the beginning and the experimental groups at the end of
233 the experiment. Alkalinity measurements were conducted using a Radiometer TIM865
234 titration manager, with a pHC2401-8 combined pH electrode and SAC950 auto-sampler and
235 resulted in average growth of 40-90% for all treatments. At the end of the experiment, all
236 groups were washed with deionized water and treated overnight with dilute (1:10) sodium
237 hypochlorite solution (Sigma-Aldrich 10-15% analytical reagent) to remove the organic
238 matter. The use of NaOCl as an oxidative cleaning step has been previously shown not to bias
239 foraminiferal Na/Ca ratios measured by LA-ICPMS depth-profiling (supplementary material
240 of Evans et al., 2015).

241 Six specimens from each treatment were selected according to the presence of 3-13 non-
242 fluorescent chambers past the Calcein stain. These specimens were analyzed using the

243 RESOlution M-50 Laser Ablation system attached to an Agilent 7500ce quadropole ICPMS
244 at Royal Holloway University of London (Evans et al., 2015). The analytical method for the
245 determination of trace element concentrations in *O. ammonoides* is described in detail in
246 Evans et al. (2015). Briefly, a laser spot size of 44-57 μm and repetition rate of 2 Hz was used
247 to ablate into the marginal chord with an effective vertical spatial resolution (including cell
248 washout time) of $<1 \mu\text{m}$. Each specimen of the six used per treatment was ablated on 4-6
249 chambers and each ablation spot lasted 50 seconds, which equals to 100 pulses of the laser.
250 Therefore each experimental data point represents the mean of at least 25 laser spots (six
251 specimens x 4-6 chambers) with the exception of DE2013 5-2 (13 laser spots) and HH2015
252 2B-13 (19 laser spots). Only analyses characterized by high $^{135}\text{Ba}/^{138}\text{Ba}$ ratio which was
253 introduced to the culture seawater, were considered for this study. Since it was shown by
254 Erez (2003) that large benthic foraminifera (e.g., *Amphistegina lobifera*) have large internal
255 Ca pools, we verified that the newly precipitated chambers were equilibrated with the
256 experimental seawater. The evidence for this is shown in the El/Ca ratio in the newly added
257 chambers going from the final one backwards for the last 4-5 chambers (Figure S3). This
258 figure shows that there is no change in any of the four elements as a function of chamber
259 sequence (position).

260 Water chemistry was analyzed using Varian Vista-PRO CCD simultaneous ICP-OES at
261 Rutgers University, USA for Na, Mg and Sr. For the Li measurements we used an Agilent
262 7500 ICP-MS at the Hebrew University of Jerusalem, Israel. The standard error for Li/Ca is
263 1.28% with the ICP-MS. For the ICP-OES, the standard errors are: Na/Ca= 1.01%, Mg/Ca= 1.02%,
264 Sr/Ca= 0.909% calculated from the duplicates.

265 **3. Results:**

266 **3.1. Growth**

267 Based on cumulative alkalinity depletion within the experimental vessels relative to the
268 reservoirs it was possible to follow the growth of the foraminifera whilst the experiment was
269 running. In addition, as described above the weight per specimen was measured for three
270 control groups enabling total growth to be alternately estimated using the final weight of the
271 groups at the termination of the experiment after the NaOCl treatment. Total growth based on
272 the two methods was broadly similar, as shown in Figure 3B ($R^2 = 0.99$). However, mass
273 gain from alkalinity is ~20% lower than that based on weight measurements. Given that no
274 inorganic precipitation was observed at any point during the experiments in the culture
275 vessels, this probably stems from accumulation of nitrate in the vessels, perhaps due to the
276 feeding with frozen algae. The decomposition of the organic matter of these algae may
277 produce nitrate, which titrates the alkalinity. Nonetheless, in further discussions of growth,
278 we use the cumulative alkalinity data.

279 Different experiments were characterized by variable growth curves for each treatment
280 (Figure 3A). The intermediate concentrations of $Ca_{sw} = 12.7$ and $15.3 \text{ mmol kg}^{-1}$ showed the
281 highest $CaCO_3$ addition irrespective of temperature (Figure 3C). Calcification rates in the
282 experiment with the highest Ca ($18.0 \text{ mmol kg}^{-1}$) were lower and approximately the same as
283 those in unmodified Gulf of Eilat seawater. Based on the mean calcification rates, it appears
284 that Ca_{sw} and not temperature is the dominant factor on growth in these experiments (Figure
285 3).

286 3.2. Shell chemistry

287 Seawater and foraminifera geochemical data are given in Tables 1 and 2 respectively and
288 shown in Figure 4. All the foraminiferal elemental ratios (El/Ca_{shell}) reported here vary
289 proportionally to the changes in solution Ca_{sw} , expressed hereafter as variations in element to
290 Ca ratios (El/Ca_{sw}) of the seawater media. The regression fit between the El/Ca_{shell} to El/Ca_{sw}

291 can be linear as seen for Sr/Ca. However, as discussed in section 1.2., in cases where the
292 linear regression does not go through the origin (Mg/Ca and Na/Ca), a power function of the
293 type $y=a \cdot x^H$ is more appropriate as previously suggested to account for the effect of changes
294 in seawater Mg/Ca on its foraminiferal ratio (Hasiuk and Lohmann, 2010; Segev and Erez,
295 2006). Following these studies, we propose these power regressions:

296 (Equation 3) $Na/Ca_{shell}=2.76 \cdot 10^{-3} \cdot (Na/Ca_{sw})^{0.538}$ ($R^2 = 0.96$, Figure 4A)

297 (Equation 4) $Mg/Ca_{shell}=44.3 \cdot 10^{-3} \cdot (Mg/Ca_{sw})^{0.722}$ ($R^2 = 0.99$, Figure 4C)

298 Because shell Li and Sr/Ca varies linearly with El/Ca_{sw} and the regression approximately
299 passes through the origin, in which case the H value of the power function is 1, we use a
300 linear regression:

301 (Equation 5) $Li/Ca_{shell}=19.8 \cdot 10^{-6} \cdot (Li/Ca_{sw})$ ($R^2 = 0.94$, Figure 4B)

302 (Equation 6) $Sr/Ca_{shell}=0.272 \cdot 10^{-3} \cdot (Sr/Ca_{sw})$ ($R^2 = 0.98$, Figure 4D)

303 The experiments show no resolvable impact of temperature and growth rates on Na, Li and Sr
304 incorporation (Figure 5). In contrast, Mg/Ca shows a strong correlation with temperature over
305 the range that we used (22, 25, 28 °C, Figure 5C). It is noteworthy, however, that the
306 Mg/Ca_{shell} changes over 6 °C temperature change, were between 12 to 17%. These changes
307 are significantly smaller than the range of Mg/Ca changes due to the Ca manipulation (~65
308 %). Therefore, we used the average El/Ca_{shell} ratios of all temperature experiments for the
309 calculations of distribution functions. We also note that during most of our experiments
310 salinity was kept constant (at 35 and in experiment DE2013 the salinity was 37) but for all
311 the elements the El/Ca_{shell} and the distribution function values of both data sets are coherent.
312 In addition, we see no correlation between the elemental ratios and the calcification rates

313 which show an optimum growth at intermediate Ca concentration of 12.7 and 15.3 mmol kg⁻¹
314 (Figure 3C).

315 **4. Discussion**

316 **4.1. Calcification response to varying seawater Ca and temperature**

317 Previous foraminifera cultures utilizing *Heterostegina depressa* and *Ammonia tepida* have
318 shown a positive relationship between growth and Ca_{sw} (Raitzsch et al., 2010). We also
319 anticipated such response in *O. ammonoides*. However, calcification rates calculated from
320 cumulative alkalinity-depletion measurements (Figure 3C) show that at the highest Ca_{sw} the
321 calcification rates on average were the lowest of all treatments. Based on these data and also
322 that of Mewes et al. (2015), it appears that the optimum Ca_{sw} for calcification in non-
323 acclimatized foraminifera is between 13 and 15 mmol kg⁻¹. This effect is much stronger than
324 that of temperature over the range considered here. The highest Ca_{sw} (18.0 mmol kg⁻¹) may
325 have an inhibitory effect on the foraminifera and possibly on the symbiotic algae, as was
326 shown for coccolithophores (Müller et al., 2015). In addition, preliminary experiments
327 showed that at concentration of 20.3 mmol kg⁻¹, the organisms survived but did not
328 precipitate new chambers. Another possibility is that the foraminifera struggles to tightly
329 control calcification when the calcite saturation state is almost twice that compared to modern
330 seawater. For example, at least some benthic foraminifera are known to possess a carbon
331 concentrating mechanism (see the review of Erez, 2003), which means that Ω in the seawater
332 vacuoles far exceeds that of seawater. Coupled with the increased Ca_{sw} in our experiments,
333 this could lead to difficulties in suppressing spontaneous precipitation. Furthermore, given
334 that calcification is ostensibly limited by carbon rather than Ca availability (modern seawater
335 DIC/Ca = ~0.2), increasing Ca may not result in long-term calcification rate increase. Even
336 though Ca addition can enhance calcification rate, it does not facilitate enhanced carbon

337 transport. Regardless of the mechanism, it is clear that the observed changes in $\text{Na}/\text{Ca}_{\text{shell}}$
338 cannot be attributed to changes in growth rate.

339 **4.2. Na/Ca as a direct proxy for Ca_{sw}**

340 In our experiments, the $\text{Na}/\text{Ca}_{\text{sw}}$ ratio was modified by varying the Ca concentration, whilst
341 Na was kept constant. Hence, the results demonstrate that $\text{Na}/\text{Ca}_{\text{shell}}$ is dominantly controlled
342 by Ca_{sw} . These results are apparently at odds with early laboratory culturing experiments of
343 *Trilobatus sacculifer*, which suggested no resolvable response of $\text{Na}/\text{Ca}_{\text{shell}}$ to varying Na_{sw} at
344 constant Ca_{sw} (Delaney et al., 1985). However, the inorganic experimental data of Kitano et
345 al. (1975), performed using solutions similar to seawater with variable Na concentrations
346 (without Mg, resulting in calcite Na/Ca ratios similar to those of foraminifera as reported by
347 Delaney et al. 1985), showed a clear distribution function for Na (Figure 6A).

348 Our Ca_{sw} -proxy calibration (Equation 3) for *O. ammonoides* offers the means to directly
349 reconstruct Ca_{sw} over the Cenozoic using foraminifera of the family Nummulitidae. For this
350 purpose, we use the power function (Equation 1) to obtain the concentration of Ca_{sw} using the
351 following equation (assuming that Na is constant over the Cenozoic):

352 (Equation 7)
$$\text{Na}/\text{Ca}_{\text{shell}} = a \cdot (\text{Na}/\text{Ca}_{\text{sw}})^{(\text{H})}$$

353 (Equation 8)
$$\text{Ca}_{\text{sw}} = \sqrt[(-\text{H})]{\frac{(\text{Na}/\text{Ca}_{\text{shell}})}{a}} \cdot \text{Na}_{\text{sw}}$$

354 We emphasize that this equation will be accurate within the calibration range and the
355 uncertainty will increase at lower $\text{Na}/\text{Ca}_{\text{sw}}$.

356

357 It has been suggested that salinity influences foraminiferal Na/Ca, probably through the
358 control that it exerts on the activity of free Na^+ (Wit et al., 2013). Nonetheless, the sensitivity
359 of $\text{Na}/\text{Ca}_{\text{shell}}$ to changes in Ca_{sw} is far greater, in relative terms, than it is to salinity: The
360 expected changes in salinity for a station in the open ocean may reach perhaps 2 psu, which

361 will exert a ~7% change in the Na/Ca_{shell} ratio, according to Wit et al. (2013). In our study, a
362 change in Ca_{sw} from 10 mmol kg⁻¹ (normal seawater concentration) to 18 mmol kg⁻¹ exerted a
363 change in the Na/Ca_{shell} of ~30%. The past Ca increase during the Cenozoic is estimated to
364 have been up to three times as much (Gothmann et al., 2015), which would cause a 90%
365 change in the Na/Ca ratio of *O. ammonoides*. Therefore, over timescales approaching the
366 residence time of Ca_{sw}, seawater chemistry is more likely to control the Na/Ca_{shell}.

367 **4.3. Comparison of Na incorporation into biogenic and inorganic calcite**

368 For inorganic carbonates, relatively few experiments have focused on the incorporation of the
369 alkali elements into calcite (Ishikawa and Ichikuni, 1984; Kitano et al., 1975; Okumura and
370 Kitano, 1986; White, 1978), none of which were conducted using seawater solutions. Whilst
371 Okumura and Kitano (1986) varied solution Na at constant Ca, Ishikawa and Ichikuni (1984)
372 varied both simultaneously, demonstrating that Na/Ca in the solid is sensitive to the
373 concentration of both, up to a Na/Ca_{solution} ratio of ~200 mol mol⁻¹, approximately four times
374 that of present-day seawater. Coupled with the observation that the degree of alkali element
375 incorporation depends on ionic radius, White (1978) and Okumura and Kitano (1986)
376 concluded that Na is likely to be situated in an interstitial site in the calcite lattice. However,
377 Yoshimura et al. (2017) concluded, according to synchrotron X-ray spectroscopy and K-edge
378 X-rays absorption spectral analyses, that Na is structurally substituting Ca in CaCO₃ lattice,
379 both in inorganic and biogenic carbonates (including foraminifera). In addition, they
380 proposed that the mechanism for charge compensation is through the creation of CO₃²⁻
381 vacancies. Either way, these inorganic precipitation experiments and observations form an
382 empirical basis for the use of Na/Ca in foraminiferal calcite as a potential proxy of solution
383 Na/Ca. Hence we may expect Na/Ca_{sw} to exert a primary influence on foraminiferal Na/Ca,
384 particularly since it has been demonstrated that seawater is present at the site of

385 biomineralization (Bentov et al., 2009; Erez, 2003) and that *O. ammonoides* is well labeled
386 by the cell impermeable dye Calcein (Figure 2). Although it has been suggested that some
387 foraminifera facilitate calcification by transporting Ca to the site of biomineralization
388 (Nehrke et al., 2013), which would also lower the Na/Ca ratio, this cannot be the case for *O.*
389 *ammonoides* as the Nummulitid foraminifera are characterized by a Mg/Ca ratio similar to
390 inorganic calcite. If significant Ca transport took place, then this would reduce the shell
391 Mg/Ca and Na/Ca ratio relative to inorganic calcite precipitated from seawater, yet this is not
392 the case (Figure 6C). Further discussion of this subject is given in Evans et al. (2018).

393 **4.4. Insights into the incorporation of Mg, Li and Sr**

394 Mg/Ca is the only ratio reported here with a direct response to temperature (Figure 5), as
395 previously shown for other benthic species including *O. ammonoides* (see the review of Katz
396 et al., 2010). The data here broadly conform to previous work with high-Mg *Rotaliid*
397 foraminifera, being characterized by a Mg/Ca-temperature sensitivity approximately three
398 times lower than low-Mg planktonic species. In the present study, averaging the data from all
399 experiments defines a $2.60 \text{ mmol mol}^{-1}$ increase in Mg/Ca_{shell} per $^{\circ}\text{C}$, in good agreement with
400 that for the same species in unmodified seawater ($2.57 \text{ mmol mol}^{-1} \text{ }^{\circ}\text{C}^{-1}$, see Evans et al.,
401 2015). This result indicates that the sensitivity of Mg/Ca to temperature in high-Mg benthic
402 species does not vary as a function of Ca_{sw}. Similarly, the nonlinear response of Mg/Ca_{shell} to
403 Mg/Ca_{sw} (Figure 4) is in good agreement with *O. ammonoides* cultures under variable Mg_{sw}.
404 Furthermore, as originally shown by Segev and Erez (2006), Mg/Ca_{shell} in the benthic
405 foraminifera *Amphistegina* also responded non-linearly to Mg/Ca_{sw}, rather than the
406 concentration of Mg or Ca.

407

408 Li/Ca in *O. ammonoides* has been previously shown to be sensitive to Li_{sw} with a linear
409 distribution function (Evans et al., 2015). Here, we find that $\text{Li}/\text{Ca}_{\text{shell}}$ is also sensitive to Ca_{sw}
410 at constant Li with a constant D_{Li} (Figure 4B). The clear influence of Ca_{sw} on the $\text{Li}/\text{Ca}_{\text{shell}}$ is
411 at odds with recent investigations using *Amphistegina lessonii* (Langer et al., 2015)
412 suggestion that D_{Li} should be expressed relative to Li_{sw} rather than $\text{Li}/\text{Ca}_{\text{sw}}$ and is manifestly
413 not supported by our work. Furthermore, Langer et al. (2015) present two sets of cultures
414 wherein Li_{sw} and Ca_{sw} were varied independently, yet where these overlap close to the natural
415 $\text{Li}/\text{Ca}_{\text{sw}}$ ratio there is a factor of two difference in the measured foraminifera Li/Ca ratios,
416 potentially pointing to a complication with that experiment. Moreover, our results indicate
417 that Li incorporation is entirely consistent with ion transport dominantly through seawater
418 vacuolization, i.e., $\text{Li}/\text{Ca}_{\text{shell}}$ is dominantly controlled by $\text{Li}/\text{Ca}_{\text{sw}}$ irrespective of whether Li_{sw}
419 or Ca_{sw} is varied.

420

421 Strontium in *O. ammonoides* also show a linear distribution function over the range measured
422 in our experiment (Figure 4D). In common with Li, but unlike the other trace elements in this
423 study, the exponent (H) is equal to 1 so that a linear fit goes through the origin (Figure 4D).
424 Based on previous studies Sr in calcite is known to be dependent on calcite Mg/Ca, which in
425 turn is principally dependent on $\text{Mg}/\text{Ca}_{\text{sw}}$, probably because Mg-induced lattice distortion
426 modifies the ease with which Sr may substitute for Ca (Mucci and Morse, 1983). This was
427 also demonstrated to be the case for foraminifera (Evans et al. 2015). Therefore, we stress
428 that the D_{Sr} defined in Equation 6 is relevant in situations where $\text{Sr}/\text{Ca}_{\text{sw}}$ and $\text{Mg}/\text{Ca}_{\text{sw}}$ vary
429 proportionally to each other (as is the case here). When $\text{Sr}/\text{Ca}_{\text{sw}}$ varies through changing Sr_{sw} ,
430 D_{Sr} is higher because $\text{Mg}/\text{Ca}_{\text{shell}}$ is constant (Evans et al. 2015). Examining this change in the
431 context of both inorganic calcite precipitated from seawater and *O. ammonoides* cultured

432 under variable Sr_{sw} shows that the sensitivity of D_{Sr} to $\text{Mg}/\text{Ca}_{\text{calcite}}$ is equivalent irrespective
433 of how the calcite Mg/Ca ratio is modified.

434

435 Our *O. ammonoides* culture data are shown in the context of a compilation of data from the
436 literature on both foraminiferal and inorganic calcite in Figure 6 (Bender et al., 1975; De
437 Choudens-Sanchez and Gonzalez, 2009; Delaney et al., 1985; Delaney and Boyle, 1986;
438 Dissard et al., 2010; Evans et al., 2016, 2015; Hall and Chan, 2004; Hathorne and James,
439 2006; Kitano et al., 1975; Lea et al., 1999; Mucci and Morse, 1983; Raitzsch et al., 2010;
440 Segev and Erez, 2006; Vigier et al., 2015; Wit et al., 2013), and the derivative of the power
441 functions, i.e., the distribution functions, are shown in Figure 7. This highlights the widely
442 different trace element concentrations between groups of foraminiferal species with differing
443 Mg/Ca ratios. These groups are presented in Figure 6 as high-Mg ($> 8\% \text{MgCO}_3$),
444 intermediate-Mg ($3-8\% \text{MgCO}_3$) and low-Mg ($< 3\% \text{MgCO}_3$) foraminifera (Bentov and Erez,
445 2006). This data compilation also contains core top samples with the present day's ocean
446 El/Ca ratios, which fit well on the experimental regression lines. An interesting pattern
447 emerges from Figure 6: Whereas each element has a distribution function of the type shown
448 in Equation 1, the actual concentrations of each element in the calcite (foraminifera and
449 inorganic) show strong correspondence to the Mg content. Whilst this was already discussed
450 for Sr, we note that a similar explanation may also be given for Na and Li. Particularly, this
451 has been previously argued for the incorporation of Na into both inorganic and foraminiferal
452 calcite (Bender et al., 1975; Evans et al., 2015; Graham et al., 1982; Okumura and Kitano,
453 1986; Yoshimura et al., 2017). Therefore, the effect of Mg should be accounted for when
454 applying our calibration to different foraminifera species in the paleo records, as changing
455 Ca_{sw} also exerts direct control on $\text{Mg}/\text{Ca}_{\text{calcite}}$. Indeed, this dependency of Na on Mg content
456 in the shell is well displayed in Figure 6, where high-Mg *O. ammonoides* show much higher

457 Na/Ca then low-Mg species. Similarly, Okumura and Kitano (1986) precipitated CaCO_3 from
458 solutions both with and without the addition of MgCl_2 and demonstrated that compared to
459 solution without Mg the presence of $\sim 50 \text{ mmol kg}^{-1}$ Mg doubles the concentration of Na in
460 calcite at a given solution Na/Ca ratio. We also note that similar relations between Mg and
461 other trace elements are found within shells of individual foraminifera displaying alternations
462 of Mg-rich and Mg-poor layers (e.g., Bentov and Erez, 2006).

463 **5. Conclusions**

464 In this study we cultured the benthic foraminifer *Operculina ammonoides* under variable
465 seawater Ca concentrations (Ca_{sw}). These laboratory experiments demonstrate that Na
466 incorporation into their calcitic shells is principally related to the seawater Na/Ca ratio, with
467 no resolvable temperature sensitivity. Given the long residence time of Na in seawater (~ 100
468 My) as opposed to that of Ca_{sw} (1 My), our calibration provides a detailed empirical basis for
469 the use of foraminiferal Na/Ca as a direct method of reconstructing Ca_{sw} . We further
470 demonstrate that the determination of the distribution functions cannot be obtained with a
471 single $\text{El/Ca}_{\text{shell}}$ divided by El/Ca_{sw} . Instead, the El/Ca in the experimental solution needs to
472 be varied in order to constrain the power function that appropriately describes the distribution
473 function for each element (Na included), as recently shown for D_{Mg} . Perhaps a new notation
474 should be introduced to describe the distribution function: Df_{El} (e.g., Df_{Na}).

475 Whilst the data presented here are derived from *O. ammonoides*, it has been shown that
476 calibrations based on this foraminifer are applicable to the abundant Eocene *Nummulites*
477 (Evans et al. 2013). Future similar experiments in other benthic and planktonic foraminifera
478 would be needed to accurately determine species-specific distribution functions that will
479 allow for future reconstructions of Ca_{sw} concentrations in the past. We note, however, that as
480 for any other geochemical system, further investigations of the influence secondary effects,
481 such as variations in Mg/Ca, salinity and diagenetic alteration are needed to improve the

482 accuracy of this proxy. Nonetheless, at least for *O. ammonoides*, the changes in Ca_{sw} are
483 likely the dominant control on the shell's Na/Ca.
484 Finally, we examine the response of shell Li, Mg and Sr under variable Ca_{sw} and find that
485 these elements are sensitive to this change, in contrast to some previous work on benthic
486 foraminifera. The Sr distribution function is modified by calcite Mg/Ca, as previously
487 demonstrated for this species and inorganic calcite. Together, a better understanding of the
488 incorporation of these other trace elements means that Na/Ca may be coupled with Li, Mg
489 and Sr in order to simultaneously reconstruct the history of a range of seawater cations and
490 therefore the processes controlling their cycling in seawater to be unraveled.

491

492 **Acknowledgements**

493 This study is funded by NSF-BSF project 1634573 and by ISF project 790/16.
494 Thanks to Shai Oron, Oriya Moav and Tanya Rivlin from the marine laboratory in Eilat for
495 the help with collecting the foraminifera.

496

497 **References:**

498 Allen, K.A., Hönisch, B., Eggin, S.M., Haynes, L.L., Rosenthal, Y., Yu, J., 2016. Trace
499 element proxies for surface ocean conditions: A synthesis of culture calibrations with
500 planktic foraminifera. *Geochim. Cosmochim. Acta* 193, 197–221.
501 doi:10.1016/j.gca.2016.08.015

502 Bender, M.L., Lorens, R.B., Williams, D.F., 1975. Sodium, magnesium and strontium in the
503 test of planktonic foraminifera. *Micropaleontology* 21, 448–459. doi:10.2307/1485293

504 Bentov, S., Brownlee, C., Erez, J., 2009. The role of seawater endocytosis in the
505 biomineralization process in calcareous foraminifera. *Proc. Natl. Acad. Sci. U. S. A.*
506 106, 21500–21504. doi:10.1073/pnas.0906636106

507 Bentov, S., Erez, J., 2006. Impact of biomineralization processes on the Mg content of
508 foraminiferal shells: A biological perspective. *Geochemistry, Geophys. Geosystems* 7.
509 doi:10.1029/2005GC001015

510 Berner, R.A., 2004. A model for calcium , magnesium and sulfate in seawater over

511 Phanerozoic time. *Am. J. Sci.* 304, 438–453.

512 Brennan, S.T., Lowenstein, T.K., Cendon, D.I., 2013. The major-ion composition of cenozoic
513 seawater: the past 36 million years from fluid inclusions in marine halite. *Am. J. Sci.*
514 313, 713–775. doi:10.2475/08.2013.01

515 Broecker, W., 2013. How to think about the evolution of the ratio of Mg to Ca in seawater.
516 *Am. J. Sci.* 313, 776–789. doi:10.2475/08.2013.02

517 Broecker, W.S., Peng, T.H., Beng, Z., 1982. Tracers in the sea, Lamont-Doherty Geologica.
518 doi:10.1016/0016-7037(83)90075-3

519 De Choudens-Sanchez, V., Gonzalez, L.A., 2009. Calcite and Aragonite Precipitation Under
520 Controlled Instantaneous Supersaturation: Elucidating the Role of CaCO₃ Saturation
521 State and Mg/Ca Ratio on Calcium Carbonate Polymorphism. *J. Sediment. Res.* 79,
522 363–376. doi:10.2110/jsr.2009.043

523 Delaney, M.L., Bé, A., Boyle, E.A., 1985. Li, Sr, Mg, and Na in foraminiferal calcite shells
524 from laboratory culture, sediment traps, and sediment cores. *Geochim. Cosmochim.*
525 *Acta* 49, 1327–1341. doi:10.1016/0016-7037(85)90284-4

526 Delaney, M.L., Boyle, E.A., 1986. Lithium in foraminiferal shells: implications for high-
527 temperature hydrothermal circulation fluxes and oceanic crustal generation rates. *Earth*
528 *Planet. Sci. Lett.* 80, 91–105. doi:10.1016/0012-821X(86)90022-1

529 Dissard, D., Nehrke, G., Reichart, G.J., Bijma, J., 2010. The impact of salinity on the Mg/Ca
530 and Sr/Ca ratio in the benthic foraminifera *Ammonia tepida*: Results from culture
531 experiments. *Geochim. Cosmochim. Acta* 74, 928–940. doi:10.1016/j.gca.2009.10.040

532 Erez, J., 2003. The source of ions for biomineralization in foraminifera and their implications
533 for paleoceanographic proxies (Review). *Rev. Mineral. geochemistry* 54, 115.
534 doi:10.2113/0540115

535 Evans, D., Brierley, C., Raymo, M.E., Erez, J., Müller, W., 2016. Planktic foraminifera shell
536 chemistry response to seawater chemistry: Pliocene-Pleistocene seawater Mg/Ca,
537 temperature and sea level change. *Earth Planet. Sci. Lett.* 438, 139–148.
538 doi:10.1016/j.epsl.2016.01.013

539 Evans, D., Erez, J., Oron, S., Müller, W., 2015. Mg/Ca-temperature and seawater-test
540 chemistry relationships in the shallow-dwelling large benthic foraminifera *Operculina*
541 *ammonoides*. *Geochim. Cosmochim. Acta* 148, 325–342. doi:10.1016/j.gca.2014.09.039

542 Evans, D., Müller, W., 2012. Deep time foraminifera Mg/Ca paleothermometry: Nonlinear
543 correction for secular change in seawater Mg/Ca. *Paleoceanography* 27, 1–11.
544 doi:10.1029/2012PA002315

545 Evans, D., Müller, W., Erez, J., 2018. Assessing foraminifera biomineralisation models
546 through trace element data of cultures under variable seawater chemistry. *Geochim.*
547 *Cosmochim. Acta*. doi:10.1016/J.GCA.2018.02.048

548 Fantle, M.S., DePaolo, D.J., 2005. Variations in the marine Ca cycle over the past 20 million
549 years. *Earth Planet. Sci. Lett.* 237, 102–117. doi:10.1016/j.epsl.2005.06.024

550 Freundlich, H., 1932. Of the adsorption of gases. Section II. Kinetics and energetics of gas
551 adsorption. *Trans. Faraday Soc.* 28, 195–201. doi:10.1039/TF9322800195

552 Gothmann, A.M., Stolarski, J., Adkins, J.F., Schoene, B., Dennis, K.J., Schrag, D.P., Mazur,
553 M., Bender, M.L., 2015. Fossil corals as an archive of secular variations in seawater
554 chemistry since the Mesozoic. *Geochim. Cosmochim. Acta* 160, 188–208.
555 doi:10.1016/j.gca.2015.03.018

556 Graham, D.W., Bender, M.L., Williams, D.F., Keigwin, L.D., 1982. Strontium-calcium ratios
557 in Cenozoic planktonic foraminifera. *Geochim. Cosmochim. Acta* 46, 1281–1292.
558 doi:10.1016/0016-7037(82)90012-6

559 Gussone, N., Schmitt, A.-D., Heuser, A., Wombacher, F., Dietzel, M., Tipper, E., Schiller,
560 M., 2016. Calcium Stable Isotope Geochemistry, 1st ed. Springer Berlin Heidelberg,
561 Berlin. doi:10.1007/978-3-540-68953-9_6

562 Hall, J.M., Chan, L.H., 2004. Li/Ca in multiple species of benthic and planktonic
563 foraminifera: Thermocline, latitudinal, and glacial-interglacial variation. *Geochim.*
564 *Cosmochim. Acta* 68, 529–545. doi:10.1016/S0016-7037(00)00451-4

565 Hasiuk, F.J., Lohmann, K.C., 2010. Application of calcite Mg partitioning functions to the
566 reconstruction of paleocean Mg/Ca. *Geochim. Cosmochim. Acta* 74, 6751–6763.
567 doi:10.1016/j.gca.2010.07.030

568 Hathorne, E.C., James, R.H., 2006. Temporal record of lithium in seawater: A tracer for
569 silicate weathering? *Earth Planet. Sci. Lett.* 246, 393–406.
570 doi:10.1016/j.epsl.2006.04.020

571 Horita, J., Zimmermann, H., Holland, H.D., 2002. Chemical evolution of seawater during the
572 Phanerozoic: Implications from the record of marine evaporites. *Geochim. Cosmochim.*
573 *Acta* 66, 3733–3756. doi:10.1016/S0016-7037(01)00884-5

574 Ishikawa, M., Ichikuni, M., 1984. Uptake of sodium and potassium by calcite. *Chem. Geol.*
575 42, 137–146. doi:10.1016/0009-2541(84)90010-X

576 Katz, M.E., Cramer, B.S., Franzese, a., Honisch, B., Miller, K.G., Rosenthal, Y., Wright,
577 J.D., 2010. Traditional and Emerging Geochemical Proxies in Foraminifera. *J.*
578 *Foraminifer. Res.* 40, 165–192. doi:10.2113/gsjfr.40.2.165

579 Kitano, Y., Okumura, M., Idogaki, M., 1975. Incorporation of sodium, chloride and sulfate
580 with calcium carbonate. *Geochem. J.* 9, 75–84. doi:10.2343/geochemj.9.75

581 Langer, G., Sadekov, A., Thoms, S., Mewes, A., Nehrke, G., Greaves, M., Misra, S., Bijma,
582 J., Elderfield, H., 2015. Li partitioning in the benthic foraminifera *Amphistegina*
583 *lessonii*. *Geochemistry Geophys. Geosystems* 16, 4275–4279.
584 doi:10.1002/2014GC005684.Key

585 Langmuir, I., 1917. The constitution and fundamental properties of solids and liquids. II.
586 Liquids. *J. Am. Chem. Soc.* 39, 1848–1906. doi:10.1021/ja02254a006

587 Lea, D.W., Mashotta, T. a., Spero, H.J., 1999. Controls on magnesium and strontium uptake
588 in planktonic foraminifera determined by live culturing. *Geochim. Cosmochim. Acta* 63,
589 2369–2379. doi:10.1016/S0016-7037(99)00197-0

590 Lear, C.H., Mawbey, E.M., Rosenthal, Y., 2010. Cenozoic benthic foraminiferal Mg/Ca and
591 Li/Ca records: Toward unlocking temperatures and saturation states. *Paleoceanography*
592 25, 1–11. doi:10.1029/2009PA001880

593 Mewes, A., Langer, G., Thoms, S., Nehrke, G., Reichart, G.-J., de Nooijer, L.J., Bijma, J.,
594 2015. Impact of seawater $[Ca^{2+}]$ on the calcification and calcite Mg / Ca of
595 *Amphistegina lessonii*. *Biogeosciences* 12, 2153–2162. doi:10.5194/bg-12-2153-2015

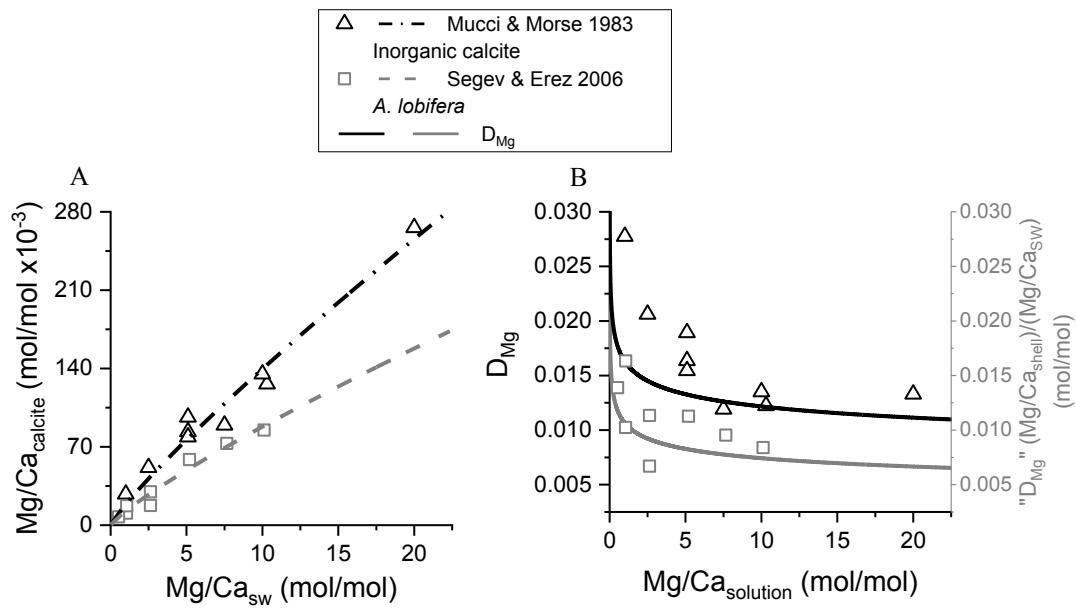
596 Mezger, E.M., de Nooijer, L.J., Boer, W., Brummer, G.J.A., Reichart, G.J., 2016. Salinity
597 controls on Na incorporation in Red Sea planktonic foraminifera. *Paleoceanography* 31,
598 1562–1582. doi:10.1002/2016PA003052

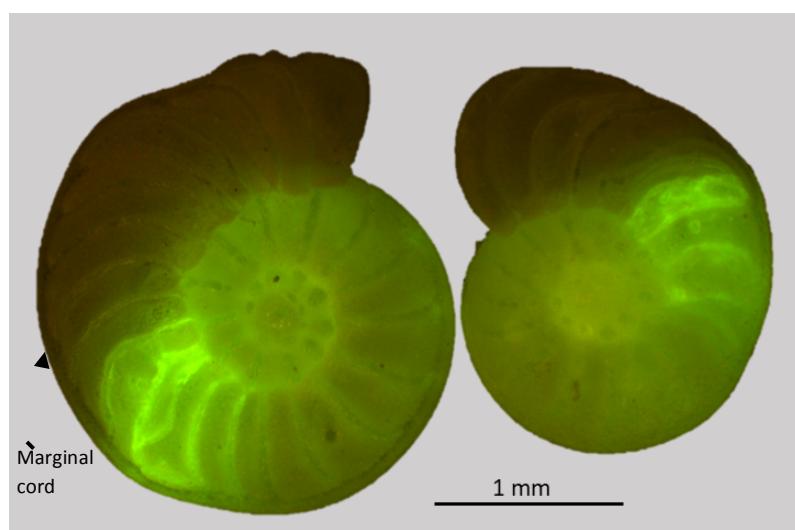
599 Morse, J.W., Bender, M.L., 1990. Partition coefficients in calcite: Examination of factors
600 influencing the validity of experimental results and their application to natural systems.
601 *Chem. Geol.* 82, 265–277. doi:10.1016/0009-2541(90)90085-L

602 Mucci, A., Morse, J.W., 1983. The incorporation of Mg^{2+} and Sr^{2+} into calcite overgrowths:
603 influences of growth rate and solution composition. *Geochim. Cosmochim. Acta* 47,
604 217–233. doi:[http://dx.doi.org/10.1016/0016-7037\(83\)90135-7](http://dx.doi.org/10.1016/0016-7037(83)90135-7)

605 Müller, M.N., Barcelos E Ramos, J., Schulz, K.G., Riebesell, U., Kaźmierczak, J., Gallo, F.,
606 Mackinder, L., Li, Y., Nesterenko, P.N., Trull, T.W., Hallegraeff, G.M., 2015.
607 Phytoplankton calcification as an effective mechanism to alleviate cellular calcium
608 poisoning. *Biogeosciences* 12, 6493–6501. doi:10.5194/bg-12-6493-2015

609 Nehrke, G., Keul, N., Langer, G., De Nooijer, L.J., Bijma, J., Meibom, A., 2013. A new
610 model for biomineralization and trace-element signatures of Foraminifera tests.
611 *Biogeosciences* 10, 6759–6767. doi:10.5194/bg-10-6759-2013


612 Okumura, M., Kitano, Y., 1986. Coprecipitation of alkali metal ions with calcium carbonate.


647

Cosmochim. Acta 202, 21–38. doi:10.1016/j.gca.2016.12.003

648

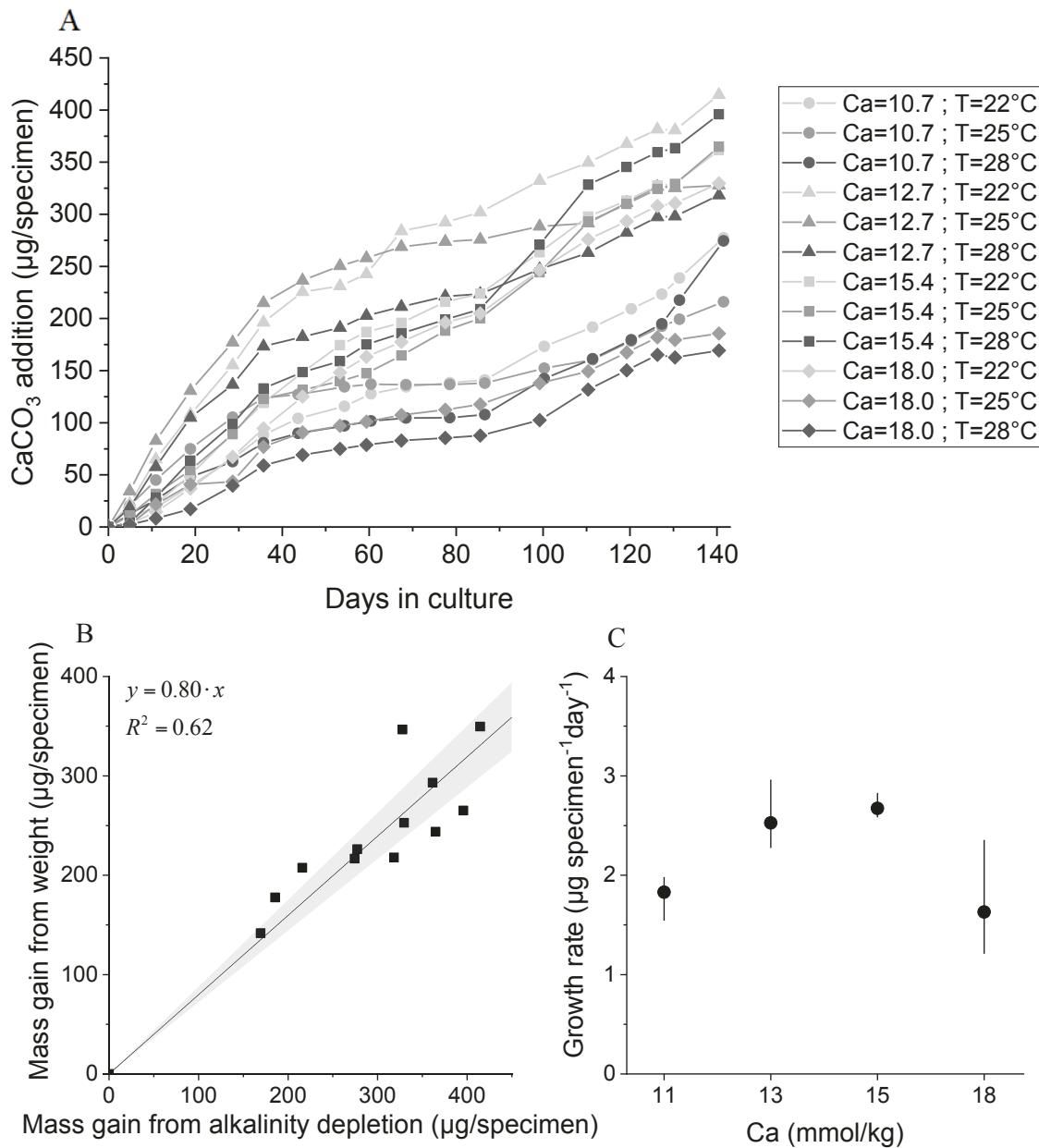


Fig. 1: Calculations of distribution functions for Mg in calcite precipitated from seawater for inorganic (black) and foraminiferal (grey) experimental data (Mucci & Morse, 1983 and Segev & Erez, 2006, respectively). **(A)** Power fit through the data for the inorganic experiment: $Mg/Ca_{\text{calcite}} = 18.7 \times (Mg/Ca_{\text{solution}})^{0.87}$, $R^2 = 0.96$, and for the biogenic data $Mg/Ca_{\text{calcite}} = 12.6 \times (Mg/Ca_{\text{solution}})^{0.84}$, $R^2 = 0.96$. **(B)** Magnesium distribution functions calculated as the derivative of the power fit (solid lines) from figure A. The symbols represent the "apparent distribution coefficients" (" D_{Mg} "), calculated from the individual data points. Despite the similar behavior (i.e., increase in lower Mg/Ca_{solution}) there are considerable differences between the derivatives (the distribution functions) and the "apparent distribution coefficients" (" D_{Mg} "). For the inorganic derivative: $D_{\text{Mg}} = 16.3 \times 10^{-3} \times (Mg/Ca_{\text{solution}})^{-0.13}$ and for the biogenic $D_{\text{Mg}} = 10.7 \times 10^{-3} \times (Mg/Ca_{\text{solution}})^{-0.16}$.

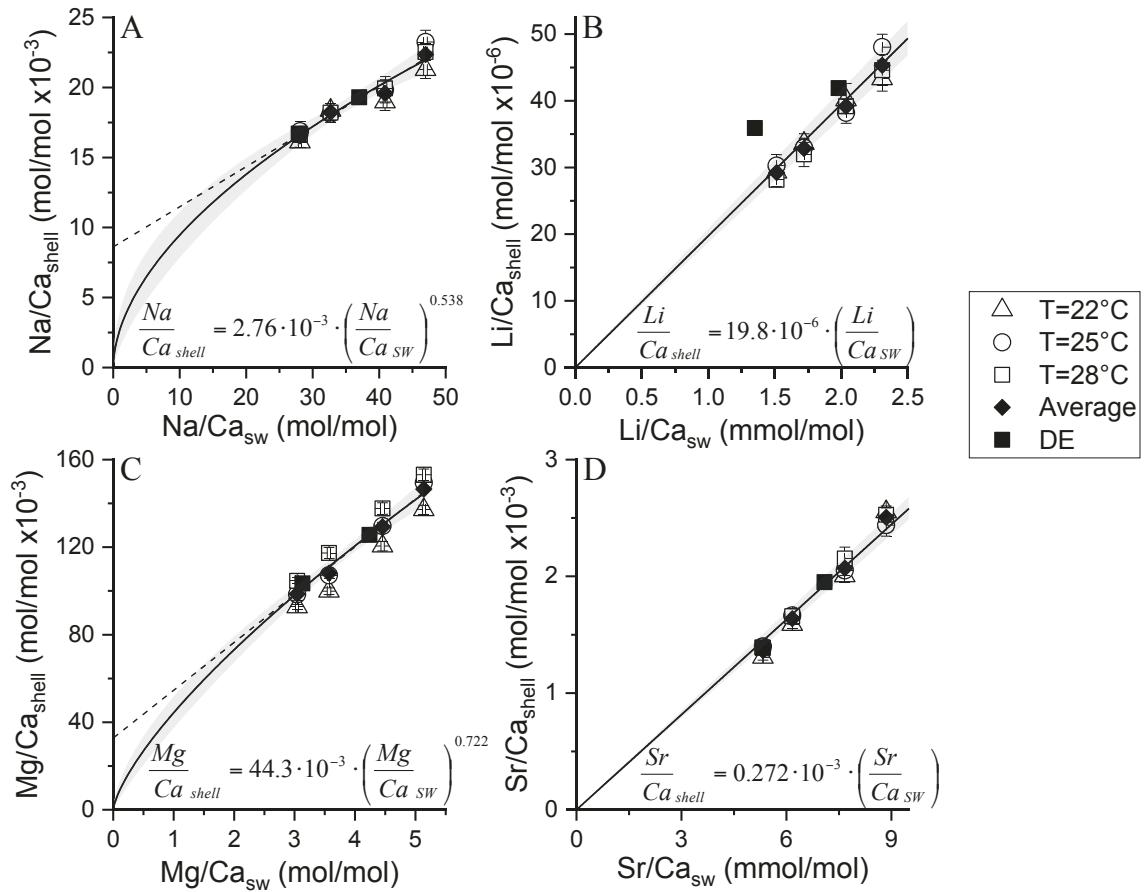
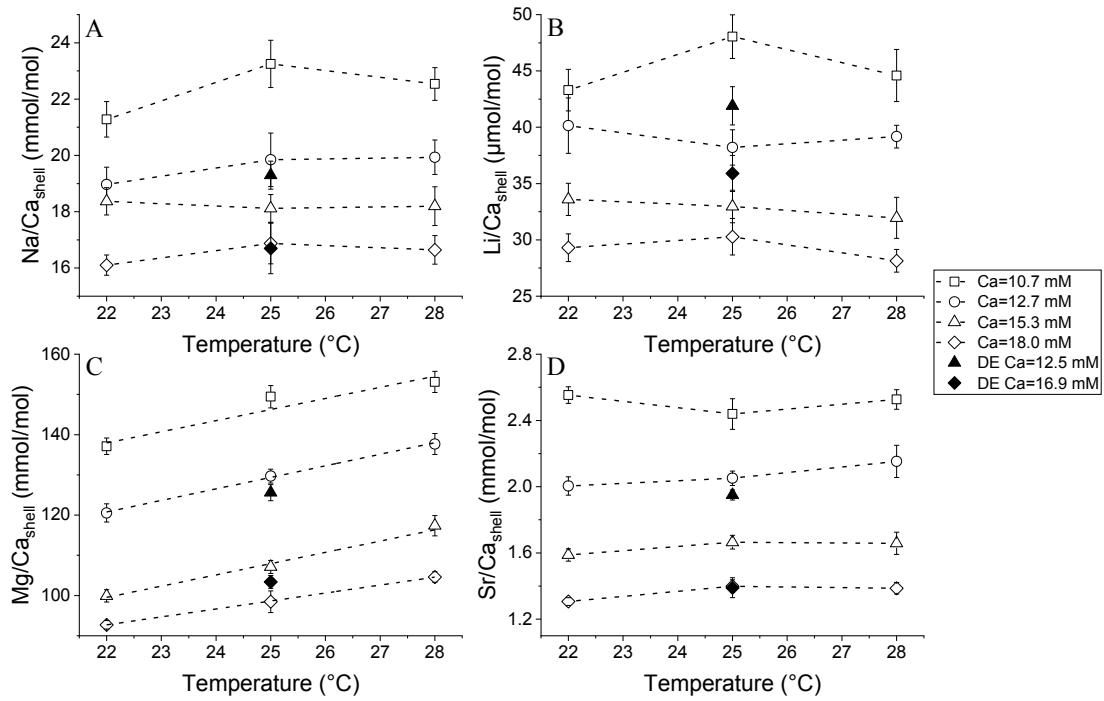
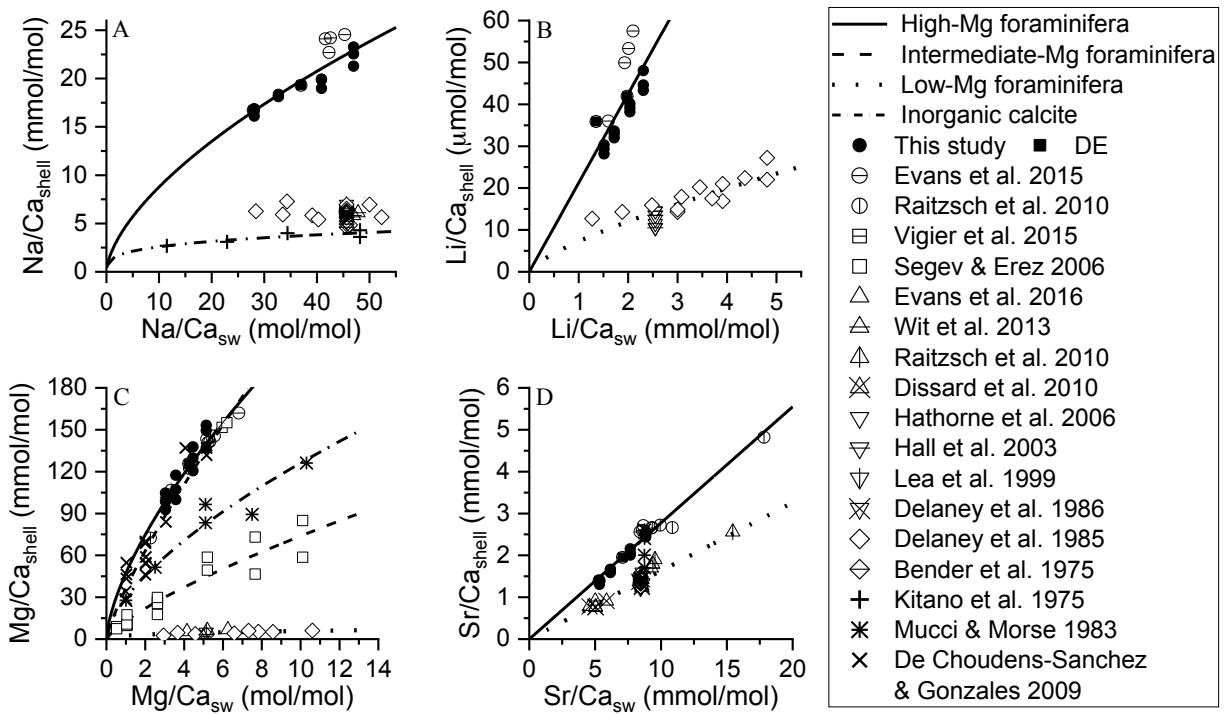


Figure 2: Example of specimens of *O. ammonoides* used in this experiment: the organisms were incubated with the fluorescent dye Calcein which mark the chambers precipitated prior to the experiment. The dark, non-fluorescent chambers consist of newly precipitated CaCO_3 during the experimental conditions which were selected for analysis. The laser spots were

with a diameter of 44 μm were made on the marginal cord (shown by black arrow) on 4-6 chambers per specimen (a total of ~ 25 analyses per treatment).


Figure 3: Growth of the foraminifera during the experiment **(A)** Cumulative CaCO_3 addition for each treatment versus time, calculated from alkalinity depletion measurements. Different symbols represent seawater Ca concentrations (in mmol kg^{-1}), whilst different shades of grey represent different temperatures. **(B)** Weight increase per specimen relative to their initial weight (from control groups) compared to the alkalinity depletion (see discussion for the difference). **(C)** Mean growth rates per specimen as a function of Ca_{sw} . The symbols are the average for each Ca_{sw} concentration and the vertical bars show the range for the three temperatures. A clear optimum is observed between 13 and 15 mmol kg^{-1} .


Figure 4: Foraminifera El/Ca data as a function of the respective El/Ca ratio in the experimental seawater (see Table 1 and 2 for details). Linear regressions for Na (A) and Mg (C) have a non-zero intercept with the Y axis and therefore we use power fit that goes through the origin (see full explanation in section 1.2). For Li (B) and Sr (D) the distribution coefficients are constant. For the Li fit, we excluded the one outlying data point of the proof of concept experiment (DE in Tables 1 and 2). The shaded area is the 95% confidence bands.

El/Ca	Power fit ($\cdot 10^{-3}$)	R^2	Linear fit ($\cdot 10^{-3}$)	R^2
Na/Ca	$Na/Ca_{shell} = 2.76 \cdot 10^{-3} \cdot (Na/Ca_{sw})^{0.538}$	0.964	$Na/Ca_{shell} = 0.283 \cdot (Na/Ca_{sw}) + 8.73$	0.969
Mg/Ca	$Mg/Ca_{shell} = 44.3 \cdot 10^{-3} \cdot (Mg/Ca_{sw})^{0.722}$	0.986	$Mg/Ca_{shell} = 21.9 \cdot (Mg/Ca_{sw}) + 32.8$	0.988
Li/Ca	$Li/Ca_{shell} = 19.0 \cdot 10^{-3} \cdot (Li/Ca_{sw})^{1.056}$	0.941	$Li/Ca_{shell} = 19.8 \cdot 10^{-3} \cdot (Li/Ca_{sw})$	0.939
Sr/Ca	$Sr/Ca_{shell} = 0.189 \cdot (Sr/Ca_{sw})^{1.19}$	0.997	$Sr/Ca_{shell} = 0.272 \cdot (Sr/Ca_{sw})$	0.977

Given that in our experiments we only changed the seawater Ca concentrations whereas Na concentration remained constant (considering its long oceanic residence time of ~ 100 My), we can also express the foraminiferal Na/Ca as a function of seawater Ca. It is noteworthy, however, that these equations are only applicable within the calibration range.

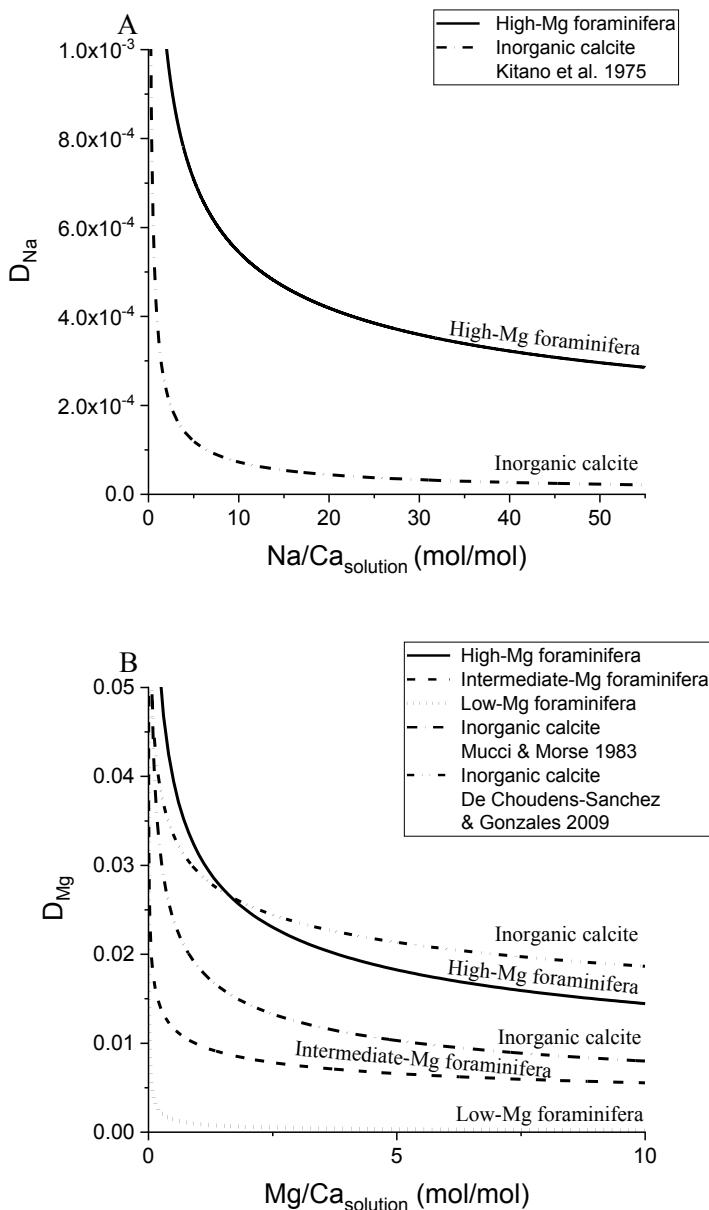

Figure 5: The effect of temperature on the Ca experiments: for Na Li and Sr, there is no visible temperature effect (A, B, D), whilst Mg shows a clear increase with temperature at each Ca concentration. (C) The linear correlations of Mg with temperature are: Ca=10.7 mmol kg⁻¹: $\text{Mg/Ca}_{\text{shell}}=2.76 \times \text{Temp}+77.2$, $R^2=0.93$; Ca=12.7 mmol kg⁻¹: $\text{Mg/Ca}_{\text{shell}}=2.87 \times \text{Temp}+57.7$, $R^2=0.998$; Ca=15.3 mmol kg⁻¹: $\text{Mg/Ca}_{\text{shell}}=2.80 \times \text{Temp}+37.9$, $R^2=0.99$; Ca=18.0 mmol kg⁻¹: $\text{Mg/Ca}_{\text{shell}}=1.98 \times \text{Temp}+49.2$, $R^2=0.999$.

Figure 6: Elements to Ca ratios versus the respective ratio in seawater. Comparison between our data and other foraminifera and inorganic calcite experimental data from the literature (Evans et al. 2015; Raitzsch et al. 2010; Vigier et al. 2015; Segev & Erez 2006; Evans et al. 2016; Evans et al. 2015; Wit et al. 2013; Dissard et al. 2010; Hathrone et al. 2006, Hall et al. 2003, Lea et al. 1999; Delaney & Boyle 1986; Delaney et al. 1985; Bender et al. 1975; Mucci & Morse 1983; Kitano et al. 1975). Power fit equations and their respective R^2 are given below (see figure 7 for the distribution functions).

El/Ca	High Mg		Intermediate Mg		Low Mg		Inorganic calcite	
	Power fit ($\cdot 10^{-3}$)	R^2						
Na/Ca	$y=2.10 \cdot x^{0.621}$	0.74			No fit		$y=1.36 \cdot x^{0.280}$	0.76
Li/Ca	$y=21.3 \cdot x$	0.66			$y=0.00726 \cdot x^{0.729}$	0.70	$y=29.3 \cdot x^{0.634}$	0.94
Mg/Ca	$y=47.2 \cdot x^{0.664}$	0.93	$y=13.1 \cdot x^{0.751}$	0.89	$y=2.51 \cdot x^{0.365}$	0.24	$y=36.3 \cdot x^{0.805}$	0.93*
Sr/Ca	$y=0.278 \cdot x$	0.96			$y=0.163 \cdot x$	0.88	No fit	

* De Choudens-Sanchez & Gonzalez, 2009

Fig 7: Distribution functions for Na and Mg calculated as the derivative of the power functions in Fig. 6 A and C. The low-Mg data from Raitzsch et al. 2010, Wit et al. 2013, Delaney 1985, Dissard et al. 2010, Lea et al. 1999, Evans et al. 2016, Segev and Erez 2006, Bender et al. 1975.

Study	Derivative of the power fit to the Na/Ca_{shell} vs Na/Ca_{sw}	Derivative of the power fit to the Mg/Ca_{shell} vs Mg/Ca_{sw}
High-Mg foraminifera	$D_{Na} = 1.30 \cdot 10^{-3} \times (Na/Ca_{sw})^{-0.379}$	$D_{Mg} = 31.4 \cdot 10^{-3} \times (Mg/Ca_{sw})^{-0.336}$
Intermediate-Mg foraminifera Segev & Erez 2006		$D_{Mg} = 9.84 \cdot 10^{-3} \times (Mg/Ca_{sw})^{-0.249}$
Low-Mg foraminifera	No fit	$D_{Mg} = 0.916 \cdot 10^{-3} \times (Mg/Ca_{sw})^{-0.635}$
Inorganic calcite-Kitano et al. 1975	$D_{Na} = 0.381 \cdot 10^{-3} \times (Na/Ca_{sw})^{-0.72}$	

Mucci & Morse 1983-
Inorganic calcite
De Choudens-Sanchez
& Gonzalez 2009-
Inorganic calcite

$$D_{Mg} = 18.6 \cdot 10^{-3} \times (Mg/Ca_{sw})^{-0.366}$$

$$D_{Mg} = 29.2 \cdot 10^{-3} \times (Mg/Ca_{sw})^{-0.195}$$