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ABSTRACT

Chest X-rays is one of the most commonly available and afford-

able radiological examinations in clinical practice. While, detecting

thoracic diseases on chest X-rays is still a challenging task for ma-

chine intelligence, due to 1) the highly varied appearance of lesion

areas on X-rays from patients of different thoracic disease and 2)

the shortage of accurate pixel-level annotations by radiologists for

model training. Existing machine learning methods are unable to

deal with the challenge that thoracic diseases usually happen in

localized disease specific areas. In this article, we propose a weakly

supervised deep learning framework equipped with squeeze-and-

excitation blocks, multi-map transfer and max-min pooling for clas-

sifying common thoracic diseases as well as localizing suspicious

lesion regions on chest X-rays. The comprehensive experiments

and discussions are performed on ChestX-ray14 dataset. Both nu-

merical and visual results have demonstrated the effectiveness of

proposed model and its better performance against the state-of-the-

art pipelines.

CCS CONCEPTS

• Theory of computation → Machine learning theory; • Ap-

plied computing→ Imaging;

KEYWORDS

Chest X-ray, computer-aided diagnosis, weakly-supervised learn-

ing, fully convolutional network, multi-map transfer layer, feature

recalibration

∗This work was partially supported by US National Science Foundation IIS-1423056,
CMMI-1434401, CNS-1405985, IIS-1718853 and the NSF CAREER grant IIS-1553687.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5794-4/18/08. . . $15.00
https://doi.org/10.1145/3233547.3233573

1 INTRODUCTION

Chest X-ray imaging is currently one of the most widely available

radiological examinations for screening and clinical diagnosis. How-

ever, automatic understanding of chest X-ray images is currently

a technically challenging task due to the complex pathologies of

different sorts of lung lesions on images. In clinical practice, the

analysis and diagnosis based on chest X-rays are heavily dependent

on the expertise of radiologists with at least years of professional

experience. Therefore, there is a critical need of a computer-aided

system that is able to automatically detect different types of thoracic

diseases merely from reading patients’ chest X-ray images. This

is all founded on a well-designed transfer of human knowledge to

machine intelligence.

Since the last decade of years, as a promising technology, Medical

Artificial Intelligence (Medical AI) has globally attracted interest.

Especially after the emergence and fast progress of deep learning,

a revolution of computer-aided diagnosis (CAD) technique has

officially started and impacted in many bio-medical applications,

e.g. diabetic eye disease diagnosis [11], cancer metastases detection

and localization [3, 20, 23], lung nodule detection [27], and survival

analysis [37], etc. However, introducing deep learning as solution to

reading and understanding chest X-ray images is challenging due to

the following reasons: 1) the visual patterns extracted from samples

of different types of thoracic diseases are usually highly diverse in

their appearance, sizes and locations (examples of common thoracic

diseases in ChestX-ray14 dataset [33] are available in Fig.1) ; 2)

retrieving massive high-quality annotations of disease, such as

focal zone, on chest X-ray images is not affordable. The expenses

result from both the cost of hiring experienced radiologists and the

hardware requirements of collection, storage, processing of those

data. Therefore, ChestX-ray14, although as the largest and most

quality public chest X-rays dataset, does not provide with any pixel-

wise annotations or coarse bounding boxes (example of which is in

Fig.1) for most of chest X-ray images. Consequently, it is obvious

that any machine learning models proposed to be compatible with

ChestX-ray14 dataset are required to work merely with image-level

class label plus a very small amount of bounding box annotations.

Many research efforts have been made for automatic detection

of thoracic diseases based on diverse data generated by chest X-

ray scanning. Chapman et al. [2] discussed the performance of

Bayesian network and decision tree at identifying chest X-ray re-

ports. Ye et al. [36] reduced false positive in classification of lung
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Figure 1: Examples of chest X-rays of eight thoracic diseases

and associated lesion regions from ChestX-ray14 [33]. The

regions were annotated as red bounding boxes by radiolo-

gists. The bounding boxes were only used for evaluation.

nodules on chest X-rays via introducing a weighted support vec-

tor machine (SVM) classifier. Beyond hand-crafted features, Wang

et al. [33] concatenated the classifier to a fully convolutional net-

work (FCN) as feature extractor in classification of thoracic diseases

on images from ChestX-ray14 dataset, in which they compared

four classic convolutional neural network (CNN) architectures, i.e.,

AlexNet [18], VGGNet [29], GoogLeNet [30], ResNet [12]. Later,

Yao et al. [34] investigated the hidden correlations among the 14

pathological class labels in ChestX-ray14 dataset. The most recent

framework proposed by Rajpurkar et al. is CheXNet [25] that fine-

tuned a revised 121-layer DenseNet [14] on ChestX-ray14 images

and achieved the state-of-the-art performance on thoracic disease

detection. However, those previous works typically employ single

or multiple fully connected layers to densely connect and select

significant features on the feature maps generated by convolutional

networks. As a consequence, this architecture and its similar vari-

ants do not treat different diseases separately and thus ignore a

crucial fact that those lesion areas on chest X-rays actually are

disease specific. Another important issue is that many images from

ChestX-ray14 contain lesion areas of more than one thoracic dis-

ease (i.e. most of images have multiple class labels). This setting

is to simulate a common case that a radiologist often deals with

in clinical practice. Intuitively, in their models, the classifier could

be possibly confused when detecting a certain type of disease by

those features extracted from the lesions belong to other diseases.

Therefore, a significant improvement is expected through learning

disease-discriminative features on chest X-rays.

In this paper, we will present a novel weakly-supervised learning

model to particularly overcome the aforementioned issues existing

in previous works. The proposed model is able to classify thoracic

diseases merely reading provided chest X-rays as well as to local-

ize the disease regions on X-rays at pixel-level granularity. First,

we harnessed the latest Fully Convolutional Network (FCN) alike

model, i.e. DenseNet [14], as backbone network, because DenseNet

has obviously shown its outstanding performance on generic image

classification [14] and semantic segmentation [16]. Much beyond

the original DenseNet, for the first time, we proposed to use the

so-called "Squeeze-and-Excitation" (SE) block [13], which aims to

reinforce the sensitivity of our model to subtle differences between

normal and lesion regions by explicitly modeling the channel in-

terdependencies. Moreover, we incorporated the use of multi-map

transfer layers to make our network perform better to learn disease-

specific features that are highly related to disease modalities, e.g.

"Atelectasis" and "Nodule" on chest X-ray. The last but not the least,

we realized that the max-min pooling operators [7] perform better

at spatially squeezing feature maps for each class of disease. Our

major contributions in the paper are summarized as follows:

• A "Squeeze-and-Excitation" block was embedded after con-

volution layer in DenseNet block for feature recalibration.

• Concatenate stacked multi-map transfer layers to DenseNet

replacing fully connected layers to mitigate the multi-label

issue, which becomes crucial when labels are noisy.

• We incorporated the max-min pooling operator to aggregate

spatial activations from multi-maps into a final prediction.

• Extensive experiments have been conducted to demonstrate

the effectiveness of proposed methods. Our method achieved

superior performance compared to the state-of-the-arts.

• The effectiveness of each proposed component are individu-

ally verified by experiments on ChestX-ray14 dataset.

The rest of the paper is organized as follows. Problem description

and recent work on automatic detection and diagnosis techniques

on chest X-rays were given in Section 1&2. Then, we presented

our framework details in Section 3. Experimental setup, results and

discussions were in Section 4. In last section, we summarized our

contributions as well as the future research highlights.

2 RELATEDWORK

For a long time, designing a computer-aided diagnosis platform

to understand radiographs has widely attracted research interest.

A well-prepared database is one of the most significant factors in

successfully developing a generalizable machine learning model,

especially a data-hungry deep neural network model. JSRT released

a chest X-ray image set [28] which contains 247 chest X-ray images

including 93 normal images and 154 of those exhibited malignant

and benign lung nodules. Due to the limited size of JSRT data, it is

difficult to train a complex model against over-fitting. [8] trained a

convolutional network based classifier for lung nodules classifica-

tion on JSRT dataset and its improved version BSE-JSRT dataset [32]

in which bone shadows were excluded. The Indiana chest X-ray

dataset [5] has a mixed collection of 8,121 frontal and lateral view

X-ray images together with 3,996 radiology reports contain labels

from trained experts. [15] compared the performance of multiple

state-of-the-art deep learning models on Indiana dataset for disease

classification and localization of remarkable regions that contribute

most to an accurate classification.

In [33], a hospital-scale database, ChestX-ray14, that comprises

108,948 frontal-view of X-ray images of 32,717 individual patients

was presented together with the 14 classes of image labels, each of

which corresponds to a thoracic disease. Therefore, each image may

have multiple labels. ChestX-ray14 is probably the largest, most

quality, X-ray image dataset available publicly. It is notable that the

aforementioned image labels are not directly from manual annota-

tion by pathologists, for instead, were mined by natural language

processing technique [1, 19] on associated radiaological reports.



Consequently, the class labels in training set is noisy, which brings

extra challenge to disease classification task. Besides, [33] experi-

mentally demonstrated that those common thoracic diseases could

be correctly detected or even spatial-localized via a unified weakly-

supervised multi-label learning framework trained by generated

noisy weak class labels. The ResNet outperformed other popular

convolutional neural networks, e.g. AlexNet [18], GoogLeNet [30]

and VGGNet-16 [29] by rendering class-wise ROC-AUC scores e.g.

0.8141 for "Cardiomegaly". While, for some diseases like "Mass" and

"Pneumonia", the scores were dramatically dragged to 0.5609 and

0.6333 respectively. This result disclosed the long-standing igno-

rance of the incapability of traditional CNNs on learningmeaningful

representations with weak supervision of noisy labels. However,

the major difficulty of applying deep learning models on medical

problems is the shortage of high-quality annotations by pathologist.

Shortly after ChestX-ray14 was released, [25] proposed a state-

of-the-art CNNmodel named as CheXNet that consists of 121 layers.

The model accepts chest X-ray images as input and outputs the

probability of disease along with a heatmap which localizes the

most indicative regions of disease on the input images. On the task

of detecting pneumonia, the CheXNet successfully exceeded the

average performance of four experienced radiologists on a subset

of 420 X-ray images of pneumonia patients. However, the network

in [25] is a variant of DenseNet [14] without any significant mod-

ifications particularly for learning representations under a weak

supervision. The network was initialized by weights pretrained on

ImageNet [6], the content of which shares few in common with the

images of ChestX-ray14. The lower-level representations learned on

ImageNet are not guaranteed to accurately customize the shape and

the contour of regions of thoracic diseases. Even though [25] has

lifted the classification accuracy by a margin of 0.05 on ROC-AUC

score, it still left quite a space for improvement.

As mentioned in [25], the significance of comparison between

CheXNet and human pathologist labeling was compromised by the

fact that only the frontal view of radiographs were presented to

pathologists, and it has been confirmed that there are 15% success-

ful diagnoses of pneumonia by pathologists mainly contributed by

the lateral views, which were not available in ChestX-ray14. Conse-

quently, a multi-view version of chest X-ray dataset - MIMIC-CXR

was presented in [26], and based on which a dual deep convolu-

tional network framework was naturally proposed to utilize both

frontal and lateral views, if given, for disease classification. While,

the network for each viewwas separately trained instead of weights

sharing. The outputs of each network (view) were concatenated as

a unified vector before a set of final fully connected layers for gener-

ating multi-class prediction. However, because of the lack of other

view of radiographs in ChestX-ray14, [26] did not include a face-to-

face comparison with CheXNet on the same dataset. Therefore, the

actual effectiveness of introducing another relevant view of X-ray is

. Moreover, the numerical results of [26] has not strongly supported

the conclusion that combining more views of radiographs brings

lift on recognition performance without learning the correlation

between views.

As discussed above, training a classifier on X-ray images is more

difficult than generic image, e.g. ImageNet, where object of interest

is usually positioned in the middle of image. The lesion area of lung

could be pretty small compared to the entire X-ray images. Besides,

the variant condition of capturing, e.g. posture of patient, brings

extra distortion and misalignment. To address these problems, [9]

proposed an attention guided convolutional neural network (AG-

CNN) to extract regions of interest (RoI) as a rough localization of

lesion areas from the last convolution outputs of global network

which train on raw X-ray images with class label supervision. Then,

extracted RoI patches were fed to a separate local branch of CNN

for learning local representation of lesion. At last, a fusion branch

concatenates features generated by both global and local branches

with a fine-tune with several fully-connected layers.

The ChestX-ray14 offers a very noisy class-labels and quite a few

bounding boxes as ground-truth for regions of interest localization.

This makes it a classic weakly supervised learning problem [4, 31],

which is pretty common in medical areas and becoming important

when developing AI in fields where expertise is expense. [35] mod-

eled the problem as multiple instance learning (MIL) on X-ray as a

roughly-labeled bag of patches. They parameterised the Log-Sum-

Exp pooling with a trainable lower-bounded adaptation (LSE-LBA)

to construct illustrative saliency map at multiple resolutions.

3 METHODOLOGY

In this section, we will explicitly present the technical details of

proposed framework. First, we illustratively discuss the advantages

of DenseNet compared with other modern FCN models. Then, we

individually discuss the roles of the three components that bring

extra performance lift beyond DenseNet: squeeze-and-excitation

block, multi-map transfer layer and max-min pooling operator. An

illustration of proposed network architecture is in Fig. 2.

3.1 DenseNet for Chest X-rays

Fully convolutional network (FCN) [24] has become one of the most

successful deep learning frameworks for generic image classifica-

tion and segmentation tasks. In [33], ResNet, a recent FCN alike

model, delivered best classification accuracy on ChestX-ray8. A typ-

ical DenseNet [14] comprises multiple densely connected convolu-

tional layers, which improve the flow of information and gradients

through the network, making it converge better and mitigating

gradient vanishing issue. Therefore, in many computer vision tasks,

DenseNet has shown magnificently stronger capability of represen-

tation learning than ResNet. Then [25] fine-tuned a DenseNet that

naturally preserves spatial information throughout the network. As

well as on the purpose of a fair comparison, we particularly choose

the publicly available DenseNet-121 model as backbone network 1.

As shown in Fig. 2, the backbone of the used DenseNet consists

of four consecutive dense blocks. However, original DenseNet is

incapable of handling the special issues in disease classification and

localization on chest X-rays. For example, disease labels of ChestX-

ray14 are highly noisy since they were generated from scanning

report. Given a X-ray image corresponds to multiple disease types,

it is still an open question how to make data selectively contribute

to multiple classification and localization tasks.

3.2 Squeeze-and-Excitation Block in DenseNet

In classical CNNs, it is difficult to model the interdependency be-

tween channels using convolutional filters, which are initialized and

1https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py
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Figure 2: The Proposed Network Architecture.

trained independently. However, the cross-channel dependency is

widely existing and has been recognized as one of the major visual

patterns, e.g. joint sparsity [21].

In between two consecutive dense blocks of DenseNet, there is a

convolution-pooling operator that transforms previous activation

output to a new feature space and then squeezes it to a compact

spatial domain. In proposed model, we insert a so-called squeeze-

and-excitation (SE) block into the convolution-pooling operator.

Particularly, we first squeeze the C feature maps after convolution

into a feature vector of C length by spatial average-pooling. An

excitation process is to reweight feature maps by the channel-wise

attention coefficients learned from the squeezed vector. The mo-

tivation is to offer a chance of cross-channel feature recalibration

considering the channel interdependencies.

Squeeze Before recalibration, we need a global statistic of each

channel. Then a global squeezing is performed first by an average-

pooling across entire spatial domain. Consider U ∈ R
H×W ×C as

transformed feature maps after convolution, whereH ×W ×C is the

dimensionality. A squeeze operation is to aggregate the featuremaps

across spatial dimensions H ×W to produce a channel descriptor

forming a C-length descriptor vector for entire U. Assume z is the

vector after squeezing and the c-th element of z is calculated by

zc =
1

H ×W

H∑

i=1

W∑

j=1

uc (i, j). (1)

This was not possible in classical CNN in which feature maps were

convolved independently by separate filter kernels and therefore

the squeezing scale was constrained within reception field and the

pooling was also committed locally.

Excitation To recalibrate feature maps channel-wise, we need

to learn the channel weights. We employ a self-gating mechanism,

which outputs channel attentions, based on the non-linear channel

interdependence after passing a sigmoid activation function σ :

s = σ (W2 × ReLU (W1 × z)) , (2)

where s ∈ R
C is the channel-wise attention coefficients for fea-

ture recalibration. Due to Eq 2, channel coefficient sc represented
the relative importance of channel c . For the purpose of reducing
complexity, a bottleneck structure formed by two fully connected

layers parameterised by W1 ∈ R
C

r
×C and W2 ∈ R

C×C

r (r is the

reduction ratio) is used in Eq 2 to adaptively adjust channel im-

portance according to learning objective. The final output after SE

block of channel c , x̃c , is obtained by re-scaling the transformed

feature maps U with s by a channel-wise multiplication:

x̃c = s
c · uc , c ∈ {0, . . . ,C − 1}. (3)

The physical meaning of SE block for classification of chest X-

rays comes from the hardly distinguishable illuminative contrast

between lesion regions of different types of disease as well as the

rest normal regions. Therefore, merely utilizing single feature map

or independently processing multiple maps cannot provide enough

informative features for disease classification. The workflow of SE

block is given in Fig.3.

Squeeze Excitation

Figure 3: Illustration of a Squeeze-and-Excitation Block.

3.3 Multi-map Layer and Max-min Pooling

Because ChestX-ray14 offers multiple disease labels for most of X-

rays, it is naturally required to perform a multi-class classification.



Instead of generating amulti-hot score vector, whichmakes training

difficult to converge, we were encouraged by good performance

from introducing multi-map transfer layer, each output feature map

of which corresponds to a particular disease class.

The last dense block generates feature maps with size as w ×

h × d . Then we concatenate to it a multi-map transfer layer. The

layer encodes the activation outputs of backbone network into

M individual feature maps for each disease class through 1 × 1

convolution operation. Denote M as the number of feature maps

per class and C as the number of classes, this transfer layer will

achieve the output of sizew × h ×MC . WhenM = 1, it is reduced

to a standard classification output of C classes. The modalities are

learned with only image-level label and the transfer layer maintains

spatial resolution. TheM modalities aim at specializing to different

class-related visual features.

To sufficiently utilize the provided multi-class label, we proposed

a two-stage pooling layer to aggregate information on feature maps

for each disease class. A standard class-wise average-pooling was

first conducted to transform maps fromw × h ×MC tow × h ×C .
As to spatial aggregation, we applied a recently proposed spatial

max-min pooling [7] to globally extract spatial domain information.

Because we find that global minimum information is also helpful

for the medical image analysis, and the global minimum regions

can act as a regularizer and reduce overfitting. The global maximum

and minimum pooling are linearly combined in our model:

rc = max
h∈Hk+

1

k+

∑

i, j

hi, j z̄
c
i, j + α( min

h∈Hk−

1

k−

∑

i, j

hi, j z̄
c
i, j ), (4)

where z̄c is the c-th pooled feature map after class-wise pooling.

Hk is the set that h ∈ Hk satisfies hi, j ∈ {0, 1} and
∑
i, j hi, j = k .

The max-min spatial pooling consists in selecting for each class the

positive k+ regions with the highest activations from input z̄c and

vice versa. The output rc is the weighted average of scores of all

the selected regions. To generate the final positive probability, we

pass rc through a sigmoid activation function.

3.4 Comparison with CheXNet

The CheXNet [25] is a similar model that also uses DenseNet-121 as

the backbone network. It removes the last linear layer of DenseNet

and adds a 1× 1 convolutional layer as the transfer layer to convert

the extracted 1024-channel feature maps into C-channel feature

maps. To get the finalC-dimensional output, it then uses the global

maximum pooling and the sigmoid function. Compare with the

CheXNet, the proposed architecture completely remove the liner

layer and is fully convolutional. Our model have significant mod-

ifications particularly for learning representations under a weak

supervision. We highlight the significant modifications as below:

• Make the model fully convolutional by removing the linear

layer. Fully convolutional architecture is suitable for spatial

learning.

• SE blocks perform feature recalibration by weights learned

from channel interdependencies, improving the representa-

tional power of CheXNet.

• Different from CheXNet that still only has one single feature

map, we use multi-map transfer layer to encode modalities

associated with each individual disease class, making our

framework more capable of discriminating the appearance

of multiple thoracic diseases on the same chest X-ray.

• To aggregate spatial scores from multi-maps into a global

prediction,We incorporate a novel max-min pooling strategy

which is better than the global pooling in CheXNet.

4 EXPERIMENT

4.1 Chest X-ray Dataset

The problem of thoracic disease classification and detection on

chest X-rays has been extensively explored. Recently, Wang et al.

[33] released the largest chest X-ray dataset so far - ChestX-ray14,

which collects 112,120 frontal-view chest X-ray images of 30,805

unique patients. Each radiography is labeled with one or multiple

types of 14 common thorax diseases: Atelectasis, Cardiomegaly,

Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax,

Consolidation, Edema, Emphysema, Fibrosis, Pleural Thickening

and Hernia. These disease labels were mined from the associated

radiological reports (> 90 % accuracy [33]). Besides, there are 880

X-rays provided with lesion regions annotated as bounding boxes

by radiologists. In our experiments, we only used disease label

as ground-truth in training and evaluating the model in disease

classification. We also utilized the bounding boxes only for a visual

evaluation of disease region localization on X-rays.

To have a fair comparison with previous methods [25, 33, 34],

we splitted the dataset into three parts: training, validation, and

evaluation, on patient level using the publicly available data split

list [33]. There are respectively 76,524, 10,000, and 25,596 chest X-

ray images for training, validation, and evaluation purposes. Since

there may be multiple X-rays for each patient, split on patient level

can guarantee the X-rays of the same patient be assigned to the

same part. Split on image level will introduce potential over-fitting

since the X-rays of the same patient can be assigned to both training

and evaluation subsets.

4.2 Experimental Setting

Similar to [25, 33, 34], we formulate the Chest X-ray disease recog-

nition as a classical multi-label classification problem. The proposed

model outputs a 14-dimensional vector indicating the positive prob-

ability for each kind of listed diseases. An all-zero vector represents

normal status (None of 14 listed thoracic diseases are detected). We

use the standard binary cross entropy loss as objective function.

ROC- AUC score (the area under the Receiver Operating Character-

istic curve) are used as evaluation metric in disease classification.

For SE blocks, we set the reduction ratio to be 16 as suggested

in [13].We setM in themulti-map layer as 12, whichwas experimen-

tally proved to be an effective trade-off between the performance

and the complexity. For max-min pooling, we use k+ = k− = 1

and α = 0.7 as given in [7]. The end-to-end model was trained by

Adam optimizer [17] with standard parameters (β1 = 0.9 and β2 =
0.99). We initialize the model using weights from the pre-trained

DenseNet model, and only train the multi-map transfer layer and

newly inserted Squeeze-and-Excitation layer from scratch. Follow-

ing a previous work on ChestX-ray14 [25], we set the batch size 16

and initial learning rate 0.0001. The learning rate will be decayed by

10 times when the validation loss plateaus for more than 5 epochs.

The model of the least validation loss will be the selected classifier.



Table 1: The comparison of AUC scores. The best AUC score in each row is displayed in bold. Note that Li et al.[22] used extra

disease location information when training the model and did not perform on official split.

ChestX-ray8 [33] Yao et al. [34] Li et al. [22] DNetLoc [10] CheXNet [25] Our Method

Official Split Yes Yes No Yes Yes Yes

Atelectasis 0.7160 0.7330 0.8000 0.7670 0.7795 0.7924

Cardiomegaly 0.8070 0.8580 0.8700 0.8830 0.8816 0.8814

Effusion 0.7840 0.8060 0.8700 0.8280 0.8268 0.8415

Infiltration 0.6090 0.6750 0.7000 0.7090 0.6894 0.7095

Mass 0.7060 0.7270 0.8300 0.8210 0.8307 0.8470

Nodule 0.6710 0.7780 0.7500 0.7580 0.7814 0.8105

Pneumonia 0.6330 0.6900 0.6700 0.7310 0.7354 0.7397

Pneumothorax 0.8060 0.8050 0.8700 0.8460 0.8513 0.8759

Consolidation 0.7080 0.7170 0.8000 0.7450 0.7542 0.7598

Edema 0.8350 0.8060 0.8800 0.8350 0.8496 0.8478

Emphysema 0.8150 0.8420 0.9100 0.8950 0.9249 0.9422

Fibrosis 0.7690 0.7570 0.7800 0.8180 0.8219 0.8326

Pleural Thickenin 0.708 0.7240 0.7900 0.7610 0.7925 0.8083

Hernia 0.7670 0.8240 0.7700 0.8960 0.9323 0.9341

Average 0.7381 0.7673 0.8064 0.8066 0.8180 0.8302

The original image size 1024 × 1024 is infeasible for a very deep

convolutional neural network. In this paper, we resize the images

to be of size 512× 512 and convert single channel X-ray images into

3-channel RGB images since the pre-trained DenseNet only accepts

3-channel images as input. As ImageNet [6] the pixel values in each

channel were normalized. During training, we randomly crop a

448 × 448 sub-image from the input 512 × 512 image to augment

the original training subset. The cropped sub-image is randomly

horizontally flipped to incrementally increase the variation and the

diversity of training samples. During the evaluation process, we use

as input ten randomly cropped 448 × 448 sub-images (four corner

crops and one central crop plus horizontally flipped version of

these) for each evaluation sample, and take the average probability

as the final prediction.

4.3 Comparison with State-of-the-art Methods

We compared the classification performance of our proposed model

with previously publishedmethods, includingWang [33], Li Yao [34],

DNetLoc [10], ChexNet [25] and Zhe Li [22]. We showed that our

method achieved current state-of-the-art classification accuracy on

ChestX-ray14 dataset. In the experiments, we found that different

data split setup has significant influence on the model performance.

However, the results of ChexNet in [25] was not achieved under the

official data splitting. To make a fair comparison, we implement the

ChexNet and evaluate its performance with the provided official

data split. It is noted that Li et al. [22] used extra disease location

information than others in training and did not use the official split.

Therefore, it is not comparable to our method as well as other state-

of-the-arts approaches. Even though, we still outperformed [22] in

classification of 9 out of the 14 diseases.

Numerical classification results are given in Table 1. For each

evaluated method, we report ROC-AUC scores for each disease

class as well as the average score of all classes. Compared with

previous methods, our network improves the overall performance

by 2%. Especially, for some challenging diseases, e.g. "Lung Nodule",

the accuracy was dramatically improved by a margin of at least

3%. The performance is generally improved because of the better

spatial squeezing capability from the use of SE blocks and the max-

min pooling operation. Moreover, for the same reason, our method

can effectively handle lesion areas of different size. For example,

"Cardiomegaly" and "Edema" have relatively larger pathology areas

on X-rays than "Mass" and "Nodule". From Table 1, it is verified that

the proposed network can effectively learn decisive features from

X-rays of both large and small disease areas, while others cannot.

4.4 Localization of Lesion Regions

In Fig.4, we produce heat map to visualize the most indicative

pathology areas on X-rays from evaluation subset, interpreting the

representational power of network. Heat maps are constructed by

computing the average of class-wise features after pooling along

the channel dimension [9]. We can see that our proposed network

is able to localize lesion region on X-rays by assigning higher val-

ues than the normal. A visual evaluation has confirmed that the

highlighted regions on X-rays are pretty close to ground-truth (red

bounding boxes). Since our model did not use any bounding boxes

in training, this has demonstrated that the proposed framework

has a good interpretation ability in terms of localizing disease re-

gions and can be widely applied in clinical practice where detailed

annotations are hardly available.

4.5 Ablation Study

In the section, we conduct additional ablation experiments to demon-

strate the effectiveness of three proposed components in our net-

work that respectively bring performance gains: multi-map transfer

layer, max-min pooling and SE block. From Table.1, CheXNet has

the average AUC score as 0.8180 for all 14 diseases. The average

AUC score of our method is 0.8302. This 1.2% lift demonstrated the
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Figure 4: The proposed method localizes the areas of the X-ray that are most important for making particular pathology

classification. We can see that the localized areas are very close to the corresponding bounding boxes.

Table 2: Validation of the effectiveness of the three improvements. The best AUC score in each row is displayed in bold.

Our Method w/o SE w/o multi-map w/o max-min pooling

Atelectasis 0.7924 0.7867 0.7900 0.7784

Cardiomegaly 0.8814 0.8852 0.8790 0.8762

Effusion 0.8415 0.8418 0.8420 0.8392

Infiltration 0.7095 0.7048 0.7087 0.6985

Mass 0.8470 0.8462 0.8469 0.8440

Nodule 0.8105 0.8055 0.8110 0.8034

Pneumonia 0.7397 0.7368 0.7364 0.7435

Pneumothorax 0.8759 0.8738 0.8736 0.8753

Consolidation 0.7598 0.7640 0.7586 0.7545

Edema 0.8478 0.8464 0.8503 0.8398

Emphysema 0.9422 0.9402 0.9436 0.9371

Fibrosis 0.8326 0.8269 0.8302 0.8067

Pleural Thickenin 0.7994 0.8059 0.8058 0.8011

Hernia 0.9341 0.9330 0.9299 0.9096

Average 0.8302 0.8279 0.8290 0.8220

joint effects from the three components compared to the state-of-

the-art. Now we will validate the difference on performance of our

model when sequentially removing each contributive component.

It is noted that, in the next three experiments, we only changed the

network structure and keep other experimental setting identical to

make a fair and illustrative comparison. Results are in Table.2.

Effectiveness of SE Block In the original DenseNet architec-

ture, the transition layer between consecutive dense blocks is simply

a 1 × 1 convolutional layer followed by a average-pooling layer

for purpose of dimension reduction. In our model, we realized

that squeeze operation will extend spatial aggregation to the entire

spatial domain, which was impossible for a local pooling. Besides,

excitation process will train a parameterised reweighting on feature

maps supervised by channel interdependencies, which was also

not possible in previous transition layer of DenseNet. When we

remove SE blocks from the network, the average AUC score drops

to 0.8279 showing that our method indeed achieves performance

gain by using SE blocks as they recalibrate convolutional features.

Effectiveness of Multi-map Transfer LayerWe use multiple

feature maps for each disease in our model. In experiments, the

learning of multi-map was skipped by settingM = 1. Consequently,

the average score of revised model becomes 0.8290. As shown in

Fig. 2, the appearances of different classes of disease vary a lot in

shape and color, which supported the use of multi-map transfer

layer.

Effectiveness of Max-min Pooling CheXNet adopted tradi-

tional global maximum pooling which only extracts the maximum

component for the whole feature map assuming the maximum com-

ponent is considered to be the most informative part. However, we

found that the minimum components also contribute a lot to the

thoracic disease classification. Results from the Table.2 validated the

effectiveness of max-min pooling showing that our model would

lose 1.0% on ROC-AUC score when using only maximum pooling.



5 CONCLUSION

In this paper, we proposed a unified weakly-supervised deep learn-

ing framework to jointly perform thoracic disease classification and

localization on chest X-rays only using noisy multi-class disease

label. The advantages of proposed network are not only from the

learning of disease-specific features via multi-map transfer layers,

also from the cross-channel feature recalibration by sqeeuze-and-

excitation blocks in between dense blocks. Heat maps, as by-product

obtained under weak supervision, further visualize the representa-

tional power of our network. This also highlights the interpretability

of our model. Finally, both quantitative and qualitative results has

indicated that our framework outperformed the state-of-the-arts.

As to future work, we will re-investigate an accurate localization

of lesion areas utilizing the limited amount of bounding boxes.
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