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Abstract: The friction and wear behavior of materials are not intrinsic properties, but extrinsic
properties; in other words, they can drastically vary depending on test and environmental conditions.
In ambient air, humidity is one such extrinsic parameter. This paper reviews the effects of humidity
on macro- and nano-scale friction and wear of various types of materials. The materials included
in this review are graphite and graphene, diamond-like carbon (DLC) films, ultrananocrystalline
diamond (UNCD), transition metal dichalcogenides (TMDs), hexagonal boron nitride (h-BN), boric
acid, silicon, silicon oxide, silicates, advanced ceramics, and metals. Details of underlying mechanisms
governing friction and wear behaviors vary depending on materials and humidity; nonetheless,
a comparison of various material cases revealed an overarching trend. Tribochemical reactions
between the tribo-materials and the adsorbed water molecules play significant roles; such reactions
can occur at defect sites in the case of two-dimensionally layered materials and carbon-based materials,
or even on low energy surfaces in the case of metals and oxide materials. It is extremely important
to consider the effects of adsorbed water layer thickness and structure for a full understanding of
tribological properties of materials in ambient air.
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1. Introduction

Friction and wear are ubiquitous in daily life. Under most circumstances, friction and wear
come with energy consumption and material loss. In order to reduce friction and wear and thus save
energy and resources, it is vital to understand the tribological properties of materials involved in such
processes in ambient conditions.

It is well known that tribological properties are not just intrinsic or inherent properties of materials,
but are strongly dependent on working conditions. The working condition includes not only operating
parameters (contact pressure, sliding speed, and counterpart materials), but also environmental factors
(temperature, humidity, and atmosphere, among others). In ambient air, the impacts of environmental
factors pertain to unlubricated or solid-lubricated conditions. Among all the factors mentioned above,
humidity could be the easiest one to be ignored, because the adsorption of water is invisible and
it is commonly believed that reactions between water and tribo-materials are normally self-limited
only to the topmost surface at ambient temperatures. Or sometime, the physisorbed water molecules
at the sliding interface are considered as a lubricant. Although reasonable based on common sense,
it could be wrong if interfacial stress is involved. During the process of rubbing or sliding, water can
react with the tribo-material due to normal load and shear stress, and further influence friction and
wear behavior.
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This paper aims at reviewing the humidity dependence of the friction and wear behaviors of
materials commonly used as solid lubricants or tribo-elements and the underlying mechanisms.
Relative humidity (RH), which is defined as the ratio of the partial pressure of water vapor to
the equilibrium vapor pressure of water at a given temperature, is commonly used to quantify
environmental humidity. The materials concerned here include graphite and graphene, diamond-like
carbon (DLC) films, ultra-nanocrystalline diamond (UNCD), transition metal dichalcogenides (TMDs),
hexagonal boron nitride (h-BN), boric acid, silicon, silicon oxide, silicates, advanced ceramics and
metals. Beside the conventional tribo-tests at the macroscale, nanoscale tribological tests based
on atomic force microscopy (AFM) are also involved. It was wished for but not possible to cover
all published data on humidity dependence in the literature; in this review paper, overarching
trends rather than individual cases are discussed. Moreover, it should be noted that although some
contradictory results were reported in the literature, only recent experimental results with reasonable
explanations are selected in this review. Some older data can be found in another review paper and
references therein [1].

2. Graphite and Graphene

The study of humidity effects on the friction and wear properties of graphite dates back to the
1930s, when graphite was used as a solid lubricant for electric brushes [2–4]. Systematic researches on
the effect of humidity was conducted after it was found that the graphite electric brushes suffered from
severe wear in airplanes flying at high altitudes, where the humidity is low [4]. It was found that both
the friction and wear of graphite decrease as the water vapor pressure or humidity increases [4–11].
Based on these experimental observations, it was realized that the good lubricity of graphite is not an
intrinsic property, but one influenced by environmental factors.

In the early stage, two mechanisms were put forward to explain the humidity dependence. In the
first mechanism, which was suggested by Savage, the surfaces of graphite are covered by a monolayer
of condensable water molecules, which present a surface of low cohesive energy that is analogous to a
boundary oil film covering a metal [5,7]. The second mechanism, which was proposed by Rowe and
Bryant, found that water molecules can be chemisorbed in graphite by reaction with π electrons, thus
forming some intercalation products and weakening the interlayer bond, making interlayer sliding
easier [9,10]. Later, Rowe and Bryant’s hypothesis was disputed. It was found that the thickness of
the graphite crystal and the interlayer distance near the graphite surface do not change under various
environmental humidity conditions [12,13].

Then, the fact that the edge sites on graphite surface are much more reactive than the basal planes
was linked to the friction and wear properties of graphite. Lancaster found that graphite exhibits
large and sudden increases in friction and wear at a critical contact temperature, which results from
frictional heat under certain combinations of load, speed and ambient temperature. He attributed
the phenomenon to the insufficient water vapor available from the environment for the formation of
an adsorbed film [14–16]. He also proposed that the adsorbed vapor on the basal plane of graphite
functions as a ‘reservoir’ from which molecules can migrate to neutralize edge sites being continuously
exposed during the normal, low-wear regime [17]. It was initially believed that the adsorption of water
molecules onto the graphite surface was physisorption of molecular water until Lepage proposed that
it is actually dissociative chemisorption of water leading to H and OH radicals [18]. This proposal was
later proved through density functional theory (DFT) based simulation [19–22] and mass spectrometry
analysis of the ball milling products of heavy water (D2O) and graphite [23].

After the discovery of graphene, the friction and wear properties of graphene became a hot topic.
Graphene shows great lubricity as a coating material [24–26]. Similar to graphite, when the graphene
coating is rubbed with a macroscale counterpart, the friction and wear decreases as the environmental
humidity increases [26–28]. As shown in Figure 1, the phenomenon was attributed to the dissociative
chemisorption of water at carbon dangling bond sites exposed upon rupture of graphene. However,
when the counter part is a nanoscale AFM tip rather than a conventional macroscale ball or pin and
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the scan size is small enough that the sliding contact occurs only at the basal plane instead of a mixture
of basal planes and edges, the presence of a small amount of water does not strongly influence friction
on flat terraces [29,30]. Instead, it was shown that friction at atomic steps can increase with water
adsorption [29]. Systematic researches on the effect of humidity on the friction and wear properties of
graphene are believed to be currently under way.
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3. Diamond-Like Carbon (DLC)

DLC is an amorphous carbon material that draws great interest for coating applications for wear
prevention and solid lubrication. Depending on the hydrogen content, including both chemically
bonded and interstitial hydrogen, DLC films can be classified as non-hydrogenated DLC (a-C) or
hydrogenated DLC (a-C:H or H-DLC) films [31–37]. These two kinds of DLC films possess very
different mechanical, electrical, optical and tribological properties. Conventionally, it was believed
that DLC surfaces are hydrophobic. However, it should be noted that DLC surfaces can get oxidized
readily upon exposure to air [38], and water can physisorb on the oxidized DLC surface, exhibiting
typical type-II adsorption isotherm (Figure 2) [39].Lubricants 2018, 6, x FOR PEER REVIEW  4 of 27 
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Figure 2. (a) ATR-IR spectra of water adsorbed on DLC surface from humid ambient. (b) Adsorption
isotherm of water on DLC. Inset to (b) shows BET adsorption isotherms simulated for three cases:
The heat of adsorption (Ql) is significantly higher (52 kJ/mol) than, slightly higher (47 kJ/mol) than,
and comparable (43 kJ/mol) to the heat of liquefaction of water (42.06 kJ/mol) [39].



Lubricants 2018, 6, 74 4 of 26

Tribologically, a-C:H films attract much more attention than a-C films, because a superlow
coefficient of friction (COF) can be achieved by a-C:H films in inert gas or vacuum environments [40–48].
There are several models to explain this superlubricity; the most highly cited mechanism assumes
that the hydrogen-termination of the carbon surfaces leads to little or no chemical or physical
interactions during sliding contacts [48–50]. However, the superlow COF cannot be maintained
in humidity conditions and COF generally increases as the water vapor pressure rises, regardless of
the chemistry or type of the counter friction material: a-C:H film [47–49,51,52], steel [41,45,53–63] or
ceramics [40,57,61,64–67].

When the counter material is a-C:H film itself, it was found that the rubbed surfaces contain
large amounts of C–O and C=O bonded species, in addition to C–C and C–H. It was believed that
tribochemical reactions take place between the carbon films and the water molecules, resulting in
oxygen- and/or hydroxyl-terminated surfaces and thus leads to high COF [48]. When the counter
material is steel, a transfer layer containing C, O and Fe can be found in the rubbed area, indicating
that tribochemical reactions among the a-C:H film, steel surface and water are involved during the
process of rubbing. This transfer layer dominates the friction and wear properties of the a-C:H/steel
interface [58,68]. It was further found that adsorbed water molecules at relative low humidity
act as a molecular lubricant of the oxidized DLC surface, while multilayers of water adsorbed
at near-saturation act as electrolyte inducing electrochemical galvanic corrosion reactions on the
steel surface (Figure 3) [63]. When the counter surface is ceramics, similar to the situation of steel,
tribochemical reactions also occur during the rubbing process and the resulting transfer layer controls
the friction and wear.Lubricants 2018, 6, x FOR PEER REVIEW  5 of 27 
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Since moisture has a negative effect on the friction and wear of a-C:H films, some efforts have been
made to decrease the humidity dependence. The most widely used method is to produce Si-doped or
Ti-doped DLC films [67–71]. The humidity dependence can be decreased with the additional elements,
but superlubricity has not been achieved in ambient or humid conditions. Moreover, mechanisms for
humidity tolerance effects of such doping in DLC are not fully understood.

As for the a-C film, its COF in inert conditions is relatively high. However, unlike the a-C:H
films, the humidity has a positive effect on the friction and wear of a-C films [49–52,55,65,72–74].
The mechanism here is very analogous to that of graphite and graphene. Water molecules can
passivate the wear-induced new surface by dissociating at the dangling bond sites, thus reducing the
adhesion between the sliding surfaces.
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4. Ultra-Nanocrystalline Diamond (UNCD)

Diamond is also an important category of carbon material and possesses good tribological
properties. However, diamond films produced at early times are of high roughness, which greatly
limits the application of diamond films as lubricating coatings. Over the years, the surface roughness
problem was resolved with the creation of UNCD films. The as-generated UNCD film can be very
smooth [75,76] and it shows high wear-resistance. Therefore, it offers sustainable tribological properties,
especially in high humid environments [77–80]. At early times, there are mainly two hypothesizes
proposed to explain the humidity dependence. One is that there is a rehybridization process taking
place during the rubbing process, and graphite-like structure is generated on the sliding surface and
further dominates the humidity dependence of the friction and wear [81–83]. The other is that water
molecules dissociate at dangling bond sites and thus passivate the sliding surfaces [75]. Both of these
hypotheses were plausible. However, the existence of crystalline graphite formation on the rubbed
surface of UNCD has not been confirmed [78,84,85]. Recent DFT calculations and first principles
analysis predicted the dissociative passivation of dangling bonds on diamond by water [86,87]. In this
way, the hypothesis of passivation becomes more accepted.

5. Transition Metal Dichalcogenides (TMDs)

TMDs are also widely used as solid lubricants for a long time. The most notable system is MoS2.
The effect of humidity on the tribological properties of MoS2 was first reported in 1950s [88]. It was
found that the friction and wear of MoS2 increases as the environmental humidity increases, which
is opposite to the trend observed for graphite and graphene. It was also found that storing MoS2 in
humid environment can increase friction and wear compared to dry storage conditions [89,90].

Based on the experimental results mentioned above, there are mainly two mechanisms proposed at
the early stage. The first mechanism is that the MoS2 surface is oxidized much more quickly in a humid
environment [91–93], and the shear stress will facilitate the oxidation process [94]. X-ray photoelectron
and Auger electron spectroscopy analyses showed that the sulfur is removed from the MoS2 surface
and X-ray diffraction showed the formation of MoO3 [92]. It was also reported that H2S is produced
and released as a result of oxidation [93,95]. The second mechanism is that some of physisorbed water
molecules occupy in the wedge-shape cavities of MoS2, which increases the adhesion force between
sliding interfaces [96,97].

Later, by performing tribo-tests in water-contained nitrogen and oxygen-contained nitrogen
separately, Khare et al. found that water does not promote oxidation near room temperature and only
oxygen induces detectable oxidation [98,99]. The absorption is reversible and the friction is strongly
dependent on the amount of water in the environment, which suggests that the adsorption of water
onto MoS2 is physical rather than chemical [98,99].

It should be noted that the edge sites of MoS2 is chemically more reactive than the basal plane.
Computational simulations suggest that the MoS2 nanosheet is a hydrophobic and low-friction
surface [100], and water molecules will be dissociatively adsorbed at the MoS2 edge site [22,101,102].
Some researchers performed AFM-based friction experiments on MoS2 and WS2 basal planes, but
contrary conclusions on the humid dependence were put forward [103–105]. Further tests on both
basal planes and edge sites are necessary.

In order to maintain the excellent lubricity of MoS2 in humid environments, various methods
have been attempted. The most common method is to use additives to make MoS2 composite coating.
Among different kinds of additives, doping with metals such as Ti, Pb, Au, Cr, Cu, and Zr are
found to offer some improved humid tolerance [106–117]. Making composites with PTFE [118] and
WC [119] were also claimed to improve the tribological properties of the coating. Meanwhile, it was
also reported that if the crystalline order of the coating is increased, the humid resistance could be
improved [120–122]. This phenomenon is also suggestive that the edge sites play an important role in
the humidity dependence. Moreover, it was reported that the friction and wear of MoSe2 and WSe2 are
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hardly influenced by ambient humidity [123,124]. The chemistry of disulfide and diselenide materials
in humid environments appear to be drastically different.

6. Boron-Based Materials

h-BN is another two-dimensional layered material used as solid lubricant coating. It is
isoelectronic to graphene. The effect of humidity on the tribological properties of h-BN was first
reported in 1960s [9]. It was found that the friction of h-BN decreases as the water vapor pressure
increases [9,125], which is similar to that of graphite and graphene. However, very limited papers
discussed the mechanism of h-BN humidity dependence. Molecular dynamics simulations have
shown that monolayer BN sheets are weakly hydrophobic with nearly the same water contact angle
as graphene [126]. Considering this similarity, it was speculated that the mechanism of the humidity
dependence of friction is similar for graphene and h-BN.

Boric acid has a layered triclinic crystal structure and is well known to give ultra-low COF when
used as a solid lubricant in air. It was proposed that a layer of lubricous boric acid can be generated
during the sliding due to the reaction between boric oxide coatings and surrounding moisture [127–133].
However, a contradictory explanation was put forward since the films formed on boron oxide showed
no evidence of crystalline structure [134]. As for the boric acid itself, its tribological properties are
highly dependent on environmental humidity. It was found that, in dry condition, when boric acid is
rubbed with a stainless steel ball, the friction is high and the boric acid suffers catastrophic wear [135].
Moreover, it was proved through vibrational spectroscopy that the lubricating vapor molecules barely
absorb on the basal plane, but may absorb onto the edge sites of boric acid [135].

On comparing these experimental data and literature with the humidity dependence of graphite,
TMDs, h-BN and boric acid lubrication, a mechanism was proposed, explaining how the reaction of
edge sites of layered materials with water and other molecules can affect the inter-layer shear along
the basal plane (Figure 4) [135].
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7. Silicon and Silicon Oxides

Monocrystalline silicon is the most widely used substrate and structural material in integrated
circuits and micro-electromechanical systems (MEMS) [136–138]. The friction and wear mechanisms
of silicon in humid air are vital in determining the reliability and durability of dynamic MEMS
devices [139–142]. Due to the oxidation reaction with oxygen and water in air, the bare silicon surface
exposed to air for a long time is normally covered by a layer of native oxide (SiOx), with typical
thickness of <2 nm. The growth of the SiOx layer changes surface wettability and chemical reactivity,
and further significantly affects the humidity dependence of tribological properties (i.e., adhesion,
force, and wear) of silicon [143].

The water adsorption behaviors of hydrogen-terminated Si-H surface and native oxide (SiOx)
surface are drastically different. The former is hydrophobic (with a water contact angle of 83◦) [144],
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while the latter is hydrophilic (with a water contact angle of 0◦), especially when its surface is
terminated with hydroxyl (OH) groups [145]. Figure 5 displays the infrared spectra of water layers
adsorbed on the hydrophilic Si–OH and hydrophobic Si–H surfaces and the average thickness of the
adsorbed water layer calculated from infrared absorption band intensity [145]. On the hydrophilic
surface, the peak corresponding to a strongly hydrogen-bonded solid-like (or more ordered) structure
is dominant at low humidity and the peak corresponding to a liquid-like (or disordered) structure
grows as humidity approaches the saturation point [146]. In contrast, on the hydrophobic Si–H
surface, the liquid-like component is always dominant. The average thickness of the adsorbed water
layer is less than one molecular layer on the Si–H surface, while it reaches up to four layers on the
Si–OH surface.Lubricants 2018, 6, x FOR PEER REVIEW  8 of 27 
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In macroscopic tribo-test conditions, the adsorbed water layers tend to have detrimental
effects [147,148]. Figure 6 compares the wear tracks made in three different environmental conditions:
Dry nitrogen, humid nitrogen, and nitrogen with n-pentanol vapor [147]. In dry condition, the center
area of the wear track is relatively flat and there are some piles of debris at the sides. As for the
wear track generated in humid condition, there are deep scratch lines running along the sliding
direction, but there is not much debris at the sides. It is believed that the cylindrical wear particles
generated in dry condition leads to a third body rolling contact condition, which may result in
low friction [147]. The adsorbed water molecules facilitate tribochemical reaction at the tribological
interface and aggravate wear of the silicon substrate. The detrimental effect of water adsorption
on wear of silicon can be seen clearly when it is compared with the beneficial effect of n-pentanol
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adsorption in the same mechanical test conditions (Figure 6). The tribochemical wear of Si/SiO2

tribo-pair appear to be a three-step process [149–152]. The initial appearance of Si–OH groups is
caused by chemical reactions of Si–H groups with water molecules impinging from the vapor phase.
The Si–OH group of the substrate surface can undergo condensation reactions with the Si–OH group of
the counter-surface, forming a Si–O–Si bridge between two solid surfaces. The rupture of underlying
Si-Si bonds will lead to wear of materials.Lubricants 2018, 6, x FOR PEER REVIEW  9 of 27 
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Figure 6. Optical profilometry images and characteristic line profiles of wear tracks made in dry,
50% RH, and 50% P/Psat n-pentanol vapor environments with an applied load of (a) 0.1, (b) 0.3, and
(c) 0.7 N [147].

DFT calculations for the Si–O–Si bond dissociation via reactions with water molecules impinging
on the substrate revealed that the activation energy for this reaction is lowered when the substrate
surface is terminated with hydroxyl groups [147]. Molecule dynamics (MD) simulation also shows
that tribochemical reactions, which involve the formation of covalent bonds bridging two solid
surfaces, vary depending on the amount of interfacial water molecules, contact pressure and system
temperature [153,154]. Higher values of these parameters can cause more Si atoms to be removed due
to the formation of an increased number of interfacial Si–O–Si bridge bonds.

However, when the amount of interfacial water molecules is large enough to form multilayers
of physisorbed water, the degree of bridge bond formation is substantially reduced since the silicon
atoms at the sliding interface are physically separated due to thick water layers [154,155]. Some studies
also show that the friction between Si3N4 ball and silicon substrate begin to decrease when humidity
is higher than 80% RH, which is mainly attributed to the formation of an adsorbate film acting as a
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boundary lubricant that screens the two surfaces from one another, thereby hindering bond formation
and leading to lower friction [156,157].

As the dimension of the sliding contact shrinks to nanoscale, the effects of surface chemistry and
adsorbed water layer are manifested in more complicated ways. In AFM experiments, both Si–H
and SiOx surfaces show excellent wear resistance in dry condition, when the applied shear stress is
lower than the yield stress of the substrate, regardless of counter-surface materials (active SiO2 and
inert diamond) [158–162]. As humidity increases, wear occurs on Si–H and SiOx surfaces when the
counter surface is SiO2, but wear is negligible when the counter surface is diamond at the same loading
conditions. These results suggest that the chemistry of the counter surface (SiO2 vs. diamond) plays
an important role in the wear of materials [163]. On the Si–H surface, as humidity increases, friction
decreases monotonically, but wear increases initially, reaches a maximum value, and then eventually
decreases [161,162,164]. In contrast, on the SiOx surface, both friction and wear first increase to a
maximum value at 50% RH and then decrease below the detection limit of AFM at RH above 85% or
in water (Figure 7a) [163,165–171]. It is also noted that the effect of humidity on wear of SiOx-covered
Si wafer varies depending on the sliding speed (Figure 7b) [168].
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Figure 7. (a) Effect of RH on the wear volume V on silicon surface with native oxide layer. The insets
are AFM images of wear scars on silicon surface at various RHs. Fn = 3 µN, L = 200 nm, v = 2 µm/s,
and N = 200 cycles [166]. (b) Nanowear map of the single crystalline silicon surface scratched with a
SiO2 sphere (radius = 1 µm) at an applied load of 3 µN for 100 reciprocating cycles [168].

If the aforementioned hypothesis of the involvement of Si–O–Si bridge bond formation is
adapted [162–164,166,168,169], it implies that interfacial bridge bond formation may be affected by the
structure and thickness of the adsorbed water film. On the basis of typical silicon oxide structures,
the distance between two Si atoms connected via the Si–O–Si covalent bond bridge is estimated to be
around 0.324 nm [172], comparable to the thickness of one layer of molecular water. As several layers
of water grow on the surface at high RH conditions, the probability for the asperities to come close
enough to form Si–O–Si bridges decreases [166]. Finally, when the thickness of adsorbed water film on
the silicon surface exceeds a few nanometers at RH > 85% [173], the probability for the Si–O–Si bridge
formation becomes very low.

In solid contact mechanics, the friction force is normally proportional to the contact area and the
proportionality constant corresponds to the shear stress of the contact [174,175]. However, in humid
environment, solid contact mechanics cannot fully explain the humidity dependence of friction.
Figure 8 plots friction force (Ft) between the native oxide (SiOx) layer and the silica surface (SiO2)
as a function of water meniscus area (Am) and volume (Vm) estimated from a thermally activated
water-bridge formation model [165]. It was found that Ft correlates linearly with Vm, but not with Am

at RH < 50%; and then its Vm dependence becomes weaker as RH increases above 50%. Considering
the water adsorption isotherm shown in Figure 5, it appears that the solid-like water layer structure
formed on the silica surface plays a critical role in friction at RH < 50% and its significance diminishes
at RH ≥ 50% [146,165,176,177].
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Figure 8. Friction force Ft versus (a) DMT contact area (ADMT), (b) meniscus area (Am), (c) meniscus
volume (Vm) for the contact between the SiOx surface and the silica microsphere (Fn = 2 µN) moving at
various sliding speed in RH < 50%. (d) Ft versus Vm for the high RH regime (≥50%) [165].

The fact that only the atoms exposed at the top most surface can be involved in tribochemical
reactions with molecules adsorbed from the gas phase can provide extreme precision in nanofabrication.
As shown in Figure 9, Chen et al. utilized that attribute of water-induced tribochemical reactions and
demonstrated the removal of single atomic layer at a time on a silicon wafer surface using AFM [178].
Since AFM was used, any arbitrary shape of patterns with the control of etch depth at any given atomic
layer could be possible. This opens a new opportunity or potential of utilizing tribochemical etching
for nanomanufacturing.Lubricants 2018, 6, x FOR PEER REVIEW  12 of 27 
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Figure 9. Single atomic layer removal of Si material. (a) SPM image (1.5 µm × 1.5 µm) of the
manufactured area. Topographic images (0.5 µm × 0.5 µm) of (b) the original surface, and (c) the
manufactured surface. (d) Cross-section profile of the manufactured area corresponding to the single
atomic layer removal on Si (100). (e) Crystal structure of Si (100) [178].
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8. Silicates

Although the main constituent of silicate glass is silicon oxide, the wear behavior of
multicomponent silicate glasses is quite different from that of pure silica surface. At low load
conditions where mechanical damage could be prevented, wear of silicate glass surfaces occurs
via mechanochemical processes [179,180]. In the glass field, it is well known that the crack propagation
velocity is greatly enhanced as humidity increases [181–183]. This behavior is explained well with
the stress corrosion theory, which dictates that water can facilitate the dissociation of the Si–O–Si
bond under tensile stress [181–185]. If the same principle pertained to the wear of silicate glass under
tribological conditions, then one would expect that mechanochemical wear increases as humidity
increases. In a series of studies with various types of silicate glasses, it was found that sodium calcium
silicate (also called soda lime silica, SLS) exhibits a peculiar RH dependence of the mechanochemical
wear [186]. Figure 10 compares the cross-section line profiles of the wear tracks created at difference
glass surfaces at the same contact load and sliding speed at 20%, 40%, and 90% RH conditions. In the
case of fused quartz, borosilicate (BF33), boroaluminosilicate (AF45), and aluminosilicate glasses, the
glass substrate wear increases as RH is raised. In contrast, the SLS glass shows very little wear in
the near saturation RH condition [148,179,180,186–193]. The humidity dependences of wear of fused
quartz, borosilicate, boroaluminosilicate, and aluminosilicate glasses appear to be consistent with the
prediction from the stress corrosion theory; however, the wear resistance of SLS glass at near-saturation
humidity defies the conventional stress corrosion theory.Lubricants 2018, 6, x FOR PEER REVIEW  13 of 27 
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Figure 10. Line profiles of the wear tracks on different glasses under different humidity conditions:
(a) fused quartz [186]; (b) soda-lime silicate glass [186]; (c) BF33 [179]; (d) AF45 [179]; (e) sodium
aluminosilicate [187]; (f) K-exchanged aluminosilicate [187]. Details of tribo-test conditions can be
found in the cited references.

It was speculated that the structures of water at the surface and in the subsurface region, which are
determined or affected by the presence of leachable Na+ ions and types of silicate network, play critical
roles in the observed behavior. Among the glasses tested in Figure 10 [179,180,186–194], it is noted that
only SLS has leachable Na+ ions associated with the non-bridging oxygen (Si–O−; NBO) atoms in the
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glass network. This raises questions about the effects of Na+ itself in the silicate network versus the
structure and reactivity of adsorbed water, which may vary with Na+ leaching. When the SLS glass
surface is thermally poled, the Na+-depleted surface (anode-side) loses the wear resistance at 90% RH,
while the Na+-accumulated surface (cathode-side) exhibits an enhanced resistance [190]. When the
subsurface Na+ ions are depleted via reaction with steam at 150–200 ◦C, the SLS glass loses the wear
resistance at 90% RH [194]. The AF45 glass contains a trace amount of Na+ ions in the bulk; those Na+

ions can be pushed to the surface via thermal poling. The accumulation of subsurface Na+ ions would
be accompanied by the production of NBO sites for charge compensations. The Na+-enriched AF45
glass surface also exhibits a good wear resistance at 90% RH [192].

In the past, the structure of water layers adsorbed on multicomponent glass surfaces in humid
air was assumed to be the same as (at least, similar to) that on pure silica surface. That was
because spectroscopic technique was not available to selectively probe water layers adsorbed on
multicomponent glass in equilibrium with the humid air. However, recent study on vibrational
sum frequency generation (SFG) spectroscopy (Figure 11) showed that such assumption is not
correct [195,196]. The SFG spectral features of water layers on the SLS and calcium aluminosilicate
(E-glass in Figure 11) glass surfaces are drastically different from those on the fused quartz surface.
It is not only the glass composition, but also the surface treatment history that leads to alteration of the
adsorbed water layer structure. This implies that wear mechanisms of silicate glass in humid air could
be different from those of silica because the structure of the adsorbed water layer and dynamics of
water molecules in the adsorbed layer are different.
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Figure 11. SFG spectra of water layers adsorbed on (a) fused quartz, (b) annealed SLS, (c) acid-leached
SLS, (d) annealed E-glass, (e) acid-leached E-glass at RH = 0%, 40%, and 90% at room temperature [196].

It is not only substrate chemistry and humidity, but also counter surface chemistry that plays
critical roles. This appeared to counter-act the stress corrosion effect. Figure 12 shows the wear volume
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of SLS glass measured after AFM scratch test in different conditions [197]. When the diamond tip is
used as a counter surface for scratch, a protrusion of substrate surface (often called hillock) is observed
at low contact pressures. The material removal (which is consistent with the surface damage pattern of
‘wear’ process) is observed at the contact pressure above the yield point of SLS glass. When humidity is
introduced during the scratch with the diamond tip, the critical contact pressure for the wear process is
reduced from 3.5 GPa in the vacuum condition to about 2 GPa. This reduction might be attributed to (at
least, consistent with) the stress corrosion process involving adsorbed water molecules in tribochemical
reactions. When the diamond tip is replaced with a silica sphere in the same condition, the critical
contact pressure for wear is further reduced to about 0.7 GPa. This implies that the silanol groups at
the counter surface are actively involved in the tribochemical wear of the SLS glass surface.Lubricants 2018, 6, x FOR PEER REVIEW  15 of 27 
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Figure 12. Effect of contact pressure on the wear volume of SLS glass by various RH and counter-surface
materials. The negative wear volume is surface protrusion (hillock) and the positive volume is material
removal. The insets are AFM image and characteristic line profile of nanowear track at SLS glass [197].

In tribology, the wear process is often explained with the Archard wear equation or the
Reye-Archard-Khrushchov wear law, which predicts that the wear volume is determined by the
hardness of the softest contacting surfaces [198,199]. This relationship considers mechanical properties
only; thus, it may work well in dry or inert conditions, but not in humid air. Figure 13 displays
the wear images of SLS glass substrates rubbed with Si3N4 ball, Al2O3 ball, and 440C stainless steel
balls in 20%, 40%, and 90% RH conditions [188]. In the dry condition (not shown in Figure 13),
the SLS glass surface is badly worn (with 5–10 µm deep scratch marks), because its hardness is much
lower than the hardness of the ball material [188]. However, in humid conditions, the damage to the
softer SLS glass surface is very small; instead, the surfaces of the harder ball materials are polished.
These results clearly indicate that the wear behavior of materials in humid air cannot be explained
with the mechanical properties of materials involved in tribological contacts. The surface chemistry,
more accurately tribochemistry, of materials in the given test condition play dominant roles.
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Figure 13. Characteristic optical profilometry images at 40% RH and line profiles of various balls
surface (upper) and soda-lime-silica glass substrates (lower) after 400 cycles of scratching at an applied
load of 0.2 N under 20%, 40%, and 90% humidity conditions. (a) Si3N4 ball. (b) Al2O3 ball, and (c) 440C
stainless steel ball [188].

9. Advanced Ceramics

High hardness and mechanical strength of advanced ceramics are traits that make them suitable
for tribo-materials [200,201]. Among various types of advanced ceramics, the tribological properties
of Al2O3, Si3N4, SiC and ZrO2 are studied most extensively [200–212]. The wear mechanisms of
these advanced ceramics can be categorized into three main types: (i) Mechanical fracture under high
stress; (ii) wear debris induced third-body abrasion; and (iii) material removal due to tribochemical
reactions [201]. The mild wear mainly takes place by fine wear debris and tribochemistry, while the
severe wear happens with relative large size wear debris due to mechanical cracking and subsequent
abrasion [200,201].

The investigation of effect of humidity on tribological properties of advanced ceramics mainly
started in 1980s. Generally, when advanced ceramics are tested in unlubricated conditions, friction
and wear decrease as environmental humidity increases [213–226]. It was found that the worn surface
in low humidity conditions is rough, but it is relatively smoother in high humidity conditions due
to tribochemical reactions involving the adsorbed water molecules. For Al2O3 surfaces, the main
tribochemical reaction product is Al(OH)3 [219,220,227]. For Si3N4 and SiC surfaces, the main products
are SiO2 and Si(OH)4 [213–216,228–231]. It was believed that these hydroxide species are lubricious
and could work as a protective or sacrificial layer to prevent the substrate from further wear. Therefore,
the wear mechanism appears to gradually change from mechanical to tribochemical as environmental
humidity increases. It may also explain why the degradation behavior and resulting surface of
ceramics in high humidity are very similar to those observed under liquid water lubrication [218].
For Al2O3 and ZrO2, the wear rate is higher when lubricated with liquid water compared with humid
air [232,233]. It was assumed that the tribochemical product is soluble and easily removed in water
and thus the substrate loses the protection when lubricated with liquid water. Beside the promotion of
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tribochemical reactions on the ceramics surface, it was also reported that a humid environment can
promote adhesion between the fine debris particles [222], which may further strengthen the lubrication
ability of the tribolayer.

10. Metals

The tribological applications of metals or alloys are usually associated with oil lubrications [234–240];
thus, studies on the effect of humidity on friction and wear behaviors of metallic substrates are
conducted less extensively. Most research focuses on steel interfaces. In general, friction and wear
of steel surfaces decrease with increasing humidity [241–244]. Klaffe investigated the wear behavior
of AISI 52100 steel using a ball-on-flat tribometer over a wide RH range (3~100%) [242]. Although
COF did not show a strong humidity dependence, wear increased drastically when humidity was
below 15%. Further reducing humidity from 15% to 3% led to an increase in wear by factor of 4 [242].
The humidity effect on wear of various carbon steels also shows a similar trend—a severe wear at
low humidity and a mild wear at high humidity [245]. In the intermediate region (45~65% RH),
the friction coefficient appears to decrease marginally. It was suggested that water can facilitate the
oxide layer formation on the steel worn surface and reduce adhesive wear and friction force [246,247].
In contrast, the nascent surfaces usually present severe adhesion behavior, which gives rise to high
friction force [248].

11. Perspectives

Reviewing the literature reporting friction and wear behaviors of various types of materials in
humid environments clearly reveals that the tribological behaviors cannot be explained or predicted
with the mechanical properties of the materials being sheared at the sliding interface. The water
molecules adsorbed at the surface and being sheared at the tribological interface paly pivotal roles,
determining the magnitude of friction force and wear volume. For graphite, graphene, and UNCD,
water can passivate the active dangling bonds when such defect sites are produced during the shear.
Thus, it can mitigate wear problems, and lead to lower friction and wear. In the case of DLC, the effect
of water depends on the hydrogen content in DLC (or in the test environment) and the counter surface.
For TMDs, water appears to adsorb (or selectively react) at the edge sites and enhance the adhesion
between adjacent layers and raise friction and wear. In the case of boron-based materials (h-BN, B2O3,
and H3BO3), the adsorption and reaction of water molecules impinging from the gas phase govern the
friction and wear behavior. The friction and wear behavior of silicon, silicon oxide, and silicate surfaces
in humid air are even more complicated due to variations of possible reaction pathways depending on
substrate chemistry, adsorbed water layer activity, and counter surface chemistry. For ceramics and
metals, the tribochemical reaction products between water and the tribo-materials often work as a
protective film, reducing friction and wear.

Considering the complexity of water activity (thickness and structure of physisorbed water as
well as chemisorption and reaction of water at the interface under mechanical shear), it is not possible
to explain the effects of water adsorption on various materials with one simple mechanism. The only
obvious conclusion that can be made here is that its effect cannot be ignored and it is not sufficient
to report that experiments were carried out in a humidity controlled condition. Details in molecular
mechanisms of friction and wear behaviors of materials in humid air can be obtained only through
carefully-designed and well-controlled experiments for specific questions, coupled with computational
simulations with proper potential fields.
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