
Towards Efficient Traffic Monitoring for Science DMZ with
Side-Channel based Traffic Winnowing

Hongda Li
Clemson University

hongdal@clemson.edu

Fuqiang Zhang
Clemson University
fuqianz@clemson.edu

Lu Yu
Clemson University
lyu@clemson.edu

Jon Oakley
Clemson University
joakley@clemson.edu

Hongxin Hu
Clemson University

hongxih@clemson.edu

Richard R. Brooks
Clemson University
rrb@clemson.edu

ABSTRACT

As data-intensive science becomes the norm in many fields of sci-

ence, high-performance data transfer is rapidly becoming a core

scientific infrastructure requirement. To meet such a requirement,

there has been a rapid growth across university campus to deploy

Science DMZs. However, it is challenging to efficiently monitor

the traffic in Science DMZ because traditional intrusion detection

systems (IDSes) are equipped with deep packet inspection (DPI),

which is resource-consuming. We propose to develop a lightweight

side-channel based anomaly detection system for traffic winnowing

to reduce the volume of traffic finally monitored by the IDS. We

evaluate our approach based on the experiments in a Science DMZ

environment. Our evaluation demonstrates that our approach can

significantly reduce the resource usage in traffic monitoring for

Science DMZ.

CCS CONCEPTS

· Security and privacy → Intrusion detection systems; Net-

work security; Virtualization and security;

KEYWORDS

Network Function Virtualization; Intrusion Detection Systems; Sci-

ence DMZ

ACM Reference Format:

Hongda Li, Fuqiang Zhang, Lu Yu, Jon Oakley, Hongxin Hu, and Richard

R. Brooks. 2018. Towards Efficient Traffic Monitoring for Science DMZ

with Side-Channel based Traffic Winnowing. In SDN-NFV Sec’18: 2018 ACM

International Workshop on Security in Software Defined Networks & Network

Function Virtualization, March 19ś21, 2018, Tempe, AZ, USA. ACM, New

York, NY, USA, 4 pages. https://doi.org/10.1145/3180465.3180474

1 INTRODUCTION

Recently, cyberinfrastructures have been advancing significantly

to enable researchers to: (i) remotely access distributed computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’18, March 19ś21, 2018, Tempe, AZ, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5635-0/18/03. . . $15.00
https://doi.org/10.1145/3180465.3180474

resources and big data sets; and (ii) effectively collaborate with re-

mote peers on a global scale [5]. As data-intensive science becomes

the norm in many fields of science, high-performance data transfer

is rapidly becoming a core scientific infrastructure requirement.

To meet such a requirement, there has been a rapid growth across

university campuses to deploy Science DMZs [6]. The Science DMZ

is a high performance network environment, which is typically

deployed at the edge of a university’s network to support big data

transfer and access to high-performance computation through very

high bandwidth networks in an open environment.

However, it is challenging to monitor the traffic in the high

performance network environment like Science DMZ. Traditional

intrusion detection systems (IDSes) detect threats through state-

ful packet processing, which is resource-consuming. Though re-

searchers have proposed to deploy IDSes with multi-thread [14]

and cluster [15] architecture, it still requires numerous resources to

support traffic monitoring for the high performance environment.

For example, it is reported that Snort [2] can handle 800 Mbps of

traffic per processor and Bro [3] is suggested to allocate one core

for every 80Mbps of traffic [11].

To address the aforementioned challenge in traffic monitoring

for the high performance network environment like Science DMZ,

we propose to develop a lightweight side-channel based anomaly

detection system for traffic winnowing that serves as a pre-filter to

reduce the volume of traffic reflected to the back-end IDS instances

such as Bro and Snort. The basis of this approach is the insight that

attack traffic is qualitatively different from existing network traffic.

Constructing attacks that have the same statistics as normal traffic

is an order magnitude more difficult than constructing common

network intrusions. In addition, monitoring network statistics is

much less expensive than the fine-grained analysis of current IDSes.

In this paper, we construct the lightweight side-channel based

anomaly detection system by monitoring the inter-packet delay of

each flow. Since the Science DMZ is specific for the data transfer and

are isolated from internal system, scientific applications running

in the network are not likely to change. The lightweight detection

system determines whether a flow is generated by a legitimate

application by comparing the timing pattern of the test flow to a

Hidden Markov Model (HMM) that represents the timing pattern

of the legitimate traffic. If no statistically significant deviation is

observed, this flow will be filtered out by the lightweight detection

system and not reflected to the back-end IDS instances, otherwise

the flow will be passed to the back-end IDS instances for further

analysis. To achieve dynamic filtering, the lightweight detection

DMZ uses Lustre 1 or GPFS 2 as high-speed parallel file systems,

GridFTP 3 or FTD 4 for data transfer, and discipline-specific tools

such as XRootD 5. This feature provides a baseline of what traffic

should be deemed as legitimate. We model the timing features of

the common used applications (administrators can assign which

applications are commonly used) by employing Hidden Markov

Models (HMM). Existing work [12, 19, 21] has shown that network

protocols can be modeled by HMMs effectively. Since malicious

traffic is qualitatively different from traffic generated by łknownž

and łvalidž application protocols, the lightweight detection system

considers a flow as suspicious if its timing feature does not match

any known application protocols. Second, since users of Science

DMZ usually transfer huge files, the size and duration of the traffic

flows in the Science DMZ are usually huge. This feature provides

an opportunity for the lightweight detection system to distinguish

network traffic generated by known application protocols from

malicious traffic, because the huge traffic flows contain sufficient

information for HMM inferring and comparing. In summary, it is

well suited to develop the lightweight detection system bymodeling

the timing feature of flows and use the timing feature to determine

whether a flow is legitimate.

To satisfy the łvery low false negativež requirement, we can

tune the parameters of the HMMs to achieve arbitrary low false

negative detection rate, while have a relatively high false positive

rate. In particular, we set a very high confidence level under which

should a flow be considered has the same timing feature with a

known valid application protocol. If the lightweight detection sys-

tem does not have sufficient confidence to claim a flow has a timing

feature identical to some known application protocols, this flow

will be delivered to the IDS instances for further analysis. This

design ensures illegitimate traffic is not likely to be missed, thus

satisfies the łvery low false negativež requirement. To satisfy the

łefficient detectionž requirement, the lightweight detection system

only checks the inter-packet delays of a flow. Each time a packet

comes in, the lightweight detection system computes the timing

interval between this packet and the previous packet in the same

flow. This interval is then used to update the states of the HMM

state machine associated to that flow. If the lightweight detection

system does not yet have sufficient data to make a decision, this

packet will also be sent to the IDS instances for analysis. If the

HMM of a flow finally turns out to be identical with the HMM of a

known application protocol, this flow is considered legitimate and

does not need to be further analyzed by the IDS instances.

3 EVALUATION

We have conducted experiments in the CloudLab [1] at Clemson

site, which is a part of the Science DMZ of Clemson University, to

evaluate the performance of our approach. We generated traffic in

the CloudLab by using the GridFTP application, which has been

commonly used by Science DMZs for data transfer. We use the

GridFTP traffic as our legitimate traffic data set. We also generated

1Lustre: http://www.lustre.org
2GPFS: https://en.wikipedia.org/wiki/IBM_General_Parallel
_File_System
3GridFTP: http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
4FTD: http://monalisa.cern.ch/FDT/
5XRootD: http://xrootd.org/

traffic using SCP 6, which is considered as an uncommon application

on Science DMZs due to its limited transfer speed. We use the

SCP traffic as illegitimate traffic data set. We implemented the

lightweight detection program to collect the inter-packet delays of

each flow and model the delays using HMM. More details about

modeling the inter-packet delays using HMM are presented in some

exiting work [12, 19, 21]. We employed Bro as the IDS instances,

since it has been approved that Bro can be deployed with cluster

architecture. We used Open vSwitch as the OpenFlow switches.

In the experiment, we evaluated the resource usage in two scenar-

ios: i) monitoring the traffic of Science DMZ with the lightweight

detection system and ii) monitoring the traffic of Science DMZ

without lightweight detection system.

We use Equation (1) to describe the CPU usage of the whole

system in scenario i), where T is the average processing time of

each packet 7, L is the processing time of the lightweight detection

system for each packet, I is the processing time of the IDS instances,

α is the ratio of packets in a flow that requires to be checked before

the lightweight detection system can determine whether a flow is

legitimate, β is the ratio of illegitimate flows, γ is the false positive

rate of the lightweight detection system. The CPU usage of scenario

ii) is then represented as I , since all the packets in all flows are

processed by the IDS instances in this case.

T = L + αI + (1 − α)(βI + γ (1 − β)I) (1)

The results of our experiments show that the lightweight detec-

tion system processes a packet in every 0.66 microsecond, while

the Bro IDS instances processes a packet in average using 44.46 mi-

croseconds. In scenario i), our HMM indicates that 100K packets is

sufficient to infer whether a flow is identical to a known application

protocol. The 100K packets in our case include 1GB of traffic. We

generate both GridFTP and SCP traffic by transferring 10GB files.

That means, the lightweight detection system can deem a flow is

legitimate by only checking 10% of the packets in the flow. Thus, the

α is 0.1 in our case. We include a half of SCP and a half of GridFTP

traffic. So the β in our case is 0.5. We tune the confidence level

such that for all of our date set, the lightweight detection system

achieves zero false negative and 0.38 false positive. So the γ in our

case is 0.38. According to Equation (1), the average processing time

of each packet in scenario i) is 32.7 microseconds, which is 74% of

the processing time of each packet in scenario ii), where the time

is 44.46 microseconds. In reality, the amount of legitimate traffic is

far less than 50% as is set in our experiments. If we set the ratio of

illegitimate traffic as 10%, according to Equation (1), the average

processing time of each packet in scenario i) is 22.79 microseconds,

which is 51% of the time in scenario ii). In addition, the flows in the

Science DMZmight be larger than 10GB as is set in our experiments.

As the flow size increases, according to Equation (1), the average

processing time of each packet in scenario i) decreases. This means

our approach benefits more as the flow size increases.

4 RELATED WORK

Improving the processing capacity of IDSes to keep upwith the pace

of the growth of traffic rate has been studied a lot in the literature.

6https://en.wikipedia.org/wiki/Secure_copy
7For the ease of evaluation, we assume each flow has the same number of packets

A body of work focuses on improving the scalability of IDSes

by parallelizing IDSes with multi-thread [7], multi-core [14, 18]

processing and cluster architecture [15]. Those existing work im-

proves the capacity of the IDSes by employing more execution

instances/threads. A another body of work focuses on improving

the processing speed of a single IDS instance leveraging special

hardware such as GPU [10, 16, 17]. Unlike our approach, which

improves the capacity of IDSes by reducing the overall resource

consumption of the whole system (thus with the same amount of

resources, our approach gains greater capacity), those approaches

enable greater capacity by exploiting more resources.

The work closest to our discussion is [8], which reduces the

resource consumption by predicting the traffic patterns and selec-

tively loading detection polices for IDSes. However, that work is

limited to a single IDS instance and is not specific for high per-

formance networks like the Science DMZs. We can employ the

approach presented by this work to each of our IDS instances.

SciPass [4] presents an approach to secure the Science DMZ

using OpenFlow and Bro. The authors employ an array of IDS in-

stances to handle all flows. In contrast, our work filters out known

valid flows with a lightweight detection system, reducing the num-

ber of flows being sent to the IDS instances. Our goal is to signifi-

cantly reduce the resource consumption of the IDS instances.

5 CONCLUSION AND FUTUREWORK

We proposed a new approach to efficiently monitoring the traffic of

Science DMZ based on side-channel features of flows. Our approach

employs a lightweight detection system as a traffic filter, which

significantly reduces the volume of traffic being processed by the

IDS instances. We have designed and implemented a lightweight

detection system based on the inter-packet timing feature. Our

preliminary evaluation results demonstrated that our approach can

achieve greater efficiency in CPU usage than traditional approaches.

As our future work, we will formalize the resource usage of

our approach and conduct more comprehensive evaluations based

on the formulas. In addition, we will include more side-channel

features in the lightweight detection and employ more advanced

machine learning techniques to achieve better detection accuracy,

while ensuring sufficient efficiency.

ACKNOWLEDGMENTS

This work was partially supported by grants from National Science

Foundation (NSF-OAC-1642143, NSF-CNS-1700499, and NSF-DGE-

1723663).

REFERENCES
[1] 2015. CloudLab. http://www.cloudlab.us/. (2015).

[2] 2018. Snort. https://www.snort.org/. (2018).
[3] 2018. The Bro Network Security Monitor. https://www.bro.org/. (2018).
[4] Edward Balas and A Ragusa. 2014. SciPass: a 100Gbps capable secure Science

DMZ using OpenFlow and Bro. In Supercomputing 2014 conference (SC14).
[5] Prasad Calyam, Alex Berryman, Erik Saule, Hari Subramoni, Paul Schopis, Gordon

Springer, Umit Catalyurek, and Dhabaleswar K Panda. 2014. Wide-area overlay
networking to manage science DMZ accelerated flows. In Computing, Networking
and Communications (ICNC), 2014 International Conference on. IEEE, 269ś275.

[6] Eli Dart, Lauren Rotman, Brian Tierney, Mary Hester, and Jason Zurawski. 2014.
The science dmz: A network design pattern for data-intensive science. Scientific
Programming 22, 2 (2014), 173ś185.

[7] LorenzoDe Carli, Robin Sommer, and Somesh Jha. 2014. Beyond patternmatching:
A concurrency model for stateful deep packet inspection. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security. ACM,
1378ś1390.

[8] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. 2008. Predicting
the resource consumption of network intrusion detection systems. In International
Workshop on Recent Advances in Intrusion Detection. Springer, 135ś154.

[9] Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,
Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling innovation
in network function control. InACM SIGCOMMComputer Communication Review,
Vol. 44. ACM, 163ś174.

[10] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun, Deokjin
Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. 2012. Kargus: a highly-
scalable software-based intrusion detection system. In Proceedings of the 2012
ACM conference on Computer and communications security. ACM, 317ś328.

[11] George Khalil. 2015. Open Source IDS High Performance
Shootout. https://www.sans.org/reading-room/whitepapers/intrusion/
open-source-ids-high-performance-shootout-35772. (2015).

[12] C. Lu, J. M. Schwier, R. M. Craven, L. Yu, R. R. Brooks, and C. Griffin. 2013. A
Normalized Statistical Metric Space for HiddenMarkovModels. IEEE Transactions
on Cybernetics 43, 3 (June 2013), 806ś819. https://doi.org/10.1109/TSMCB.2012.
2216872

[13] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/Merge: System Support for Elastic Execution in Virtual Middleboxes.. In
NSDI, Vol. 13. 227ś240.

[14] Robin Sommer, Vern Paxson, and Nicholas Weaver. 2009. An architecture for
exploiting multi-core processors to parallelize network intrusion prevention.
Concurrency and Computation: Practice and Experience 21, 10 (2009), 1255ś1279.

[15] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. 2007. The NIDS cluster: Scalable, stateful network intrusion detection on
commodity hardware. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 107ś126.

[16] Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos P
Markatos, and Sotiris Ioannidis. 2008. Gnort: High performance network in-
trusion detection using graphics processors. In International Workshop on Recent
Advances in Intrusion Detection. Springer, 116ś134.

[17] Giorgos Vasiliadis, Michalis Polychronakis, and Sotiris Ioannidis. 2011. MIDeA:
a multi-parallel intrusion detection architecture. In Proceedings of the 18th ACM
conference on Computer and communications security. ACM, 297ś308.

[18] Benjamin Wun, Patrick Crowley, and Arun Raghunth. 2009. Parallelization of
Snort on a multi-core platform. In Proceedings of the 5th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. ACM, 173ś174.

[19] L. Yu, J. M. Schwier, R. M. Craven, R. R. Brooks, and C. Griffin. 2013. Inferring
Statistically Significant Hidden Markov Models. IEEE Transactions on Knowledge
and Data Engineering 25, 7 (July 2013), 1548ś1558. https://doi.org/10.1109/TKDE.
2012.93

[20] Nuyun Zhang, Hongda Li, Hongxin Hu, and Younghee Park. 2017. Towards
Effective Virtualization of Intrusion Detection Systems. In Proceedings of the
ACM International Workshop on Security in Software Defined Networks & Network
Function Virtualization. ACM, 47ś50.

[21] X. Zhong, A. Ahmadi, R. Brooks, G. K. Venayagamoorthy, L. Yu, and Y. Fu. 2015.
Side channel analysis of multiple PMU data in electric power systems. In 2015
Clemson University Power Systems Conference (PSC). 1ś6. https://doi.org/10.1109/
PSC.2015.7101704

	Abstract
	1 Introduction
	2 OUR APPRAOCH
	2.1 Approach Overview
	2.2 Lightweight Detection System

	3 EVALUATION
	4 RELATED WORK
	5 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

