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ABSTRACT

A massive number of devices are expected
to fulfill the missions of sensing, processing and
control in cyber-physical 10T systems with new
applications and connectivity requirements. In
this context, scarce spectrum resources must
accommodate high traffic volume with stringent
requirements of low latency, high reliability, and
energy efficiency. Conventional centralized net-
work architectures may not be able to fulfill these
requirements due to congestion in backhaul
links. This article presents a novel design of an
RDNA for loT that leverages the latest advances
of mobile devices (e.g., their capability to act as
access points, storing and computing capabilities)
to dynamically harvest unused resources and miti-
gate network congestion. However, traffic dynam-
ics may compromise the availability of terminal
access points and channels, and thus network
connectivity. The proposed design embraces solu-
tions at the physical, access, networking, appli-
cation, and business layers to improve network
robustness. The high density of mobile devices
provides alternatives for close connectivity, reduc-
ing interference and latency, and thus increasing
reliability and energy efficiency. Moreover, the
computing capabilities of mobile devices proj-
ect smartness onto the edge, which is desirable
for autonomous and intelligent decision making.
A case study is included to illustrate the perfor-
mance of RDNA. Potential applications of this
architecture in the context of loT are outlined.
Finally, some challenges for future research are
presented.

INTRODUCTION

The Internet of Things (1oT) is a new paradigm
that will connect a plethora of physical objects to
the Internet and enable them to make intelligent
decisions. The underlying technologies of loT
include RFID, sensor networks, pervasive com-
puting, communication technologies, and Internet
protocols. In 10T, objects may collaborate and
connect to the Internet in a smart way without
human intervention to provide new applications.
These applications include transportation, manu-
facturing, healthcare, industrial automation, and
emergency handling, offering great market oppor-
tunities. The analysis of data trends anticipates that
a vast majority of loT applications will demand
high-reliability and low-latency services from ser-
vice providers. In this context reliability refers to
the capability of guaranteeing successful message

delivery within a given latency bound, and latency
refers to the time elapsed from when data is trans-
mitted (e.g., by an object) until it is received by
the destination. In Fig. 1, the latency and reliability
requirements are shown for the most popular loT
applications with the latency varying between 1
ms (ultradow) and 100 ms (low) and the reliability
between 1 - 10 (high) and 1 - 10 (ultra-high).
Numbers are indicative and may vary for each
application area. Mission-critical applications such
as factory automation require ultra-high reliability
and ultra-low latency, while process automation
is less demanding. In order to meet these require-
ments, the evolution of LTE for cellular loT focus-
es on extending the battery life of loT devices and
optimizing coverage, capacity, and deployment
costs with the introduction of enhanced machine-
type communication (eMTC) and narrowband
loT (NB-loT). These can be adopted in either cel-
lular or unlicensed spectrum communications.
For further details on communication technolo-
gies and standardization efforts for loT we refer
the reader to the survey by Palattella et al. [1].
Despite the existing connectivity solutions, more
comprehensive work is needed in the design of
new architectures that provision communication
and computing resources to successfully support
massive loT deployments. The new architectures
should scale operationally and economically with
the expansion of loT and provide smart function-
alities for autonomous reasoning among objects.
Several works propose architectures to
improve connectivity for specific loT applications.
Schleicher et al. [2] developed an architecture for
smart city applications and identified key aspects
for its implementation. Wang et al. [3] present-
ed an energy-efficient architecture for Industrial
loT and proposed a sleep scheduling and wake-
up protocol to extend the lifetime of the whole
system. Xu et al. [4] analyzed the integration of
loT with existing networked systems including
cloud computing, the Internet, smartphones, and
industrial networks. With the large-scale expan-
sion of loT, cloud-computing-based architectures
aim to provide complete coverage of process-
ing, computation, and storage demands in data
centers. However, the centralization of cloud
computing and the growing traffic demands of
loT may result in huge bottlenecks degrading net-
work performance. Edge computing architectures
could potentially overcome the drawbacks of this
approach, moving service provisioning closer to
the network edge. Three edge computing archi-
tectures have been proposed so far: mobile edge
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computing, fog computing, and cloudlets. Mobile
edge computing deploys cloud servers at base
stations (BSs) bringing computational capability
closer to end users. The business and technical
benefits of mobile edge computing and its inte-
gration with loT are discussed in [5]. Fog comput-

The smart features of advanced user terminals project smartness onto the edge, which could be
exploited to simplify control and monitoring in a DNA with large number of loT devices. However, to

meet the heterogeneous, sometimes exceptionally stringent, requirements of Iof traffic in a dynamic
setting, a holistic approach to improving network robustness is needed.

ing edge routers, originally proposed by Cisco for
loT traffic, carry out computing tasks even closer
to users. Sun et al. [6] proposed a hierarchical fog
computing architecture to provide flexible 10T
services. They showed that it substantially reduces
the traffic load in the core network and the delay
between loT devices and computing resources
as compared to traditional loT architectures. The
concept of cloudlets is an extension of the cloud
integrated with WiFi and cellular networks. It is
motivated by the fact that it is easy to deploy in
coffee shops or office premises for near-real-time
provisioning.

Regardless of the previous efforts to improve
the quality of service in loT, a holistic approach is
needed to improve the robustness of edge com-
puting architectures for loT to face the dynamic
characteristics of wireless network traffic, which
result in intermittent connectivity with objects and
consequently degrade data quality. Furthermore,
in the process of moving service provisioning
toward the edge, mobile devices keep advanc-
ing technologically and getting smarter regarding
both their communication and computing capa-
bilities. However, these capabilities have not been
fully explored yet in the loT context.

This article takes a step forward in the design
and networking of edge computing wireless
architectures for loT and presents a novel design
of a robust dynamic edge network architecture
(RDNA). The architectural design encompasses
solutions at different layers to enhance network
robustness against dynamic availability of resourc-
es and provide ubiquitous service for loT. In
RDNA, connectivity is provided by users who act
as access points for objects and share their storing
and computing capabilities, improving scalability,
latency, reliability, spectrum efficiency, and energy
efficiency. Besides, the smart features of mobile
devices facilitate autonomous and intelligent deci-
sion making at the edge, simplifying control and
monitoring of the network.

In the next section, we elaborate the design
methodology of RDNA as well as its smart fea-
tures and applications. Then we provide some
hints for possible business models. Following that,
we describe a case study to illustrate its perfor-
mance in terms of latency, reliability, and energy
efficiency. Next, we highlight some design chal-
lenges and future research directions. Finally, we
draw our conclusions.

RoBuST DYNAMIC NETWORK ARCHITECTURE

PRELIMINARIES

Initially, dynamic network architectures (DNAs)
were proposed to offload traffic in cellular net-
works by incentivizing users to share their con-
nectivity and act as access points for neighboring
cellular users [7, 8]. The intermittent availability
of these access points renders the architecture
dynamic. Shams et al. [7] developed a framework
for topology reconfiguration in DNA and showed
that by encoding the problem with a genetic
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algorithm, the optimum topology can track net-
work dynamics and thus satisfy users’ quality of
service (QoS) requirements. Then Lorenzo et al.
[8] incorporated cognitive capabilities into DNA
and showed that underutilized spectrum can be
shared temporally and spatially, increasing net-
work capacity significantly. DNA gains in terms
of capacity and revenues make its extension to
loT promising. In particular, the motivation for
this extension is threefold. First, the dynamic traf-
fic bursts in loT can benefit from the additional
capacity generated by user participation, anticipat-
ing high reuse of network resources. Second, the
underlying computing capabilities of user termi-
nals in DNA have not been explored yet and may
satisfy the computing needs of loT traffic. Final-
ly, the smart features of advanced user terminals
project smartness onto the edge, which could be
exploited to simplify control and monitoring in a
DNA with a large number of loT devices. Howev-
er, to meet the heterogeneous, sometimes excep-
tionally stringent, requirements of loT traffic in a
dynamic setting, a holistic approach to improving
network robustness is needed.

ARCHITECTURAL DESIGN

We propose RDNA, which leverages the latest
advances of wireless devices (e.g., their capability
to act as access points, storing and computing
capabilities) to provide Internet connectivity and
computing capabilities to lightweight loT objects.
The architecture is illustrated in Fig. 2 (left). In this
architecture, user terminals (phones, PCs, tab-
lets) share their connectivity and act as access
points for loT objects for some rewards. We
denote these access points enabled by user ter-
minals as terminal access points (TAPs). In Fig. 2,
TAPs Uland U3 collect data from objects O1,
02, and O3. The data collected may be used to
serve those users or user U2. In a simple business
model, an 10T service provider (I0TSP) buys data
from object owners and organizes the RDNA by
incentivizing its users to share their connectivity
with loT objects to meet the demands of an loT
application. RDNA creates an loT market with
opportunities for different providers to cooperate,
such as a storage provider negotiating the price
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to store long-term data at user terminals (U1, U3)
and distributing that data to other parts of the
network (U2), in collaboration with a cloud/fog
provider.

The communication and computing capabil-
ities of user terminals are highly heterogeneous
and should be managed intelligently to match the
heterogeneous demands of loT traffic. For exam-
ple, TAPs with wired connectivity (U1, a PC) may
serve high-priority traffic requiring medium com-
puting processing. Mobile TAPs with wireless con-
nectivity (U3, a phone or tablet) may serve high-/
medium-priority traffic requiring medium/low com-
puting power. This will help to reduce network
congestion and preserve dedicated access points
or BSs with more powerful computing resources
(cloud/fog) for medium-/low-priority traffic that
requires high/medium computing power.

The high density of user terminals brings many
opportunities for connectivity and distribution
of the collected data throughout the network.
Besides, its integration within the cellular infra-
structure favors interoperability and seamless
addition of heterogeneous loT objects, facilitating
scalability and large-scale expansion of RDNA.
Furthermore, RDNA improves energy efficiency
by utilizing short-distance transmissions to reduce
interference, and spectrum efficiency by reus-
ing local available channels. In the following we
present the design methodology to realize its full
potential. Then we explore the smart features

enabled by RDNA, and its possible applications
and business models.

Since connectivity is provided by mobile user
terminals that have limited resources (i.e., battery,
CPU, memory) with their own traffic needs, the
availability of TAPs and channels is dynamic. This
may compromise connectivity and thus data qual-
ity. In this context, robustness is the property of
the network to stay connected under dynamic
availability of resources, which has a direct impact
on reliability, latency, and energy efficiency, as
well as on overall network performance. In the
subsequent development, we present design
solutions to improve the robustness of RDNA
at different levels: physical, access, networking,
application, and business. These solutions are illus-
trated in Fig.2. They may be combined to attain
the desired performance.

Physical Level:

Data Redundancy: TAPs may aggregate data
by collecting it from multiple objects, as shown in
Fig. 2 (physical level). The degree of data redun-
dancy — repeated data collected for backup and
recovery purposes — should be adjusted to satisfy
the requirements of the loT application given the
traffic dynamics and to save the energy of objects.
An efficient way to control data redundancy and
maximize resource utilization is by using pricing
schemes. In [9], Luong et al. survey the latest eco-
nomic models used for data collection in loT.

Access Level:

Cognitive Radio Capabilities: Interference
affects connectivity and degrades quality of com-
munication links. Equipping objects with cogni-
tive capabilities enables them to detect and avoid
interference, and opens the possibility of utilizing
additionally available communication spectrum.
Current regulations of radio spectrum are based
on static spectrum allocation policies where spec-
trum is granted to license holders for long periods
of time in large geographic areas. Unfortunately,
it has been observed that many allocated spec-
trum portions are intermittently utilized and hence
may be reused at different times and locations.
However, spectrum sensing and spectrum switch-
ing processes will consume additional energy;
thus, they may deplete the battery of lightweight
loT objects. Despite the existing works on ener-
gy-efficient and green-energy -powered cognitive
radio networks, cognitive radio capabilities might
not be fully exploited without an appropriate net-
work architecture. In RDNA, TAPs can sense the
available spectrum and assist loT objects with-
out cognitive capabilities so that they could still
benefit from cognitive radio technology (e.g.,
indicating to loT objects which channel can be
used). For more details on cognitive harvesting
network architectures, please see [10]. The links
established by harvesting available spectrum are
referred to as cognitive links. Service providers
may also trade available spectrum to meet loT
traffic demands and guarantee required perfor-
mance levels [8]. In Fig. 2 (access level), objects
O1 and O2 connect to primary users/TAPs PU1
and PU2 via cognitive links, and O3 also transmits
by cognitive links to TAP PU3. The primary users
are the licensed holders who have higher priority
in the usage of the spectrum, while the objects
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(secondary users) have lower priority. Distant
objects may reuse channels to avoid interference.

Channel Redundancy: Backup channels
increase link reliability against traffic dynamics
through channel diversity. Backup channels can
be licensed or unlicensed to serve high-priority
or low-priority traffic, respectively. A combination
of both can be used to achieve different perfor-
mance and cost trade-offs. As shown in Fig. 2, O1
uses redundant cogpnitive links to connect to PUT,
while O3 has a licensed channel and a backup
harvested channel to connect to PU2. A detailed
analysis of the benefits of channel redundancy in
cognitive networks is given in [11].

Access Point Redundancy: Since the avail-
ability of TAPs is dynamic, backup access points
increase connectivity availability by spatial diversi-
ty. TAPs may have wireless or wired connections,
resulting in different levels of reliability. This is illus-
trated in Fig.2 where O2 keeps PU1 and PU2 as
backup TAPs, and each one has a different type
of backhaul connectivity. Object O3 combines
the diversity of licensed and unlicensed channels
with redundant TAPs PU2 and PU3. A framework
to optimize the number of access points to meet
quality of service constraints given a fixed cost per
access point is elaborated in [7]. Further work on
distributed dynamic scheduling schemes is need-
ed to flexibly utilize the available resources.

Networking Level:

Collaborative Data Sharing: Subscribers
demanding the same data may collaborate by
sharing their data using device-to-device (D2D)
communications and serve as backup for each
other’s connections. The data can be freely
exchanged in a social network or through a con-
tent provider that incentivizes users to share their
data. The communication can be established by
D2D links using licensed or unlicensed channels.
For example, in Fig.2 (networking level), PU2 and
PU3 share their data with SU1 and PU4, respec-
tively. In [8], the benefits of collaborative network-
ing for users and operators are outlined. Epidemic
algorithms seem promising for data dissemination
in large networks since they are simple to imple-
ment and robust against failures.

Distributed Computing: Mobile terminals
may share out their computing capabilities. Since
they have heterogeneous capabilities and limited
power, highly demanding computing tasks should
be decomposed and distributed to different termi-
nals. Distributed computing increases reliability as
there is no single point of failure, and it is more
cost effective than a single high-end computer.
In RDNA, a subscriber may request data collect-
ed by another user terminal, and on the way, the
computing capabilities of the terminals forwarding
the data can be exploited. For instance, SUT may
request data collected by PU1, and thus, PU1 and
PU2 may perform related computing tasks. If the
computing power is not enough, heavy comput-
ing tasks could be delegated to the cloud/fog, as
illustrated by the colored cloud.

Application Level:

Caching: Popular contents can be stored at
the network edge to reduce backhaul capaci-
ty. Users can share the storage capacity of their
terminals temporarily. Unlike collaborative shar-

Terminals can collect context-aware information regarding traffic demands for the IoTSP to deploy
RDNA in congested areas with appropriate robustness. Activating TAPs in such areas contributes to the

sustainable deployment of RONA, since user terminals have limited resources and incentivizing them to
cooperate incurs a cost for the IoTSP.

ing, in caching, users sharing their storage space
(PUT, PU2, and PU3) may not be interested in
the data to be stored. Cache placement should
be optimized to efficiently allocate storage space
considering data lifetime, available battery at user
terminals, and the geographic area where that
data is popular. Learning mechanisms may help to
decide what content to cache. Dedicated access
points and BSs can be used to store long-term
data and higher data volumes. Bringing content
close to end users reduces latency and traffic
load, avoiding duplicate transmissions of the same
content across the whole network.

Business Level:

Incentives: Incentive mechanisms are crucial
for the adoption and success of RDNA. They
should be carefully designed to encourage users
to collaborate and share their resources and fos-
ter good behaviors. Given the heterogeneity of
user terminals and their capabilities, user valuation
of its remaining resources should be considered
in the design of incentives. Figure 2 (business
level) shows the incentives that the 1oTSP offers to
TAP PU1 to share its connectivity, as well as the
revenue earned by SUT and PU2.

Multi-Provider Cooperation: The loT mar-
ket will create business opportunities in RDNA
between users and multiple providers. For exam-
ple, in Fig. 2, PU1 provides connectivity to objects
O1 and O2 whose data have been requested by
secondary users SU2 and SU3. 1oTSPs of prima-
ry and secondary networks cooperate to serve
those users. SU3 will pay more than SU2 for the
data since SU3 requests a service that requires
additional cloud/fog computing capabilities (col-
ored cloud). The business relationship between
the parties involved can be exploited to guarantee
service delivery.

SMART FEATURES:
AUTOMATION, RECONFIGURABILITY, AND INTELLIGENCE

User terminals are getting smarter and smarter
and can offer substantial storage, communica-
tions, control, configuration, measurement, and
management capabilities at the network edge.
Terminals can collect context-aware information
regarding traffic demands for the 10TSP to deploy
RDNA in congested areas with appropriate
robustness. Activating TAPs in such areas con-
tributes to the sustainable deployment of RDNA,
since user terminals have limited resources, and
incentivizing them to cooperate incurs a cost for
the 10TSP. By increasing the number of TAPs,
the coverage of the 10T as well as the control of
the network and physical systems improves. The
resulting wider coverage of loT facilitates remote
control of objects and ubiquitous positioning.
Additionally, empowering objects with cogni-
tive capabilities yields high configuration autono-
my by dynamic spectrum access, self-adaptation
to dynamic scenarios, and interference avoidance.
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A detailed description of how cognitive capa-
bilities contribute to intelligent decision making
is given in [12]. Monitoring network conditions
(traffic demands, spectrum availability, channel
quality) is crucial to reconfigure the network and
maintain required reliability and latency levels.
The computing power of user devices further
broadens the reasoning and reconfiguration capa-
bilities of RDNA toward autonomous operations
based on the contexts or circumstances. The
autonomous control and monitoring of RDNA
reduces signaling, which is crucial in the presence
of a large number of loT devices. Providing nodes
with information entails excessive signaling and
overhead cost. Machine learning schemes such as
multi-arm bandits can be used to deal with uncer-
tainty and lack of information to solve resource
management problems distributively (e.g., TAPs
could make their own decisions about schedul-
ing). Research on intelligent distributed schedul-
ing schemes is left for future work.

The proximity of TAPs accelerates content,
service, and application responsiveness from the
edge and may allow performing time-critical con-
trol applications such as healthcare monitoring.
Data provided by objects have diverse levels of
reliability and trust. Since users value information
differently, the intelligence at the network edge
can contribute to match user valuations with the
expected level of trustworthiness of the data pro-
vided. Behavioral game theory is an emerging
framework for decision making in the presence
of varying levels of intelligence, and hence can
be used to study RDNA and the corresponding
strategies to boost its performance.

The smart features in RDNA enable highly
improved scalability, adaptability to different situa-
tions, and initiation and execution of services with
minimal human intervention.

APPLICATIONS OF THIS ARCHITECTURE

RDNA operates within the existing cellular infra-
structure, facilitating device interoperability,
and harvesting communication and computing
resources network-wide. In the following, we
describe some possible applications of this archi-
tecture for loT, which can be used as basis for
more specific applications.

Flexible Internetworking: loT devices are
highly heterogeneous and generate data with dif-
ferent life spans. RDNA makes internetworking
flexible by fulfilling connectivity requirements with
TAPs in a dynamic environment without addition-
al infrastructure cost. Therefore, it provides low-
cost ubiquitous networking toward the Internet
of Everything (loE), where objects and humans
interconnect seamlessly.

Computational Offloading: TAPs can perform
computing tasks. Choosing among the comput-
ing capabilities of TAPs, dedicated access points
or BSs will depend on the computational load,
tolerated latency, and remaining resources at the
terminals (e.g., battery, CPU, memory).

Cloud/Fog Computing: Fog computing
extends cloud computing services to the edge.
It improves the efficiency of cloud computing by
reducing the amount of data transported to the
cloud for processing, analysis, and storage. TAPs
can be part of the fog paradigm, delegating long
permanency data to the cloud.

Collaborative Computing: Mobile terminals
can combine their computing capabilities to joint-
ly accomplish a common task, increasing their
individual computational power.

Contextual Computing: Data collected from
objects can be analyzed and combined with con-
text-aware data collected by TAPs themselves.
The data collected may include information about
user preferences, location, and surroundings.

Transparent Computing: RDNA intelligence
enables the network to solve user problems learn-
ing from their habits and offer services transpar-
ently to end users. In [13] an implementation of
an loT architecture based on transparent comput-
ing is presented along with a detailed description
of its underlying challenges.

Content Delivery: The robust distributed net-
work formed by TAPs allows serving contents to
subscribers with high availability and high perfor-
mance. A content provider can collaborate with
an loTSP to bring contents closer to the edge
by storing them in TAPs. In turn, the 10TSP can
build a content infrastructure and control network
resources for efficient data delivery.

Mobile Big Data Analytics: Data stored
at terminals can be used to extract meaningful
data and identify data patterns. This can further
increase the intelligence at the edge, encouraging
autonomy of loT devices. For instance, data ana-
lytics can optimize content delivery by providing
insight on the most demanded contents in certain
areas of the network.

BUSINESS OPPORTUNITIES

Internetworking and resource trading at different
RDNA levels for the transmission of loT data cre-
ate an loT market with plenty of business oppor-
tunities. Figure 3 outlines the interaction among
different entities of this market and the resourc-
es to trade. l10TSP negotiates with object own-
ers the price for the data to serve its end users.
Since objects have limited capabilities and loT
data is valid for a limited time, IoTSP encourages
users to share the connectivity and computing
capabilities of their terminals to meet loT service
requirements. If there are not enough terminals
or computing resources available, 10TSP may
negotiate with other service providers to access
the communication and computing capabilities of
their users. The benefits of multi-operator collabo-
ration for data and spectrum trading are described
in [8, 14] for different networks. If a data item is
requested by end users that are sparsely distribut-
ed throughout the network, I0TSP may negotiate
with the fog/cloud provider to distribute the data.
Popular data can be cached in TAPs, dedicated
access points, or BSs depending on user locations.
A more comprehensive survey in [9] summarizes
recent economic and pricing models used in loT
for data collection and wireless communications.
These models can be extended to RDNA to study
topological formation for user terminals collabora-
tion, coverage optimization, computing task allo-
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cation, and content distribution. The advantages
of economic and pricing models are mainly two-
fold. First, they provide a theoretical framework to
study revenue generation, and thus analyze bene-
fits and costs. Second, 10T entities have different
interests and objectives. Pricing can be used to
model the interaction among different entities and
encourage them to reach an agreement.

RDNA scales operationally and economically
with the proliferation of loT traffic since its expan-
sion creates more opportunities to collaborate.
However, to realize the expected economic
impact in loT, a careful design of economic mod-
els is needed to exploit the collaboration oppor-
tunities.

CASE STupy

We consider an RDNA with objects Z = {1, 2,
... N} and TAPs J = {1, 2, ..., n4p} that provide
Internet connection to those objects and perform
pre-processing and data storage. Objects transmit
their data using cognitive links in the set B = {1,
2, ..., B}, which have identical bandwidth equal
to 1. RDNA serves ng end users who access loT
data through the BS or TAPs. Channel availability
varies in time and space as these bands may be
occupied by primary users (PUs). We first assume
that the l10TSP has no prior knowledge of channel
demands of secondary objects (SUs), and later on
we utilize the smartness at the edge to monitor
such demands. We denote by a? the probabili-
ty that channel b at link /; is availjable for object
transmission [11]. Topology formation is based
on channel availability and user terminals’ avail-
ability to share their connectivity. The signaling
exchange for distributed topology formation has
order O(nynyapB) in the worst case, where there
is no prior knowledge on the preferred associa-
tion. We use an absorbing Markov chain model,
where TAPs denote the absorbing states as in
[11], and extend it to model the topology evo-
lution in loT. The latency is obtained as t; = t,, +
Tp + T, where 1 is the transmission latency from
the object to the TAP, t,, is the pre-processing
delay, and t, is the access delay of each user to
RDNA. We assume that the 10TSP has 40 end
users. Figure 4 shows the mean latency vs. nrap
for different values of n,. It can be observed that
increasing nyap reduces the latency exponential-
ly. On the other hand, increasing the number of
objects n,, increases the latency, especially when
nrap is small. Let us now take advantage of the
intelligence provided by TAPs to monitor channel
demands of objects. This knowledge is utilized
by the 10TSP to reduce the connectivity interrup-
tions by primary user returns and assign channels
to the objects that will be available during their
transmission period. As shown in Fig.4, smartness
at the edge may reduce latency up to 30 percent
for small nysp. In addition, if users collaborate and
share their data using D2D links, latency decreas-
es up to 40 percent. The mean power consump-
tion for transmission, computation, and storage is
plotted in Fig. 5. The transmission power is set to
0.75 W, and the power consumption for comput-
ing and storage varies as in [15]. The power used
for channel switching has been neglected. As the
transmission distance decreases with nrsp, the
mean power consumption decreases accordingly.

Let us now determine the redundancy needed
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Mean power consumption (W)

Ny
51,

—V—n,

—6—ny=20

=30
=30, collaborative

=10

Nap

FIGURES. Mean power consumption vs. number of TAPs.

to guarantee a level of reliability &,;,. We define
link reliability &; as the probability that the chan-
nel is available (no PU return). We consider that
PU arrivals are independent and identically dis-
tributed (i.i.d). Hence, link reliability is the same
on every channel, g; = a,?. If a PU returns to the
channel currently allocated to an SU, the transmis-
sion will be interrupted, and the SU will switch to
another channel.

Redundant Channels: As we seek spectrum-effi-
cient solutions, the switching interval should be the
maximum that satisfies link reliability requirements
so that the number of channels is minimized. Thus,
the channel switching time per link per message
can be determined as t;, = argmax, t, - (&(t,) -
Emin), Where t¥ is the maximum duration of the
time interval that satisfies &,,;,. The more restric-
tive &qin is, the more often the channel should
be switched to avoid PU return. Similarly, for a
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maximum tolerable latency ., the number of
backup channels needed can be obtained as w*
= argminy.y, . (Tmax - t(w))2, where t(w) is the
delay when w Backup channels are used.

Redundant Terminal Access Points: Let us
assume that each object selects a set of TAPs on
channel b denoted by set 7. Introducing n, =
| 7P| backup TAPs will improve reliability to &jj
=1 - (1 - g;)"a. Since energy cost will increase
with the additional access points, the objective
is to minimize n, to meet the required reliability
level: (7P)* = argmin(‘z_b)(é’(jib) - &Emin/Ny), Where
g'(JP) denotes the reliability level when the set of
backup TAPs JP is used.

In Fig. 6, the number of channels w needed to
satisfy &.,;, is shown. We assume different ratios
of traffic loads in the secondary (objects) and pri-
mary network where pg is the service rate of SUs
and Ap is the arrival rate of PUs. We can observe
that the more imbalanced the network is (i.e.,
us = 6Lp), the lower w is. Besides, increasing the
number of backup TAPs significantly reduces w. A
reliability of &, = 0.999 can be achieved with 1
to 2 channels and 2 to 3 backup TAPs when pg =
6Lp. Besides, by exploiting smartness at the edge
to monitor the traffic in the secondary network,
we can achieve &.,;, = 1 with only 1 channel. By
combining channel and access point redundancy,
different reliability requirements can be achieved
at a reasonable cost.

DESIGN CHALLENGES AND FUTURE RESEARCH

RDNA moves service provisioning to the edge,
contributing to the expansion of loT. It also brings
new challenges and promising research directions
as highlighted below.

Internet of Everything: In the future IoE,
human-type communications (HTC) and object-
type communications (OTC) will coexist and
share limited wireless resources. Each communi-
cation type has different needs and capabilities.
For example, HTC may require high data rate,
while OTC may have stringent latency require-
ments. Thus, the main challenge is to develop

resource allocation policies that accommodate
the heterogeneous nature of ok traffic with vari-
ous requirements on service quality.

Security and Privacy: Service providers want
to collect as much information as possible regard-
ing user preferences, behavior, and localization,
among other metrics, to bring smartness to the
edge. This poses a serious challenge for user
privacy. Different service providers may need
to access content of each other’s networks, fur-
ther complicating security concerns. In addition,
sharing connectivity and computing capabilities
of mobile devices poses extra security design
challenges. To protect their privacy, users need
to restrict collaboration to other highly reliable
and trustworthy users. Likewise, service providers
need to ensure the trustworthiness of their sub-
scribers and encourage honest behaviors through
proper incentive mechanisms.

Mobility Support: 10T objects have limited
transmission range. Mobility support is import-
ant to guarantee their connectivity with mobile
TAPs. The smart features of RDNA will help to
identify new connectivity options and adapt the
connections to the circumstances on the fly to sat-
isfy user demands. Thus, further work is needed
in smart topology reconfiguration mechanisms for
RDNA in response to mobility.

Business Models: In the loT market, entities
will change their roles depending on situations
and environments. For instance, an loTSP may act
as a data provider or data consumer. A user may
buy data and later on sell it to other users. Thus, a
sound business model should adapt flexibly to the
changing roles of all entities and manage them
accordingly.

CONCLUSIONS

This article presents a novel design of a robust
dynamic edge network architecture (RDNA) to
mitigate the congestion problem in wireless net-
works, paving the way toward the full realization
of loT. This architectural design leverages the
latest technological advances of mobile devices
to provide low-cost ubiquitous communications
and computing. A holistic approach to improving
network robustness is developed, which includes
solutions at the physical, access, networking,
application, and business layers. The expected
performance in terms of reliability, latency, and
energy efficiency emphasizes the potential of
RDNA for a global loT architecture. Besides,
RDNA brings smart functionalities to the network
edge and plenty of business opportunities.
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