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Abstract— Future wireless networks will progressively displace
service provisioning towards the edge to accommodate increasing
growth in traffic. This paradigm shift calls for smart policies
to efficiently share network resources and ensure service deliv-
ery. In this paper, we consider a cognitive dynamic network
architecture (CDNA) where primary users (PUs) are rewarded
for sharing their connectivities and acting as access points for
secondary users (SUs). CDNA creates opportunities for capacity
increase by network-wide harvesting of unused data plans and
spectrum from different operators. Different policies for data and
spectrum trading are presented based on centralized, hybrid,
and distributed schemes involving primary operator (PO),
secondary operator (SO), and their respective end users. In these
schemes, PO and SO progressively delegate trading to their end
users and adopt more flexible cooperation agreements to reduce
computational time and track available resources dynamically.
A novel matching-with-pricing algorithm is presented to enable
self-organized SU-PU associations, channel allocation and pricing
for data and spectrum with low computational complexity. Since
connectivity is provided by the actual users, the success of the
underlying collaborative market relies on the trustworthiness of
the connections. A behavioral-based access control mechanism is
developed to incentivize/penalize honest/dishonest behavior and
create a trusted collaborative network. Numerical results show
that the computational time of the hybrid scheme is one order
of magnitude faster than the benchmark centralized scheme and
that the matching algorithm reconfigures the network up to three
orders of magnitude faster than in the centralized scheme.

Index Terms— Cognitive dynamic network, data trading,
spectrum trading, pricing policies, QoS, trust.

I. INTRODUCTION

HE rapid growth of advanced wireless devices and ser-
vices is exacerbating the problem of spectrum scarcity
and posing potential challenges for mobile operators, espe-
cially in terms of quality of service (QoS) provisioning [1].
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Existing solutions for coping with traffic demand focus on
investing in additional fixed infrastructure, which is costly
from an environment and network perspective [2]. Besides,
these solutions rely on conventional cellular infrastructure
design built to satisfy peak rates and ignore the dynamic traffic
fluctuations that render a significant part of this infrastructure
unutilized in space and time. Despite densification efforts to
increase spectrum reusability, the licensed spectrum continues
to be scarce and its efficient usage will soon approach the
theoretical limits [2].

Recently, a new generation of dynamic network architec-
tures (DNAs) has emerged in which users share their connec-
tivities and act as access points for other users in their vicinity,
augmenting network capacity [3]-[5]. The high density of
users’ terminals provides many opportunities for connectivity
and network traffic offloading without additional infrastruc-
ture cost. Integrating cognitive capabilities into the DNA for
spectrum harvesting will facilitate access to additional unused
spectrum, both temporally and spatially, to meet growing
spectrum demand [3]. In addition, the diversity of data plans!
provides users with different service capabilities as potential
access points. If users with high capabilities outsource these
to others (by acting as access points) at critical network oper-
ational times, overall network performance can be improved
and harvested spectrum can be more efficiently utilized via
an increase in frequency reuse. Furthermore, network opera-
tors could intelligently share their residual spectrum resource
and service capabilities to ensure service delivery and thus,
increase their revenue and create new business opportunities.
These opportunities result from trading harvested data and
spectrum between users and operators.

In this paper, we explore business opportunities in data and
spectrum harvesting created by a cognitive dynamic network
architecture (CDNA) where primary users (PUs) share their
connectivities with secondary users (SUs) for some reward.
In CDNA, each SU connects through its preferred PU using
the harvested spectrum. The selected PU shares its unused data
and acts as an access point for SU transmissions in return for
a reward. CDNA creates a new collaborative market for data
and spectrum trading and opportunities for revenue sharing
among the parties involved (primary operator [PO], secondary
operator [SO] and their respective end users). A framework
for data and spectrum trading optimization is developed to
maximize the utility of each party and satisfy the QoS
for SUs. Three approaches are considered: centralized, hybrid
and distributed. Each incurs different levels of coordination

The data plan limits the amount of data transferred over the network for
the duration of the plan. We will use data plan trading and data trading
interchangeably through the paper.
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and revenue sharing. In the centralized approach, the SO
performs data and spectrum trading with the PO to satisfy
the demands of SUs. The PO then rewards PUs willing to
serve as access points for SU traffic. In the hybrid scheme,
the SO and PO trade the spectrum but delegate data trading
to PUs and SUs. PUs benefit directly from this trading as
an incentive to share their resources. Finally, in the distrib-
uted scheme, the SO and PO negotiate a revenue share for
their cooperation and let PUs and SUs trade the data and
spectrum.

To fully exploit the potentials of this architecture and make
it highly adaptive to traffic dynamics, we aim to develop
distributed mechanisms for data and spectrum trading with low
computational complexity. The traffic dynamics result from
the activity of the SUs and PUs, creating resource-sharing
opportunities. In [4], Shafigh et al. present a genetic algo-
rithm for topology reconfiguration in DNA without cognitive
capabilities and show that the optimum topology can track
network dynamics and, thus, satisfy users’ QoS requirements.
However, genetic algorithms are centralized in nature and
in our CDNA, both the PO and SO participate in resource
allocation. Game theory is a powerful tool for performing
distributed resource allocation [6], [7]. In [8] the spectrum-
sharing problem between a set of device to device (D2D)
pairs and multiple co-located cellular networks is formulated
as a Bayesian non-transferable utility overlapping coalition
formation game. Some works have applied matching theory
to cognitive networks to solve the channel allocation prob-
lem [9], [10]. Matching theory seems an attractive framework
for resource allocation in cognitive networks where two sets
of agents (PUs and SUs) can be matched according to their
preferences [35]. Nevertheless, existing works in this area have
some limitations. In [9], a one-to-one stable matching game is
considered where the utilities of the SUs and PUs are chosen
to be identical because the SUs cannot obtain the performance
measures of the PUs. In [10] the channel assignment problem
is formulated as a many-to-one matching game under the
limitation that each primary channel can only be assigned to
one SU. Our work overcomes these limitations since CDNA
facilitates operator cooperation, and we incorporate pricing
into the matching decision to facilitate self-organized data and
spectrum trading among multiple SUs and PUs.

Since connectivity opportunities are offered by users in
CDNA, to ensure widespread adoption, it is crucial to develop
trust mechanisms that encourage trustworthy connections.
In cognitive networks, trust mechanisms have been proposed
for collaborative spectrum sensing under report falsifying
attacks [11], [12]. A user-selection method based on rein-
forcement learning is presented in [11] to select reliable SUs.
Qin et al. [12] proposed a trust-based model and developed
a weighted sensing aggregation scheme to remove attackers
from the decision-making process. However, a holistic design
for a trust management system is missing due to a lack of
network architecture.

Our major contributions are summarized as follows:

o A framework for data and spectrum trading optimization
which involves a PO, a SO and their respective end
users. We develop three schemes—centralized, hybrid
and distributed—with new policies for revenue sharing,
and derive the optimal behavior of the parties involved.
These schemes present different performance and com-
plexity tradeoffs to suit heterogeneous traffic loads and
revenue expectations.
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« A matching theory based algorithm with pricing to solve
the SU-PU association for data and spectrum trading,
spectrum allocation and pricing. The algorithm is based
on a many-to-one matching game where multiple SUs are
assigned to a PU that satisfies their QoS requirements.
Pricing is incorporated into the matching as the price of
resources is a decisive criterion for SU-PU association.
Positive and negative externalities are considered due to
changes in demand and supply, which have an impact on
data and spectrum availability and, thus, on price.

o« A two-stage deterrence-based trust mechanism which
encompasses partially distributed (via local physical inter-
actions) and partially centralized (via operators’ involve-
ment) trust management. Since perception of trust varies
among users, we model behavioral aspects and their
impact on trust, and define a behavioral-based access con-
trol scheme that encourages consistent behavior through
punishment (of misbehaved users) and reward (of well-
behaved users). By exploring the properties of trust,
we also propose a fully distributed trust mechanism for
autonomous evaluation of trust by users.

The rest of this paper is organized as follows. The related work
is reviewed in Section II. The network model is discussed
in Section III. The data and spectrum trading framework is
given in Section IV. New matching algorithms are devel-
oped in Section V. The trust relationship model is presented
in Section VI. Performance evaluation is given in Section VII.
Finally, Section VIII concludes the paper.

II. RELATED WORK

Novel architectures for cognitive networks based on
D2D [8], [13], small cells [14], [15] and multi-hop communi-
cations [16], [17] have been proposed to further increase spec-
trum efficiency. D2D spectrum sharing is intended to offload
traffic from the cellular infrastructure when source and destina-
tions are close to each other [13]. Cognitive capabilities can be
utilized to mitigate intercell interference between a macrocell
and the small cells to deploy heterogeneous spectrum-efficient
networks [15]. However, the introduction of a fixed infrastruc-
ture significantly increases overall energy consumption and
infrastructure cost. Enabling multi-hop communication in cog-
nitive networks can further increase coverage and spectrum
efficiency by exploiting locally available channels and support
dynamic traffic distributions without additional infrastructure
costs [16]. The importance of backup channels and relaying
incentives to increase link reliability and robustness in multi-
hop cognitive networks is addressed in [18].

Due to the enormous economic value of spectrum, spectrum
trading has attracted a lot of interest lately on the aforemen-
tioned architectures [18]—[23]. In [19], repeated auctions in
the uplink of a secondary cell are proposed for the allo-
cation of primary channels to the SUs. Spectrum auctions
are studied in [20] for energy-efficient channel assignment.
Other approaches consider Stackelberg game [22] or contract
theory [23] for channel allocation and pricing. However,
the limitations of the previous architectures in terms of effi-
cient spectrum use also limit the benefits of spectrum trading.
Moreover, the major concern in spectrum trading to date has
been spectrum access rather than service delivery. This paper
fills this gap by defining joint data and spectrum trading
policies in a trusted CDNA which provides operator support
for such trading.
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Fig. 1. Cognitive Dynamic Network Architecture. (a) Data and Spectrum
Trading. (b) PU-SU association. (c) Data Forwarding.

CDNA encompasses the advantages of the previous archi-
tectures. First, it relieves congestion in the secondary network
by offloading traffic through available PUs. Second, it enables
efficient use of data and spectrum by reusing available
channels temporally and spatially. Third, in contrast to multi-
hop cognitive networks, where routes are formed by SUs
relaying traffic through primary channels, in our system data
is forwarded by PUs through the primary network, which
reduces reliability concerns related to multi-hop cognitive
transmissions to the first hop (SU-PU link).

ITI. NETWORK MODEL
A. System Architecture for Data and Spectrum Trading

We consider the Cognitive Dynamic Network Architec-
ture (CDNA) shown in Fig. 1 that consists of a PO that
incentivizes certain PUs to act as access points for SUs in their
vicinity. The SO has its own spectrum bands, although they are
potentially congested, and cannot satisfy the QoS requirements
of its SUs. Thus, the SO negotiates the conditions for data
and spectrum trading with the PO as illustrated in Fig. la.
Depending on the existing demand, the PO will encourage
a set of PUs to share their connectivities with the SUs by
offering them a reward. This reward is in return for the PO’s
benefit obtained when sharing its available data and spectrum
with the SO. The SO will allocate the traded channels and
PUs to satisfy SU demands. Thus, in CDNA the connectivity
is provided by PUs using available channels in the primary
network as shown in Fig. Ib. Since the infrastructure is
provided by the PO, we omit the SO in the plot. The success
of this collaborative market relies on the trustworthiness of the
connections which will be elaborated in Section VI.

Suppose that PUs M = {1,2,..., M} operate in the
set of licensed spectrum bands B = {1,2,...,B}, which
have an identical bandwidth of size equal to 1. The SUs
N ={1,2,...,N} are equipped with one radio that can be
tuned into any available frequency band for packet delivery,
i.e., a cognitive radio user can only work on one of the
available bands at a time. The availability of the frequency
bands varies in time and space as these bands may be occupied
by PU transmissions.

The SO harvests licensed spectrum bands, purchases spec-
trum bands for SU links at different locations, and conducts
channel allocation for SU links. The SUs can use the pur-
chased licensed bands and transmit to the available PUs when
the primary services are not on, but have to stop using them
when primary services become active. This approach is com-
monly employed in spectrum trading problems to address the
interaction between PUs and SUs as a negotiation process [16].
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TABLE 1
NOTATION
N, M, B Total number of SUs, PUs and channels
b . aqe P .
a; Availability probability of channel b at link /;
Cijy Cmini Capacity of the link /;, minimum capacity required by SU i
Tijy Tnin,i Connectivity / minimum connectivity duration for SU i
Qoiy Qo) Initial data volume for SU i and PU j
x,l; s t; SU i transmits / trades with PU j in channel b
Pii Trustworthiness of link /;
T Reward received by PU j for forwarding the data of SU i
o Revenue share in the primary network, secondary network,
oy revenue share among PO and SO
¢. & Energy cost of PU j, Reliability of PU j
Us, Up Utility of SO and PO
u.ve Utility of SU / PU when SU i transmits to PU j in channel b
X 0 Convergence error / Time index
b & Price per unit of data transmitted on channel 4 in link /;,
Py &7 price per available channel b, data price between i and j
O;ir , O,j-"d SU i own direct experience and indirect experience with j

In CDNA, this is enforced by the PO and SO that coordinate
the allocation of channels and PUs for the transmission of SUs.
Thus, the interference between PUs and SUs can be avoided.
The cooperation agreement between the PO and SO relies on
resource pricing and revenue sharing to distribute the benefits
of this cooperation. This is a reasonable assumption as it might
be based on an agreement between companies, in which, in
turn, the PO would incentivize the PUs to participate. Since
the available resources (data and spectrum) are limited, pricing
is used to allocate resources fairly to SUs with respect to their
initial purchased data plan. The notation used in the paper is
summarized in Table L.

B. Probability Model for Primary Services

We model the activity of primary services since SU trans-
mission on band b € B will depend on the availability of the
band. As shown in [24]-[26], primary service traffic can be
modeled as a two state ON-OFF process, where ON means
that the band is occupied by primary services and OFF means
that it is available for opportunistic access by SUs. Let us
denote the probability that band b at link /;; is in an OFF
state by aﬁ-’j and the probability that band b at link [;; is in an
ON state by (1 — af;).

C. Link Capacity and Data Volume

Following a widely used model [27], the power propa-
gation gain from SU ¢ € N to PU j € M is gi; =
G- di_ja, where (3 is an antenna-related parameter, « is the
path loss factor, and d;; is the distance between the two
nodes. Let us assume that the transmission power at SU ¢
is P;, and that data transmission is successful only when the
received power exceeds a threshold P, ie., P; - g;; > Pp.
Thus, we can obtain the transmission range of the SU i as
RT = (8- P;/PL)Y/. Similarly, suppose that the received
interference at PU j can be ignored only when its power is
less than a threshold PJ . The interference range of PU j can
therefore be obtained as R} = (- P/ PL)Ye where k € N
is an adjacent interfering SU. According to the Shannon-
Hartley theorem, if SU ¢ transmits data to PU j using available
band b, the link capacity will be

cij = logy (L + Pi - gij/7) (1)
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Fig. 2. Data and spectrum trading policies: (a) Centralized scheme. (b) Hybrid scheme. (c) Distributed scheme.

where the bandwidth of band b (W? = W = 1) and v is the
Gaussian noise power at PU j. In the following section we
will address the transmission constraints to avoid interference.

Let us assume that SU ¢ and PU j have a contract with their
operator for data volumes @,; and @,;, respectively. By using
the Shannon capacity model, the data volume transmitted
between SU ¢ and PU j is denoted as

Qij = ¢ijTij 2)
which varies with the duration of the connection 7;;. The

framework for data and spectrum trading is elaborated in the
sequel.

IV. DATA AND SPECTRUM TRADING FRAMEWORK DESIGN
A. Interference Constraints and Trading Topology
The available bands will be allocated for data transmission

to avoid interference between different links. We denote

)

2= 1, if ¢ can transmit data to j on band b 3)
— 10, otherwise

Let B; C B denote the set of available licensed bands
at SU ¢ € M. We define the set of PUs in the transmission
range of SU i € A that can receive in band b € B;, as

T = {jldi < Rl ,j #i,b € Bi}. )

Similarly, the set of SUs that can interfere with the reception
of PU j on band b is denoted as

TV ={kldj <RL k£ j,be BN B, TR A0} (5)

where By, N B is the set of licensed bands available to SU %
and PU j, and 7;? # () indicates that k has a PU to which it
can transmit interfering with reception at j.

Based on the previous notations, we present the interference
constraints. An SU 7 € N will be associated with a PU j € M
on at most one band b at a time, and a PU j € M cannot
receive from multiple SUs on the same band,

b b
: b < b < 1.
1 Zb Zje?’f xl] — 1 and Z{ﬂjGTib} iE” — 1 (6)

Interference between adjacent SUs must also be considered.
According to (4), we note that when SU i € N is transmitting
data on band b € B;, any other SU that can interfere with the
reception of PU j cannot use this band. Thus, we have the
following constraint,

.ot b b .
120 a7+ P p, <1, keZjk#i. (7
Let us denote by ti?j the association between SU i € N and
PU j € M on a particular channel b € B for data and spectrum
trading purposes with

= 1, if ¢ associates with j on band b (8)
i — 10, otherwise

The trading association must satisfy the constraint,
ti-’j < xé’j. The trading topology T = [ti?j] provides information
on the existing trading associations throughout the network.
We assume that separate channels are used for the transmission
of control messages between SUs and PUs for the association
process. Thus, these messages do not interfere with data
transmission.

B. Problem Formulation

Data and spectrum trading involves the PO, SO and their end
users. Besides, each SU ¢ has minimum requirements in terms
of capacity cpin,; and availability of service duration 7,
that a PU j must satisfy,

b
a;;Cij 2 Cmini )
>

Tij (10)

The previous requirements result in the following demand
for data volume from the SU: Qmin,i = Cmin,iTmin,i-

In this architecture, transmission from the SU to the base
station (BS) is conducted in two hops by a decode and forward
scheme: SU—PU and PU—BS. Let ),; denote the available
data of PU j. Then, the data volume transmitted between
SU i and PU j is a?;Qi; < Qqj. where af; is the channel
availability in link [;; and @;; is given by (2). Based on the
requirements of SU ¢ in the first hop (9)-(10) and transmission
availability in the second hop, the PU will decide whether it
accepts or not the association. After the PU relays the data
from the SU, its data volume is reduced to (Q,; — aﬁ?j Q;; and
the data of SU i is extended to Q,; + a2;@;;. The relaying
process is illustrated in Fig. 1c when SUs ¢; and 5 get
associated to PU j. If PU 5 does not transmit the agreed-on
data its reliability will decrease and so will the trustworthiness
of the connection. Second link transmissions will be scheduled
by the primary operator (PO) and their analysis is beyond the
scope of this paper.

In the following subsections we present different policies
for data and spectrum trading based on centralized, hybrid and
distributed resource allocation. These policies rely on different
revenue-sharing schemes between the PO and SO (¢), the PO
and PUs (77), and the SO and SUs (o) as illustrated in Fig. 2.
In these schemes (from left to right), the PO and SO delegate
trading progressively to their end users and adopt more flexible
trading polices to reduce complexity. The association between
SUs and PUs depends on the trustworthiness of the connec-
tion p, which will also impact the level of revenue share. For
clarity of presentation, first we design each trading framework
for a given trustworthiness p and revenue share ¥ (p) = 9,
n(p) = n and o(p) = o, and then we elaborate in detail the
trust relationships and their influence on the revenue share in
Section VL. By backward induction, we analyze the strategies
of the different parties involved in the trading for each scheme.

Tmin,i
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1) Centralized Scheme: Based on the SUs’ demand for data
volume and QoS requirements, the SO identifies the necessary
channels and available PUs to satisfy the demand. It then
negotiates the price for these resources with the PO. Once both
parties agree, the SO assigns to each SU the channel and PU
that satisfies its QoS requirements. Finally, the PO rewards the
PU for sharing its connectivity. In this scheme, as illustrated
in Fig. 2a, the service is guaranteed by the operators through
pricing.

Suppose that the price per unit of data transmitted on
channel b € B in link /;; is pi.’j. The utility of the SO is defined
as the difference between the social welfare in the secondary
network and the price paid to the PO for the resources,

Us = Zz 1 Zj 1 Zb 1 U UpUaleU

where Ubj is the utility of the SU ¢ transmitting to PU j on

channel b. It provides the value SU i gives to the initial data
volume @),; and demanded data volume Q;;,

Up = t2;pij 10g(Qoi + a2;Qij)

and 0 < p;; < 1 is the trustworthiness of the connection.
Its calculation is elaborated on Section VI. Pricing is used to
allocate the resources fairly to SUs with respect to their initial
purchased data. Users who have purchased a higher amount
of initial data value the resources more and, thus, they will
have more chances to get additional resources.

Given the price pw announced by the PO, the centralized
optimization problem at the SO is as in (13), where t pro-
vides the channel allocation and SU-PU association and Qaj
is the available data at PU j. This optimization yields the
optimum trading topology T* = [(tf)*] and data traded Q7.

(11)

(12)

N M

max1£2mze Us = Z Z Zt” (pij log(Qoi + a”QU)

=1 j=1 b=1
*pijaijQij)
subject to t?; < al;, b, € {0,1},ieN, €T bEB; N B;
(6), (7),(9), (10)
Qmin.i < a};Qij < Qaj (13)

The SO will negotiate with the PO the price for the data
and channels needed to satisfy the SUs’ optimal demand.
This optimization problem is a mixed-integer linear pro-
gramming problem with complexity O(NME), It can be
optimally solved with standard algorithms (e.g., sequential
fixing algorithm [29], branch and bound [30]) or software
(e.g., CPLEX [31] and MATLAB) for small scenarios.

Let r;; denote the incentive in monetary units to compensate
PU j for forwarding the data of SU ¢. The incentive is defined
as rij = (t2,)*n®o;al;Q7;/Qaj» where 7 is a revenue share
between PO and PU, ®,; is the price of the data plan of PU j
and @Q,; is the available data at PU j. Physically, this means
that the overall data forwarded will be compensated with an
amount proportional to the price of the remaining available
data. The utility of the PU is

Vi = (t8)" pjilog(Qoj — al;Q5;) + 1ij

where pj; is the trust of PU j in the connection requested
by SU i, and e; is the energy cost for serving as an access

point. The details on the trust relationships are provided
in Section VI.

—e€; (14)
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Algorithm 1 Centralized Data and Spectrum Trading

1: PO announces an initial price pi-’j and a revenue share
n with PUs

2: SO solves (13) for current demand and price pi-’j to obtain
(T*)* and Qj;

3: PO calculates the revenue r;; for PU j for forwarding
data Q7;

4: PO calculates its utility in (15)

5: SO and PO negotiate the price p?j as follows:

6:If Us >Up +x

7 PO announces a new price p?j — pfj + Apfj

8 Go back to 2)

elseif Us < Up- x

10: PO announces a new price pgj — p?j— Aplfj

11:  Go back to 2)

12: elseif |Us — Up| < x

13:  The optimum association (T?)*, data Q}; and trading

price for the data and channels (p,i-’j)*are obtained
14: end

Ry

Next, the utility of the PO is defined as the difference
between the payment from the SO and the incentive offered
to each PU,

UP_Zz 123 121: 1

The PO and SO negotiate the price p iteratively and in
parallel for each SU i € A and PU ] € M in channel
b € B as outlined in Algorithm 1. In each iteration of the
negotiation process a new association (tfj)* and Q; are
obtained solving (13) for the new negotiated price. After
successive negotiations an agreement is reached” and the
agreed price is (pﬁ-’j)*. The convergence speed of the algorithm
can be controlled by tuning the values of the convergence
error y and Ap . A fine grained adjustment of Ap will result

into smaller y but slower convergence. The detalled proof of
convergence is shown in the Appendix. A similar collaborative
negotiation process is used in [36] to quantify the incentives
for cooperation between cellular and small service operators.
The negotiation mechanism leads to fair sharing of the benefits
in each joint access network decision. For a comprehensive
survey on pricing theory for spectrum trading, see [37].

Assuming that I; iterations are needed to reach the agree-
ment, the complexity of this algorithm is O(I; (NMB + NM +
NMB)), where the first term inside the inner parentheses
is the complexity of solving problem (13), the second term
is the complexity of calculating the PU reward for serving
each SU, and the third term is the complexity of calculating
the PO utility.

The centralized scheme is provided as a benchmark. In the
next section, the SO and PO will progressively delegate
the trading to the SUs and PUs to reduce the complexity of
the problem but still receive some revenue.

2) Hybrid Scheme: In the hybrid scheme, the SO and PO
negotiate the price for the channels while the SUs and PUs

*bb

p”au ” -7y (15)

2Let us recall that the cooperation between the PO and SO relies on resource
pricing and revenue sharing to distribute the benefits of cooperation among the
parties involved. The condition to reach an agreement is |[Us — - Up| < X,
where « indicates the sharing of benefits between PO and SO, and x is the
convergence error. For simplicity, we have assumed the benefits are shared
equally (i.e., o = 1). This requirement is used as a stop criterion in the
algorithms presented in the paper. Nevertheless, our scheme admits any other
sharing of benefits through parameter a.
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negotiate the price for the data. The PO allows PUs to trade
with their data and benefit from the transaction. Each SU
selects the most convenient PU, i.e., the PU with sufficient
data availability and service duration to meet its QoS require-
ments. After the price and amount of data traded are agreed
on, the SO determines which channels are needed for each
SU-PU link to meet these requirements. The SO then nego-
tiates the corresponding price for these channels with the
PO and allocates them to each SU-PU link for data trans-
mission. Finally, the PU pays the PO a percentage of the
revenue earned in trading the data. This scheme is illustrated
in Fig. 2b.

By abusing the notation, let us denote by ¢;; = 1 when there
is a trade between ¢ and j (Q;; > 0), and t;; = 0 otherwise.
The utility of the SU is redefined to include the data trading
price 7;; between SU ¢ and PU j as,

Uij = tij(pij 10g(Qoi + Qij) — ijQij) (16)
where (Q;; is the data traded. Notice that the data traded does
not consider the channel that will be later assigned by the SO.
The PU will sell its data volume in return for profit. This profit
can be defined as the gain from serving an SU and the price
charged for selling the data. Thus, the utility of a PU when
selling data volume @ j; is
Vii = tij(pjilog(Qoj — Qji) + 1mijQji —ej)  (17)
where 7 is the revenue share between the PO and the PU.
Considering the connectivity requirements of the SU and
the price of the data m;;, the SU optimization is as
follows,

m?x%mze Uij = tij (pz] IOg(Qoz + QU) - WijQij)
iJrig
subject t0 Qmin,i < Qij < Quji, (10) (18)

where Qumini = Cmin,iTmin,; and Qqj; is the available data
PU j is willing to share with SU 4. In response to demand Q7;,
we can then formulate the PU optimization problem
as
maximize Vj; = t;(pjilog(Qoj — Qji) + nmjiQji — €;)
i

subject to ) Qji < Qajs Qmin,i < Qi <Qf (19

where the first constraint indicates that the total data volume
sold by PU j cannot exceed its available data volume, and the
second constraint guarantees that the data sought satisfies the
demand.

Optimization problems (18) and (19) are solved iteratively
until the optimum values ¢7; and ();; are obtained as detailed
in Algorithm 2, together with the negotiation of the data
price 7;;. The utility in (18) decreases linearly with 7;; and
in (19) 1ncreases linearly with respect to the same variable.
Thus, they intersect at a single point ;. Then, the SO
assigns the channels to maximize its utility which is defined
as

N M B
= b b b b
Us = Zi:l Zj:1 Zb 1 UZJ_t i€ijdij (20)
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Algorithm 2 Hybrid Data and Spectrum Trading
1: PU sets an initial data price m;; and Qaji = Qaj
2: SU solves (18) for the current price 7;; to obtain T*
and Q7;
:PU solves (19) for the previous demand and obtains Q7;
: Update Qqji = Q
: Go to 2) until Q” Q]Z
: PU provides a new price 7;; as follows:
I Uiy > ‘/ji+X/
PU announces a new price m;; «— mi; + Amij
Go back to 2)
s elseif Us;; < Vji—
PU announces a new price 7;; «— mij—
Go back to 2)
10: elseif |U;; — Vii| < X'
11: The optimum price 7
12: end
13: PO announces the channel price £?;
14: SO solves (21) for channel price €;;
optimum channel allocation (Tb)
15: SO and PO negotiate the price 6
16: If Us > Up + x
17: PO announces a new price sﬁj
18:  Go back to 10)
19: elseif Us < Up— x
20: PO announces a new price sﬁj
21:  Go back to 10)
22: elseif |Us — Up| < x
23:  The optimum association (T")*, data @;; and trading
price for the data and channels (e’i’j)* are obtained
24: end

Aﬂ'i]‘

RNV E DD ED

+; and data Q;; are obtained

- to obtain the
. as follows:

— E?j + A&‘?j

— eli— Ael;

where 5 - is the price per available channel charged by the PO.
The SO optlmlzatlon problem is as follows

N M B
maxtlmlze Us = Z Z th (pijlog(Qoi + az]Qw)
=1j=1b=1 z]( lJ7r1]+€ ))
subject to t — tfj, b,vb € B; N B;
tb < a3, (6), (7)
Q;; < ay,Q3; 21

The frequency bands will be reused by SUs to reduce
costs and assigned to the most profitable links to satisfy the
negotiated data needs. This optimization problem is an integer
linear programming problem and can be optimally solved in
polynomial time using standard algorithms (e.g., sequential
fixing algorithm [29], branch and bound [30]) or software (e.g.,
CPLEX [31] and MATLAB).

Finally, the PO calculates its utility as

vp=30 S S -

) Ur; ] lj Qz]
+ () akel,  (22)
where 7 is the revenue share between the PO and the PU.

The PO and SO iteratively negotiate the price per available
channel and the optimum value (e fj)* is obtained when |Ug
— Up| < x. The selection of the step price Ac® ;; heeded
for the convergence of the price negotiation follows the same
reasoning as the proof of convergence for Algorithm 1 in the
Appendix. Due to space limitations the details are omitted.

In this scheme, the price charged to the SO and SUs per

channel and unit of data traded is p?; = m;;+€2;/Qi;, and the



1508

incentive that PU j receives for sharing its resources is 7;; =
7 Q5. Since the channel is allocated to SU-PU links
after the data negotiation, the uncertainty surrounding the final
amount of data transmitted is higher than in the centralized
approach. To compensate for this uncertainty, the price should
be reduced accordingly as 7;; < ®4;/Qq;-

This scheme is outlined in Algorithm 2. Let us denote by I
the number of iterations needed to solve the SU and PU opti-
mization problems, and by I} the number of iterations for the
PO and the SO to reach an agreement. Then, the complexity
of this algorithm is O(Ix(N™ + NM) + I5(NMP + NMB)),
where the first term is the complexity of solving (18) and (19),
respectively, and the second term is the complexity of solving
(21) and (22), respectively. The complexity of Algorithm 2 is
significantly reduced compared to Algorithm 1.

C. Distributed Scheme

In the distributed scheme, the PO and SO delegate data and
spectrum trading to their respective users. In other words, SUs
negotiate the price for trading data and channels with PUs.
The PO and SO agree on an initial revenue share for their
cooperation and assist their users in the association process
by providing information on the available channels. They
both expect to obtain additional benefits from the trade. This
scheme is shown in Fig. 2c.

Let us assume that b € B; N B;. The utility of the SU and
PU are redefined, respectively as,

Uf; = ti;j (pij log(Qoi + G%Qij) -1 - i)p?ja?jQij) (23)
Vi = ti;(pjilog(Qoj — a;Qji) + npijai;Qji — ej)  (24)
where pfj is the price per channel and unit of data trans-
mitted and o is the revenue share between the SO and SU
(the SO compensates the SU by paying a percentage of the data

cost for transmitting in the primary network). The optimization
problem for each SU is formulated as:

m?bxirnize Uibj = t% (pijlog(Qoi + aszij)
—-(1- U)pgjangij)
subject t0 Quin;i < Qij < Quji, (10)

And the optimization problem for each PU is formulated as:

i]inj

(25)

mabxiglize Vﬁ = (t?j)*(pji log(Qo; — aijji)
Pij,Wji

b b
+npiai;Qji — ej)
subject to ZZ Qji < Qujs Qumin,i < Qi < Qj;

To solve the previous optimization problems distributively and
with low computational complexity, we develop a distributed
data and spectrum trading algorithm (Algorithm 3), described
in the next section, based on matching theory. This algorithm
provides the optimum (ti-’j)*, 7; and (pi’j)*

Let us assume that the PO and SO agree on a revenue
share 1. Then, the utility of the SO is

2 DD DD DRI (AR AR Ao

(26)

where o is the percentage of the price granted to the SU.
Accordingly, the utility of the PO is given by the revenue
share with the SO ¢ and the percentage 1 — 7 of the gain
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TABLE 1T
REVENUE SHARING POLICIES

Centralized Hybrid | Distributed / Matching
PO—PU | 50 ,,a;0,/0,| 17,9, np;a;0,
SO=P0 | plajo, | alel | ywi-oplalo)
SU — PU _ 7,05 plalo,
SO — SU _ _ oplal0,
TABLE III
COMPUTATIONAL COMPLEXITY
Centralized Hybrid Distributed / Matching
(Algorithm 1) (Algorithm 2) (Algorithm 3)
OUL(NB+NM + | OL(N'+NM)+ |  O(NMBI(log(MB) +
NMB)) L(NMP+NMB)) log(NB))

obtained by the PU for trading its data,

N M B
b b bk b
Up = 27121 ijl szl YUy — () o (pi;) ai; Q%)
b \* b \x b *
+(t5;) (1 = n)(pi;)"ai; Qs
The optimum revenue share ¢)* is obtained iteratively when
|[Us — Up| < x. The revenue-sharing policies for the three

schemes are shown in Table II, and their complexity is
summarized in Table III.

V. JOINT DATA AND SPECTRUM TRADING
MATCHING ALGORITHM

Our next goal is solving the distributed data and spectrum
trading problem (25)-(26) with low computational complex-
ity to capture network dynamics. In a dense CDNA it is
desirable to solve resource allocation in a decentralized and
self-organized way to facilitate SU-PU associations and data
and spectrum trading decisions without having to rely on
a centralized controller. One suitable tool for developing
decentralized and self-organized solutions, which can solve
the optimization problem and avoid combinatorial complexity,
is the framework of matching games [32]. In this regard,
we consider matching theory to solve the distributed SU
and PU optimization problems in (25)-(26), which involve
SU-PU associations, channel allocation and price for data and
channels as explained in Section IV.B3. In a matching game
two sets of players must be assigned to each other according
to their preferences. Each player ranks the players in the other
set using a preference relation. Therefore, we formulate the
problem as a two-sided many-to-one matching game in which
each SU i € NV can be associated with only one PU j € M
that satisfies its QoS requirements. In addition, each PU can
admit a certain quota of users served on different channels
Qo2 aijﬁ < Qq;). SUs and PUs rank one another based
on their respective utilities defined in (23) and (24). In the
sequel, we develop the matching algorithm to solve the data
and spectrum trading distributively for a snap shot of the
network, and in Section VII we present the dynamic tracking.

A. Data and Spectrum Trading Game

We formally define the data and spectrum trading game
by the tuple (N, M, B, =7, =m). Here, == {>;}icn and
=m= {>;}jem denote, respectively, the set of preference
relations of SUs and PUs. For any two PUs j, j/ € M and
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two channels b, b € B, the preference relation »; for SU 4
according to (23) is defined as: (j,b) = (j, V') < Ul > Ul
and (j,b) =; (/,b) < U}, > UP, Srmrlarly, the preference
relation >~ ; for PU j over two SUs i, i € N, and two channels
b, b’ € B according to (24) is defined as: (i,b) =, (i,0') <

V) > VY and (i,b) =; (i',b) & Vi > VP,

Definition 1: A many-to-one matching problem in CDNA
is a function y from the set NUMUZB into the set NUMUB
such that

1) j = p(i, b) if and only if ¢ = pu(j, b),

2) |p(i, b)] = 1 and |u(j, b)| = 1,

3) >, lu(i, b)) =1 and >, (4, b)] < min(B,ng;) where
B is the number of channels and n,; is the number of SUs
that can be served by PU j with Q.

4) |u(i,b)| + Zkezb( )|u(/€ b)] < 1 where I( 1) 1s the

set of SUs that can interfere with the reception of y(i,b) on
band b.

Definition 2: A pair (i, j) ¢ pu where i € N, j € M
is a blocking pair for the matching p, if () (j,b) >=;
(u(i,0),b) or (j.b) >; (u(:,0"),0"), and (i) (i,b) >;
(u(4,0),0) or (4,b) =; (u(4,0), ). Accordingly, a matching
is blocked by (¢, j) when SU i and PU j prefer each other
to their current matching on the same or different channel.
A matching p is stable if and only if there is no blocking pair.

A matching solution for the data and spectrum trading game
is stable if after the SU and PU agree on the amount of
data and price for transmission on a particular channel, there
are no SU-PU associations or channel allocations that will
improve the current matching. In other words, the utility of
the SU and PU in (23) and (24) will not be increased by if
another PU or SU or another channel is selected.

B. Distributed Data and Spectrum Trading Algorithm

To solve the formulated data and spectrum trading game,
we propose a novel distributed algorithm (Algorithm 3) that
allows the players to self-organize into a stable matching
that guarantees their connectivity requirements. The proposed
algorithm consists of two main stages: Stage 1 focuses on
matching and price initialization and Stage 2 determines the
matching and trading price.

First, we assume an initial price for the data pfj (0). This
will be updated later on based on data demand and supply.
In Stage I, each SU ¢ selects for every available channel b
a set of PUs that satisfy its QoS requirements, denoted by
set M?, and sorts them in decreasing order according to the
utility function in (23). Similarly, each PU j selects a set
of SUs denoted by ./\f;’ in decreasing order according to the
utility in (24).

The data demand and supply functions for each potential
SU-PU association are obtained by differentiating the utilities
in (23) and (24) with respect to );; and @);; and making them
equal to zero [33], respectively,

1 Dij
DY = Qi = 5 | 2~ Qu
T ay (pé’j(l—a)

St — Qi =— | Qoi — J
e ai-’j( 7Pl

The demand and supply functions depend on the chan-
nel availability a at link l”, the trustworthiness of the

connection p;;, the data price p”, the price compensation by

27)

(28)
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Algorithm 3 Distributed Data and Spectrum Trading

1: Procedure — Price calculation

2:  for each SU i:

3: for each j € M?:

4: Obtain local data demand (27), supply (28), and
learning rate (30)

5: Obtain price pfj (6 + 1) using (29)

6: while|p?; (6 + 1) —p};(5) | > € do

7: Update data demand (27) and supply (28)

8: Calculate learning rate wo; (30) and update price

pfj (6 + 1) using (29)

9: d=0+1

10:  end

11: end

12: end

13: Stage 1 — Initialization

14: Initialize the price to p?j(O)

15: Each SU ¢ chooses a set of PUs on channel bM?
following >; as in (23)

16: Each PU j selects a set of SUs N following >
as in (24)

17: Obtain the pricep?; () for the initial demand and supply

18: Obtain U and V{’ with the new price and reorder M?
and V] b

19: Stage 2 — Matching and price determination

20: Each SU ¢ issues proposals to its preferred PU, and
the PU accepts or rejects the proposal

21: Calculate price (29) for current matching z with M5 (1)
and N7 (1)

22: Obtain Uf’j and V]’; with the new price and reorder M?
and N7

23: Go back to 20 until MY(p) and N () remain
unchanged for two consecutive iterations

24: As result, (t%,)*, (p?;)* and (Qy;)* are obtained

the SO ¢ and by the PO 7, respectively, and the initial amount
of data purchased Q,; and @Q,;, respectively. The calculation
of the trustworthiness is elaborated in Section VI. SUs and
PUs exchange their demand and supply per channel b with
their selected counterparts to accurately estimate the price. The
total data demand and supply on channel b at equilibrium is

Zler ZJGME; Db = Zzer ZjeMb S and, the equilib-
rium prlce is derrved 1terat1vely using the followmg equation,

P01 =0+ (3, X PO -5500)
(29)

where the price in the next iteration is the difference between
demand and supply at time &, weighted by the learning rate
w and added to the price in the current iteration. This pricing
function adjusts the demand and supply until the price con-
verges to the optimal price. The stability of the price depends
on the learning rate w; which is analyzed in Section V.C.
Next, each SU and PU updates the utility according to (23)
and (24), respectively, with the new price pg’j and re-orders
its lists of preferences. After the initialization, the matching is
formed in Stage II. Each SU ¢ sends a proposal to its preferred
PUs as in M The PUs accept or reject the proposals
according to the1r preferences as per ./\/ This process is
repeated until all SUs are matched to a PU or rejected by
all their preferred PUs. The new price is obtained by (29) for
the current matching with /\/l ;(p) and NV b( ). The PUs then

broadcast the new price p”, which 1ncludes information on
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the allocated channels and selected SUs so that adjacent PUs
will not allocate the same channels if there is interference.
SU and PU preferences may change with the new matching
and, if this happens, they will need to update their list of
preferences. The algorithm terminates once M? (1) and N7 (1)
remain the same for two consecutive matchings. As a result,
the trading topology (t%,)* = {1|i € NP(u),j € Mi(u)}
is obtained together with the optimal price (pfj)* as in (29),
for the optimum data transmitted per unit of spectrum (Q);;)*
obtained by (27)-(28) at the equilibrium.

C. Stability of the Proposed Algorithm

Let us first analyze the externalities of the data and spectrum
market.

Remark 1: The proposed data and spectrum trading game
has positive and negative externalities.

Indeed, the preferences of SUs and PUs change as the game
evolves. In CDNA, the more PUs participating in the market,
the more likely an SU will find a good match and vice versa.
We study the externalities by focusing on the local network
effects of SUs and PUs (local CDNA).

For an SU i € N7 (u):

o A new available PU j' is a positive externality if it
increases U}, j € MY(u) due to any of the following
reasons: a) 3i’,i" € NP(u)/(j',b) =« p(j,b), hence
the quality of the connection between SU ¢ and PU j
improves, or, b) (j/,b) =; p(j,b) and, thus, M? =
§' U M?, so the price pfj decreases since the supply
increases for the existing demand.

o By contrast, the arrival of a new SU 4’ is a negative
externality if Uibj decreases due to any of the following
reasons: a) 35,7 € M8(u)/(i’,b) =; p(i,b), so this
new association may reduce the quality of the connection
between SU ¢ and PU j, or, b) (i’,b) =, u(i,b) and, thus,
./\/Jl? =3 UJ\/}’, so the price p,’i’j increases since the demand
increases for the existing supply.

The effects are the opposite for a PU j. The pricing
mechanism in (29) captures the previous behavior. After a
price is obtained for each potential match, the SUs and PUs
need to update their list of preferences since they may have
changed as result of the previous externalities.

Solutions for finding a stable matching such as the deferred
acceptance algorithm [32] may not converge to a stable match-
ing when the game has externalities. Instead, we prove that
our new matching algorithm converges to a stable matching
to solve the data and spectrum trading game.

Let us first restate the general definition of stable matching
in our game:

Definition 3: A local CDNA served by PU j is stable if
both of the following conditions are satisfied:

1) If SU i ¢ N?(u), then it cannot join the local CDNA.
That is, there is no pair (¢, j) ¢ u in which (¢, b) =, (u(j,b),b)
and (5, b) =i (i, b),b) o (i,6) = (u(.1). &) and (j,b) =
(@, 0), V).

2) If SU i € NJ(u), then it cannot leave the local CDNA.
That is, there is no pair (4, j°) & u, j # j in which (j/,b) =;
(pe(3,0),b) and (2,b) ;- (1(47,0),b) or (j/,b) =i (u(i,b),b")
and (¢,b0) = (u(5",0),0").

Next, we show that the algorithm converges to a stable
matching as previously defined even with externalities.

Theorem 1: The stability of each local CDNA is achieved
after a finite number of iterations and, thus, Algorithm 3 is
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guaranteed to reach a stable matching and price for data and
spectrum trading.

Proof: The proof follows from two considerations. First,
SUs can reach a limited number of PUs in their vicinity due
to restricted transmission ranges, and thus the number of alter-
natives for both SUs and PUs is finite. Indeed, each PU has a
finite number of SUs to form a local CDNA and each SU has
a limited number of CDNAs to switch to. Second, the price
updated as in (29) converges to a stable price [33]. The stabil-
ity of the price depends mainly on the learning rate. The most
common way of analyzing stability is to consider the eigen-
values of the Jacobian matrix of the pricing function in (29).
Following [33], the fixed point pY; is stable if and only if,

0 <@ <14a)(py)’n(l—0)/(piy(n+1-0)) (30)

Recall that this is the criterion used in the selection of w;
in Algorithm 3.

D. Computational Complexity and Signaling Overhead

In the first step, each SU and PU builds its set of preferred
counterparts per channel of size |Mf| = MB and ‘J\fﬂ =
NB, respectively, by calculating the utilities (23) and (24)
for each potential matching. The complexity of calculating
the utilities and ordering the preferences for N SUs and
M PUs is O(NMB(log(MB) + log(NB))). In the worst case
each SU will issue MB proposals to find a suitable PU.
Thus, the total attempts by N SUs will be at most NMB.
Finally, the price is computed in (29), which has complexity
O(NMB), and each PU and SU will reorder its preferences.
The algorithm will terminate after a finite number of itera-
tions I3. The worst case complexity of Algorithm 3 is thus
O(NMBI;5(log(MB) + log(NB)), which is significantly lower
than that of Algorithms 1 and 2.

SUs and PUs exchange their respective demand and supply
per channel with their selected counterparts to calculate the
price, build their preference lists and avoid channel allocations
that might interfere with existing matchings. As mentioned
previously, in the worst case the signaling complexity is
O(NMBIS3). The operators supervise the trading and ensure that
the transactions are reflected in SUs’ and PUs’ monthly bills.

VI. TRUST RELATIONSHIPS IN CDNA

In a real network, SUs and PUs may act selfishly and mis-
behave with the aim of obtaining greater profit. In this section,
we consider trust relationships between SUs and PUs to build
a secure trust network for collaborative data and spectrum
trading. In this regard, we develop a trust mechanism together
with a behavioral-based access control scheme to incentivize
and penalize honest and dishonest behavior, respectively.

Let us assume that if PU j is selfish it may decide not to
transmit the agreed-on data to save battery power degrading
the initial utility of SU 4, Uibj, to Ufj We define the reliability
of PU j as the consistency of its trading agreement given
by & = ULIUY. A selfish SU i may also decide to leave
the network before paying for the data transmitted degrading
the utility of PU j, Vﬁ, to V]l; Similarly, the reliability of
SU i is & = V[V, This calculation considers the most
recent experience with the other party. The calculation of the
reliability based also on past experiences can be obtained using
the exponential moving average as in [38]. The trust of user
1 in the connection provided by user j is denoted by p;; and

is included in the utility function of SU ¢, UZ?’]-, in (12), (16)
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and (23). The trustworthiness of the connection is computed
as follows,

pij = wOHT 4+ (1 — w)Oir (31)
where O™ is user s direct experience with j, Oj7¢ is the
recommendation of other users based on their experiences
with 7 and w is the weight. All these parameters lie in the
range [0,1]. Likewise, the trust of user j in the connection
requested by ¢ is denoted by pj; as in the utility of PU j, VJZ,
in (14), (17) and (24), and is obtained as before.

We model the direct observation by user ¢ of the behavior
of user j using a sigmoidal utility function (Fig. 3) from
behavioral economics [34] used to describe users’ investment
decisions, and extend it to model users’ trading decisions in
CDNA (i.e., how PUs and SUs make decisions about selling
and buying resources based on the potential value of losses
and gains). Recall that in CDNA connectivity is provided by
users who share the residual connectivity of their devices.
We assume that each user advertises its reliability level to
potential counterparts. Then, direct observation by user i of
behavior by user j is,

O;ijir(gj) = 1/(1 + eih(‘fjﬂb&))

where h and ¢ are scaling coefficients, {; is the reliability
of user j and ¢¢; is the reference point. User i perceives
the values O7(&;) > ¢&; as gains and OF" (&) < ¢&; as
loses. Note that the values of the function on both sides of the
reference point are asymmetrical to capture loss aversion —
people’s tendency to prefer avoiding losses rather than acquir-
ing equivalent gains.

Malicious users may lie and give their counterparts a bad
recommendation (bad-mouthing) in order to have exclusive
access to resources. Consequently, users will give more weight
to their own observations than to others’. Besides, to increase
the robustness of the trust evaluation we define the credibility
of the recommender C' based on the number of transactions n
between both nodes. Thus, the credibility of the recommen-
dation given by user ¢/, i’ # i, to user j is

Ci’j = ’I’I,i/j/(TLi/]’ + Z];é]/ ni’j’)'

This expression is used to weight the indirect opinions
provided by other users proportionally to the number of
transactions conducted. Since SUs may have different connec-
tivity requirements which may result in different expectations,
we define a similarity factor S;; between SU i and i’ to
indicate the similarity between two users and the relevance
of the recommendation.

Thus, the recommendation is obtained as

ind __ E v dir
Ol] - i’;éi S“’ CZ’] Ol,]

(32)

(33)

(34)
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where O%f is observation by user ¢ of behavior by user j
as in (32). It is worth noting that the trustworthiness is
asymmetric, i.e., p;; # pj;. To improve the robustness of the
network to malicious users and encourage consistent behavior,
we define a behavioral-based access control mechanism to
incentivize and penalize honest and dishonest behavior by
users. The PO and SO, respectively, regulate PU and SU
access to CDNA by dynamically adjusting the revenue sharing
parameters 77 and o according to their users’ trustworthiness.
The higher the trustworthiness of the connection provided
(requested) by PUs (SUs), the higher the revenue 71 (o)
offered by the PO (SO). Consequently, the PO compensates
participation by PU j with a revenue share

nj = ZZ pij /pisl

Similarly, the SO compensates SU 7 with a revenue share

oi = Zj pji/pjil

Both operators may also set up a trustworthiness threshold
and restrict access to users who satisfy that threshold.

This two-level trust mechanism which encompasses par-
tially distributed (via local physical interactions) and partially
centralized (via the involvement of operators) trust manage-
ment allows the construction of a robust and secure trust
network for data and spectrum trading purposes completing
the model described in Fig. 2.

(35)

(36)

VII. PERFORMANCE EVALUATION

We present some numerical results to verify our theoretical
analysis, evaluate the schemes and compare them with existing
mechanisms. The experimental environment is Matlab.

A. Settings

We consider a CDNA consisting of M PUs and N SUs
randomly distributed in a 1000 x 1000 m? area. We assume
that each user has a monthly contract for a data volume
of 10 GB. The transmission range and interference range are
set to 500 m [29]. The path loss exponent is @ = 4 and
[ = 62.5. The noise power spectral density is v = 3.34 X
1072°W/Hz at all nodes. The transmission power spectral
density of the nodes is 8.1x10%y, and the reception thresh-
old and interference threshold are both 8.1y on each spec-
trum band. The minimum SINR requirement varies between
[5, 20] dB and the duration of the connectivity varies between
[0, 10]4 minutes. The convergence error x and X’ are set
to 107,

Regarding the return of PUs, the availability a?- of
a licensed band for SU transmission at a certain {oca-
tion has a random probability within (0.5, 1]. We run
Monte Carlo simulations and average the results over
100 iterations.

B. Data and Spectrum Trading Schemes

We assume M = 5 PUs and N = 10 SUs, a revenue
share of 0 = n = 0.7 and B = 5 available channels.
The price negotiation process between the PO and SO is
shown in Fig. 4 for the centralized and hybrid schemes.
The negotiation in the distributed scheme follows the same
tendency and it is omitted for clarity of presentation. The
price is initialized to 0.1. In the centralized scheme, the
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PO and SO negotiate the price p?j per unit of data transmitted
on channel b. For clarity of illustration, we have assumed
the same price for all channels/links pfj = p. The optimum
trading price p* is obtained when the cooperation agreement
is met, i.e., |AU| = |Us — Up| < X, as shown in Fig. 4.
A lower (higher) price may discourage PO (SO) participation
in the trading. Similarly, in the hybrid scheme the PO and
SO negotiate the price per channel ei’] = ¢. In Fig. 5 we
present the negotiation of the data price 7;; between SUs i1,
19 with heterogeneous requirements and PU j. The optimum
price is obtained when |U;; — Vj;| < x’ for i = 41, iz with
x' &~ 0. It is worth noting that since SUs 4; and i have
different requirements the prices for their data transmission
(miy ;)" and (m;,;)* are different. The equilibrium price in the
distributed scheme is shown in Fig. 6 for M = 3 and 5.
Each pair of demand/supply curves represents a local CDNA.
As expected, increasing the price decreases the demand and
increases the supply until the equilibrium price is obtained.
Besides, the higher M (number of supply sources) the lower
the equilibrium price. In Fig. 7 we plot the overall utilities of
the SUs, PUs, SO and PO for the three schemes. In the hybrid
and distributed schemes, the PU and SU reach an agreement
for the trading and, thus, both utilities are the same. In the
centralized scheme the utility of the PU is higher than that
of the SU as the PU is additionally rewarded for transmitting
SU data. In the hybrid scheme the PU and SU only negotiate
the price for the data.
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Since the negotiation does not consider channel availability,
the utility is higher than in the centralized scheme. After
channel allocation, the final data transmitted is lower but
the price remains the same, which reduces the utility. In the
distributed scheme, the PU and SU negotiate the price for data
and channels. With the same revenue share, their utilities are
slightly higher than that of the SU utility in the centralized
scheme. The utilities of the SO and PO are shown for the
three schemes as well after the negotiation agreement. In the
centralized scheme, both operators agree on a fixed price for
the resources, while in the hybrid and distributed scheme,
the PO and SO benefit from the amount of data traded
proportionally to 1 — n and 1 — o, respectively. The highest
utility is obtained with the hybrid scheme as this has the
highest price per unit of data and spectrum.

In Fig. 8 the overall amount of data transmitted is plotted
for each scheme. The highest amount of data is transmitted in
the centralized scheme as the SO reuses available channels to
maximize its utility. In the hybrid scheme, the PU-SU associa-
tion is performed locally for data trading without information
on channel availability. Allocating the channels a posteriori
is less efficient and therefore less data is transmitted. In the
distributed scheme, SU-PU associations are performed in a
self-organized manner with local knowledge of the available
resources (channels and PUs). Thus, the overall data trans-
mitted is higher than in the hybrid scheme. Even though not
all potential associations are accomplished, the overall data
transmitted is slightly lower than in the centralized scheme.

These results are compared to random matching, which
includes random SU-PU associations and random channel
allocation. We can observe that the latter scheme is very ineffi-
cient. Besides, we also consider a minimum distance matching
(MDM) scheme, which considers SU-PU associations based
on shortest distance. Since it jointly produces the SU-PU
associations and channel allocation it performs slightly better
than the hybrid scheme but 30% and 20% worse than the
centralized and distributed schemes, respectively.
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TABLE IV
DYNAMIC RECONFIGURATION
Centralized Hybrid Distributed MCM Random
scenario N | M | B U CPU time U CPU Usu CPU U CPU Usu CPU
sU (s) U time (s) time (s) Su time (s) time (s)
1 10 3 5 | 9.6490 7.6702 11.6007 0.0867 7.8907 0.0961 6.9810 0.0532 6.3798 0.00364
2 9 3 5 8.7932 6.0409 8.7597 0.1244 8.0221 0.0225 7.1601 0.0310 6.0919 0.00293
3 9 3 4 | 7.6563 3.7976 7.6430 0.0672 6.7429 0.0819 5.4280 0.0497 4.0461 0.00210
4 9 4 4 | 7.8919 6.6540 8.7443 0.1226 8.3570 0.0791 7.1674 0.0558 6.3152 0.00468
5 10 4 4 | 8.3441 7.4472 8.8493 0.1126 10.145 0.0725 9.7857 0.0651 9.1327 0.00423
6 4 5 8.9101 21.3824 11.6349 0.1021 8.5382 0.0386 8.3021 0.0584 9.7019 0.00483
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M
Fig. 9. Traded price versus M.
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Fig. 10. Trading efficiency of the hybrid scheme.

In Fig. 9 the trading price per unit of data and chan-
nel is shown for the three schemes. The highest price for
data and channels is obtained in the hybrid scheme. Here
the price is negotiated for a higher volume of data than
that finally transmitted, which reduces @),; and consequently
increases the price with respect to the centralized scheme, i.e.,
mij > ®oj/ Qg . The price for the distributed scheme is locally
adjusted based on demand and supply. Since the supply of
data per local CDNA is greater than the demand, the price is
reduced to attract more SUs.

The trading efficiency of the hybrid scheme is shown
in Fig. 10 for different numbers of channels. The efficiency is
defined as the ratio between the final data traded considering
channel availability and the initial data agreed-on for trading.
Even with an efficiency of 1 the overall data traded in the
hybrid scheme is the lowest of the three schemes. This is
because the data trading association is marked by uncertain
channel availability and the same association is later used for
the channel allocation.

C. Dynamic Data and Spectrum Trading

In this section, we evaluate the performance of our
algorithms under traffic dynamics. The results are shown
in Table IV for different scenarios, which represent differ-
ent observation instants. We consider one traffic change per
scenario (e.g., an SU or PU arrives or leaves or a new
channel becomes available or unavailable). In the first scenario,

Algorithm 4 Dynamic Data and Spectrum Trading
1: Run Stage 1 — Initialization (§ = 0)
2: Run Stage 2 — Matching and price determination
(steps 20-22)

SUs associate with their preferred PU and vice versa,
on matching p

3: while § < dmaq

4:  Run Stage 2 — Matching and price determination
(steps 20-22) and obtain matching 1’

5:  if the matching is stable (u = ')
6: reconfigure the network with p’
7: end

8 pu—pi6=0+1

9: end

N =10, M = 3 and B = 5. In the second one, an SU leaves
the network. Similar changes take place in the other cases.
The computational time of the hybrid scheme is one order
of magnitude faster than that of the centralized scheme but
the distributed scheme reconfigures the network two orders
of magnitude faster than in the centralized scheme for most
scenarios considered, and even three orders of magnitude faster
when there are more resources available.

The low computational time of the matching algorithm
makes it a promising option for tracking traffic dynamics
and reconfiguring the network in real time. The results
are compared to MCM and random matching. MCM is
about 15% inferior compared to the distributed scheme
and its computational time is about 20% lower. Meantime,
the random matching has the lowest computational time,
although its performance may drop a 40% compared to that
of centralized scheme.

In order to make a fair comparison of the schemes we have
considered that the length of the list of preferences for each
SU i and PU j is |M7| = M and ‘J\/ffz N, respectively.
Nevertheless, the length of the list of preferences can be
limited to facilitate faster reconfigurability, and the algorithm
can be stopped at any time related to desirable complexity and
performance tradeoffs. Algorithm 4 incorporates the dynamic
tracking of traffic variations into the matching algorithm.

D. Trust Relationships

We evaluate the impact of trust relationships on the price
and overall performance of CDNA. We use the distributed
algorithm with N = 10 SUs, M = 10 PUs and B = 10
channels. We assume that if a user is reliable its reliability
probability ¢ will vary randomly between [0.9, 1] and if it
is unreliable it will vary between [0.5, 0.9]. SUs and PUs
will be willing to connect to their counterparts when the
trustworthiness of the link is p;;, pj; > 0.5, respectively. The
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price of data and channels is shown in Fig. 11 for different
probabilities R; and R; of having a reliable SU and PU,
respectively. If R; decreases, the incentive provided by the SO
also decreases to penalize SU i. Consequently, this reduces
demand and the price decreases to attract more SUs. The
opposite behavior is observed for R; since a decrease in R;
reduces the supply, which will increase the price.

As already mentioned, the PO and SO control PU and SU
access to CDNA by dynamically adjusting parameters 77 and
o to their behavior, as shown in Fig. 12. We assume that
R; = 0.5. It is worth noticing that when R; > R;, the PO
will encourage the PUs to join CDNA with 77 > o since the
trustworthiness is p;; > pj;. The opposite behavior can be
observed when R; < R;. Thus, the access control mechanism
captures the users’ behavior.

In a large CDNA, computation of trustworthiness should be
autonomous to reduce the latency and overhead of exchanging
recommendations. The main properties of trust (asymmetry,
transitivity and composability) can be explored to automate the
trust evaluation process. Regarding the property of transitivity,
if 4 trusts j and j trusts 4’ then 7 can trust i’. We can exploit
this property and obtain i’ recommendation on j given the
similarity S;;» between i and i’. Composability is the ability
to compose recommendations from different users. By using
the previous properties, trustworthiness is expressed as

Pis = Zj'?éj/ﬂij/ pjrir>0 Zi’#i Siif pi’j/‘/)i’j|

where user 7 relies on the recommendations from every user 7’
that has used the same PU j’.

In Fig. 12 we also present the accuracy of the estimation
of the access control parameters when the trust calculation
is automated versus R;. We can see the values of 7 and
o obtained when the system is initialized with 50 and 75 sam-
ples and runs autonomously for 100 samples, compared to
when it is run non-autonomously for 100 samples. In the worst
case there is an error in the estimation of about 2%. It was
observed that such a deviation in the access control parameters
resulted in insignificant differences in terms of the utilities of
users and operators.

(37)
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VIII. CONCLUSION

This paper presents collaborative trading schemes for data
and spectrum sharing that create business opportunities for
users and operators, while enforcing trustworthy relations.
The business opportunities result from harvested data and
spectrum trading between users and operators. Unlike existing
approaches which mainly focus on spectrum access, by defin-
ing joint data and spectrum trading policies, we involve users
in service delivery. The three schemes proposed, centralized,
hybrid and distributed, progressively delegate trading to end
users to favor distributed implementations. The control knobs
that determine these implementations are the revenue sharing
policies 1 and ¢ in the primary and secondary network.

Numerical results show that the hybrid scheme is 1 order
of magnitude faster than the centralized scheme and that the
matching algorithm reconfigures the network two orders of
magnitude faster than the centralized scheme in most scenarios
considered and even three orders of magnitude faster when
there are more resources available. This makes the matching
algorithm a promising option for exploiting available resources
in real time. In addition, the performance of the hybrid scheme
is very close to that of the centralized scheme. By modeling
user behavior in the access control mechanism we preserve a
trustworthy and autonomous trading system.

Data and spectrum trading in CDNA involves many trans-
actions between the PO and SO and their respective users.
Existing blockchain payment systems can facilitate secure
transactions although reducing consensus latency in very dense
networks is an open challenge. Besides, blockchain payments
can provide reliable information on recorded transactions con-
tributing to trustworthiness in CDNA. This work could be used
as a case study to develop simplified payment systems based
on blockchain technology. Besides, it opens future research
opportunities such as developing mathematical frameworks for
reasoning about trust, modeling of user misbehavior, and its
extension to real traffic models.

APPENDIX
PROOF OF CONVERGENCE FOR ALGORITHM 1

In the following we prove that after successive negotiations
the PO and SO reach an agreement ie., |[AU| = |Us -
Up| < x and, thus, Algorithm 1 converges to the optimum
price (p?;)* for each SU i € A" and PU j € M in channel
b € B. For simplicity we assume that users transmit the same
amount of data Q;; = @ and all links have the same price
pg’j =pandn =333, té’j. Let us rewrite the price
update in a compact form as: p(t+1) = p(t)+Ap-sgn(AU(t))
with sgn(AU(¢t)) = —1 if AU(t) < 0, sgn(AU(t)) = 0
if AU(t) = 0, and sgn(AU(t)) = 1 if AU(t) > 0.
If AU(t) > 0, the new price p(t + 1) increases moving
in the direction towards the agreement point. On the other
hand, if AU(t) < 0, the new price p(t + 1) decreases
until the agreement point is reached. Thus, the function AU
is monotone decreasing i.e. JAU(p)/Op < O0Vp and the
system converges eventually to a single global equilibrium
point. The step size required to bring the positions closer
ie. |JAU (t +1)] < |AU (t)] in each case is: a) if AU
(t) > 0 after the price update Us(t + 1) < Ug(t). The new
PO utility must satisfy Up(t + 1) > Up(t) and thus the
required price step is Ap > (p — nP,/Q)(nQ/N'Q" — 1);
b) if AU (t) < 0 after the price update explained above
Us(t + 1) > Ug(t). To reduce the agreement gap, the new
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PO utility must satisfy Up(t + 1) < Up(t) and therefore

the price step Ap > (p — 1P,/Qa)(1 — nQ/n'Q"). After
successive iterations the agreement price is reached and the

optimum price is p* = (plog(Q, + Q)/Q +1nP,/Q4)/2.
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