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ARTICLE INFO ABSTRACT

We investigate self-induced parametric amplification that arises from dispersive nonlinear coupling between
degenerate modes in systems with circular symmetry that rotate about the axis of symmetry. This phenomenon
was first observed in micro-electromechanical ring/disk gyroscopes, where it provided enhanced readout gain
using purely passive nonlinear effects [Nitzan et al. [22], 2015]. The goal of this investigation is to provide a
fundamental description of this phenomenon, which is an example where nonlinear dynamics can improve the
performance of a practical device. To describe this behavior, we consider the in-plane vibrations of a thin ring
surrounded by electrodes that rotates about its symmetry axis at a rate Q much smaller than its vibration
frequencies wj,, as is the case in applications. The focus is on the pair of degenerate elliptical modes, one of which
is taken as the drive mode and the other as the sense mode for the sensor. These modes are coupled through both
inertial (Coriolis) and geometric nonlinear effects, as described by general forms of the kinetic and potential
energies that account for finite deformation kinematics, as well as electrostatic effects. We investigate the
specific effects of this coupling on the system performance and its sensitivity when used as a sensor for the spin
rate. Specifically, we show that drive mode vibrations with sufficiently high amplitude affect the sense mode
dynamic behavior in the form of parametric pumping, which leads to a considerable amplification of the sense
mode response. As this response amplitude is proportional to €, it results in a substantial increase of the
gyroscope sensitivity with respect to the external angular rate. We also illustrate that the effects of the sense
mode vibrations on the drive mode dynamics can be neglected in the model when Q/w, < 1. Finally, we
illustrate the applicability of our results by considering the dynamic response of a representative MEMS
gyroscope model and quantifying the predicted benefits of these nonlinear effects.
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power consumption, and high quality factors [8,9]. Generally, such
devices are based on a micro-mechanical resonator with at least two
matched resonant modes that interact via Coriolis effects [6].
Specifically, the resonator is forced to oscillate in one of its vibrational

1. Introduction

Studies of the linear and nonlinear vibrations of systems with
circular symmetry have a long history and include papers on the

transverse vibrations of plates, shells, membranes, rods, and tubes as
well as the in-plane vibrations of plates and rings; see [1-4] and the
research cited therein for a sampling of these works. This class of
systems has applications in a number of areas such as antennae, pipes,
and, most relevant to the present work, wine glass vibratory gyroscopes
that use Coriolis effects to measure spin rates [5,6].

In recent decades there has been a desire to develop smaller versions
of these gyroscopes, spurred by technological advancements in fabrica-
tion techniques and by increasing demands in commercial and military
applications, which have led to a number of important advances in this
technology space [7]. Prominent among these are developments in
micro-electro-mechanical-system (MEMS) vibratory gyroscopes, which
have shown great potential due to their small dimensions, favorable

modes, called the drive mode, while the external rotation at Q gives rise
to Coriolis coupling between this mode and its symmetric partner, the
sense mode, which is not driven by an external input. The vibrations of
the sense mode thus have an amplitude proportional to Q (when it is
small as compared to the gyroscope operation frequency), and by
measuring the amplitude of the readout signal from the sense mode,
one can estimate Q.

Improving the precision and accuracy of MEMS vibratory gyro-
scopes is a challenging task involving the precise matching of high-Q
modal frequencies [10-12], compensation of quadrature errors that
arise from coupling of the drive and sense modes [13-15], and
optimizing the geometry of the resonator in order to achieve higher Q
factors [16,17], to name a few. Also, all such devices are operated in the
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linear operating regime, so as to avoid frequency shifts associated with
nonlinearity. In this light, flexural-mode ring [13,18] and disk [19-21]
vibratory gyroscopes offer significant advantages due to the inherent
symmetry in their geometries and, consequently, symmetry of their
drive and sense modes. Recent work on disk resonating gyroscopes
(DRGs) has experimentally demonstrated that the gyroscope sensitivity
to the external angular rate can increase significantly when the
gyroscope is driven into a nonlinear operating regime [22]. The authors
hypothesized that the observed phenomenon is due to parametric
amplification [23-25] arising from nonlinear elastic coupling between
the drive and sense modes of the device, which have nearly equal
frequencies. In classical nonlinear vibrations, this is an example of
autoparametric resonance [26-28].

The sensitivity S of a rate gyroscope, that is, the ratio of the
amplitude of the sense signal to the angular rate €, is one the most
important characteristics of sensor performance, since it, and the noise
levels of the device, quantify the resolution of the sensor in terms of the
lower end of the angular velocities that can be detected [6]. Thus, there
is strong motivation to understand, from a fundamental point of view,
the advantageous effects of the self-induced amplification of the sense
signal observed in [22], especially since it appears to be the fortuitous
result of passive nonlinear behavior, requiring no additional sensing or
actuation. This is precisely the goal of the investigation described in this
paper.

Nonlinear modal coupling is a well-known phenomenon in the
theory of nonlinear vibrations and it has been thoroughly studied in a
wide variety of systems [29], including micromechanical systems [30-
33]. It generally occurs in resonators experiencing vibration amplitudes
at which nonlinear strain-displacement relationships, or other non-
linear effects, couple two or more vibrational modes. Furthermore,
specific research on the nonlinear vibrations of spinning ring-like
geometries has illustrated the rich dynamics associated with the in-
plane flexural modes of these structures [34-37]. In this paper we
analyze the dynamic behavior of the elliptical modes in ring/disk
resonating gyroscopes to explain and explore self-induced parametric
amplification in these systems [22]. In particular, we use a model of the
resonator consisting of a thin ring spinning about its axis of radial
symmetry with electrostatic forces arising from capacitive actuation/
sensing schemes. Using finite deformation kinematics, we show that the
elliptical drive and sense modes are nonlinearly coupled through both
stiffness (including electrostatic contributions) and inertial terms. Next,
we show that the general case of mode-coupled dynamics can be
simplified by neglecting the back-action of the sense mode motion on
the drive mode (due to their differing amplitudes), and provide
conditions for which this approximation holds. In this simplified
picture, we discuss the effect of inertial nonlinearities on the drive
mode dynamics and show how nonlinear modal interactions lead to
parametric amplification of the sense mode, and thus to an increase in
the gyroscope sensitivity.

The remainder of the paper is organized as follows. In Section 2, we
formulate a model for resonator geometries that support a pair of
degenerate (equal frequency) n=2 radial modes. In Section 3 we
consider the nonlinear in-plane flexural vibrations of a thin spinning
ring in the presence of electrostatic actuation. A detailed analysis of the
dynamic behavior of the drive and sense modes is given in Sections 3.2
and 3.3, respectively. Finally, in Section 3.4 we illustrate the applic-
ability of our results to a model of the representative ring resonating
gyroscope reported in [18], and concluding remarks are given in
Section 4.

2. Model

In this section we present an analytical framework which can be
used to derive equations of motion for the in-plane vibration modes of
interest for ring/disk resonating gyroscopes. Such a formulation is
advantageous since it can be applied to systems with relatively simple
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geometries, such as a thin ring or a solid circular plate, as well as to
MEMS gyroscopes with less trivial geometries; see, for example, [38].
We start our analysis by introducing a cylindrical coordinate system
(r, 0, z) and consider a gyroscope with generic geometry that supports a
pair of degenerate elliptical modes each of which has two nodal
diameters, which we denote with modal coordinates A and B and mode
shapes described by Z,(r, 8) = £(r)cos20 and Zg(r, ) = £(r)sin26 so that
their nodal diameters are separated by z/4 [22]. Without loss of
generality, we designate these as the drive (A) and sense (B) modes,
respectively.

During gyroscope operation, the shape of the resonator vibration
changes as it experiences displacements in the radial, u = u(r, 0, 1), and
circumferential, v = v(r, 0, t), directions, which we assume to be
independent of the out-of-plane coordinate z. These displacements
can be expressed in terms of the modal coordinates A(t) and B(t) in a
manner that depends on the gyroscope geometry, as u = u(r, 0,
A(t), B(t)) and v = v(r, 6, A(t), B(t)). Generally, both u and v can be
nonlinear in A(t) and B(t). Explicit expressions for u(r, 6, A(r), B(t)) and
v(r, 8, A(1), B(1)) can be obtained with certain assumptions for relatively
simple structures like a thin ring, see Section 3, or a solid circular plate
[2,39,40], while in the case of non-trivial geometries, computing
similar expressions generally requires the use of finite element meth-
ods.

In this paper we utilize Lagrange's method to derive the equations
that govern the drive and sense modes of the gyroscope using general-
ized coordinates ¢, =A, B to express the nonlinear equations of
motion for the gyroscopic elliptical modes. The kinetic energy of the
system is computed using standard methods [41,39] and is given by

r=1 ff Pl—vQY + (7 + (- + Q)P rdrdbdz,

2 JMy (@]
where Q is the external angular rate about the z— axis, p = p(r, 0) is the
resonator material mass density, which is assumed to be uniform in z,
and V is the volume of the resonator body. The potential energy of the
gyroscope consists of elastic Ug and electrostatic U, components. The
electrostatic part results from electrostatic interaction of the resonator
body with the drive/sense electrodes. Generally, the electrode gap size
A is much smaller that the outer radius of the resonator R, and the 2
thickness of the resonator, so that one can neglect the curvature of the
electrodes and apply a local parallel-plate approximation. We also
assume that A is uniform along the gyroscope circumference. In this
case, the electrostatic potential energy becomes

Vpe + Vac®))

2
y=-%2 / dOb(R,, )R, oc T YactO))
2 Jo

A—uR, 0) 2

where b(R,, 0) is the z thickness profile of the gyroscope body along its
circumference, Vpc and Vac represent magnitudes of the bias and
periodic voltages used for the electrostatic actuation and sensing and
€, = 8.85 x 107" F/m is the vacuum permittivity.

Mechanical deformations of the resonator body and the associated
stresses contribute to the elastic potential energy in the form of a
deformation potential Ug. For in-plane vibrations, Uy can be found as,
[391,

1
U= 5 // . (0,,€, + OpgCay + Op€,p)rdrdfdz, 3)

where €; = €;(u, v) and o; = g;(u, v) are the strain and stress in the
body. Hooke's law establishes the well-known relationships between
these quantities,

ok
0, = E"(e,, + vey),
g = E¥(egg + ve,,),
09 = Gey,

(€]

where E* = E(1-/%)" and G are the effective normal and shear moduli,
respectively. In order to analyze the nonlinear dynamic behavior of the
gyroscopic radial modes, one necessarily has to account for higher-
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order terms in the strain tensor €;(u, v). Using finite deformation theory
(see Appendix A) one can show that the nonlinear strain-displacement
relationships, up to the second order in u and v, are given by

ou 1 5f0v >
=t -

or 2 \orr (5a)

2

u av 1 ou u ov
ep=—+—+-|—| +——.

r rod  2\ro0 r rof (5b)
e, =X O v _w udw Oy vOu ud Oud
o ro0 v P2 rrod  rod rod ror ror or or’

(5¢)

Since the resonator displacements u and v are functions of the modal
coordinates A and B, the Lagrangian for the system becomes, after
integration over the resonator volume, L = L(A, B, A, B). By substitut-
ing this form of L into Lagrange's equations, one can immediately obtain
equations of motion for the gyroscopic elliptic modes. In Section 3 we
apply this procedure to a simple model of a thin inextensible ring,
which, as we show, is sufficient to demonstrate the self-induced
amplification phenomenon, and is amenable to detailed analysis.
However, as noted above, this analytical approach is sufficiently
general to be used for analyzing gyroscopes with different resonator
shapes, such as rings with supporting spring elements [18], circular
plates of non-uniform thickness in the z— direction, and other complex
geometries [22,38].

3. Forced nonlinear vibrations of elliptical modes of a thin
spinning ring

3.1. Gyroscope dynamics with fully-coupled modes

We apply the general formulation of Section 2 for analysis of the
nonlinear in-plane vibrations of the elliptical modes of a uniform (p, b,
h, and A are constants) circular ring rotating at a constant speed Q
about the z— axis in the presence of electrostatic forces from electrodes,
as depicted in Fig. 1. Hereafter, we employ a thin ring approximation,
i.e., h < R, where h and R are the ring radial thickness and its mid-line
radius, respectively. In this case we can apply results for the vibrations
of shallow shells [39], and neglect the stress in the radial direction,
o, =0, as well as the shear stress, o,y = 0. The application of these

2,
()

&

Fig. 1. Schematic representation of the system under study: a uniform circular ring
rotating at a constant angular rate Q about the z— axis with segmented electrodes
representing the means for electrostatic actuation and readout. Segmentation of electro-
des is an essential feature of the device structure necessary for producing modal driving
force through V,c(0, 1) and tuning the gyroscopic drive and sense modes via a non-
uniform distribution of the bias voltage Vp(6) [22].

302

International Journal of Non-Linear Mechanics 94 (2017) 300-308

assumptions in Eq. (4) yields oy, = E€g, which is the same expression as
that for the longitudinal stress/strain relationship for the transverse
bending of an Euler-Bernoulli beam. Following the bending theory for
thin shells, we express the radial and circumferential displacements of
any point of the ring as

u(r, 0, 1) = u(@, t),

u(r, 0, 1) = 10, t) + oy (0, 1), 6)

where 6 = r — R is the radial coordinate relative to the ring mid-line,
y, is the circumferential displacement of a point on the ring mid-line,
and y; is the slope of the tangential displacement profile across h.
Similar to v, we approximate the strain field in the 6 direction as a
linear function of &, i.e., ¢, = €y + ¢}y, where ) represents the mid-
line stretching of the ring, while ) represents the strain due to the ring
bending. It is known that the ring mid-line stretching has a negligible
effect on the ring dynamics, so long as the wavelength of the vibration
mode is large as compared with its thickness h [34,39,42]. Since we are
interested in the dynamic behavior of elliptical (n=2) gyroscopic
modes, this condition is satisfied for a thin ring. Therefore, to simplify
the analysis, we make the reasonable assumption that the ring is
inextensible on its mid-line, so that 6(903) =0.

Applying these assumptions, we can write the elastic potential
energy of the resonator body as,

2 27
L{1=E—I3 2ﬂd€|:u+a—‘;—i(a—u)},
2R’ Jo 00 2R\ 00 %)
where I = bi*/12 is the second moment of area of the ring cross-section
[41].

Considering U, for this geometry, we assume that radial ring
deflections are small compared to the gap size, u < 4, which is
frequently the case for capacitively-driven MEMS resonators. From this
we obtain the approximate expression for the electrostatic contribution
to the system potential energy

,u"(6, 1)
A

€ybR
ST

5

4 2
3 fo AO(Vpe: + V(0. 1))

n=0

(8)

where we have expanded the denominator up to the fourth order in u in
order to account for the same order nonlinear terms as in Ug. Note that
in practice the electrodes are only on the outside of the ring, which
results in a slight expansion of the ring in its radial direction. However,
typical circumferential strains due to the presence of the V. term in Eq.
(8) are rather small; in fact, €§) ~ 10 for the representative system
considered in Section 3.4, which corresponds to the change of the ring
radius by 0.06 nm. Given that fabrication tolerances for modern MEMS
resonators are 210 nm, such small deformation of the ring due to the
bias voltage can be neglected, which justifies our assumption that the
ring is inextensible.

In the case of the thin ring, the mode shapes for the elliptical modes
become independent of r and are given by @) = cos26 and
@y(0) = sin26, Fig. 2. Using these mode shapes, we can express the

Sense Mode :
Pp(0) = sin 20

Drive Mode :
®p(0) = cos 20

Fig. 2. Degenerate elliptical modes of the uniform circular ring under study.
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radial deflection of the ring body as

u(0, 1) = A(t)cos20 + B(1)sin20 + C(r), )

where the time-dependent function C(t) is included in order to ensure
periodicity of v(0, t) in 6 [34,36]. Note that the expression for C(t) is
obtained by solving € =0, see Eq. (5b), and has the form
C() ~ — (A%(t) + BX())IR. Using this form for the radial displacement,
and assuming that the oscillating actuation voltage across the electro-
des has a spatial dependence matching the drive mode, that is,
Voe(0, 1) = Vyo(1)cos20, with V,(1)l < V' and A <R, we use
Lagrange's method with the kinetic energy in Eq. (1) and potential
energy U = U, + U, to obtain nonlinear equations of motion governing
the n=2 elliptical modes of the ring. After dividing through by the
modal mass m, ; = (%)ﬂpth, these take the form

3 i 6 BB
A[l + 5?(11/42 + BZ)] + A[er + E?] + Awd

33 4°

2 2 52 =
of 11_37B B 318" | 34BB
+A[S2 ( S0 7R2) + K*R2 S + S e + 5 72]
3 .
A 33420 16 B 4,2
+R2[}/—10.Q 1-5 RzQA

8 5 B2
=SaB(1-2% ) + F,@, B, 1),
5 ( Rz) € ) (10a)

3 2 2 5 6 AA 2
B[l + E(UB + A )] + B[ZFB + 5?] + Bwyg

of 113747 34 AA
+B[.Q (?_EF) + K + ?F]
s
2

—-§_QA(1—2A—2) + Fy(A, B, 1)
=3 Iz B\A, DB, 1),

J

_% Vz%c
hA

31 4°

5 g2

35

5 g2

A
RZ

Iy 3392]_BA932

+ _E 5 g2

(10b)

where

a)oz = 5(3

_ ﬁ[ﬂ

2
€Vbe
ha?

EN’

R4

ViV 2
y == A, B 1) = 9YacOVoc(, 3B
5p | R® 4

+ 9_142
5ph4* A2 A

1)

€0VAC(’)VDCAB

, Fy(A, B, 1) =
5 5pha*

Here wy is the natural frequency of the modes, v is the effective modal
Duffing coefficient, and « is the strength of the intermodal dispersive
coupling, all of which account for both elastic and electrostatic
stiffnesses and are normalized by the modal mass.” The linear and
nonlinear stiffness coefficients represent combined effects from the
elastic deformation and electrostatic effects. Terms F4 and Fp represent
the periodic excitation acting on the drive and sense modes, respec-
tively. Note that the drive mode has both direct and (nonlinear)
parametric components, while the sense mode is driven in a purely
nonlinear parametric manner, since the excitation is taken to be
perfectly aligned with the (linear) drive mode. These nonlinear terms
in the modal forces F, ; result from the nonlinear treatment of the
electrostatic potential energy. In order to complete the model, we have
introduced phenomenological linear dissipation coefficients I'4, and I'p
for the modes. The analysis of Egs. (10a) and (10b) in their full form is
quite challenging, due to the fact that the equations are nonlinear and
coupled through multiple terms, including elastic, inertial, and even the
external driving terms; see Eq. (11).

In order to obtain further insight into the gyroscope dynamics and
obtain a better understanding of the self-induced amplification phe-

! This assumption is convenient but not necessary, since a general distribution can be
projected onto the modes of interest.

2 Coefficients « and y are, not by coincidence, equal, but we keep their designation
distinct since they have different effects on the system response.
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nomenon, we use the fact that the drive mode is directly driven to an
amplitude that is much larger than the amplitude that will be
experienced by the sense mode. In fact, the sense mode is driven by
the vibrations of the drive mode through the Coriolis term proportional
to QA (the first term on the right hand side of Eq. (10b)), and also
parametrically through coupling terms like xBA*/R’. In this case the
relative phase between these two terms is /4, which indicates,
following the analysis in [23], that the sense mode response will be
amplified by the drive mode vibrations regardless of their amplitude.
When the parametric drive is weak enough, meaning that A is
sufficiently small, the response of the sense mode due to the Coriolis
effect remains stable and these parametric terms amplify the sense
mode response [24,25,43]. Consequently, if the gyroscope is exposed to
angular rates that satisfy Q<«w, (typical values for the rate grade
gyroscopes [7] are 2 ~ 1 Hz and Q/w, S 107), we can assume that the
sense mode operates in its linear regime. Note that 2<«w, also allows
us to neglect terms proportional to Q2 in Egs. (10a) and (10b). In
contrast, the gyroscopic drive mode can operate at amplitudes where
nonlinear effects come into play. In fact, this must be the case in order
to achieve the desired amplification of the sense mode. Under these
conditions, the back action of the sense mode on the drive mode can be
neglected, and we can analyze the dynamics of the drive mode
independently. In fact, numerical analysis of (10a) and (10b) shows
that already for Q/w, ~ 10* this assumption results in only $3% error
in the drive mode amplitude in the vicinity of its nonlinear resonance;
see Fig. 3. As expected, when the back-action from the gyroscope sense
mode is retained in the model, the drive mode frequency response
exhibits a (minor) second peak in the vicinity of the sense mode
vibration frequency due to two-way interaction between gyroscopic
modes. However, since the drive mode operating point is near its
nonlinear resonance, the effect of this back-coupling leads to rather
small perturbation of the drive mode amplitude and no change in
stability, thus, we can employ a model with one-way coupling when
Q<<w,. After obtaining the (nonlinear) solution for the drive mode, we
can analyze the response of the gyroscopic sense mode and study the
self-induced amplification and associated increase of the gyroscope
sensitivity.

3.2. Dynamics of the drive mode

Here we study the dynamic behavior of the drive mode of the ring
and analyze the effects of inertial nonlinearities and nonlinear forcing
terms on its behavior. Using the assumptions derived above, we neglect
coupling to the sense mode in Eq. (10a) and assume relatively slow
external rotation, 2<<w,, to obtain the following nonlinear model for
the drive mode behavior

2 . i2 2
A(l + ,42—) +2TA + A(w} + u% + y%)

2

=Fcos(w! + ¢F)(1 + cm%), 12
where p is the strength of the inertial nonlinearity and Cra represents
the nonlinear correction to the modal forcing. Additionally, the drive
frequency is near the modal natural frequency, that is, w = w, + dw
with 6w <« . Note that in Eq. (12) we keep all coefficients in a generic
form to keep the formulation general, but apply the results for the ring
geometry below.

In order to analyze Eq. (12), we note that the system is lightly
damped (typical damping ratios are in the range 107> — 107%), reso-
nantly driven, and has cubic stiffness and inertial nonlinearities, so the
problem is treated in the standard way. We start by representing the
modal displacement in the form A(r) = a(t)Rcos(wt + ¢,(t)), where
(a(t), ¢,(1) are the non-dimensional vibration amplitude and the phase
of the drive mode response. By employing the method of averaging
[44], we assume that (a(?), ¢,()) change slowly over times ~w;] and let
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Fig. 3. Comparison of the drive mode frequency responses obtained numerically from complete Egs. (10a) and (10b) using parameters of a representative gyroscope from Section 3.4 (left
panel) and by neglecting back-action from the gyroscope sense mode (right panel). Note that the amplitude differences are small and, more importantly, neglecting the coupling does not

affect the stability of the response.

A@t) = — wa(t)Rsin(wt + ¢,(1)). By using these expressions for A(t) and
A(t) in Eq. (12) and disregarding fast-oscillating terms, we obtain
equations governing (a, ¢,) on the slow time scale ~I'; !. The steady-
state responses found from these equations can be solved to obtain the
following expression that relates drive mode response amplitude to the
system and input parameters,

- y = %sz 48?436} | [ FPea? + G
Sen 3 447+ 1Gppa’R? 8a’R* A%} A
dw(a) ~ . + ——
— Zptl — ;pu a3

As expected, the nonlinear forcing term does not affect the shape of the
modal backbone curve, represented by the first term in Eq. (13), but
alters the shape of the frequency response branches and renormalizes
the effective modal forcing amplitude. Simplification of Eq. (13) can be
made when the modal amplitude is small compared with the electrode
gap size, that is, when a < A/R, as is common in applications (to avoid
pull-in [45,46]). In this case, the nonlinear correction to the drive mode
forcing can be safely neglected, Cy, = 0, an assumption we employ in
the following development.

It is important to recognize that the amplitude-dependent shift of
the free vibration frequency of the modes has the following sources: the
stiffness Duffing nonlinearity y =y, +y, where y4 and v, are the
contributions from elastic and electrostatic stiffness effects, respectively
(see Eq. (11)), and inertial nonlinearities which have an effective
Duffing nonlinearity y = — %ywj (see Eq. (13)). The inertial nonlinear
effects have the same origin (finite deformation kinematics) as the
nonlinearities in the elastic deformation potential, and we combine
these effects into a single mechanical contribution to the modal Duffing
constant, denoted y, = y, + . For moderate vibration amplitudes, the
steady-state amplitude response is that of an equivalent Duffing system
and can be expressed as

2
| -1

examples of which are shown in Fig. 4.

Analysis shows that inertial nonlinearities must be taken into
account when ly| < ly |, which can be the case in resonators with large
mechanical stiffness, like circular plates. Interestingly, when the
electrostatic potential provides only small corrections to both linear
and nonlinear stiffness constants, inertial nonlinearities have a domi-
nant effect on the modal frequency response and cause substantial

i
3a* |
Ray+—( +7)+
w(a) ~ w, 8o o, +7) \j( 2aRe,

14

304

0.6
0.5/
0.4

0.3

aR/A

0.2|

0.1}

Of 1.00

0.92 094 0.96 0.98

w/wp

1.02 1.04

Fig. 4. Representative steady-state frequency response curves of the ring drive mode
described by Eq. (14) for different values of the forcing amplitude F. The blue, red, and
black curves correspond to forcing magnitudes £, 2F,, 4F,. Responses are obtained under
the assumption that electrostatic forces dominate the Duffing nonlinearity, i.e., Iy | > Iy, |.
Solid and dashed curves represent stable and unstable response amplitudes. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

softening of the resonator frequency. Specifically, for the ring y, = 2w}

12 - . . .
andy, = - ?wﬁ. Note that a similar situation occurs in cantilever type

resonators where inertial nonlinearities essentially dominate the dy-
namic behavior of the fundamental mode and cause the vibration
frequency to soften as a function of vibration amplitude [47,48]. On the
other hand, when ly| > ly |, electrostatic effects dominate the nonlinear
dynamics of the system, so that the nonlinear terms arising from
mechanics, both inertial and elastic stiffness, can be neglected, in which
case we use the approximation y, ~ 0, which we will use in Section 3.4.

3.3. Dynamics of the sense mode: parametric amplification
In this section we analyze the response of the gyroscopic sense mode

B, using the drive response as an effective excitation. This excitation has
components from Coriolis coupling from the external angular rate Q,



P.M. Polunin, S.W. Shaw

and from nonlinear dispersive coupling from elastic, inertial, and
electrostatic effects. In what follows, we assume that the drive mode
motion can be represented as, A(f) = aRcos(wt + ¢,), where a and ¢4
are the drive mode steady-state amplitude and phase, respectively.
When Q is small as compared with the gyroscope operation frequency,
i.e., 2<w, and the parametric pumping does not destabilize the sense
response, the dynamic behavior of the sense mode is governed by the
following equation of motion, obtained from Eq. (10b),

AA

ra

AZ

L AA ) A ;
B+ B\20y + Gz | + Blog + Gy + iz + Coz | = Cod

(15)
where we have employed linearized dynamics for B (justified in Section
3.1). This model has direct (Coriolis) excitation from A and parametric
excitation from nonlinear combinations of (A, A, A). The C; are
constants that depend on the geometry of the gyroscope body. Since
Eq. (15) contains both direct and parametric resonant driving terms, it
is convenient to represent the sense mode response in the form
B = R(bexplimt] + c. c. ) and apply method of averaging in the manner
in [23]. After averaging and some manipulations we obtain the
following expression for the steady-state amplitude of the sense mode

40°T} + (02 — 0* + A
|b|=|c9|gaﬂ‘/ — (2” BT
2 bo Ty + (0, — ) — A7

(16)

where a)nz = w,? + %az(Cd + wz(C] — (C,)) is the effective vibration fre-
quency of the sense mode, which is modified by nonlinear coupling to
the drive mode at amplitude a, and 4 = %az(Cd + wz(Cr —-C—-Cy)is
the strength of the parametric pumping due to the coupling to the drive
mode. Note that both w,> and A are determined by the system
nonlinearities, the drive vibration amplitude a, and the gyroscope
operation frequency w. This expression describes the amplitude of the
sense mode and captures the interaction of the effects of the direct
(Coriolis) drive and the parametric pumping from nonlinear coupling.
Analysis of Eq. (16) reveals some important features. First, when the
drive mode vibration amplitude is sufficiently small such that one can
neglect the effect of the parametric pumping, that is, A can be
neglected, the expression for the sense mode amplitude becomes

awlCyl$2
2J@2 - o™ + 4012
which represents the case when both modes behave like linear

resonators. In this light, it is convenient to express the gyroscopic sense
mode amplitude in the more general case as follows

Ibl, =
a7

0T + (@0}~ + D(@i—0®) + 40’T7]

bl = Glbl,, G
pa ! 4w’ TE + (02— =2

)

18

where G is the amplification of the sense mode, i.e., the gain, that arises
from the parametric coupling to the drive mode. This gain from the
coupling is illustrated in Fig. 5, which shows the sense mode response
amplitude for the case where the coupling is ignored (black dashed
lines) and for two levels of coupling (red and blue lines). Here the
parametric amplification is evident, as is the frequency shift that arises
from the coupling; see Eq. (15). A more complete representation of the
gain is considered below.

Another feature associated with Eq. (16) is that the system gain G
or, equivalently, the sense mode amplitude Ibl,, diverges when the
denominator in Eq. (18) vanishes, i.e. (40’T} + (07 — @*F — %) = 0.
By solving this equation, one obtains the parametric instability condi-
tion expressed in terms of the drive parameters as (¢*, ®*), correspond-
ing to G — 0. This (¢*, ®*) condition corresponds to the case where the
parametric coupling terms in Eq. (15) result in instability of the sense
mode [29]. As this instability is approached, the linearized version of
the sense mode model, given by linearizing Eq. (15), is insufficient to
describe the sense mode dynamics and the full coupled form of the
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Fig. 5. Effect of self-induced parametric amplification on frequency responses of the ring
sense mode described by Eq. (16) for different values of the dispersive modal coupling
coefficient C4, where we consider the case Cj/wg > Cp, Cy, Cr, so that the parametric
pumping coefficient A is essentially proportional to C4. Frequency responses are obtained
for aR/A = 0.2 and Q/wy =2 x 107*. The dashed curve is the non-amplified response

(C4=0), while the red and blue curves correspond to the sense mode frequency responses
with Cy/wZ = — 0.5 x 10*, — 1.1 x 10* respectively; these numbers are chosen such that
analytical results of Section 3.3 remain valid, that is, the stated approximations hold.
Signal amplification from the intermodal coupling is evident. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

equations of motion Egs. (10a) and (10b) must be used. In this work,
however, we restrict our analysis to the case where the response of the
sense mode remains in its linear range and its vibration amplitude
remains proportional to Q. In fact, this is the range of practical interest.

3.4. Example

Generally speaking, one can adapt the approach developed here to a
variety of gyroscope configurations that exploit circular symmetry.
Here we illustrate the applicability of the results by using parameters
derived for the polysilicon ring gyroscope reported in [18]. First, we
consider the idealized case of a free (no suspension) gyroscope ring. The
gyroscope parameters are as follows: the mid-line radius of the ring is
R = 550 ym, the radial thickness is » = 4 um, the electrode gap size is
A = 1.4 ym, the estimated quality factor is Q=1200, and the bias
voltage is taken to be V- = 3V (we intentionally take this value of
Vpbe, as compared to 7V in [18], to avoid the electrostatic pull-in
effect). As a result, the gyroscope dynamic parameters become
wp/2n = 12.5kHz, [Izlwg =1/2400 and the electrostatic potential
strongly dominates the strength of the dispersive modal coupling,
Cd/wg ~ — 1()5, while the other constants defined in Eq. (10b) satisfy
G €, Cy < Gyl

Figs. 6a and 6b show the self-induced parametric gain G as a
function of the normalized drive frequency w/w, and the normalized
vibration amplitude of the drive mode aR/A (left panel) and the
normalized strength of the stiffness coupling Cd/a)§ (right panel). The
solid red curve depicts the instability condition, (¢*, »*) in both panels,
where the value of the gain approaches infinity, that is, it is the Arnold
tongue for the sense mode [49,50]. The meshed region on both panels
corresponds to the set of operating conditions where the solution found
in Eq. (16) is unstable. In order to describe the gyroscope dynamics in
these regions, one must analyze the full form of Egs. (10a) and (10b),
since in this region nonlinear effects that have been ignored will come
into play.

As follows from considering the results of Fig. 6a, in order to
achieve significant gain G, the drive mode should be operated at
frequencies slightly less than wp. This can be easily satisfied since the
electrostatic forces dominate the nonlinearities of the gyroscopic drive
mode and its frequency response exhibits softening behavior. Fig. 6b,
on the other hand, illustrates the behavior of the gain G as a function of
the operating frequency and the strength of the intermodal dispersive



P.M. Polunin, S.W. Shaw

0.99 1
wl/wg

(a)

International Journal of Non-Linear Mechanics 94 (2017) 300-308

Gain G
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Fig. 6. Increase of the gyroscopic sensitivity of the gyroscope ring (without suspension) due to nonlinear modal coupling as a function of system and drive parameters. The solid red line
represents the a*—o™ curve where the gain G diverges according to the linear model described by Eq. (15); this is the primary Arnold tongue for the sense mode [49]. The meshed region is
the set of operating conditions where the solution found in Eq. (16) is unstable: (a) dependence of the strength of the self-induced parametric amplification G on the scaled operation
frequency w/wp and the vibration amplitude of the drive mode aR/A. The stiffness coupling strength is Cd/a)g =—95x 10’ and (b) dependence of the strength of the self-induced
parametric amplification on the scaled operation frequency w/wg and the nonlinear dispersive coupling strength Cd/wg. The drive mode vibration amplitude is chosen to be aR/A=0.1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

coupling. Importantly, the magnitude of the intermodal coupling can be
controlled by adjusting the bias voltage V¢ applied to the resonator
body or attendant electrodes, thus allowing one to tune the amount of
self-induced parametric amplification, which increases gyroscope sen-
sitivity S in the vicinity of the instability region. Furthermore, the
critical value of the drive mode amplitude, where G — oo, decreases as
C;'. Physically, as expected, this implies that for stronger dispersive
intermodal coupling, smaller drive vibration amplitudes are required to
achieve the same level of gain.

The results obtained for the case of the unsuspended gyroscope ring
can be easily extended to account for supporting springs in the form of
semicircles with the mid-line radius R; = 235 pm and radial thickness
h =4 pm; see [18] for details. Numerical analysis shows that for the
polarization voltage V,,» = 7 V (the voltage used by Ayazi et al. in their
experiments), electrostatic forces still dominate the system nonlinea-
rities, including the dispersive modal coupling strength, C,/wg ~ — 10°.
As a result, the dependence of the gyroscope sensitivity on the system
parameters is qualitatively the same as in the case of the free ring; see
Figs. 6a and 6b.

Our analysis of a gyroscope with a suspension shows that the
inclusion of the semi-circular suspending springs in the model changes
the resonator kinetic and potential energies, where the latter is affected
through its elastic component only, since there is no interaction of the
springs with the electrodes. Due to the symmetry of the gyroscope
elliptical modes, the suspension springs are equivalent to four addi-
tional rings of radius R, where one pair belongs to the drive mode and
the other to the sense mode. In this case, however, when calculating the
kinetic energy we also have to account for the motion of the spring
mass, which contributes to the effective modal mass. Furthermore,
analysis shows that the gyroscope suspension has considerable effect on
the individual modal stiffness parameters, affecting both the linear
natural frequency and the Duffing nonlinearity. These contributions can
be calculated in a straightforward way following the method described
in Section 3.1. In particular, the mechanical contributions to the modal
natural frequency and the Duffing modal nonlinearity increase by
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factors of 5 and 12, respectively. Additionally, the suspension springs
also affect the dispersive modal coupling strength; in fact, the mechan-
ical component of « increases by nearly a factor of two. This contribu-
tion to the modal coupling strength is the result of the nonlinear nature
of the strain-displacement relationships in Egs. (5a) to (5c¢). Similar
results for more complicated geometries, such as the disk resonating
gyroscope in [22], can be obtained using finite element methods
adapted for computing nonlinear coefficients for purely mechanical
systems [51,52]. However, finite element methods for computing
nonlinear coefficients in systems with electrostatic actuation/sensing
are still to be developed.

4. Conclusions

In this work we have analyzed the phenomenon of self-induced
parametric amplification of in-plane flexural vibrations of degenerate
elliptical modes in ring/disk resonating gyroscopes. The most important
feature of this amplification is a gain in sensitivity that is achieved from
the naturally occurring dynamics of the system. This is a prime example
of where nonlinear behavior provides an opportunity for improved
performance of a practical device.

By utilizing the model of a thin spinning ring in the presence of
electrostatic actuation/sensing, we have demonstrated that, in addition
to the linear Coriolis coupling that is the basis for operation as an
angular rate sensor, the drive and sense modes are coupled nonlinearly
through elastic, inertial, and electrostatic effects. We have further
illustrated that this modal coupling results in parametric pumping of
the sense mode by the drive mode, which can lead to a significant
improvement in the gyroscope sensitivity with respect to the external
angular rate, as was experimentally observed in [22]. We have also
examined the effects of the drive conditions on the performance of the
sensor, and illustrated these effects for two representative micro-
mechanical ring resonating gyroscopes.

The analytical results presented here can be used for predicting the
nonlinear behavior of existing gyroscopes and proposed gyroscope
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Appendix A. Derivation of nonlinear strain-displacement relationships

Here we derive the nonlinear strain-displacement relationships for €;(u, v) presented in Egs. (5a) to (5¢). In order to do so, we consider an
infinitesimal segment of the gyroscope body, designated by KLMN in with coordinates r and 6 and having radial thickness dr and angular length rdo;
see Fig. A.1. This segment can be conveniently defined in terms of the coordinates of its corner points as

K=(r,0),L=(+dr0),
M= (r+dr, 0 + do), N = (r, 0 + db). (A1)

During operation the body experiences elastic deformations and the segment deforms into K,L,M,N,, which we, in turn, express as
i(r, 0
K = (r +u(r. 0), 0+ 200 )),
,

Ll=(r+dr+u(r+dr,6),6+W),

M, = (r +dr + u(r +dr, 0 + d9),

0+ do + v(r+dr,()+d()))

r+dr
Nl:(r+u(r,9+d9),9+d9+ w}
; (A.2)
From Fig. A.1 it is clear that the strain-displacement relationships €;(u, v) are given by
KL, — KL KN, — KN y
€. = , €gp = ,Eg = .
" KL » KN 0 (A.3)
Given the coordinate representations of the segment corner points in Egs. (A.1) and (A.2), we have
KL = dr,
[ 2 2 2
KL ~dr[1+ 2] {1+ 2) (),
\/ or M\ or (A.4a)
KN ~ rd0,
[ 2 2 2
Ky~ rdo |1+ 2] [0+ 22+ L[],
\ r rao) oo (A.4b)
d_u
r+u ofv
ar 1+%;(7],/}z—09 pYaY
or (r+ u)(l + —)
raf (A.4c)

Finally, by using Egs. (A.4a) to (A.4c) in Eq. (A.3) and expanding the resulting expressions up to the second order in u and v, we obtain the nonlinear
strain-displacement relationships given in Egs. (5a) to (5c¢).

Fig. A.1. Deformation of the gyroscope segment KLMN into KL ,M;N,.
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