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A B S T R A C T

We investigate self-induced parametric amplification that arises from dispersive nonlinear coupling between

degenerate modes in systems with circular symmetry that rotate about the axis of symmetry. This phenomenon

was first observed in micro-electromechanical ring/disk gyroscopes, where it provided enhanced readout gain

using purely passive nonlinear effects [Nitzan et al. [22], 2015]. The goal of this investigation is to provide a

fundamental description of this phenomenon, which is an example where nonlinear dynamics can improve the

performance of a practical device. To describe this behavior, we consider the in-plane vibrations of a thin ring

surrounded by electrodes that rotates about its symmetry axis at a rate Ω much smaller than its vibration

frequencies ωn, as is the case in applications. The focus is on the pair of degenerate elliptical modes, one of which

is taken as the drive mode and the other as the sense mode for the sensor. These modes are coupled through both

inertial (Coriolis) and geometric nonlinear effects, as described by general forms of the kinetic and potential

energies that account for finite deformation kinematics, as well as electrostatic effects. We investigate the

specific effects of this coupling on the system performance and its sensitivity when used as a sensor for the spin

rate. Specifically, we show that drive mode vibrations with sufficiently high amplitude affect the sense mode

dynamic behavior in the form of parametric pumping, which leads to a considerable amplification of the sense

mode response. As this response amplitude is proportional to Ω, it results in a substantial increase of the

gyroscope sensitivity with respect to the external angular rate. We also illustrate that the effects of the sense

mode vibrations on the drive mode dynamics can be neglected in the model when Ω ω/ ≪ 1n . Finally, we

illustrate the applicability of our results by considering the dynamic response of a representative MEMS

gyroscope model and quantifying the predicted benefits of these nonlinear effects.

1. Introduction

Studies of the linear and nonlinear vibrations of systems with

circular symmetry have a long history and include papers on the

transverse vibrations of plates, shells, membranes, rods, and tubes as

well as the in-plane vibrations of plates and rings; see [1–4] and the

research cited therein for a sampling of these works. This class of

systems has applications in a number of areas such as antennae, pipes,

and, most relevant to the present work, wine glass vibratory gyroscopes

that use Coriolis effects to measure spin rates [5,6].

In recent decades there has been a desire to develop smaller versions

of these gyroscopes, spurred by technological advancements in fabrica-

tion techniques and by increasing demands in commercial and military

applications, which have led to a number of important advances in this

technology space [7]. Prominent among these are developments in

micro-electro-mechanical-system (MEMS) vibratory gyroscopes, which

have shown great potential due to their small dimensions, favorable

power consumption, and high quality factors [8,9]. Generally, such

devices are based on a micro-mechanical resonator with at least two

matched resonant modes that interact via Coriolis effects [6].

Specifically, the resonator is forced to oscillate in one of its vibrational

modes, called the drive mode, while the external rotation at Ω gives rise

to Coriolis coupling between this mode and its symmetric partner, the

sense mode, which is not driven by an external input. The vibrations of

the sense mode thus have an amplitude proportional to Ω (when it is

small as compared to the gyroscope operation frequency), and by

measuring the amplitude of the readout signal from the sense mode,

one can estimate Ω.

Improving the precision and accuracy of MEMS vibratory gyro-

scopes is a challenging task involving the precise matching of high-Q

modal frequencies [10–12], compensation of quadrature errors that

arise from coupling of the drive and sense modes [13–15], and

optimizing the geometry of the resonator in order to achieve higher Q

factors [16,17], to name a few. Also, all such devices are operated in the
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linear operating regime, so as to avoid frequency shifts associated with

nonlinearity. In this light, flexural-mode ring [13,18] and disk [19–21]

vibratory gyroscopes offer significant advantages due to the inherent

symmetry in their geometries and, consequently, symmetry of their

drive and sense modes. Recent work on disk resonating gyroscopes

(DRGs) has experimentally demonstrated that the gyroscope sensitivity

to the external angular rate can increase significantly when the

gyroscope is driven into a nonlinear operating regime [22]. The authors

hypothesized that the observed phenomenon is due to parametric

amplification [23–25] arising from nonlinear elastic coupling between

the drive and sense modes of the device, which have nearly equal

frequencies. In classical nonlinear vibrations, this is an example of

autoparametric resonance [26–28].

The sensitivity S of a rate gyroscope, that is, the ratio of the

amplitude of the sense signal to the angular rate Ω, is one the most

important characteristics of sensor performance, since it, and the noise

levels of the device, quantify the resolution of the sensor in terms of the

lower end of the angular velocities that can be detected [6]. Thus, there

is strong motivation to understand, from a fundamental point of view,

the advantageous effects of the self-induced amplification of the sense

signal observed in [22], especially since it appears to be the fortuitous

result of passive nonlinear behavior, requiring no additional sensing or

actuation. This is precisely the goal of the investigation described in this

paper.

Nonlinear modal coupling is a well-known phenomenon in the

theory of nonlinear vibrations and it has been thoroughly studied in a

wide variety of systems [29], including micromechanical systems [30–

33]. It generally occurs in resonators experiencing vibration amplitudes

at which nonlinear strain-displacement relationships, or other non-

linear effects, couple two or more vibrational modes. Furthermore,

specific research on the nonlinear vibrations of spinning ring-like

geometries has illustrated the rich dynamics associated with the in-

plane flexural modes of these structures [34–37]. In this paper we

analyze the dynamic behavior of the elliptical modes in ring/disk

resonating gyroscopes to explain and explore self-induced parametric

amplification in these systems [22]. In particular, we use a model of the

resonator consisting of a thin ring spinning about its axis of radial

symmetry with electrostatic forces arising from capacitive actuation/

sensing schemes. Using finite deformation kinematics, we show that the

elliptical drive and sense modes are nonlinearly coupled through both

stiffness (including electrostatic contributions) and inertial terms. Next,

we show that the general case of mode-coupled dynamics can be

simplified by neglecting the back-action of the sense mode motion on

the drive mode (due to their differing amplitudes), and provide

conditions for which this approximation holds. In this simplified

picture, we discuss the effect of inertial nonlinearities on the drive

mode dynamics and show how nonlinear modal interactions lead to

parametric amplification of the sense mode, and thus to an increase in

the gyroscope sensitivity.

The remainder of the paper is organized as follows. In Section 2, we

formulate a model for resonator geometries that support a pair of

degenerate (equal frequency) n=2 radial modes. In Section 3 we

consider the nonlinear in-plane flexural vibrations of a thin spinning

ring in the presence of electrostatic actuation. A detailed analysis of the

dynamic behavior of the drive and sense modes is given in Sections 3.2

and 3.3, respectively. Finally, in Section 3.4 we illustrate the applic-

ability of our results to a model of the representative ring resonating

gyroscope reported in [18], and concluding remarks are given in

Section 4.

2. Model

In this section we present an analytical framework which can be

used to derive equations of motion for the in-plane vibration modes of

interest for ring/disk resonating gyroscopes. Such a formulation is

advantageous since it can be applied to systems with relatively simple

geometries, such as a thin ring or a solid circular plate, as well as to

MEMS gyroscopes with less trivial geometries; see, for example, [38].

We start our analysis by introducing a cylindrical coordinate system

r θ z( , , ) and consider a gyroscope with generic geometry that supports a

pair of degenerate elliptical modes each of which has two nodal

diameters, which we denote with modal coordinates A and B and mode

shapes described by Ξ r θ ξ r θ( , ) = ( )cos2A and Ξ r θ ξ r θ( , ) = ( )sin2B so that

their nodal diameters are separated by π /4 [22]. Without loss of

generality, we designate these as the drive (A) and sense (B) modes,

respectively.

During gyroscope operation, the shape of the resonator vibration

changes as it experiences displacements in the radial, u u r θ t= ( , , ), and

circumferential, v v r θ t= ( , , ), directions, which we assume to be

independent of the out-of-plane coordinate z. These displacements

can be expressed in terms of the modal coordinates A(t) and B(t) in a

manner that depends on the gyroscope geometry, as u u r θ= ( , ,

A t B t( ), ( )) and v v r θ A t B t= ( , , ( ), ( )). Generally, both u and v can be

nonlinear in A(t) and B(t). Explicit expressions for u r θ A t B t( , , ( ), ( )) and

v r θ A t B t( , , ( ), ( )) can be obtained with certain assumptions for relatively

simple structures like a thin ring, see Section 3, or a solid circular plate

[2,39,40], while in the case of non-trivial geometries, computing

similar expressions generally requires the use of finite element meth-

ods.

In this paper we utilize Lagrange's method to derive the equations

that govern the drive and sense modes of the gyroscope using general-

ized coordinates q A B= ,
1,2

to express the nonlinear equations of

motion for the gyroscopic elliptical modes. The kinetic energy of the

system is computed using standard methods [41,39] and is given by

∭T ρ u vΩ v r u Ω rdrdθdz=
1

2
[( ˙− ) + ( ˙ + ( + ) ) ] ,

V

2 2

(1)

where Ω is the external angular rate about the z− axis, ρ ρ r θ= ( , ) is the

resonator material mass density, which is assumed to be uniform in z,

and V is the volume of the resonator body. The potential energy of the

gyroscope consists of elastic Ud and electrostatic Ue components. The

electrostatic part results from electrostatic interaction of the resonator

body with the drive/sense electrodes. Generally, the electrode gap size

Δ is much smaller that the outer radius of the resonator Ro and the z

thickness of the resonator, so that one can neglect the curvature of the

electrodes and apply a local parallel-plate approximation. We also

assume that Δ is uniform along the gyroscope circumference. In this

case, the electrostatic potential energy becomes

∫U dθb R θ R
V V θ

Δ u R θ
= −

ϵ

2
( , )

( + ( ))

− ( , )
,e

π

o o
DC AC

o

0

0

2 2

(2)

where b R θ( , )o is the z thickness profile of the gyroscope body along its

circumference, VDC and VAC represent magnitudes of the bias and

periodic voltages used for the electrostatic actuation and sensing and

ϵ = 8.85 × 10 F/m0
−12 is the vacuum permittivity.

Mechanical deformations of the resonator body and the associated

stresses contribute to the elastic potential energy in the form of a

deformation potential Ud. For in-plane vibrations, Ud can be found as,

[39],

∭U σ σ σ rdrdθdz=
1

2
( ϵ + ϵ + ϵ ) ,d

V
rr rr θθ θθ rθ rθ (3)

where u vϵ = ϵ ( , )ij ij and σ σ u v= ( , )ij ij are the strain and stress in the

body. Hooke's law establishes the well-known relationships between

these quantities,

σ E ν

σ E ν

σ G

= *(ϵ + ϵ ),

= *(ϵ + ϵ ),

= ϵ ,

rr rr θθ

θθ θθ rr

rθ rθ (4)

where E E ν* = (1− )2 −1 and G are the effective normal and shear moduli,

respectively. In order to analyze the nonlinear dynamic behavior of the

gyroscopic radial modes, one necessarily has to account for higher-
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order terms in the strain tensor u vϵ ( , )ij . Using finite deformation theory

(see Appendix A) one can show that the nonlinear strain-displacement

relationships, up to the second order in u and v, are given by

⎛

⎝
⎜

⎞

⎠
⎟

u

r
r

r

v

r
ϵ =

∂
∂

+
1

2

∂
∂

,rr
2

2

(5a)
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Since the resonator displacements u and v are functions of the modal

coordinates A and B, the Lagrangian for the system becomes, after

integration over the resonator volume, L L A B A B= ( , , ˙ , ˙). By substitut-

ing this form of L into Lagrange's equations, one can immediately obtain

equations of motion for the gyroscopic elliptic modes. In Section 3 we

apply this procedure to a simple model of a thin inextensible ring,

which, as we show, is sufficient to demonstrate the self-induced

amplification phenomenon, and is amenable to detailed analysis.

However, as noted above, this analytical approach is sufficiently

general to be used for analyzing gyroscopes with different resonator

shapes, such as rings with supporting spring elements [18], circular

plates of non-uniform thickness in the z− direction, and other complex

geometries [22,38].

3. Forced nonlinear vibrations of elliptical modes of a thin

spinning ring

3.1. Gyroscope dynamics with fully-coupled modes

We apply the general formulation of Section 2 for analysis of the

nonlinear in-plane vibrations of the elliptical modes of a uniform (ρ, b,

h, and Δ are constants) circular ring rotating at a constant speed Ω

about the z− axis in the presence of electrostatic forces from electrodes,

as depicted in Fig. 1. Hereafter, we employ a thin ring approximation,

i.e., h R≪ , where h and R are the ring radial thickness and its mid-line

radius, respectively. In this case we can apply results for the vibrations

of shallow shells [39], and neglect the stress in the radial direction,

σ = 0rr , as well as the shear stress, σ = 0rθ . The application of these

assumptions in Eq. (4) yields σ E= ϵθθ θθ, which is the same expression as

that for the longitudinal stress/strain relationship for the transverse

bending of an Euler-Bernoulli beam. Following the bending theory for

thin shells, we express the radial and circumferential displacements of

any point of the ring as

u r θ t u θ t

ν r θ t ν θ t δν θ t

( , , ) = ( , ),

( , , ) = ( , ) + ( , ),0 1 (6)

where δ r R= − is the radial coordinate relative to the ring mid-line,

ν0 is the circumferential displacement of a point on the ring mid-line,

and ν1 is the slope of the tangential displacement profile across h.

Similar to ν, we approximate the strain field in the θ direction as a

linear function of δ, i.e., δϵ = ϵ + ϵθθ θθ θθ
(0) (1), where ϵθθ

(0) represents the mid-

line stretching of the ring, while ϵθθ
(1) represents the strain due to the ring

bending. It is known that the ring mid-line stretching has a negligible

effect on the ring dynamics, so long as the wavelength of the vibration

mode is large as compared with its thickness h [34,39,42]. Since we are

interested in the dynamic behavior of elliptical (n=2) gyroscopic

modes, this condition is satisfied for a thin ring. Therefore, to simplify

the analysis, we make the reasonable assumption that the ring is

inextensible on its mid-line, so that ϵ = 0θθ
(0) .

Applying these assumptions, we can write the elastic potential

energy of the resonator body as,

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥
⎥

∫U
EI

R
dθ u

u

θ R

u

θ
=

2
+

∂

∂
−

1

2

∂
∂

,d

π

3
0

2 2

2

2
2

(7)

where I bh= /123 is the second moment of area of the ring cross-section

[41].

Considering Ue for this geometry, we assume that radial ring

deflections are small compared to the gap size, u Δ≪ , which is

frequently the case for capacitively-driven MEMS resonators. From this

we obtain the approximate expression for the electrostatic contribution

to the system potential energy

∫∑U
bR

dθ V V θ t
u θ t

Δ
≈ −

ϵ

2Δ
( + ( , ))

( , )
,e

n

π

DC AC

n

n
0

=0

4

0

2
2

(8)

where we have expanded the denominator up to the fourth order in u in

order to account for the same order nonlinear terms as in Ud. Note that

in practice the electrodes are only on the outside of the ring, which

results in a slight expansion of the ring in its radial direction. However,

typical circumferential strains due to the presence of theVDC
2 term in Eq.

(8) are rather small; in fact, ϵ ∼ 10θθ
(0) −8 for the representative system

considered in Section 3.4, which corresponds to the change of the ring

radius by 0.06 nm. Given that fabrication tolerances for modern MEMS

resonators are ≳10 nm, such small deformation of the ring due to the

bias voltage can be neglected, which justifies our assumption that the

ring is inextensible.

In the case of the thin ring, the mode shapes for the elliptical modes

become independent of r and are given by Φ θ θ( ) = cos2A and

Φ θ θ( ) = sin2B , Fig. 2. Using these mode shapes, we can express the

Fig. 1. Schematic representation of the system under study: a uniform circular ring

rotating at a constant angular rate Ω about the z− axis with segmented electrodes

representing the means for electrostatic actuation and readout. Segmentation of electro-

des is an essential feature of the device structure necessary for producing modal driving

force through V θ t( , )AC and tuning the gyroscopic drive and sense modes via a non-

uniform distribution of the bias voltage V θ( )DC [22]. Fig. 2. Degenerate elliptical modes of the uniform circular ring under study.
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radial deflection of the ring body as

u θ t A t θ B t θ C t( , ) = ( )cos2 + ( )sin2 + ( ), (9)

where the time-dependent function C(t) is included in order to ensure

periodicity of v θ t( , ) in θ [34,36]. Note that the expression for C(t) is

obtained by solving ϵ = 0θθ
(0) , see Eq. (5b), and has the form

C t A t B t R( ) ≈ − ( ( ) + ( ))/2 2 . Using this form for the radial displacement,

and assuming that the oscillating actuation voltage across the electro-

des has a spatial dependence matching the drive mode, that is,

V θ t V t θ( , ) = ( )cos2AC AC , with V t V| ( )| ≪AC DC
1 and RΔ ≪ , we use

Lagrange's method with the kinetic energy in Eq. (1) and potential

energy U U U= +e d to obtain nonlinear equations of motion governing

the n=2 elliptical modes of the ring. After dividing through by the

modal mass
⎛

⎝
⎜

⎞

⎠
⎟m πρbhR=

5

4
A B, , these take the form

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥

⎛
⎝

⎞
⎠

A A B A Γ Aω

A Ω κ

γ Ω ΩA

ΩB F A B t

1 + (11 + ) + ˙ 2 + +

+ − + + + +

+ [ − ]−

= ˙ 1−2 + ( , , ),
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where

⎛

⎝
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(11)

Here ω0 is the natural frequency of the modes, γ is the effective modal

Duffing coefficient, and κ is the strength of the intermodal dispersive

coupling, all of which account for both elastic and electrostatic

stiffnesses and are normalized by the modal mass.2 The linear and

nonlinear stiffness coefficients represent combined effects from the

elastic deformation and electrostatic effects. Terms FA and FB represent

the periodic excitation acting on the drive and sense modes, respec-

tively. Note that the drive mode has both direct and (nonlinear)

parametric components, while the sense mode is driven in a purely

nonlinear parametric manner, since the excitation is taken to be

perfectly aligned with the (linear) drive mode. These nonlinear terms

in the modal forces FA B, result from the nonlinear treatment of the

electrostatic potential energy. In order to complete the model, we have

introduced phenomenological linear dissipation coefficients ΓA and ΓB
for the modes. The analysis of Eqs. (10a) and (10b) in their full form is

quite challenging, due to the fact that the equations are nonlinear and

coupled through multiple terms, including elastic, inertial, and even the

external driving terms; see Eq. (11).

In order to obtain further insight into the gyroscope dynamics and

obtain a better understanding of the self-induced amplification phe-

nomenon, we use the fact that the drive mode is directly driven to an

amplitude that is much larger than the amplitude that will be

experienced by the sense mode. In fact, the sense mode is driven by

the vibrations of the drive mode through the Coriolis term proportional

to ΩȦ (the first term on the right hand side of Eq. (10b)), and also

parametrically through coupling terms like κBA R/2 2. In this case the

relative phase between these two terms is π /4, which indicates,

following the analysis in [23], that the sense mode response will be

amplified by the drive mode vibrations regardless of their amplitude.

When the parametric drive is weak enough, meaning that A is

sufficiently small, the response of the sense mode due to the Coriolis

effect remains stable and these parametric terms amplify the sense

mode response [24,25,43]. Consequently, if the gyroscope is exposed to

angular rates that satisfy Ω ω⋘ 0 (typical values for the rate grade

gyroscopes [7] are Ω ∼ 1 Hz and Ω ω/ ≲ 100
−5), we can assume that the

sense mode operates in its linear regime. Note that Ω ω⋘ 0 also allows

us to neglect terms proportional to Ω2 in Eqs. (10a) and (10b). In

contrast, the gyroscopic drive mode can operate at amplitudes where

nonlinear effects come into play. In fact, this must be the case in order

to achieve the desired amplification of the sense mode. Under these

conditions, the back action of the sense mode on the drive mode can be

neglected, and we can analyze the dynamics of the drive mode

independently. In fact, numerical analysis of (10a) and (10b) shows

that already for Ω ω/ ∼ 100
−4 this assumption results in only ≲3% error

in the drive mode amplitude in the vicinity of its nonlinear resonance;

see Fig. 3. As expected, when the back-action from the gyroscope sense

mode is retained in the model, the drive mode frequency response

exhibits a (minor) second peak in the vicinity of the sense mode

vibration frequency due to two-way interaction between gyroscopic

modes. However, since the drive mode operating point is near its

nonlinear resonance, the effect of this back-coupling leads to rather

small perturbation of the drive mode amplitude and no change in

stability, thus, we can employ a model with one-way coupling when

Ω ω⋘ 0. After obtaining the (nonlinear) solution for the drive mode, we

can analyze the response of the gyroscopic sense mode and study the

self-induced amplification and associated increase of the gyroscope

sensitivity.

3.2. Dynamics of the drive mode

Here we study the dynamic behavior of the drive mode of the ring

and analyze the effects of inertial nonlinearities and nonlinear forcing

terms on its behavior. Using the assumptions derived above, we neglect

coupling to the sense mode in Eq. (10a) and assume relatively slow

external rotation, Ω ω⋘ 0, to obtain the following nonlinear model for

the drive mode behavior
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where μ is the strength of the inertial nonlinearity and CFA represents

the nonlinear correction to the modal forcing. Additionally, the drive

frequency is near the modal natural frequency, that is, ω ω δω= +A

with δω ω≪ A. Note that in Eq. (12) we keep all coefficients in a generic

form to keep the formulation general, but apply the results for the ring

geometry below.

In order to analyze Eq. (12), we note that the system is lightly

damped (typical damping ratios are in the range 10 − 10−5 −4), reso-

nantly driven, and has cubic stiffness and inertial nonlinearities, so the

problem is treated in the standard way. We start by representing the

modal displacement in the form A t a t R ωt ϕ t( ) = ( ) cos( + ( ))
A

, where

a t ϕ t( ( ), ( ))
A

are the non-dimensional vibration amplitude and the phase

of the drive mode response. By employing the method of averaging

[44], we assume that a t ϕ t( ( ), ( ))
A

change slowly over times ω∼ A
−1 and let

1 This assumption is convenient but not necessary, since a general distribution can be

projected onto the modes of interest.
2 Coefficients κ and γ are, not by coincidence, equal, but we keep their designation

distinct since they have different effects on the system response.
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A t ωa t R ωt ϕ t˙ ( ) ≈ − ( ) sin( + ( ))
A

. By using these expressions for A(t) and

A t˙ ( ) in Eq. (12) and disregarding fast-oscillating terms, we obtain

equations governing a ϕ( , )
A

on the slow time scale Γ∼ A
−1. The steady-

state responses found from these equations can be solved to obtain the

following expression that relates drive mode response amplitude to the

system and input parameters,

⎛

⎝
⎜

⎞

⎠
⎟

δω a

γ μω

a

Γ

a
( ) ≈

−
2

3

1 − μ
±

−

1 − μ
.

a

ω A

Δ C a R

Δ C a R

F Δ C a R

a R Δ ω
A

3

8

2

1

4

2

4 + 3

4 + 1

(4 + )

8

2

1

4

2

A

FA

FA

FA

A

2 2 2 2

2 2 2

2 2 2 2 2

2 2 4 2

(13)

As expected, the nonlinear forcing term does not affect the shape of the

modal backbone curve, represented by the first term in Eq. (13), but

alters the shape of the frequency response branches and renormalizes

the effective modal forcing amplitude. Simplification of Eq. (13) can be

made when the modal amplitude is small compared with the electrode

gap size, that is, when a Δ R≪ / , as is common in applications (to avoid

pull-in [45,46]). In this case, the nonlinear correction to the drive mode

forcing can be safely neglected, C = 0FA , an assumption we employ in

the following development.

It is important to recognize that the amplitude-dependent shift of

the free vibration frequency of the modes has the following sources: the

stiffness Duffing nonlinearity γ γ γ= +
d e

, where γd and γe are the

contributions from elastic and electrostatic stiffness effects, respectively

(see Eq. (11)), and inertial nonlinearities which have an effective

Duffing nonlinearity γ μω= −
i A

2

3

2 (see Eq. (13)). The inertial nonlinear

effects have the same origin (finite deformation kinematics) as the

nonlinearities in the elastic deformation potential, and we combine

these effects into a single mechanical contribution to the modal Duffing

constant, denoted γ γ γ= +
m d i

. For moderate vibration amplitudes, the

steady-state amplitude response is that of an equivalent Duffing system

and can be expressed as

⎛

⎝
⎜

⎞

⎠
⎟ω a ω

a

ω
γ γ

F

aRω
Γ( ) ≈ +

3

8
( + ) ±

2
− ,A

A
m e

A
A

2 2

2

(14)

examples of which are shown in Fig. 4.

Analysis shows that inertial nonlinearities must be taken into

account when γ γ| | ≲ | |
e m

, which can be the case in resonators with large

mechanical stiffness, like circular plates. Interestingly, when the

electrostatic potential provides only small corrections to both linear

and nonlinear stiffness constants, inertial nonlinearities have a domi-

nant effect on the modal frequency response and cause substantial

softening of the resonator frequency. Specifically, for the ring γ ω= 2
d A

2

and γ ω= −
m A

12

5

2. Note that a similar situation occurs in cantilever type

resonators where inertial nonlinearities essentially dominate the dy-

namic behavior of the fundamental mode and cause the vibration

frequency to soften as a function of vibration amplitude [47,48]. On the

other hand, when γ γ| | ≫ | |
e m

, electrostatic effects dominate the nonlinear

dynamics of the system, so that the nonlinear terms arising from

mechanics, both inertial and elastic stiffness, can be neglected, in which

case we use the approximation γ ≈ 0
m

, which we will use in Section 3.4.

3.3. Dynamics of the sense mode: parametric amplification

In this section we analyze the response of the gyroscopic sense mode

B, using the drive response as an effective excitation. This excitation has

components from Coriolis coupling from the external angular rate Ω,

Fig. 3. Comparison of the drive mode frequency responses obtained numerically from complete Eqs. (10a) and (10b) using parameters of a representative gyroscope from Section 3.4 (left

panel) and by neglecting back-action from the gyroscope sense mode (right panel). Note that the amplitude differences are small and, more importantly, neglecting the coupling does not

affect the stability of the response.

Fig. 4. Representative steady-state frequency response curves of the ring drive mode

described by Eq. (14) for different values of the forcing amplitude F. The blue, red, and

black curves correspond to forcing magnitudes F F F, 2 , 40 0 0. Responses are obtained under

the assumption that electrostatic forces dominate the Duffing nonlinearity, i.e., γ γ| | ≫ | |
e m .

Solid and dashed curves represent stable and unstable response amplitudes. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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and from nonlinear dispersive coupling from elastic, inertial, and

electrostatic effects. In what follows, we assume that the drive mode

motion can be represented as, A t aR ωt ϕ( ) = cos( + )
A
, where a and ϕA

are the drive mode steady-state amplitude and phase, respectively.

When Ω is small as compared with the gyroscope operation frequency,

i.e., Ω ω⋘ , and the parametric pumping does not destabilize the sense

response, the dynamic behavior of the sense mode is governed by the

following equation of motion, obtained from Eq. (10b),

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟B B Γ C

AA

R
B ω C

A

R
C

A

R
C

AA

R
C ΩA¨ + ˙ 2 +

˙
+ + +

˙
+

¨
= ˙ ,B Γ B d Ω2

2
2

2 1

2

2 2 2
(15)

where we have employed linearized dynamics for B (justified in Section

3.1). This model has direct (Coriolis) excitation from Ȧ and parametric

excitation from nonlinear combinations of A A A( , ˙ , ¨ ). The Cj are

constants that depend on the geometry of the gyroscope body. Since

Eq. (15) contains both direct and parametric resonant driving terms, it

is convenient to represent the sense mode response in the form

B R b iωt c c= ( exp[ ] + . . ) and apply method of averaging in the manner

in [23]. After averaging and some manipulations we obtain the

following expression for the steady-state amplitude of the sense mode

b C Ωa
ω ω Γ ω ω λ

ω Γ ω ω λ
| | = | |

2

4 + ( − + )

|4 + ( − ) − |
,Ω

B n

B n

2 2 2 2 2

2 2 2 2 2 2
(16)

where ω ω a C ω C C= + ( + ( − ))n B d
2 2 1

2

2 2
1 2 is the effective vibration fre-

quency of the sense mode, which is modified by nonlinear coupling to

the drive mode at amplitude a, and λ a C ω C C C= ( + ( − − ))d Γ
1

4

2 2
1 2 is

the strength of the parametric pumping due to the coupling to the drive

mode. Note that both ωn
2 and λ are determined by the system

nonlinearities, the drive vibration amplitude a, and the gyroscope

operation frequency ω. This expression describes the amplitude of the

sense mode and captures the interaction of the effects of the direct

(Coriolis) drive and the parametric pumping from nonlinear coupling.

Analysis of Eq. (16) reveals some important features. First, when the

drive mode vibration amplitude is sufficiently small such that one can

neglect the effect of the parametric pumping, that is, λ can be

neglected, the expression for the sense mode amplitude becomes

b
aω C Ω

ω ω ω Γ
| | =

| |

2 ( − ) + 4
,l

Ω

B B
2 2 2 2 2

(17)

which represents the case when both modes behave like linear

resonators. In this light, it is convenient to express the gyroscopic sense

mode amplitude in the more general case as follows

b G b G
ω Γ ω ω λ ω ω ω Γ

ω Γ ω ω λ
| | = | | , =

[4 + ( − + ) ][( − ) + 4 ]

|4 + ( − ) − |
,par l

B n B B

B n

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

(18)

where G is the amplification of the sense mode, i.e., the gain, that arises

from the parametric coupling to the drive mode. This gain from the

coupling is illustrated in Fig. 5, which shows the sense mode response

amplitude for the case where the coupling is ignored (black dashed

lines) and for two levels of coupling (red and blue lines). Here the

parametric amplification is evident, as is the frequency shift that arises

from the coupling; see Eq. (15). A more complete representation of the

gain is considered below.

Another feature associated with Eq. (16) is that the system gain G

or, equivalently, the sense mode amplitude b| |par diverges when the

denominator in Eq. (18) vanishes, i.e. ω Γ ω ω λ(4 + ( − ) − ) → 0B n
2 2 2 2 2 2 .

By solving this equation, one obtains the parametric instability condi-

tion expressed in terms of the drive parameters as a ω( *, *), correspond-

ing to G → ∞. This a ω( *, *) condition corresponds to the case where the

parametric coupling terms in Eq. (15) result in instability of the sense

mode [29]. As this instability is approached, the linearized version of

the sense mode model, given by linearizing Eq. (15), is insufficient to

describe the sense mode dynamics and the full coupled form of the

equations of motion Eqs. (10a) and (10b) must be used. In this work,

however, we restrict our analysis to the case where the response of the

sense mode remains in its linear range and its vibration amplitude

remains proportional to Ω. In fact, this is the range of practical interest.

3.4. Example

Generally speaking, one can adapt the approach developed here to a

variety of gyroscope configurations that exploit circular symmetry.

Here we illustrate the applicability of the results by using parameters

derived for the polysilicon ring gyroscope reported in [18]. First, we

consider the idealized case of a free (no suspension) gyroscope ring. The

gyroscope parameters are as follows: the mid-line radius of the ring is

R μ= 550 m, the radial thickness is h μ= 4 m, the electrode gap size is

Δ μ= 1.4 m, the estimated quality factor is Q=1200, and the bias

voltage is taken to be V = 3 VDC (we intentionally take this value of

VDC, as compared to 7 V in [18], to avoid the electrostatic pull-in

effect). As a result, the gyroscope dynamic parameters become

ω π/2 = 12.5 kHzB , Γ ω/ = 1/2400B B and the electrostatic potential

strongly dominates the strength of the dispersive modal coupling,

C ω/ ∼ − 10d B
2 5, while the other constants defined in Eq. (10b) satisfy

C C C C ω, , ≪ /Γ d B1 2
2.

Figs. 6a and 6b show the self-induced parametric gain G as a

function of the normalized drive frequency ω ω/ B and the normalized

vibration amplitude of the drive mode aR Δ/ (left panel) and the

normalized strength of the stiffness coupling C ω/d B
2 (right panel). The

solid red curve depicts the instability condition, a ω( *, *) in both panels,

where the value of the gain approaches infinity, that is, it is the Arnold

tongue for the sense mode [49,50]. The meshed region on both panels

corresponds to the set of operating conditions where the solution found

in Eq. (16) is unstable. In order to describe the gyroscope dynamics in

these regions, one must analyze the full form of Eqs. (10a) and (10b),

since in this region nonlinear effects that have been ignored will come

into play.

As follows from considering the results of Fig. 6a, in order to

achieve significant gain G, the drive mode should be operated at

frequencies slightly less than ωB. This can be easily satisfied since the

electrostatic forces dominate the nonlinearities of the gyroscopic drive

mode and its frequency response exhibits softening behavior. Fig. 6b,

on the other hand, illustrates the behavior of the gain G as a function of

the operating frequency and the strength of the intermodal dispersive

Fig. 5. Effect of self-induced parametric amplification on frequency responses of the ring

sense mode described by Eq. (16) for different values of the dispersive modal coupling

coefficient Cd, where we consider the case C ω C C C/ ≫ , ,d B Γ
2

1 2 , so that the parametric

pumping coefficient λ is essentially proportional to Cd. Frequency responses are obtained

for aR Δ/ = 0.2 and Ω ω/ = 2 × 10B
−4. The dashed curve is the non-amplified response

(Cd=0), while the red and blue curves correspond to the sense mode frequency responses

with C ω/ = − 0.5 × 10 , − 1.1 × 10d B
2 4 4 respectively; these numbers are chosen such that

analytical results of Section 3.3 remain valid, that is, the stated approximations hold.

Signal amplification from the intermodal coupling is evident. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)
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coupling. Importantly, the magnitude of the intermodal coupling can be

controlled by adjusting the bias voltage VDC applied to the resonator

body or attendant electrodes, thus allowing one to tune the amount of

self-induced parametric amplification, which increases gyroscope sen-

sitivity S in the vicinity of the instability region. Furthermore, the

critical value of the drive mode amplitude, where G → ∞, decreases as

Cd
−1/2. Physically, as expected, this implies that for stronger dispersive

intermodal coupling, smaller drive vibration amplitudes are required to

achieve the same level of gain.

The results obtained for the case of the unsuspended gyroscope ring

can be easily extended to account for supporting springs in the form of

semicircles with the mid-line radius R = 235 μms and radial thickness

h = 4 μm; see [18] for details. Numerical analysis shows that for the

polarization voltage V = 7 VDC (the voltage used by Ayazi et al. in their

experiments), electrostatic forces still dominate the system nonlinea-

rities, including the dispersive modal coupling strength, C ω/ ∼ − 10d B
2 4.

As a result, the dependence of the gyroscope sensitivity on the system

parameters is qualitatively the same as in the case of the free ring; see

Figs. 6a and 6b.

Our analysis of a gyroscope with a suspension shows that the

inclusion of the semi-circular suspending springs in the model changes

the resonator kinetic and potential energies, where the latter is affected

through its elastic component only, since there is no interaction of the

springs with the electrodes. Due to the symmetry of the gyroscope

elliptical modes, the suspension springs are equivalent to four addi-

tional rings of radius Rs, where one pair belongs to the drive mode and

the other to the sense mode. In this case, however, when calculating the

kinetic energy we also have to account for the motion of the spring

mass, which contributes to the effective modal mass. Furthermore,

analysis shows that the gyroscope suspension has considerable effect on

the individual modal stiffness parameters, affecting both the linear

natural frequency and the Duffing nonlinearity. These contributions can

be calculated in a straightforward way following the method described

in Section 3.1. In particular, the mechanical contributions to the modal

natural frequency and the Duffing modal nonlinearity increase by

factors of 5 and 12, respectively. Additionally, the suspension springs

also affect the dispersive modal coupling strength; in fact, the mechan-

ical component of κ increases by nearly a factor of two. This contribu-

tion to the modal coupling strength is the result of the nonlinear nature

of the strain-displacement relationships in Eqs. (5a) to (5c). Similar

results for more complicated geometries, such as the disk resonating

gyroscope in [22], can be obtained using finite element methods

adapted for computing nonlinear coefficients for purely mechanical

systems [51,52]. However, finite element methods for computing

nonlinear coefficients in systems with electrostatic actuation/sensing

are still to be developed.

4. Conclusions

In this work we have analyzed the phenomenon of self-induced

parametric amplification of in-plane flexural vibrations of degenerate

elliptical modes in ring/disk resonating gyroscopes. The most important

feature of this amplification is a gain in sensitivity that is achieved from

the naturally occurring dynamics of the system. This is a prime example

of where nonlinear behavior provides an opportunity for improved

performance of a practical device.

By utilizing the model of a thin spinning ring in the presence of

electrostatic actuation/sensing, we have demonstrated that, in addition

to the linear Coriolis coupling that is the basis for operation as an

angular rate sensor, the drive and sense modes are coupled nonlinearly

through elastic, inertial, and electrostatic effects. We have further

illustrated that this modal coupling results in parametric pumping of

the sense mode by the drive mode, which can lead to a significant

improvement in the gyroscope sensitivity with respect to the external

angular rate, as was experimentally observed in [22]. We have also

examined the effects of the drive conditions on the performance of the

sensor, and illustrated these effects for two representative micro-

mechanical ring resonating gyroscopes.

The analytical results presented here can be used for predicting the

nonlinear behavior of existing gyroscopes and proposed gyroscope

Fig. 6. Increase of the gyroscopic sensitivity of the gyroscope ring (without suspension) due to nonlinear modal coupling as a function of system and drive parameters. The solid red line

represents the a ω*− * curve where the gain G diverges according to the linear model described by Eq. (15); this is the primary Arnold tongue for the sense mode [49]. The meshed region is

the set of operating conditions where the solution found in Eq. (16) is unstable: (a) dependence of the strength of the self-induced parametric amplification G on the scaled operation

frequency ω/ωB and the vibration amplitude of the drive mode aR/Δ. The stiffness coupling strength is C ω/ = − 95 × 10d B
2 3 and (b) dependence of the strength of the self-induced

parametric amplification on the scaled operation frequency ω/ωB and the nonlinear dispersive coupling strength C ω/d B
2. The drive mode vibration amplitude is chosen to be aR/Δ=0.1.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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models, and, more importantly, for designing ring/disk resonating

gyroscopes with optimized performance and maximized sensitivity

using their inherent dynamics.
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Appendix A. Derivation of nonlinear strain-displacement relationships

Here we derive the nonlinear strain-displacement relationships for u vϵ ( , )ij presented in Eqs. (5a) to (5c). In order to do so, we consider an

infinitesimal segment of the gyroscope body, designated by KLMN in with coordinates r and θ and having radial thickness dr and angular length rdθ;

see Fig. A.1. This segment can be conveniently defined in terms of the coordinates of its corner points as

K r θ L r dr θ

M r dr θ dθ N r θ dθ

= ( , ), = ( + , ),

= ( + , + ), = ( , + ). (A.1)

During operation the body experiences elastic deformations and the segment deforms into K L M N1 1 1 1, which we, in turn, express as
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(A.2)

From Fig. A.1 it is clear that the strain-displacement relationships u vϵ ( , )ij are given by

K L KL

KL

K N KN

KN
α βϵ =

−
, ϵ =

−
, ϵ = + .rr θθ rθ

1 1 1 1

(A.3)

Given the coordinate representations of the segment corner points in Eqs. (A.1) and (A.2), we have
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Finally, by using Eqs. (A.4a) to (A.4c) in Eq. (A.3) and expanding the resulting expressions up to the second order in u and v, we obtain the nonlinear

strain-displacement relationships given in Eqs. (5a) to (5c).

Fig. A.1. Deformation of the gyroscope segment KLMN into K L M N1 1 1 1.
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