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Abstract. We present a simplified proof for a recent theorem by Junyan

Cao and Mihai Păun, confirming a special case of Iitaka’s Cn,m conjecture: if
f : X → Y is an algebraic fiber space, and if the Albanese mapping of Y is

generically finite over its image, then we have the inequality of Kodaira dimen-

sions κ(X) ≥ κ(Y ) + κ(F ), where F denotes a general fiber of f . We include
a detailed survey of the main algebraic and analytic techniques, especially the

construction of singular hermitian metrics on pushforwards of adjoint bundles

(due to Berndtsson, Păun, and Takayama).

A. Introduction

1. Main result. In the classification of algebraic varieties up to birational equiv-
alence, the most fundamental invariants of a smooth projective variety X are the
spaces of global sections of the pluricanonical bundles ω⊗m

X . The rate of growth of

the plurigenera Pm(X) = dimH0(X,ω⊗m
X ) is measured by the Kodaira dimension

κ(X) = lim sup
m→+∞

logPm(X)

logm
∈ {−∞, 0, 1, . . . ,dimX}.

The following conjecture by Iitaka and Viehweg predicts the behavior of the Kodaira
dimension in families. Recall that an algebraic fiber space is a surjective morphism
with connected fibers between two smooth projective varieties.

Conjecture. Let f : X → Y be an algebraic fiber space with general fiber F . Pro-
vided that κ(Y ) ≥ 0, the Kodaira dimension of X satisfies the inequality

κ(X) ≥ κ(F ) + max{κ(Y ), var(f)},
where var(f) measures the birational variation in moduli of the fibers.

Using analytic techniques, Cao and Păun [CP15] have recently proved the con-
jectured subadditivity of the Kodaira dimension in the case where Y is an abelian
variety; as κ(Y ) = 0, this amounts to the inequality

κ(X) ≥ κ(F ).

With very little extra work, one can deduce the subadditivity of the Kodaira dimen-
sion in any algebraic fiber space whose base Y has maximal Albanese dimension,
meaning that the Albanese mapping Y → Alb(Y ) is generically finite over its im-
age. This includes of course the case where Y is a curve of genus ≥ 1, where the
following result was first proved by Kawamata [Kaw82, Theorem 2].
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Theorem 11. Let f : X → Y be an algebraic fiber space with general fiber F .
Assume that Y has maximal Albanese dimension, then κ(X) ≥ κ(F ) + κ(Y ).

Remark. A proof of this result is also claimed in [CH11], however the proof given
there is incomplete because of a serious mistake in §4.

The purpose of this paper is to explain a simplified proof of the Cao-Păun the-
orem that combines both analytic and algebraic techniques. We first reduce to the
case when κ(X) = 0 and Y is an abelian variety, where we then prove a more
precise statement (Theorem 52). This is done in Chapter B. We then take the
opportunity to provide a detailed survey of the results that are used in the proof,
for the benefit of those readers who are more familiar with one or the other side of
the story.

In Chapter C, we discuss the main algebraic tools, contained mostly in the
papers [CH04, Hac04, Lai11, PP11a, PS14], namely results from generic vanishing
theory. The upshot of the discussion is that when f : X → A is a fiber space over
an abelian variety, with κ(X) = 0, then for all m sufficiently large and divisible,
f∗ω

⊗m
X is a unipotent vector bundle on A, meaning a successive extension of copies

of OA. This is as far as the algebraic techniques seem to go at present. While we
recall the basic generic vanishing and Fourier-Mukai tools involved, as this topic
is well-established in the literature, we provide fewer background details. Sources
where a comprehensive treatment can be found include the lecture notes [Sch13],
as well as [Par12, Pop12].

In Chapter D and Chapter E we discuss the main analytic tools, contained
mostly in the papers [BP08, PT14, CP15], namely the existence of singular metrics
with semi-positive curvature (in a suitable sense) on pushforwards of pluricanonical
bundles, and a very surprising criterion for such a metric to be smooth and flat.
This time, the upshot is that when f : X → A is a fiber space onto an abelian
variety, with κ(X) = 0, then f∗ω

⊗m
X is a vector bundle with a flat hermitian metric.

Because a unipotent vector bundle with a flat hermitian metric must be trivial, the
algebraic and analytic results together lead to the conclusion in Theorem 11. Since
the analytic results are still new, and are likely to be less familiar to algebraic
geometers, we decided to include as many details as possible. For another survey
of these and related results, we recommend [Pău16].

Remark. For the sake of exposition, we present only the simplest version of the
result by Cao and Păun. One can tweak the proof of Theorem 11 to show that the
inequality in Theorem 11 still holds when X is replaced by a klt pair (X,∆), and
F by the pair (F,∆F ); this is done in [CP15, Theorem 4.22].

2. What is new? The presentation in Chapter D contains various small improve-
ments compared to the original papers [BP08, PT14, CP15]. We briefly summarize
the main points here. Let f : X → Y be a projective and surjective holomorphic
mapping between two complex manifolds. Given a holomorphic line bundle L on X,
and a singular hermitian metric h on L with semi-positive curvature, we construct
a singular hermitian metric on the torsion-free coherent sheaf

F = f∗
(
ωX/Y ⊗ L⊗ I(h)

)
,

and show that this metric has semi-positive curvature (in the sense that the log-
arithm of the norm of every local section of the dual sheaf is plurisubharmonic).
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In [PT14], Păun and Takayama constructed a singular hermitian metric with semi-
positive curvature on the larger sheaf f∗

(
ωX/Y ⊗L

)
, under the additional assump-

tion that the restriction of (L, h) to a general fiber of f has trivial multiplier ideal.
Another difference with [PT14] is that we do not use approximation by smooth
metrics or results about Stein manifolds; instead, both the construction of the met-
ric, and the proof that it has semi-positive curvature, rely on the Ohsawa-Takegoshi
extension theorem with sharp estimates, recently proved by Blocki and Guan-Zhou
[Blo13, GZ15]. This approach was suggested to us by Mihai Păun.

Note. Berndtsson and Lempert [BL16] explain how one can use the curvature prop-
erties of pushforwards of adjoint bundles to get a relatively short proof of (one ver-
sion of) the Ohsawa-Takegoshi theorem with sharp estimates. This suggests that
the two results are not so far from each other. That said, we hope that using the
Ohsawa-Takegoshi theorem as a black box will make the proof of the main result
more accessible to algebraic geometers than it would otherwise be.

We introduce what we call the “minimal extension property” for singular her-
mitian metrics (see §20), and show that, as a consequence of the Ohsawa-Takegoshi
theorem with sharp estimates, the singular hermitian metric on F always has this
property. We then use the minimal extension property, together with some basic
inequalities from analysis, to give an alternative proof for the following result by
Cao and Păun: when Y is projective, F is a hermitian flat bundle if and only if the
line bundle det F has trivial first Chern class in H2(Y,R). The original argument
in [CP15] relied on some results by Raufi about curvature tensors for singular her-
mitian metrics [Rau15]. We also show that when Y is projective, every nontrivial
morphism of sheaves F → OY is split surjective; this result is new.

In Chapter E, we apply these results to construct canonical singular hermitian
metrics with semi-positive curvature on the sheaves f∗ω

⊗m
X/Y for m ≥ 2. Here, one

small improvement over [PT14] is the observation that these metrics are continuous
on the Zariski-open subset of Y where f : X → Y is submersive.

Our discussion of generic vanishing theory in Chapter C is fairly standard, but
includes (in §11) a new result relating the structure of the cohomological support
loci V 0(ω⊗m

X ) for m ≥ 2 to the Iitaka fibration of X. Here the main Theorem 52 is
one of the crucial ingredients.

3. Acknowledgements. We thank Mihai Păun for encouraging us to write this
paper, and for many useful discussions and advice about its contents. We also
thank Dano Kim and Luigi Lombardi for reading and commenting on a draft ver-
sion. During the preparation of the paper, CH was partially supported by NSF
grants DMS-1300750 and DMS-1265285 and by a grant from the Simons Founda-
tion (Award #256202). MP was partially supported by NSF grant DMS-1405516
and by a Simons Fellowship. CS was partially supported by NSF grants DMS-
1404947 and DMS-1551677, and by a Centennial Fellowship from the American
Mathematical Society.

B. Proof of the main statement

4. Main analytic and algebraic input. In this section we lay out the tools
neeed to prove the main result. We also give a brief sketch of the proof, which is
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presented in more detail in §5. The rest of the paper will be devoted to a detailed
survey of the results stated here.

We first note that one can reduce Theorem 11 to the special case when κ(X) = 0
and Y = A is an abelian variety, with the help of the Iitaka fibration; the argument
for this is recalled in §5 below. We will therefore make these assumptions in the
remainder of this section. The condition κ(X) = 0 is equivalent to saying that
Pm(X) ≤ 1 for all m ∈ N, with equality for m sufficiently large and divisible. Let
F be the general fiber of f : X → A. Our goal is to prove that κ(F ) = 0. What
we will actually show is that Pm(F ) = 1 whenever Pm(X) = 1; this is enough to
conclude that κ(F ) = 0.

Fix now an integer m ∈ N such that Pm(X) = 1, and consider the pushforward
of the m-th pluricanonical bundle

Fm = f∗ω
⊗m
X .

This is a torsion-free coherent sheaf on A, whose rank at the generic point of A is
equal to Pm(F ). (In fact, this holds for every smooth fiber of f , by invariance of
plurigenera.) The space of global sections of Fm has dimension

h0
(
A, f∗ω

⊗m
X

)
= dimH0(X,ω⊗m

X ) = Pm(X) = 1.

To obtain the conclusion, it is enough to show that Fm has rank 1 generically; we
will in fact prove the stronger statement that Fm ≃ OA. This uses both algebraic
and analytic properties of Fm.

Generic vanishing and unipotency. We first explain the algebraic input. We
borrow an idea from generic vanishing theory, initiated in [GL87, GL91], namely
to consider the locus

V 0(A,Fm) =
{
P ∈ Pic0(A)

⏐⏐ H0(A,Fm ⊗ P ) ̸= 0
}

=
{
P ∈ Pic0(A)

⏐⏐ H0
(
X,ω⊗m

X ⊗ f∗P
)
̸= 0

}
⊆ Pic0(A).

The following result by Chen-Hacon [CH04, §3], Lai [Lai11, Theorem 3.5] and Siu
[Siu11, Theorem 2.2] describes the structure of V 0(A,Fm); it is a generalization
of a famous theorem by Simpson [Sim93]. The proof by Simpson (which applies
when m = 0, 1) relies on Hodge theory and the Gelfond-Schneider theorem in
transcendence theory; the cited works use a construction with cyclic coverings,
originally due to Viehweg, to reduce the general case to the case m = 1. We review
the argument in §10.

Theorem 41. Let X be a smooth projective variety. For each m ∈ N, the locus{
P ∈ Pic0(X)

⏐⏐ H0
(
X,ω⊗m

X ⊗ P
)
̸= 0

}
⊆ Pic0(X)

is a finite union of abelian subvarieties translated by points of finite order.

This theorem implies that V 0(A,Fm) is also a finite union of abelian subvarieties
translated by points of finite order. The reason is that, as f : X → A has connected
fibers, the pullback morphism f∗ : Pic0(A) → Pic0(X) is injective. Since we are
assuming that Pm(X) = 1, we have OA ∈ V 0(A,Fm); let s0 ∈ H0(X,ω⊗m

X ) be any
nontrivial section. Now we observe that κ(X) = 0 forces

V 0(A,Fm) = {OA}.
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To see why, suppose that we had P ∈ V 0(A,Fm) for some nontrivial line bundle
P ∈ Pic0(A). By Theorem 41, we can assume that P has finite order d ̸= 1. Let

s1 ∈ H0(A,Fm ⊗ P ) = H0
(
X,ω⊗m

X ⊗ f∗P
)

be any nontrivial section; then s⊗d
0 and s⊗d

1 are two linearly independent sections

of ω⊗dm
X , contradicting the fact that Pdm(X) = 1.

Knowing the locus V 0(A,Fm) gives us a lot of information about Fm, due to
the following result [PS14, Theorem 1.10]. It is based on a vanishing theorem
for pushforwards of pluricanonical bundles, which is again proved using Viehweg’s
cyclic covering construction; we review the argument in §8.

Theorem 42. Let f : X → A be a morphism from a smooth projective variety to
an abelian variety. For every m ∈ N, the sheaf Fm = f∗ω

⊗m
X is a GV-sheaf on A.

Recall that a coherent sheaf F on an abelian variety A is called a GV-sheaf if
its cohomology support loci

V i(A,F ) =
{
P ∈ Pic0(A)

⏐⏐ Hi(A,F ⊗ P ) ̸= 0
}

satisfy the inequalities codimV i(A,F ) ≥ i for every i ∈ N. This property can be
seen as a variant of (semi-)positivity on abelian varieties; in fact every GV-sheaf
on A is nef, see [PP11b, Theorem 4.1].

Note. A more conceptual description involves the Fourier-Mukai transform

RΦP : Db
coh(OA) → Db

coh

(
OPic0(A)

)
,

which is an equivalence between the bounded derived categories of coherent sheaves
on A and the dual abelian variety Pic0(A). In terms of the Fourier-Mukai transform,
F is a GV-sheaf if and only if the complex of sheaves

RHom
(
RΦP (F ),OÂ

)
∈ Db

coh

(
OPic0(A)

)
is concentrated in degree 0, and is therefore again a coherent sheaf F̂ on Pic0(A).

By the base change theorem, the support of F̂ is precisely the locus V 0(A,F ).

In the case at hand, we have V 0(A,Fm) = {OA}; consequently, F̂m is a suc-
cessive extension of skyscraper sheaves supported at the origin in Pic0(A). We will
use this via the following elementary consequence; see §9 for details. Recall first
from [Muk81] that a vector bundle U on A is called unipotent if it has a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

such that Ui/Ui−1 ≃ OA for all i = 1, . . . , n. Note in particular that detU ≃ OA.
More generally, U is called homogeneous if it has a filtration

0 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U

such that Ui/Ui−1 is isomorphic to a line bundle in Pic0(A) for all i = 1, . . . , n. A
homogeneous vector bundle U is called decomposable if U = U1 ⊕U2, where the Ui

are non-zero vector bundles, and indecomposable if this is not the case.

Corollary 43. Let X be a smooth projective variety with κ(X) = 0, and let f : X →
A be an algebraic fiber space over an abelian variety.

(a) If Fm ̸= 0 for some m ∈ N, then the coherent sheaf Fm is an indecompos-
able homogeneous vector bundle.
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(b) If H0(X,ω⊗m
X ) ̸= 0 for some m ∈ N, then the coherent sheaf Fm is an

indecomposable unipotent vector bundle.

Singular hermitian metrics on pushforwards of pluricanonical bundles.
We now come to the analytic input. To motivate it, recall that the space of global
sections of Fm has dimension Pm(X) = 1. In order to show that Pm(F ) = 1, we
therefore need to argue that the unipotent vector bundle Fm is actually the trivial
bundle OA. For the moment this seems quite hopeless with algebraic methods, so
it is at this point that the analytic methods take over.

The crucial development that allows us to proceed is recent work on the notion
of a singular hermitian metric on a torsion-free sheaf; the highlight of this study is
the following remarkable result by Păun and Takayama [PT14, Theorem 3.3.5]. In
order to state it, recall that to a singular hermitian metric h on a line bundle L,
one associates the multiplier ideal sheaf I(h) ⊆ OX , consisting of those functions
that are locally square-integrable with respect to h.

Theorem 44. Let f : X → Y be a projective morphism of smooth varieties, and
let (L, h) be a line bundle on X with a singular hermitian metric of semi-positive
curvature. Then the torsion-free sheaf f∗

(
ωX/Y ⊗L⊗I(h)

)
has a canonical singular

hermitian metric with semi-positive curvature.

The relevant definitions and the proof are described in Chapter D and Chap-
ter E, where we also present another key statement. Indeed, Cao and Păun [CP15,
Corollary 2.9 and Theorem 5.23] show that their singular hermitian metrics behave
much like smooth metrics with Griffiths semi-positive curvature: if the determinant
line bundle det F has trivial first Chern class, then F is actually a hermitian flat
bundle. This is (a) below; part (b) is new.

Theorem 45. Let f : X → Y be a surjective morphism of smooth projective vari-
eties. Let (L, h) be a line bundle on X with a singular hermitian metric of semi-
positive curvature, and define F = f∗

(
ωX/Y ⊗ L⊗ I(h)

)
.

(a) If c1(det F ) = 0 in H2(Y,R), then the torsion-free sheaf F is locally free,
and the singular hermitian metric in Theorem 44 is smooth and flat.

(b) Every nonzero morphism F → OY is split surjective.

The application of these results to Theorem 11 stems from the fact that the
bundles Fm with m ≥ 2 naturally fit into this framework. Let us briefly summarize
how this works when f : X → Y is an algebraic fiber space with general fiber F . For
every m ∈ N such that Pm(F ) ̸= 0, the spaces of m-canonical forms on the smooth
fibers of f induce in a canonical way a singular hermitian metric with semi-positive
curvature on ωX/Y , called the m-th Narasimhan-Simha metric. (For m = 1, the
Narasimhan-Simha metric is of course just the Hodge metric.) Denote by h the

induced singular hermitian metric on the line bundle L = ω
⊗(m−1)
X/Y . Pretty much

by construction, the inclusion

f∗
(
ωX/Y ⊗ L⊗ I(h)

)
⊆ f∗

(
ωX/Y ⊗ L

)
= f∗ω

⊗m
X/Y

is generically an isomorphism, and so Theorem 44 and Theorem 45 apply.

Corollary 46. Let f : X → Y be an algebraic fiber space.

(a) For any m ∈ N, the torsion-free sheaf f∗ω
⊗m
X/Y has a canonical singular

hermitian metric with semi-positive curvature.
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(b) If c1(det f∗ω
⊗m
X/Y ) = 0 in H2(Y,R), then f∗ω

⊗m
X/Y is locally free, and the

singular hermitian metric on it is smooth and flat.
(c) Every nonzero morphism f∗ω

⊗m
X/Y → OY is split surjective.

In our case, Fm = f∗ω
⊗m
X is a unipotent vector bundle by Corollary 43, and so

the hypothesis in (b) is satisfied; after this point, the proof of Theorem 11 becomes
straightforward.

5. Proof of Theorem 11. We now explain how Theorem 11 follows quickly by
combining the results outlined in the previous section. Recall that we are starting
with an algebraic fiber space f : X → Y , where X is a smooth projective variety,
and Y is of maximal Albanese dimension. Let us note right away that one can
perform a useful reduction, following in part the argument in [CH02, Theorem 4.9].

Lemma 51. To prove Theorem 11, it is enough to assume that κ(X) = 0 and that
Y is an abelian variety.

Proof. We begin by showing that if κ(X) = −∞, then κ(F ) = −∞. If this were
not the case, then we could pick some m > 0 such that Pm(F ) > 0 and hence
f∗ω

⊗m
X ̸= 0. Let Y → A be the Albanese morphism of Y , and g : X → A the

induced morphism. Since F is an irreducible component of the general fiber of
X → g(X) ⊆ A, it follows that g∗ω

⊗m
X ̸= 0. By Theorem 42, g∗ω

⊗m
X is a GV-sheaf,

and in particular by the general Lemma 74 below, the set

V 0(g∗ω
⊗m
X ) =

{
P ∈ Pic0(A)

⏐⏐ H0(A, g∗ω
⊗m
X ⊗ P ) ̸= 0

}
is non-empty. Now by Theorem 41 and the comments immediately after, V 0(g∗ω

⊗m
X )

contains a torsion point P ∈ Pic0(A), i.e. there is an integer k > 0 such that
P⊗k ≃ OA. But then h0(X,ω⊗m

X ⊗ g∗P ) = h0(A, g∗ω
⊗m
X ⊗ P ) ̸= 0 and so

h0(X,ω⊗km
X ) = h0

(
X, (ω⊗m

X ⊗ P )⊗k
)
̸= 0.

This contradicts the assumption κ(X) = −∞.

Assume now that κ(X) ≥ 0. We will first prove the statement in the case that
κ(Y ) = 0. By Kawamata’s theorem [Kaw81, Theorem 1], since Y is of maximal
Albanese dimension, it is in fact birational to its Albanese variety and so we may
assume that Y is an abelian variety. Let h : X → Z the Iitaka fibration of X.
Since we are allowed to work birationally, we can assume that Z is smooth. We
denote by G its general fiber, so that in particular κ(G) = 0. By the same result of
Kawamata, the Albanese map of G is surjective, so we deduce that B = f(G) ⊆ Y
is an abelian subvariety. If G→ B′ → B is the Stein factorization, then B′ → B is
an étale map of abelian varieties. We thus have an induced fiber space

G −→ B′

over an abelian variety, with κ(G) = 0, and whose general fiber is H = F ∩ G.
Assuming that Theorem 11 holds for algebraic fibers spaces of Kodaira dimension
zero over abelian varieties, we obtain κ(H) = 0. Note however that H is also an
irreducible component of the general fiber of

h|F : F −→ h(F ).

Considering the Stein factorization of this morphism, the easy addition formula
[Mor87, Corollary 2.3], implies that

κ(F ) ≤ κ(H) + dimh(F ) = dimh(F ).
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(Note that we can assume that g(F ) is smooth, by passing to a birational model.)
Since dimh(F ) ≤ dimZ = κ(X), we obtain the required inequality κ(F ) ≤ κ(X).

Finally we prove the general case. Since Y has maximal Albanese dimension,
after replacing it by a resolution of singularities of an étale cover of its Stein fac-
torization, and X by a resolution of the corresponding fiber product, by [Kaw81,
Theorem 13] we may assume that Y = Z×K where Z is of general type and K is an
abelian variety. In particular κ(Y ) = dimZ = κ(Z). If E is the general fiber of the
induced morphism X → Z, then the induced morphism E → K has general fiber
isomorphic to F . By what we have proven above, we deduce that κ(E) ≥ κ(F ).
We then have the required inequality

κ(X) = κ(Z) + κ(E) ≥ κ(Y ) + κ(F ),

where the first equality is [Kaw81, Theorem 3], since Z is of general type. □

We may therefore assume that f : X → A is a fiber space onto an abelian variety,
and κ(X) = 0. Note that this last condition means that we have h0(X,ω⊗m

X ) = 1 for
all sufficiently divisible integers m > 0. The task at hand is to show that κ(F ) = 0.
(It is a well known consequence of the easy addition formula [Mor87, Corollary 2.3]
that if κ(F ) = −∞, then κ(X) = −∞.) We show in fact the following more precise
statement:

Theorem 52. If f : X → A is an algebraic fiber space over an abelian variety, with
κ(X) = 0, then we have

Fm = f∗ω
⊗m
X ≃ OA

for every m ∈ N such that H0(X,ω⊗m
X ) ̸= 0.

Proof. From Corollary 43, we know that Fm is an indecomposable unipotent vector
bundle on A. In particular,

det Fm ≃ OA.

Corollary 46 implies then that Fm has a smooth hermitian metric that is flat. Thus
Fm is a successive extension of trivial bundles OA that can be split off as direct
summands with the help of the flat metric. It follows that in fact Fm ≃ O⊕r

A , the
trivial bundle of some rank r ≥ 1. But then, since

h0(A, f∗ω
⊗m
X ) = h0(X,ω⊗m

X ) = 1,

we obtain that r = 1, which is the statement of the theorem. □

In the remaining chapters, we explain the material in §4 in more detail.

C. Generic vanishing

6. Canonical bundles and their pushforwards. As explained above, the al-
gebraic tools used in this paper revolve around the topic of generic vanishing. This
study was initiated by Green and Lazarsfeld [GL87, GL91], in part as an attempt
to provide a useful weaker version of Kodaira Vanishing for the canonical bundle,
in the absence of twists by positive line bundles. An important addition was pro-
vided in work of Simpson [Sim93]. The results of Green-Lazarsfeld were extended
to include higher direct images of canonical bundles in [Hac04]. From the point
of view of this paper, the main statements to keep in mind are summarized in the
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following theorem. Recall that for any coherent sheaf F on an abelian variety A,
we consider for all k ≥ 0 the cohomological support loci

V k(F ) = {P ∈ Pic0(A) | Hk(X,F ⊗ P ) ̸= 0 }
They are closed subsets of Pic0(A), by the semi-continuity theorem for cohomology.

Theorem 61. If f : X → A is a morphism from a smooth projective variety to an
abelian variety, then for any j, k ≥ 0 we have

(1) [Hac04] codimPic0(A) V
k(Rjf∗ωX) ≥ k.

(2) [GL91, Sim93] Every irreducible component of V k(Rjf∗ωX) is a translate
of an abelian subvariety of A by a point of finite order.

What we use in this paper are (partial) extensions of these results to push-
forwards of pluricanonical bundles f∗ω

⊗m
X , for m ≥ 2. We describe these in the

following sections, beginning with an abstract study in the next.

7. The GV property and unipotency. Let A be an abelian variety of dimension
g. The generic vanishing property (1) in the theorem above can be formalized into
the following:

Definition 71. The sheaf F is called a GV-sheaf on A if it satisfies

codimPic0(A) V
k(F ) ≥ k for all k ≥ 0.

We will identify Pic0(A) with the dual abelian variety Â, and denote by P the

normalized Poincaré bundle on A× Â. It induces the integral transforms

RΦP : Db
coh(OA) −→ Db

coh

(
OÂ

)
, RΦPF = Rp2∗(p∗1F ⊗ P ).

and
RΨP : Db

coh

(
OÂ

)
−→ Db

coh(OA), RΨPG = Rp1∗(p∗2G ⊗ P ).

These functors are known from [Muk81, Theorem 2.2] to be equivalences of derived
categories, usually called the Fourier-Mukai transforms; moreover,

(72) RΨP ◦RΦP = (−1A)∗[−g] and RΦP ◦RΨP = (−1Â)∗[−g],

where [−g] denotes shifting g places to the right.

Standard applications of base change (see e.g. [PP11b, Lemma 2.1] and [PP11a,
Proposition 3.14]) lead to the following basic properties of GV -sheaves:

Lemma 73. Let F be a coherent sheaf on A. Then:

(1) F is a GV-sheaf if and only if

codimÂ SuppRkΦPF ≥ k for all k ≥ 0.

(2) If F is a GV-sheaf, then

V g(F ) ⊆ · · · ⊆ V 1(F ) ⊆ V 0(F ).

To give a sense of what is going on, here is a sketch of the proof of part (1):
note that the restriction of p1

∗F ⊗ P to a fiber A × {α} of p2 is isomorphic to
the sheaf F ⊗ α on A, and so fiberwise we are looking at the cohomology groups
Hk(A,F⊗α). A simple application of the theorem on cohomology and base change
then shows for every m ≥ 0 that⋃

k≥m

SuppRkΦPF =
⋃
k≥m

V k(F ).
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This implies the result by descending induction on k.

Lemma 74. If F is a GV-sheaf on A, then F = 0 if and only if V 0(F ) = ∅.

Proof. By Lemma 73, we see that V 0(F ) = ∅ is equivalent to V k(F ) = ∅ for all
k ≥ 0, which by base change is in turn equivalent to RΦPF = 0. By Mukai’s
derived equivalence, this is equivalent to F = 0. □

The following proposition is the same as [Hac04, Corollary 3.2(4)], since it can
be seen that the assumption on F imposed there is equivalent to that of being a
GV-sheaf. This is the main way in which generic vanishing is used in this paper;
for the definition of a unipotent vector bundle see §4.

Proposition 75. Let F be a GV-sheaf on an abelian variety A. If V 0(F ) = {0},
then F is a unipotent vector bundle.

Proof. By [Muk81, Example 2.9], if g = dimA, then F is a unipotent vector bundle
if and only if

(76) RiΦPF = 0 for all i ̸= g, and RgΦPF = G ,

where G is a coherent sheaf supported at the origin 0 ∈ Â. To review the argument,

notice that if this is the case, then if l = length(G ) > 0, we have h0(Â,G ) ̸= 0 and
so there is a short exact sequence

0 −→ k(0) −→ G −→ G ′ −→ 0

where G ′ is a coherent sheaf supported at the origin 0 ∈ Â, with length(G ′) = l−1.
Applying RΨP we obtain a short exact sequence of vector bundles on A

0 −→ OA −→ R0ΨPG −→ R0ΨPG ′ −→ 0,

and by (72) we have R0ΨPG = (−1A)∗F . It is then not hard to see that F ′ =
R0ΨPG ′ also satisfies the hypotheses in (76) and so, proceeding by induction on
l, we may assume that F ′ is a unipotent vector bundle. It follows that F is also
a unipotent vector bundle as well (since it is an extension of a unipotent vector
bundle by OA).

We now check that the two conditions in (76) are satisfied. By Lemma 73 the
hypothesis implies that

V i(F ) ⊆ {0} for all i ≥ 0.

By base change one obtains that RiΦPF is supported at most at 0 ∈ Â for 0 ≤
i ≤ g. It remains to show that RiΦPF = 0 for i ̸= g. Note that

Hj(Â, RiΦPF ⊗ α) = 0 for all j > 0, 0 ≤ i ≤ g, and α ∈ Pic0(Â),

and so by base change we have

RjΨP (RiΦPF ) = 0 for all j > 0 and 0 ≤ i ≤ g.

By an easy argument involving the spectral sequence of the composition of two
functors, since RΨP ◦RΦP = (−1A)∗[−g], it then follows that R0ΨP (RiΦPF ) =
Hi

(
(−1A)∗F [−g]

)
, and so in particular

R0ΨP (RiΦPF ) = 0 for i < g.

But then RΨP (RiΦPF ) = 0 for i < g, and hence RiΦPF = 0 for i < g.

□
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For later use, we note that a very useful tool for detecting generic vanishing is a
cohomological criterion introduced in [Hac04, Corollary 3.1]. Before stating it, we
recall that an ample line bundle N on an abelian variety B induces an isogeny

φN : B −→ B̂, x→ t∗xN ⊗N−1,

where tx denotes translation by x ∈ B.

Theorem 77. A coherent sheaf F on A is a GV-sheaf if and only if given any

sufficiently large power M of an ample line bundle on Â, one has

Hi
(
A,F ⊗RgΨP (M−1)

)
= 0 for all i > 0.

If φM : Â→ A is the isogeny induced by M , this is also equivalent to

Hi(Â, φ∗
MF ⊗M) = 0 for all i > 0.

Remark. Note that since M is ample, Hi(Â,M−1 ⊗ α) = 0 for all i < g and α ∈
Pic0(Â) ≃ A, and so RiΨP (M−1) = 0 for i ̸= g. If we denote RgΨP (M−1) = M̂−1,

then by [Muk81, Proposition 3.11] we have φ∗
MM̂

−1 ≃M⊕h0(M), hence the second
assertion.

8. Pushforwards of pluricanonical bundles. In this section we explain the
proof of Theorem 42, following [PS14, §5]. In loc. cit. we noted that a very quick
proof can be given based on the general effective vanishing theorem for pushforwards
of pluricanonical bundles proved there. However, another more self-contained, if less
efficient, proof using cyclic covering constructions is also given; we choose to explain
this here, as cyclic covering constructions are in the background of many arguments
in this article. We first recall Kollár’s vanishing theorem [Kol86, Theorem 2.1].

Theorem 81. Let f : X → Y be a morphism of projective varieties, with X
smooth. If L is an ample line bundle on Y , then

Hj(Y,Rif∗ωX ⊗ L) = 0 for all i and all j > 0.

Proof of Theorem 42. Let M = L⊗d, where L is an ample and globally generated

line bundle on Â, and d is an integer that can be chosen arbitrarily large. Let

φM : Â→ A be the isogeny induced by M . According to Theorem 77, it is enough
to show that

Hi(Â, φ∗
Mf∗ω

⊗m
X ⊗M) = 0 for all i > 0.

Equivalently, we need to show that

Hi(Â, h∗ω
⊗m
X1

⊗ L⊗d) = 0 for all i > 0,

where h : X1 → Â is the base change of f : X → A via φM , as in the diagram

X1 X

Â A

h f

φM

We can conclude immediately if we know that there exists a bound d = d(g,m),
i.e. depending only on g = dimA and m, such that the vanishing in question
holds for any morphism h. (Note that we cannot apply Serre Vanishing here,
as construction depends on the original choice of M .) But Proposition 82 below
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shows that there exists a morphism φ : Z → Â with Z smooth projective, and
k ≤ g +m, such that h∗ω

⊗m
X1

⊗ L⊗k(m−1) is a direct summand of φ∗ωZ . Applying
Kollár vanishing, Theorem 81, we deduce that

Hi(Â, h∗ω
⊗m
X1

⊗ L⊗d) = 0 for all i > 0 and all d ≥ (g +m)(m− 1) + 1,

which finishes the proof. (The main result of [PS14] shows that one can in fact take
d ≥ m(g + 1) − g.) □

Proposition 82. Let f : X → Y be a morphism of projective varieties, with X
smooth and Y of dimension n. Let L be an ample and globally generated line bundle
on Y , and m ≥ 1 an integer. Then there exists a smooth projective variety Z with a
morphism φ : Z → Y , and an integer 0 ≤ k ≤ n+m, such that f∗ω

⊗m
X ⊗L⊗k(m−1)

is a direct summand in φ∗ωZ .

Proof. The sheaf f∗ω
⊗m
X ⊗L⊗pm is globally generated for some sufficiently large p.

Denote by k the minimal p ≥ 0 for which this is satisfied.

Consider now the adjunction morphism

f∗f∗ω
⊗m
X → ω⊗m

X .

After blowing up X, if necessary, we can assume that the image sheaf is of the form
ω⊗m
X ⊗ OX(−E) for a divisor E with normal crossing support. As f∗ω

⊗m
X ⊗ L⊗km

is globally generated, the line bundle

ω⊗m
X ⊗ f∗L⊗km ⊗ OX(−E)

is globally generated as well. It is therefore isomorphic to OX(D), where D is an
irreducible smooth divisor, not contained in the support of E, such that D+E also
has normal crossings. We have thus arranged that

(ωX ⊗ f∗L⊗k)⊗m ≃ OX(D + E).

We can now take the associated covering of X of degree m, branched along D+E,
and resolve its singularities. This gives us a generically finite morphism g : Z → X
of degree m, and we denote φ = f ◦ g : Z → Y .

By a well-known calculation of Esnault and Viehweg, see e.g. [EV92, Lemma
2.3], the direct image g∗ωZ contains the sheaf

ωX ⊗
(
ωX ⊗ f∗L⊗k

)⊗m−1⊗OX

(
−
⌊
m−1
m

(
D + E

)⌋)
≃ ω⊗m

X ⊗ f∗L⊗k(m−1)⊗OX

(
−
⌊
m−1
m E

⌋)
as a direct summand. If we now apply f∗, we find that

f∗

(
ω⊗m
X ⊗ OX

(
−
⌊
m−1
m E

⌋))
⊗ L⊗k(m−1)

is a direct summand of φ∗ωZ . Finally, E is the relative base locus of ω⊗m
X , and so

f∗

(
ω⊗m
X ⊗ OX

(
−
⌊
m−1
m E

⌋))
≃ f∗ω

⊗m
X .

In other words, f∗ω
⊗m
X ⊗L⊗k(m−1) is a direct summand in φ∗ωZ . By Theorem 81,

the sheaf f∗ω
⊗m
X ⊗L⊗k(m−1)+n+1 is 0-regular in the sense of Castelnuovo-Mumford,
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and hence globally generated.1 By our minimal choice of k, this is only possible if

k(m− 1) + n+ 1 ≥ (k − 1)m+ 1,

which is equivalent to k ≤ n+m. □

9. Fiber spaces over abelian varieties. Let f : X → A be a fiber space over
an abelian variety. For simplicity, for each m ≥ 0 we denote

Fm = f∗ω
⊗m
X .

Note that F0 = OA. Though this is not really necessary for the argument, we first
remark that we can be precise about the values of m ≥ 1 for which Fm ̸= 0.

Lemma 91. We have Fm ̸= 0 if and only if there exists P ∈ Pic0(A) such that
H0(X,ω⊗m

X ⊗ f∗P ) ̸= 0.

Proof. By Theorem 42 we know that Fm is a GV-sheaf on A for all m ≥ 1. We
conclude from Lemma 74 that Fm ̸= 0 if and only if V 0(Fm) ̸= ∅, which by the
projection formula is precisely the statement of the lemma. □

The purpose of this subsection is to give the

Proof of Corollary 43. We will only prove the second statement, since the first one
is similar. We fix an m such that H0(A,Fm) = H0(X,ω⊗m

X ) ̸= 0. In particular
Fm is a non-trivial GV-sheaf on A. Since κ(X) = 0, we have h0(A,Fm) = 1, and
in particular 0 ∈ V 0(Fm). We claim that

V 0(Fm) = {0},

which implies that Fm is unipotent by Proposition 75.

To see this, note first that by Theorem 41 and the comments immediately after,
V 0(Fm) is a union of torsion translates of abelian subvarieties of Pic0(A). Then,
proceeding as in [CH01, Lemma 2.1], if there were two distinct points P,Q ∈
V 0(Fm) we could assume that they are both torsion of the same order k. Since f
is a fiber space, the mapping

f∗ : Pic0(A) −→ Pic0(X)

is injective, and so f∗P and f∗Q are distinct as well. Now if P ∈ V 0(Fm), then

H0(X,ω⊗m
X ⊗ f∗P ) ≃ H0(A,Fm ⊗ P ) ̸= 0,

and similarly for Q. Let D ∈ |mKX + f∗P | and G ∈ |mKX + f∗Q|, so that

kD, kG ∈ |mkKX |. Since h0(X,ω⊗mk
X ) = 1, it follows that kD = kF , and hence

f∗P = f∗Q. This is the required contradiction.

Finally, since h0(A,Fm) = 1, it is clear that Fm is indecomposable. □

1Recall that a sheaf F on Y is 0-regular with respect to an ample and globally generated line
bundle L if

Hi(Y,F ⊗ L⊗−i) = 0 for all i > 0.

The Castelnuovo-Mumford Lemma says that every 0-regular sheaf is globally generated.
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10. Cohomological support loci for pluricanonical bundles. In this section
we explain an important ingredient used in Corollary 43, namely Theorem 41,
the analogue of Simpson’s theorem for the 0-th cohomological support locus of
a pluricanonical bundle. We give a slight generalization, emphasizing again the
ubiquitous cyclic covering trick.

For a coherent sheaf F on an abelian variety A, for each k ≥ 1 we consider the
following refinement of V 0(F ), namely

V 0
k (F ) = {P ∈ Pic0(A) | h0(X,F ⊗ P ) ≥ k }.

Theorem 101. Let f : X → A be a morphism from a smooth projective variety
to an abelian variety, and fix integers m, k ≥ 1. Then every irreducible component
of V 0

k (f∗ω
⊗m
X ) is a torsion subvariety, i.e. a translate of an abelian subvariety of

Pic0(A) by a torsion point.

To prove Theorem 101, we first collect a few lemmas. Given a smooth projective
variety X, and a line bundle L on X with κ(L) ≥ 0, recall that the asymptotic
multiplier ideal of L is defined as

I
(
∥L∥

)
= I

(
1
pD

)
⊆ OX ,

where p is any sufficiently large and divisible integer, D is the divisor of a general
section in H0(X,L⊗p), and the ideal sheaf on the right is the multiplier ideal of the
Q-divisor 1

pD; see [Laz04, Ch. 11]. It is easy to see that the ideal sheaf I
(
∥L∥

)
is

independent of the choice of p and D. Further properties of asymptotic multiplier
ideals appear in the proof of Lemma 104 below.

Lemma 102. There exists a morphism g : Y → X with Y smooth and projective,
such that the sheaf ωX ⊗ L⊗ I

(
∥L∥

)
is a direct summand of g∗ωY .

Proof. Take D as above, and let µ : X ′ → X be a log resolution of (X,D) such that
X ′ is smooth and µ∗D plus the exceptional divisor of µ is a divisor with simple
normal crossing support. Then

µ∗L⊗p = OX′(µ∗D),

and we let f : Y → X ′ be a resolution of singularities of the degree p branched
covering of X ′ defined by µ∗D. According to the calculation of Esnault and Viehweg
recalled in the proof of Proposition 82, f∗ωY contains as a direct summand the sheaf

ωX′ ⊗ µ∗L⊗ OX′

(
−
⌊
1
pµ

∗D
⌋)

≃ µ∗(ωX ⊗ L
)
⊗ OX′

(
KX′/X −

⌊
1
pµ

∗D
⌋)
,

and so µ∗f∗ωY contains as a direct summand the sheaf

ωX ⊗ L⊗ µ∗OX′

(
KX′/X −

⌊
1
pµ

∗D
⌋)

= ωX ⊗ L⊗ I
(
∥L∥

)
.

We can therefore take g = µ ◦ f . □

Lemma 103. If F and G are two coherent sheaves on an abelian variety A, and
F is a direct summand of G , then every irreducible component of V 0

k (F ) is also
an irreducible component of V 0

ℓ (G ) for some ℓ ≥ k.

Proof. Let Z ⊆ V 0
k (F ) be an irreducible component. We can assume without loss

of generality that k = min
{
h0(X,F ⊗ α)

⏐⏐ α ∈ Z
}

. By assumption, we have a
decomposition G ≃ F ⊕ F ′. We define

ℓ = k + min
{
h0(X,F ′ ⊗ α)

⏐⏐ α ∈ Z
}
.
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By the semicontinuity of h0(A,F ′ ⊗ α) and h0(A,F ⊗ α), it follows that there
is a neighborhood U of the generic point of Z such that h0(F ′ ⊗ α) ≤ ℓ − k and
h0(F ⊗ α) ≤ k for any α ∈ U . Since h0(F ⊗ α) < k for any α ∈ U \ (U ∩ Z) it is
easy to see that Z is an irreducible component of V 0

ℓ (G ). □

Lemma 104. If V 0
k (f∗ω

⊗m
X ) contains a point, then it also contains a torsion sub-

variety through that point.

Proof. Take any point in V 0
k (f∗ω

⊗m
X ). Since Pic0(X) is divisible, we may assume

that our point is of the form L⊗m
0 for some L0 ∈ Pic0(X). This means that

h0
(
X,ω⊗m

X ⊗ f∗L⊗m
0

)
≥ k.

For r ≥ 0, set Ir = I
(
∥ω⊗r

X ⊗ f∗L⊗r
0 ∥

)
. According to Lemma 102, there exists a

morphism g : Y → X such that

ωX ⊗ (ωX ⊗ f∗L0)⊗(m−1) ⊗ Im−1 = ω⊗m
X ⊗ L

⊗(m−1)
0 ⊗ Im−1

is a direct summand of g∗ωY . Consequently, f∗(ω⊗m
X ⊗ Lm−1

0 ⊗ Im−1) is a direct
summand of h∗ωY , where h = f ◦ g : Y → A. By Simpson’s theorem we know
that, for any ℓ, every irreducible component of V 0

ℓ (h∗ωY ) is a torsion subvariety.
Together with Lemma 103, this shows that every irreducible component of

V 0
k

(
f∗(ω⊗m

X ⊗ L
⊗(m−1)
0 ⊗ Im−1)

)
is a torsion subvariety. We observe that this set contains L0: the reason is that
since Im ⊆ Im−1 (see [Laz04, Theorem 11.1.8]), we have

H0
(
X, (ωX ⊗ f∗L0)⊗m ⊗ Im

)
⊆ H0

(
X, (ωX ⊗ f∗L0)⊗m ⊗ Im−1

)
⊆ H0

(
X, (ωX ⊗ f∗L0)⊗m

)
,

and the two spaces on the outside are equal because the subscheme defined by Im
is contained in the base locus of (ωX ⊗ f∗L0)⊗m by [Laz04, Theorem 11.1.8].

Now let W be an irreducible component of V 0
k

(
f∗(ω⊗m

X ⊗ L
⊗(m−1)
0 ⊗ Im−1)

)
passing through the point L0. For every L ∈W , we have

h0
(
X,ω⊗m

X ⊗ L
⊗(m−1)
0 ⊗ L

)
≥ h0

(
X,ω⊗m

X ⊗ L
⊗(m−1)
0 ⊗ Im−1 ⊗ L

)
≥ k,

and so L
⊗(m−1)
0 ⊗W ⊆ V 0

k (f∗ω
⊗m
X ). As noted above, L

⊗(m−1)
0 ⊗W contains the

point L⊗m
0 ; it is also a torsion subvariety, because W is a torsion subvariety and

L0 ∈W . □

Proof of Theorem 101. Let Z ⊆ V 0
k (f∗ω

⊗m
X ) be an irreducible component; we have

to show that Z is a torsion subvariety. In case Z is a point, this follows directly from
Lemma 104, so let us assume that dimZ ≥ 1. Let Z0 ⊆ Z denote the Zariski-open
subset obtained by removing the intersection with the other irreducible components
of V 0

k (f∗ω
⊗m
X ). Then again by Lemma 104, every point of Z0 lies on a torsion

subvariety that is contained in Z. Because there are only countably many torsion
subvarieties in Pic0(X), Baire’s theorem implies that Z itself must be a torsion
subvariety. □
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11. Iitaka fibration and cohomological support loci. In this section, we use
Theorem 52 to give a precise description of the cohomological support loci

V 0(ω⊗m
X ) =

{
P ∈ Pic0(X)

⏐⏐ H0(X,ω⊗m
X ⊗ P ) ̸= 0

}
for all m ≥ 2, in terms of the Iitaka fibration of X. After a birational modification
of X, the Iitaka fibration can be realized as a morphism f : X → Y , where Y is
smooth projective of dimension κ(X). By the universal property of the Albanese
mapping, we obtain a commutative diagram

X AX

Y AY

aX

f af

aY

where AX = Alb(X) and AY = Alb(Y ) are the two Albanese varieties. The
following simple lemma appears in [CH04, Lemma 2.6].

Lemma 111. With notation as above, the following things are true:

(a) The homomorphism af is surjective with connected fibers.
(b) Setting K = ker(af ), we have a short exact sequence

0 → Pic0(Y ) → Pic0(X) → Pic0(K) → 0.

(c) If F is a general fiber of f , then the kernel of the natural homomorphism
Pic0(X) → Pic0(F ) is a finite union of torsion translates of Pic0(Y ).

Using this lemma and the results of Green-Lazarsfeld [GL87, GL91] and Simpson
[Sim93], one can prove the following results about the locus V 0(ωX):

(1) There are finitely many quotient abelian varieties Alb(X) → Bi and finitely
many torsion points αi ∈ Pic0(X) such that

V 0(ωX) =

n⋃
i=1

(
αi + Pic0(Bi)

)
.

This is proved in [GL91, Theorem 0.1] and [Sim93]. Note that V 0(ωX) may
be empty; in that case, we take n = 0.

(2) We have Pic0(Bi) ⊆ Pic0(Y ), where f : X → Y is the Iitaka fibration;
when X is of maximal Albanese dimension, then the union of the Pic0(Bi)
generates Pic0(Y ). This is proved in [CH04, CH07].

(3) At a general point P of the i-th irreducible component αi + Pic0(Bi), one
has s∪v = 0 for all s ∈ H0(X,ωX⊗P ) and all v ∈ H1(Bi,OBi

); conversely,
if s ∈ H0(X,ωX ⊗ P ) is nonzero and s ∪ v = 0 for some v ∈ H1(X,OX),
then necessarily v ∈ H1(Bi,OBi).

Note. One can interpret property (3) as follows. If P ∈ Pic0(X) is a general point
of a component of V 0(ωX), and we identify the tangent space to Pic0(X) at the
point P with the vector space H1(X,OX), then s ∪ v = 0 ∈ H1(X,ωX ⊗ P ) if and
only if s deforms to first order in the direction of v. Property (3) then says that if
s deforms to first order in the direction of v, then it deforms to arbitrary order.

It turns out that the cohomology support loci V 0(ω⊗m
X ) for m ≥ 2 are governed

by the Iitaka fibration f : X → Y : in contrast to the case m = 1, every irreducible
component is now simply a torsion translate of Pic0(Y ).
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Theorem 112. Let X be a smooth complex projective variety, and let F be a
general fiber of the Iitaka fibration f : X → Y . Let m ≥ 2.

(a) For every torsion point α ∈ Pic0(X), and every β ∈ Pic0(Y ), we have

h0(X,ω⊗m
X ⊗ α) = h0(X,ω⊗m

X ⊗ α⊗ f∗β).

(b) There exist finitely many torsion points α1, . . . , αn ∈ Pic0(X) such that

V 0(ω⊗m
X ) =

n⋃
i=1

(
αi + Pic0(Y )

)
.

(c) At every point α ∈ V 0(ω⊗m
X ), one has s∪v = 0 for all s ∈ H0(X,ω⊗m

X ⊗α)

and all v ∈ H1(Y,OY ); conversely, if s ∈ H0(X,ω⊗m
X ⊗ α) is nonzero and

s ∪ v = 0 for some v ∈ H1(X,OX), then necessarily v ∈ H1(Y,OY ).

Proof. We begin by proving (a), following Jiang’s version [Jia11, Lemma 3.2] of the
original argument in [HP02, Proposition 2.12]. Let g : X → AY be the morphism
induced by composing f with the Albanese map of Y .

X AX

Y AY

aX

f
g

af

aY

Let H be an ample divisor on AY . By construction, g factors through the Iitaka
fibration of X, and so there is an integer d≫ 0 such that

(113) dKX ∼ g∗H + E

for some effective divisor E on X. In particular, all sufficiently large and divisible
powers of ωX have nontrivial global sections.

Now consider the torsion-free coherent sheaf

F = g∗

(
ω⊗m
X ⊗ α⊗ I

(
∥ω⊗(m−1)

X ∥
))

on the abelian variety AY . From our discussion of asymptotic multiplier ideals in
§10, it is easy to see that we have inclusions

I
(
∥ω⊗m

X ⊗ α∥
)

= I
(
∥ω⊗m

X ∥
)
⊆ I

(
∥ω⊗(m−1)

X ∥
)
,

by choosing the integer p ∈ N in the definition of the asymptotic multiplier ideal as
a multiple of the order of the torsion point α ∈ Pic0(X). Since

H0
(
X,ω⊗m

X ⊗ α⊗ I
(
∥ω⊗m

X ⊗ α∥
))

= H0
(
X,ω⊗m

X ⊗ α
)
,

this shows that H0(AY ,F ) = H0(X,ω⊗m
X ⊗ α). For p ∈ N sufficiently large and

divisible, we have

I
(
∥ω⊗(m−1)

X ∥
)

= µ∗OX′

(
KX′/X −

⌊
1
pF

⌋)
.

Here µ : X ′ → X is a log resolution of the complete linear system of ω
⊗p(m−1)
X : the

divisor F + D has simple normal crossing support, the linear system |D| is base
point free, and

(114) p(m− 1)µ∗KX ∼ F +D.

(see [Laz04, 9.2.10]). We may also assume that the larger divisor F +D+µ∗E has
simple normal crossing support.



18 C. D. HACON, M. POPA, AND CH. SCHNELL

Now F is the pushforward, via the mapping g ◦µ : X ′ → AY , of the line bundle

µ∗α⊗ OX′

(
KX′ + (m− 1)µ∗KX −

⌊
1
pF

⌋)
,

and for any ε ∈ Q, we have the Q-linear equivalence of Q-divisors

(m− 1)µ∗KX −
⌊
1
pF

⌋
∼Q

1−ε
p (F +D) + ε(m−1)

d

(
µ∗g∗H + µ∗E) −

⌊
1
pF

⌋
by combining (113) and (114). This allows us to write

KX′ + (m− 1)µ∗KX −
⌊
1
pF

⌋
∼Q KX′ + ∆ + ε(m−1)

d µ∗g∗H,

where ∆ is the Q-divisor on X ′ given by the formula

∆ = 1−ε
p D + ε(m−1)

d µ∗E + 1−ε
p F −

⌊
1
pF

⌋
.

By construction, the support of ∆ is a divisor with simple normal crossings; and if
we choose ε > 0 sufficiently small, then ∆ is a boundary divisor, meaning that the
coefficient of every irreducible component belongs to the interval [0, 1). To see that
∆ ≥ 0 it suffices to observe that p(m− 1)µ∗E ≥ dF and to check that ⌊∆⌋ = 0 it
suffices to observe that the coefficients of 1

pD+{ 1
pF} are < 1 and apply continuity.

In particular, the pair (X ′,∆) is klt. We can now apply the version for Q-divisors
of Kollár’s vanishing theorem [Kol95, §10] and conclude that the pushforward of

µ∗(α⊗ g∗β) ⊗ OX′

(
KX′ + (m− 1)µ∗KX −

⌊
1
pF

⌋)
under the map g◦µ : X ′ → AY has vanishing higher cohomology for all β ∈ Pic0(Y ).
Together with the projection formula, this shows that

Hi
(
AY ,F ⊗ β

)
= 0

for every i > 0 and every β ∈ Pic0(Y ). It follows that

h0
(
AY ,F ⊗ β

)
= χ

(
AY ,F ⊗ β

)
has the same value for every β ∈ Pic0(Y ). But then

h0
(
X,ω⊗m

X ⊗ α
)

= h0
(
AY ,F

)
= h0

(
AY ,F ⊗ g∗β

)
= h0

(
X,ω⊗m

X ⊗ α⊗ g∗β ⊗ I
(
∥ω⊗(m−1)

X ∥
))

≤ h0
(
X,ω⊗m

X ⊗ α⊗ g∗β
)
,

and by semicontinuity, we conclude that in fact

h0
(
X,ω⊗m

X ⊗ α
)

= h0
(
X,ω⊗m

X ⊗ α⊗ g∗β
)
.

We next prove (b). Assuming that V 0(ω⊗m
X ) is nonempty, there are by Theo-

rem 101 finitely many distinct torsion elements α1, . . . , αs ∈ Pic0(X), and abelian
subvarieties Bi ⊂ Pic0(X), such that

V 0(ω⊗m
X ) =

s⋃
i=1

(
αi +Bi

)
.

By (a) we know that Pic0(Y ) ⊆ Bi; indeed, (a) implies that for every torsion point
α ∈ V 0(ω⊗m

X ) we have α + Pic0(Y ) ⊆ V 0(ω⊗m
X ), and this applies of course to αi.

To prove (b), it is therefore enough to show that Bi ⊆ Pic0(Y ). Take an arbitrary
element α ∈ V 0(ω⊗m

X ), and let s ∈ H0(X,ω⊗m
X ⊗ α) be a nonzero global section.
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The restriction of s to a general fiber F of the Iitaka fibration f : X → Y is then a
nonzero global section of

ω⊗m
F ⊗ α|F ,

and because κ(F ) = 0, it follows that α|F is torsion in Pic0(F ). According to
Lemma 111, a nonzero multiple of α therefore belongs to Pic0(Y ). This is enough
to conclude that Bi ⊆ Pic0(Y ), and so (b) is proved.

To prove (c), note first that standard arguments (see for instance [EV92, Lemma
12.6]) imply the first half, namely that if v ∈ H1(Y,OY ) then

s ∪ v = 0 for all s ∈ H0
(
X,ω⊗m

X ⊗ α
)
.

For the second half, suppose that s ∈ H0(X,ω⊗m
X ⊗ α) is a nonzero global section

such that s ∪ v = 0 for some v ∈ H1(X,OX). Restricting to a general fiber F of
the Iitaka fibration f : X → Y , we get

0 = s|F ∪ v|F ∈ H1
(
F, ω⊗m

F ⊗ α|F
)
,

where s|F ∈ H0
(
F, ω⊗m

F ⊗ α|F
)

is nonzero, and v|F ∈ H1(F,OF ). Since α ∈
V 0(ω⊗m

X ), we have α|F = αi|F for some i = 1, . . . , s, as a consequence of Lemma 111
and (b). In particular, α|F is torsion, say of order k, and so

s⊗k|F ∈ H0
(
F, ω⊗km

F

)
.

Let aF : F → AF denote the Albanese mapping of F . Recalling that κ(F ) = 0, we

get from Theorem 52 that (aF )∗ω
⊗km
F = OAF

. Under the isomorphism

H0
(
F, ω⊗km

F

)
= H0

(
AF ,OAF

)
,

our nonzero section s⊗k|F therefore corresponds to a nonzero constant σ ∈ C;
likewise, under the isomorphism

H1(F,OF ) = H1
(
AF ,OAF

)
,

the vector v|F corresponds to a vector u ∈ H1
(
AF ,OAF

)
. It is not hard to see that

the two isomorphisms are compatible with cup product; consequently, s⊗k ∪ v =
0 implies that σu = 0, and hence that u = 0. By the infinitesimal version of
Lemma 111, this means that v ∈ H1(Y,OY ), as asserted. □

D. Singular metrics on pushforwards of adjoint line bundles

12. Plurisubharmonic functions. Let X be a complex manifold. We begin our
survey of the analytic techniques by recalling the following important definition;
see for example [Dem12, I.5] for more details.

Definition 121. A function φ : X → [−∞,+∞) is called plurisubharmonic if it is
upper semi-continuous, locally integrable, and satisfies the mean-value inequality

(122) (φ ◦ γ)(0) ≤ 1

π

∫
∆

(φ ◦ γ) dµ

for every holomorphic mapping γ : ∆ → X from the open unit disk ∆ ⊆ C.

Suppose that φ is plurisubharmonic. From (122) one can deduce, by integrating
over the space of lines through a given point, that the mean-value inequality

(φ ◦ ι)(0) ≤ 1

µ(B)

∫
B

(φ ◦ ι) dµ
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also holds for any open embedding ι : B ↪→ X of the open unit ball B ⊆ Cn; here n is
the local dimension of X at the point ι(0). In other words, every plurisubharmonic
function is also subharmonic. Together with local integrability, this implies that φ
is locally bounded from above.

Lemma 123. Every plurisubharmonic function on a compact complex manifold is
locally constant.

Proof. Let φ be a plurisubharmonic function on a compact complex manifold X. As
φ is upper semi-continuous and locally bounded from above, it achieves a maximum
on every connected component of X. The mean-value inequality then forces φ to
be locally constant. □

Observe that a plurisubharmonic function is uniquely determined by its values on
any subset whose complement has measure zero. Indeed, the mean-value inequality
provides an upper bound on the value at any point x ∈ X, and the upper semi-
continuity a lower bound. One also has the following analogue of the Riemann and
Hartogs extension theorems for holomorphic functions [Dem12, Theorem I.5.24]; by
what we have just said, there can be at most one extension in each case.

Lemma 124. Let Z ⊆ X be a closed analytic subset, and let φ be a plurisubhar-
monic function on X \ Z.

(a) If codimZ ≥ 2, then φ extends to a plurisubharmonic function on X.
(b) If codimZ = 1, then φ extends to a plurisubharmonic function on X if and

only if it is locally bounded near every point of Z.

A plurisubharmonic function φ determines a coherent sheaf of ideals I(φ) ⊆ OX ,
called the multiplier ideal sheaf, whose sections over any open subset U ⊆ X consist
of those holomorphic functions f ∈ H0(U,OX) for which the function |f |2e−φ is
locally integrable. We use the convention that the value of the product is 0 at
points x ∈ X where f(x) = 0 and φ(x) = −∞.

Since plurisubharmonic functions are locally bounded from above, Montel’s the-
orem in several variables implies the following compactness property.

Proposition 125. Let φ : B → [−∞,+∞) be a plurisubharmonic function on the
open unit ball B ⊆ Cn. Consider the collection of holomorphic functions

HK(φ) =

{
f ∈ H0(B,OB)

⏐⏐⏐⏐ ∫
B

|f |2e−φ dµ ≤ K

}
.

Any sequence of functions in HK(φ) has a subsequence that converges uniformly on
compact subsets to an element of HK(φ).

Proof. The mean-value inequality for holomorphic functions implies that all func-
tions in HK(φ) are uniformly bounded on every closed ball of radius R < 1. Let us
briefly review the argument. Because φ is locally bounded from above, there is a
constant C ≥ 0 such that φ ≤ C on the closed ball of radius (R+ 1)/2. Fix a point
z ∈ BR(0) in the closed ball of radius R, and a holomorphic function f ∈ HK(φ).
By the mean-value inequality,

|f(z)|2 ≤ 1

rnµ(B)

∫
Br(z)

|f |2 dµ ≤ eC

rnµ(B)

∫
Br(z)

|f |2e−φ dµ ≤ K · eC

rnµ(B)
,
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where r = (1−R)/2. By the n-dimensional version of Montel’s theorem [GR09, The-
orem I.A.12], this uniform bound implies that any sequence f0, f1, f2, . . . ∈ HK(φ)
has a subsequence that converges uniformly on compact subsets to a holomorphic
function f ∈ H0(B,OB). By Fatou’s lemma,∫

B

|f |2e−φ dµ ≤ lim inf
k→+∞

∫
B

|fk|2e−φ dµ ≤ K,

which means that f ∈ HK(φ). □

Note. The example of an orthonormal sequence in HK(φ) shows that the conver-
gence need not be with respect to the L2-norm.

13. Singular hermitian metrics on line bundles. Many of the newer ap-
plications of analytic techniques in algebraic geometry – such as Siu’s proof of the
invariance of plurigenera – rely on the notion of singular hermitian metrics on holo-
morphic line bundles. The word “singular” here means two things at once: first,
that the metric is not necessarily C∞; second, that certain vectors in the fibers of
the line bundle are allowed to have either infinite length or length zero.

Let X be a complex manifold, and let L be a holomorphic line bundle on X
with a singular hermitian metric h. In any local trivialization of L, such a metric
is represented by a “weight function” of the form e−φ, where φ is a measurable
function with values in [−∞,+∞]. More precisely, suppose that the restriction
of L to an open subset U ⊆ X is trivial, and that s0 ∈ H0(U,L) is a nowhere
vanishing holomorphic section. Then any other holomorphic section s ∈ H0(U,L)
can be written as s = fs0 for a unique holomorphic function f on U , and the length
squared of s with respect to the singular hermitian metric h is

(131) |s|2h = |f |2e−φ.

The points where φ is not finite correspond to singularities of the metric: at points
where φ(x) = −∞, the metric becomes infinite; at points where φ(x) = +∞, the
metric stops being positive definite.

Note. At points x ∈ U where φ(x) = −∞, we use the following convention: the
product in (131) equals 0 if f(x) = 0; otherwise, it equals +∞. With this rule in
place, |s|h is a well-defined measurable function on U with values in [0,+∞].

We say that a singular hermitian metric h is continuous if the local weight
functions φ are continuous functions with values in [−∞,+∞]. This is equivalent
to asking that, for every open subset U ⊆ X and every section s ∈ H0(U,L), the
function |s|h : U → [0,+∞] should be continuous.

We say that the pair (L, h) has semi-positive curvature if the local weight func-
tions φ are plurisubharmonic. In that case, φ is locally integrable, and the curvature
current of (L, h) can be defined, in the sense of distributions, by the formula

Θh =

√
−1

2π
∂∂̄φ.

It is easy to see that Θh is a well-defined closed positive (1, 1)-current on X; its
cohomology class in H2(X,R) equals the first Chern class c1(L). Conversely, if the
current Θh is positive, then one can make the local weight functions φ plurisubhar-
monic by modifying them on a set of measure zero [Dem12, Theorem I.5.8].
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Note. Most authors include the condition of local integrability into the definition
of a singular hermitian metric. We use a different convention, so as to be consistent
with the definition of singular hermitian metrics on vector bundles later on.

A singular hermitian metric of semi-positive curvature is automatically positive
definite at every point. Indeed, φ is locally bounded from above, and so the factor
e−φ in the local expression for h may equal +∞ at certain points, but has to be
locally bounded from below by a positive constant. Moreover, φ is upper semi-
continuous, and so the function |s|h : U → [0,+∞] is not just measurable, but even
lower semi-continuous, for every holomorphic section s ∈ H0(U,L) on some open
subset U ⊆ X.

Lemma 132. Suppose that X is compact, and that h is a singular hermitian metric
with semi-positive curvature on a holomorphic line bundle L. If c1(L) = 0 in
H2(X,R), then h is actually a smooth metric with zero curvature.

Proof. The cohomology class of the closed positive (1, 1)-current Θh equals zero in
H2(X,R), and so there is a globally defined plurisubharmonic function ψ in X such

that Θh =
√
−1
2π ∂∂̄ψ. By Lemma 123, ψ is locally constant, and so Θh = 0. Now all

the local weight functions φ satisfy ∂∂̄φ = 0, and are therefore smooth functions;
but this means exactly that h is a smooth metric. □

The curvature assumption implies that the multiplier ideal sheaf I(h) ⊆ OX is a
coherent sheaf of ideals on X; in the notation from above, a holomorphic function
f : U → C is a section of I(h) if and only if the function |f |2e−φ is locally integrable.
Consequently, the subspace

H0
(
X,L⊗ I(h)

)
⊆ H0(X,L)

consists of all global holomorphic sections of L for which the lower semi-continuous
function |s|2h : X → [0,+∞] is locally integrable.

14. The Ohsawa-Takegoshi extension theorem. It is known that a line bundle
on a projective complex manifold admits a singular hermitian metric with semi-
positive curvature if and only if it is pseudo-effective. The power of the metric
approach to positivity comes from fact that one can extend holomorphic sections
from submanifolds with precise bounds on the norm of the extension. The most
important result in this direction is the famous Ohsawa-Takegoshi theorem.2

Let X be a complex manifold of dimension n, and let (L, h) be a holomorphic
line bundle with a singular hermitian metric of semi-positive curvature. What we
actually need is the “adjoint version” of the Ohsawa-Takegoshi theorem, which is
about extending sections of the adjoint bundle ωX⊗L, or equivalently, holomorphic
n-forms with coefficients in L. Before we can state the theorem, we first have to
introduce some notation.

Given β ∈ H0(X,ωX⊗L), we define a nonnegative measurable (n, n)-form |β|2h as

follows: view β∧β as a smooth (n, n)-form with coefficients in L⊗L, compose with

2We use the name “Ohsawa-Takegoshi theorem” for convenience only; in reality, there is a large
collection of different L2-extension theorems in complex analysis, of which Theorem 144 below is

an important but nevertheless special case. For more on this topic, see for example [?].
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the singular hermitian metric h, and then multiply by the factor cn = 2−n(−1)n
2/2.

Locally, we can write β = fs0 ⊗ dz 1 ∧ · · · ∧ dzn, and then

(141) |β|2h = |f |2e−φ(dx 1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn),

where z1 = x1 + y1
√
−1, . . . , zn = xn + yn

√
−1 are local holomorphic coordinates

on U . Using this notation, we have

H0
(
X,ωX ⊗ L⊗ I(h)

)
=

{
β ∈ H0(X,ωX ⊗ L)

⏐⏐ |β|2h is locally integrable
}
.

We also define the L2-norm of the element β ∈ H0(X,ωX ⊗ L) to be

(142) ∥β∥2h =

∫
X

|β|2h ∈ [0,+∞].

When X is compact, β ∈ H0
(
X,ωX⊗L⊗I(h)

)
is equivalent to having ∥β∥2h < +∞;

in general, finiteness of the L2-norm is a much stronger requirement.

Now suppose that f : X → B is a holomorphic mapping to the open unit ball
B ⊆ Cr. We assume that f is projective and that 0 ∈ B is a regular value of f ; the
central fiber X0 = f−1(0) is therefore a projective complex manifold of dimension
n− r = dimX − dimB. We denote by (L0, h0) the restriction of (L, h) to X0. As
long as h0 is not identically equal to +∞, it defines a singular hermitian metric
with semi-positive curvature on L0, and we have the space

(143) H0
(
X0, ωX0

⊗ L0 ⊗ I(h0)
)

of holomorphic (n− r)-forms with coefficients in L0 that are square-integrable with
respect to h0; as before, the defining condition is that the integral

∥α∥2h0
=

∫
X0

|α|2h0

should be finite; note that the definition of |α|2h0
involves the constant cn−r.

The Ohsawa-Takegoshi theorem says that every section of ωX0
⊗L0 ⊗I(h0) can

be extended to a section of ωX ⊗ L⊗ I(h) with finite L2-norm – and, crucially, it
provides a universal upper bound on the L2-norm of the extension. (If h0 ≡ +∞,
then the space in (143) is trivial and the extension problem is not interesting.) Here
β ∈ H0(X,ωX ⊗ L) is an extension of α ∈ H0(X0, ωX0 ⊗ L0) if

β|X0
= α ∧ df = α ∧ (df1 ∧ · · · ∧ dfr),

where f = (f1, . . . , fr). That said, the precise statement of the Ohsawa-Takegoshi
extension theorem is the following.

Theorem 144. Let f : X → B be a projective morphism such that 0 ∈ B is a
regular value. Let (L, h) be a holomorphic line bundle with a singular hermitian
metric of semi-positive curvature. Denote by (L0, h0) the restriction to the central
fiber X0 = f−1(0), and suppose that h0 ̸≡ +∞. Then for every α ∈ H0

(
X0, ωX0

⊗
L0 ⊗ I(h0)

)
, there exists at least one β ∈ H0

(
X,ωX ⊗ L⊗ I(h)

)
with

β|X0
= α ∧ df and ∥β∥2h ≤ µ(B) · ∥α∥2h0

.

The special thing about this form of the extension theorem is that the constant
µ(B) = πr/r! in the estimate is the volume of the unit ball B ⊆ Cr; the example
of a product X = B×X0 shows that this is optimal. Earlier proofs of the Ohsawa-
Takegoshi theorem, for example by Siu or Păun [Siu02, Pău07], only gave a weaker
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estimate, in which µ(B) had to be replaced by a certain constant C0 ≤ 200. The
proof of the sharp estimate is due to Blocki and Guan-Zhou [Blo13, GZ15]. There
is also a (weaker) version of the Ohsawa-Takegoshi theorem for the case where the
fibers are compact Kähler manifolds, proved by Cao [Cao14].

Proof of Theorem 144. In [GZ15, §3.12], the result is stated only for “projective
families”, meaning in the case where f : X → B is smooth and everywhere sub-
mersive, but the same proof works as long as 0 ∈ B is a regular value. Guan and
Zhou have (2π)r/r! as the constant, but the extra factor of 2r goes away because
our definition of ∥β∥2h and ∥α∥2h involves dividing by 2n and 2n−r, respectively.

For the reader who wants to look up the result in [GZ15], we briefly explain
how to deduce Theorem 144 from Guan and Zhou’s main theorem. Choose an
embedding X ↪→ B × PN , and let H ⊆ X be the preimage of a sufficiently general
hyperplane in PN . Then X \ H is a Stein manifold and X0 \ X0 ∩ H a closed
submanifold. We can now apply [GZ15, Theorem 2.2] to the pair (X,X0), taking
A = 0, cA(t) ≡ 1, and Ψ = r log|f |2 = r log

(
|f1|2 + · · · + |fr|2

)
. □

Note. Observe that if we write the inequality in Theorem 144 in the form

1

µ(B)
∥β∥2h ≤ ∥α∥2h0

,

then it looks like a mean-value inequality; this fact will play a crucial role later or,
when we construct singular hermitian metrics on pushforwards of adjoint bundles.

15. Coherent sheaves and Fréchet spaces. In this section, we briefly review
some fundamental results about section spaces of coherent sheaves on complex
manifolds. Recall that a Fréchet space is a Hausdorff topological vector space, whose
topology is induced by a countable family of semi-norms, and which is complete
with respect to this family of semi-norms. Most of the familiar theorems about
Banach spaces, such as the open mapping theorem or the closed graph theorem,
remain true for Fréchet spaces.

Example 151. On a complex manifold X, the vector space H0(X,OX) of all holo-
morphic functions on X is a Fréchet space, under the topology of uniform conver-
gence on compact subsets. More precisely, each compact subset K ⊆ X gives rise
to a semi-norm

∥f∥K = sup
x∈K

|f(x)|

on the space H0(X,OX); to get a countable family, write X as a countable union
of compact subsets. The same construction works for any open subset U ⊆ X, and
when U ⊆ V , the restriction mapping H0(V,OX) → H0(U,OX) is continuous.

In fact, the section spaces of all coherent sheaves on a given complex manifold
can be made into Fréchet spaces in a consistent way; the construction is explained
for example in [GR09, Ch. VIII, §A]. Let F be a coherent sheaf on a complex man-
ifold X. Then for every open subset U ⊆ X, the space of sections H0(U,F ) has the
structure of a Fréchet space, in such a way that if U ⊆ V , the restriction mapping
H0(V,F ) → H0(U,F ) is continuous. Moreover, if ϕ : F → G is any morphism be-
tween two coherent sheaves, then the induced mappings ϕU : H0(U,F ) → H0(U,G )
are all continuous. The Fréchet space topology has several other good properties,
such as the following [GR09, Proposition VIII.A.2].
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Proposition 152. If F ⊆ G , then H0(U,F ) is a closed subspace of H0(U,G ).

Let f : X → Y be a proper holomorphic mapping between complex manifolds,
and let F be a coherent sheaf on X. By Grauert’s coherence theorem, the push-
forward sheaf f∗F is a coherent sheaf on Y . The vector space

H0(Y, f∗F ) = H0(X,F )

therefore has two (a priori different) Fréchet space topologies, one coming from Y ,
the other from X.

Proposition 153. In the situation just described, the two Fréchet space topologies
on H0(Y, f∗F ) = H0(X,F ) are equal.

Proof. Since the problem is local, we may replace Y by a Stein open subset and
assume that we have a surjective morphism

O⊕m
Y → f∗F .

The induced mapping H0(Y,OY )⊕m → H0(Y, f∗F ) is continuous and surjective;
by the open mapping theorem, the topology on H0(Y, f∗F ) must be the quotient
topology. We also get a morphism O⊕m

X → F , and therefore a factorization

H0(Y,OY )⊕m → H0(X,OX)⊕m → H0(X,F ).

Both mappings are continuous: the first because, f being proper, uniform conver-
gence on compact subsets of Y implies uniform convergence on compact subsets
of X; the second because O⊕m

X → F is a morphism. It follows that the identity
mapping

H0(Y, f∗F ) → H0(X,F )

is continuous; by the open mapping theorem, it must be a homeomorphism. □

16. Singular hermitian inner products. Before we can talk about singular
hermitian metrics on vector bundles, we first have to be clear about what we mean
by a “singular” hermitian inner product on a vector space. The purpose of this
section is to define this notion with some care. Throughout, we let V be a finite-
dimensional complex vector space. There are two ways in which a hermitian inner
product can be singular: there may be vectors whose length is +∞, and others
whose length is 0. The best way to formalize this is to work not with the inner
product itself, but with the associated length function [BP08, §3].

Definition 161. A singular hermitian inner product on a finite-dimensional com-
plex vector space V is a function |−|h : V → [0,+∞] with the following properties:

(1) |λv|h = |λ| · |v|h for every λ ∈ C \ {0} and every v ∈ V , and |0|h = 0.
(2) |v + w|h ≤ |v|h + |w|h for every v, w ∈ V .
(3) |v + w|2h + |v − w|2h = 2|v|2h + 2|w|2h for every v, w ∈ V .

Our convention is that an inequality is satisfied if both sides are equal to +∞.
It is easy to deduce from the axioms that both

V0 =
{
v ∈ V

⏐⏐ |v|h = 0
}

and Vfin =
{
v ∈ V

⏐⏐ |v|h < +∞
}

are linear subspaces of V . We say that h is positive definite if V0 = 0; we say that h
is finite if Vfin = V . Clearly, |−|h is a semi-norm on Vfin ; it is a norm if and only if
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V0 = 0. The third axiom is the parallelogram law for this semi-norm. The formula

⟨v, w⟩h =
1

4

3∑
k=0

(
√
−1)k ·

⏐⏐v + (
√
−1)kw

⏐⏐
h

therefore defines a semi-definite hermitian inner product on the subspace Vfin ; it is
positive definite if and only if V0 = 0. We use the same notation for the induced
hermitian inner product on the quotient space Vfin/V0.

Given a singular hermitian inner product h on V , we obtain a singular hermitian
inner product h∗ on the dual space V ∗ = HomC(V,C) by setting

|f |h∗ = sup

{
|f(v)|
|v|h

⏐⏐⏐⏐ v ∈ V with |v|h ̸= 0

}
for any linear functional f ∈ V ∗, with the understanding that a fraction with
denominator +∞ is equal to 0. (If V0 = V , then we define |f |h∗ = 0 for f = 0, and
|f |h∗ = +∞ otherwise.) It is easy to see that |f |h∗ = 0 if and only if f annihilates
the subspace Vfin , and that |f |h∗ < +∞ if and only if f annihilates the subspace
V0. One then checks that h∗ is again a singular hermitian inner product on V ∗,
and that the resulting hermitian inner product ⟨−,−⟩h∗ on{

f ∈ V ∗
⏐⏐ |f |h∗ < +∞

}{
f ∈ V ∗

⏐⏐ |f |h∗ = 0
} ≃ HomC

(
Vfin/V0,C

)
agrees with the one naturally induced by ⟨−,−⟩h. Here is another way to think
about h∗. From a nonzero linear functional f : V → C, we get an induced singular
hermitian inner product on C by setting

|λ|h,f = inf
{
|v|h

⏐⏐ v ∈ V satisfies f(v) = λ
}

If λ ̸= 0, this quantity is +∞ unless the restriction of f to the subspace Vfin is
nonzero; if V0 = V , then |λ|h,f = 0 for every λ ∈ C. Taking into account various
special cases, the following result is immediate from the definition.

Lemma 162. Let f : V → C be a nonzero linear functional. Then

|λ|h,f =
|λ|
|f |h∗

for every nonzero λ ∈ C.

Let r = dimV . Since the product of 0 and +∞ is undefined, we do not get a
singular hermitian inner product on

detV =

r⋀
V

unless V0 = 0 or Vfin = V . But when h is either positive definite or finite, there is a
well-defined singular hermitian inner product deth on the one-dimensional vector
space detV . If Vfin = V , we declare that

|v1 ∧ · · · ∧ vr|deth = det

⎛⎜⎝⟨v1, v1⟩h · · · ⟨v1, vr⟩h
...

. . .
...

⟨vr, v1⟩h · · · ⟨vr, vr⟩h

⎞⎟⎠ .

If Vfin ̸= V and V0 = 0, we let |−|deth equal +∞ on all nonzero elements of detV .



ALGEBRAIC FIBER SPACES OVER ABELIAN VARIETIES 27

17. Singular hermitian metrics on vector bundles. The purpose of this
section is to extend the concept of singular hermitian metrics from holomorphic
line bundles to holomorphic vector bundles of arbitrary rank. Let X be a complex
manifold, and let E be a holomorphic vector bundle on X of some rank r ≥ 1.

Definition 171. A singular hermitian metric on E is a function h that associates
to every point x ∈ X a singular hermitian inner product |−|h,x : Ex → [0,+∞] on
the complex vector space Ex, subject to the following two conditions:

(1) h is finite and positive definite almost everywhere, meaning that for all x
outside a set of measure zero, |−|h,x is a hermitian inner product on Ex.

(2) h is measurable, meaning that the function

|s|h : U → [0,+∞], x ↦→
⏐⏐s(x)

⏐⏐
h,x
,

is measurable whenever U ⊆ X is open and s ∈ H0(U,E).

In the case r = 1, this specializes to the definition of singular hermitian metrics
on holomorphic line bundles. The requirement that h be measurable is extremely
weak: the singular hermitian metrics that we will actually encounter below are at
least semi-continuous. The advantage of the above definition is that it behaves well
under duality. By applying the general construction from the previous section, we
obtain on each fiber

E∗
x = HomC(Ex,C)

of the dual bundle E∗ a singular hermitian inner product |−|h∗,x. The following
result shows that these form a singular hermitian metric on E∗.

Proposition 172. A singular hermitian metric h on a holomorphic vector bundle
E induces a singular hermitian metric h∗ on the dual bundle E∗.

Proof. If |−|h,x is finite and positive definite, then |−|h∗,x is also finite and positive
definite, and so the first condition in the definition is clearly satisfied. The second
condition is of a local nature, and so we may assume without loss of generality
that E is the trivial bundle of rank r. Denote by s1, . . . , sr ∈ H0(X,E) the global
sections corresponding to a choice of trivialization. The expression

Hi,j(x) = ⟨si(x), sj(x)⟩h,x
is well-defined outside a set of measure zero, and the resulting function is measur-
able. Denote by H ∈ Matr×r(C) the r × r-matrix with entries Hi,j . Then h∗ is
represented by the transpose of the matrix H−1, in the natural trivialization of E∗;
the usual formula for the inverse of a matrix shows that all entries of this matrix
are again measurable functions. □

Note. In more sheaf-theoretic terms, a singular hermitian metric on a holomorphic
vector bundle E is a morphism of sheaves of sets

|−|h : E → MX

from E to the sheaf of measurable functions on X with values in [0,+∞]. The
following conditions need to be satisfied:

(1) One has |fs|h = |f | · |s|h for every s ∈ H0(U,E) and every f ∈ H0(U,O).
(2) If s ∈ H0(U,E) and |s|h = 0 almost everywhere, then s = 0.
(3) For almost every point x ∈ X, the function |−|h,x : Ex → [0,+∞] is a

singular hermitian inner product (in the sense of Definition 171).
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Again, we use the convention that |f | · |s|h = 0 at points where f is zero.

18. Semi-positive curvature. Let h be a singular hermitian metric on a holo-
morphic vector bundle E, and denote by h∗ the induced singular hermitian metric
on the dual bundle E∗. Suppose for a moment that h is smooth, and denote by Θh

the curvature tensor of the Chern connection; it is a (1, 1)-form with coefficients in
the bundle End(E). One says that (E, h) has semi-positive curvature in the sense
of Griffiths if, for every choice of holomorphic tangent vector ξ ∈ TxX, the matrix
Θh(ξ, ξ) is positive semi-definite [Dem12, VII.6]. This is known to be equivalent to
the condition that the function log|f |h∗ is plurisubharmonic for every local section
f ∈ H0(U,E∗). In the singular case, we use this condition as the definition.

Definition 181. We say that the pair (E, h) has semi-positive curvature if the
function log|f |h∗ is plurisubharmonic for every f ∈ H0(U,E∗).

The point of this definition is that it allows us to talk about the curvature of a
singular hermitian metric without mentioning the curvature tensor: unlike in the
case of line bundles, the curvature tensor of h does not in general make sense even
as a distribution [Rau15, Theorem 1.3]. The following lemma gives an equivalent
formulation of the definition.

Lemma 182. Let h be a singular hermitian metric on E. Then (E, h) has semi-
positive curvature if, and only if, for every open subset U ⊆ X and every nonzero
morphism E|U → L to a line bundle, the induced singular hermitian metric on L
has semi-positive curvature.

Proof. The construction of the induced singular hermitian metric on L works as in
Lemma 162. At each point x ∈ U , the linear mapping Ex → Lx between fibers
induces a singular hermitian inner product on the one-dimensional complex vector
space Lx: the length of a vector λ ∈ Lx is the infimum of |e|h,x over all e ∈ Ex that
map to λ. (If Ex → Lx is zero, then the infimum equals +∞ whenever λ ̸= 0.)

Let us compute the curvature of the induced metric. After replacing X by an
open neighborhood of a given point in U , we may assume that L is trivial; our
morphism E → OX is then given by a linear functional f ∈ H0(X,E∗). Let e−φ

be the weight function of the induced metric. The formula in Lemma 162 says that

e−φ(x) =
1

|f(x)|2h∗,x

for every x ∈ X. Taking logarithms, we get φ = 2 log|f |h∗ , which is plurisubhar-
monic because the pair (E, h) has semi-positive curvature. □

Suppose that (E, h) has semi-positive curvature. Since plurisubharmonic func-
tions are locally bounded from above, the singular hermitian inner product |−|h∗,x

on E∗
x must be finite for every x ∈ X; dually, every |−|h,x must be positive definite.

The determinant line bundle detE therefore has a well-defined singular hermitian
metric that we denote by the symbol deth. We will prove later (in Proposition 251)
that the pair (detE,deth) again has semi-positive curvature.

When (E, h) has semi-positive curvature, the pointwise length of any holomor-
phic section of E∗ is an upper semi-continuous function. Likewise, the pointwise
length of any holomorphic section of E is a lower semi-continuous function.
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Lemma 183. If (E, h) has semi-positive curvature, then for any s ∈ H0(X,E),
the function |s|h : X → [0,+∞] is lower semi-continuous.

Proof. Since the question is local, we may assume without loss of generality that
X is the open unit ball in Cn, and E the trivial bundle of rank r ≥ 1. We have

|s|h ≥ |f(s)|
|f |h∗

for every f ∈ H0(X,E∗), and it is easy to see that |s|h is the pointwise supremum
of the collection of functions on the right-hand side. Because log|f |h∗ is upper
semi-continuous, each

|f(s)|
|f |h∗

= |f(s)| · e− log|f |h∗

is a lower semi-continuous function from X to [0,+∞]; their pointwise supremum
is therefore also lower semi-continuous. □

Example 184. The following example, due to Raufi [Rau15, Theorem 1.3], shows
that the function |s|h can indeed have jumps. Let E be the trivial bundle of rank
2 on C. We first define a singular hermitian metric h∗ on the dual bundle E∗: at
each point z ∈ C, it is represented by the matrix(

1 + |z|2 z
z̄ |z|2

)
.

From this, one computes that the singular hermitian metric h on E is given by

1

|z|4

(
|z|2 −z
−z̄ 1 + |z|2

)
as long as z ̸= 0. Contrary to what this formula might suggest, one has⏐⏐(1, 0)

⏐⏐
h,0

= 1;

the length of the vector (1, 0) is thus |z|−2 for z ̸= 0, but 1 for z = 0.

19. Singular hermitian metrics on torsion-free sheaves. Let X be a complex
manifold, and let F be a torsion-free coherent sheaf on X. Let X(F ) ⊆ X denote
the maximal open subset where F is locally free; then X\X(F ) is a closed analytic
subset of codimension ≥ 2. If F ̸= 0, then the restriction of F to the open subset
X(F ) is a holomorphic vector bundle E of some rank r ≥ 1.

Definition 191. A singular hermitian metric on F is a singular hermitian metric
h on the holomorphic vector bundle E. We say that such a metric has semi-positive
curvature if the pair (E, h) has semi-positive curvature.

Suppose that F has a singular hermitian metric with semi-positive curvature.
Since X \X(F ) has codimension ≥ 2, every holomorphic section of the dual bundle
E∗ extends to a holomorphic section of the reflexive coherent sheaf

F ∗ = Hom(F ,OX),

and every plurisubharmonic function on X(F ) extends to a plurisubharmonic func-
tion on X (see Lemma 124). For every open subset U ⊆ X and every holomorphic
section f ∈ H0(U,F ∗), we thus obtain a well-defined plurisubharmonic function

log|f |h∗ : U → [−∞,+∞).

Note that the function |f |h∗ is upper semi-continuous.
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What about holomorphic sections of the sheaf F itself? For any s ∈ H0(U,F ),
the function |s|h is lower semi-continuous on U ∩X(F ). In a suitable neighborhood
of every point in U , we can imitate the proof of Lemma 183 and take the pointwise
supremum of the functions

|f(s)| · e− log|f |h∗ ,

where f runs over all sections of F ∗. Since the pointwise supremum of a family of
lower semi-continuous functions is again lower semi-continuous, we obtain in this
manner a distinguished extension

|s|h : U → [0,+∞]

to a lower semi-continuous function on U .

Definition 192. We say that a singular hermitian metric on F is continuous if,
for every open subset U ⊆ X and every holomorphic section s ∈ H0(U,F ), the
function |s|h : U → [0,+∞] is continuous.

Proposition 193. Let ϕ : F → G be a morphism between two torsion-free coherent
sheaves that is generically an isomorphism. If F has a singular hermitian metric
with semi-positive curvature, then so does G .

Proof. Let h denote the singular hermitian metric on F . On the open subset of
X(F ) ∩ X(G ) where ϕ is an isomorphism, G clearly acquires a singular hermit-
ian metric that we also denote by h for simplicity. Because the dual morphism
ϕ∗ : G ∗ → F ∗ is injective, the function log|f |h∗ is plurisubharmonic for every
f ∈ H0(U,G ∗) ⊆ H0(U,F ∗). Consequently, h extends to a singular hermitian
metric with semi-positive curvature on all of X(G ). □

Example 194. If F has a singular hermitian metric of semi-positive curvature, then
the same is true for the reflexive hull F ∗∗.

20. The minimal extension property. The Ohsawa-Takegoshi theorem leads
us to consider the following “minimal extension property” for singular hermitian
metrics. To keep the statement simple, let us assume that X is a connected complex
manifold of dimension n, and denote by B ⊆ Cn the open unit ball.

Definition 201. We say that a singular hermitian metric on F has the minimal
extension property if there exists a nowhere dense closed analytic subset Z ⊆ X
with the following two properties:

(1) F is locally free on X \ Z, or equivalently, X \ Z ⊆ X(F ).
(2) For every embedding ι : B ↪→ X with x = ι(0) ∈ X \ Z, and every v ∈ Ex

with |v|h,x = 1, there is a holomorphic section s ∈ H0
(
B, ι∗F

)
such that

s(0) = v and
1

µ(B)

∫
B

|s|2h dµ ≤ 1;

here (E, h) denotes the restriction to the open subset X(F ).

The point of the minimal extension property is the ability to extend sections
over the “bad” locus Z, with good control on the norm of the extension. We will
see later that pushforwards of adjoint line bundles always have this property, as a
consequence of the Ohsawa-Takegoshi theorem.
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Example 202. The minimal extension property rules out certain undesirable exam-
ples like the following. Let Z ⊆ X be a closed analytic subset of codimension ≥ 2,
and let IZ ⊆ OX denote the ideal sheaf of Z. Then IZ is trivial on X \ Z, and
the constant hermitian metric on this trivial bundle is a singular hermitian metric
with semi-positive curvature on IZ . But this metric does not have the minimal
extension property, because a holomorphic function f : B → C with f(0) = 1 and

1

µ(B)

∫
B

|f |2dµ ≤ 1

must be constant.

21. Pushforwards of adjoint line bundles. Let X be a complex manifold of
dimension n, and let (L, h) be a holomorphic line bundle with a singular hermitian
metric of semi-positive curvature. If X is compact, the space H0(X,ωX ⊗ L) is
finite-dimensional, and the formula

∥β∥2h =

∫
X

|β|2h

endows it with a positive definite singular hermitian inner product that is finite
on the subspace H0

(
X,ωX ⊗ L ⊗ I(h)

)
. We are now going to analyze how this

construction behaves in families.

Suppose then that f : X → Y is a projective surjective morphism between two
connected complex manifolds, with dimX = n and dimY = r; the general fiber of
f is a projective complex manifold of dimension n − r, but there may be singular
fibers. Let (L, h) be a holomorphic line bundle with a singular hermitian metric
of semi-positive curvature on X. The following important theorem was essentially
proved by Păun and Takayama [PT14, Theorem 3.3.5], building on earlier results
for smooth morphisms by Berndtsson and Păun [Ber09, BP08].

Theorem 211. Let f : X → Y be a projective surjective morphism between two
connected complex manifolds. If (L, h) is a holomorphic line bundle with a singular
hermitian metric of semi-positive curvature on X, then the pushforward sheaf

F = f∗
(
ωX/Y ⊗ L⊗ I(h)

)
has a canonical singular hermitian metric H. This metric has semi-positive curva-
ture and satisfies the minimal extension property.

The metric in the theorem is uniquely characterized by a simple property that
we now describe. Recall from (142) and (141) that any β ∈ H0

(
X,ωX ⊗L⊗I(h)

)
gives rise to a locally integrable (n, n)-form |β|2h. Any such form can be integrated
against compactly supported smooth functions, and therefore defines a current of
bidegree (n, n) on X. If we use brackets to denote the evaluation pairing between
(n, n)-currents and compactly supported smooth functions, then⟨

|β|2h, ϕ
⟩

=

∫
X

ϕ · |β|2h.

By the same token, any section β ∈ H0(Y, ωY ⊗ F ) defines a current of bidegree
(r, r) on Y that we denote by the symbol |β|2H . Now suppose that

β ∈ H0(U, ωY ⊗ F ) ≃ H0
(
f−1(U), ωX ⊗ L⊗ I(h)

)
.
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The singular hermitian metric H is uniquely characterized by the condition that⟨
|β|2H , ϕ

⟩
=

⟨
|β|2h, f∗ϕ

⟩
for every compactly supported smooth function ϕ ∈ Ac(U). Said differently, |β|2H
is the pushforward of the current |β|2h under the proper mapping f .

Corollary 212. In the situation of Theorem 211, suppose that the inclusion

f∗
(
ωX/Y ⊗ L⊗ I(h)

)
↪→ f∗(ωX/Y ⊗ L)

is generically an isomorphism. Then f∗(ωX/Y ⊗ L) also has a singular hermitian
metric with semi-positive curvature and the minimal extension property.

Proof. The existence of the metric follows from Proposition 193. The minimal
extension property continues to hold because every section of f∗

(
ωX/Y ⊗L⊗I(h)

)
is of course also a section of f∗(ωX/Y ⊗ L). □

Example 213. If we apply Theorem 211 to the identity morphism id: X → X, we
only get a singular hermitian metric on L⊗I(h). To recover the singular hermitian
metric on L that we started from, we can use Corollary 212.

The proof of Theorem 211 gives the following additional information about the
singular hermitian metric on F = f∗

(
ωX/Y ⊗ L⊗ I(h)

)
(see the end of §24).

Corollary 214. In the situation of Theorem 211, suppose that f : X → Y is sub-
mersive and that the singular hermitian metric h on the line bundle L is continuous.
Then the singular hermitian metric H on F is also continuous.

The following three sections explain the proof of Theorem 211. In a nutshell,
it is an application of the Ohsawa-Takegoshi extension theorem. We present the
argument in three parts that rely on successively stronger versions of the extension
theorem: first the ability to extend sections from a fiber; then the fact that there
is a universal bound on the norm of the extension; and finally the optimal bound
in Theorem 144.

22. Proof of the pushforward theorem, Part I. Our first goal is to define the
singular hermitian metric on

F = f∗
(
ωX/Y ⊗ L⊗ I(h)

)
,

and to establish a few basic facts about it. In this part of the proof, we only use the
weakest version of the Ohsawa-Takegoshi extension theorem, namely the ability to
extend sections from a fiber.

The idea is to construct the metric first over a Zariski-open subset Y \ Z where
everything is nice, and then to extend it over the bad locus Z. To begin with, choose
a nowhere dense closed analytic subset Z ⊆ Y with the following three properties:

(1) The morphism f is submersive over Y \ Z.
(2) Both F and the quotient sheaf f∗(ωX/Y ⊗L)/F are locally free on Y \Z.
(3) On Y \Z, the locally free sheaf f∗(ωX/Y ⊗L) has the base change property.

By the base change theorem, the third condition will hold as long as the coherent
sheaves Rif∗(ωX/Y ⊗L) are locally free on Y \Z. The restriction of F to the open
subset Y \ Z is a holomorphic vector bundle E of some rank r ≥ 1. The second
and third condition together guarantee that

Ey = F |y ⊆ f∗(ωX/Y ⊗ L)|y = H0
(
Xy, ωXy

⊗ Ly

)
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whenever y ∈ Y \ Z. As before, (Ly, hy) denotes the restriction of (L, h) to the
fiber Xy = f−1(y); it may happen that hy ≡ +∞. The Ohsawa-Takegoshi theorem
gives us the following additional information about Ey.

Lemma 221. For any y ∈ Y \ Z, we have inclusions

H0
(
Xy, ωXy

⊗ Ly ⊗ I(hy)
)
⊆ Ey ⊆ H0

(
Xy, ωXy

⊗ Ly

)
.

Proof. If hy ≡ +∞, then the subspace of the left is trivial, which means that the
asserted inclusion is true by default. If hy is not identically equal to +∞, then
given α ∈ H0

(
Xy, ωXy ⊗ Ly ⊗ I(hy)

)
and a suitable open neighborhood U of the

point y, there is by Theorem 144 some

β ∈ H0
(
U, ωY ⊗ F

)
≃ H0

(
f−1(U), ωX ⊗ L⊗ I(h)

)
such that β|Xy = α∧ df . Since ωY is trivial on U , this gives us a section of F in a
neighborhood of the fiber Xy whose restriction to Xy agrees with α. □

Note. We will see in a moment that the two subspaces

H0
(
Xy, ωXy

⊗ Ly ⊗ I(hy)
)
⊆ Ey

are equal for almost every y ∈ Y \ Z. But unless F = 0, the two subspaces are
different for example at points where hy is identically equal to +∞.

We can now define on each Ey with y ∈ Y \Z a singular hermitian inner product
in the following manner. Given an element

α ∈ Ey ⊆ H0
(
Xy, ωXy

⊗ Ly

)
,

we can integrate over the compact complex manifold Xy and define

|α|2H,y =

∫
Xy

|α|2hy
∈ [0,+∞].

It is easy to see that |−|H,y is a positive definite singular hermitian inner product.
Clearly |α|H,y < +∞ if and only if α ∈ H0

(
Xy, ωXy

⊗ Ly ⊗ I(hy)
)
; in light of

Lemma 221, our singular hermitian inner product |−|H,y is therefore finite precisely
on the subspace H0

(
Xy, ωXy

⊗ Ly ⊗ I(hy)
)
⊆ Ey.

Let us now analyze how the individual singular hermitian inner products |−|H,y

fit together on Y \Z. Fix a point y ∈ Y \Z and an open neighborhood U ⊆ Y \Z
biholomorphic to the open unit ball B ⊆ Cr; after pulling everything back to U , we
may assume without loss of generality that Y = B and Z = ∅ and y = 0. Denote
by t1, . . . , tr the standard coordinate system on B; then the canonical bundle ωB

is trivialized by the global section dt1 ∧ · · · ∧ dtr, and the volume form on B is

dµ = cr(dt1 ∧ · · · ∧ dtr) ∧ (dt̄1 ∧ · · · ∧ dt̄r).

Fix a holomorphic section s ∈ H0(B,E), and denote by

β = s ∧ (dt1 ∧ · · · ∧ dtr) ∈ H0
(
B,ωB ⊗ E

)
≃ H0

(
X,ωX ⊗ L⊗ I(h)

)
the corresponding holomorphic n-form on X with coefficients in L. Since f : X → B
is smooth, Ehresmann’s fibration theorem shows that X is diffeomorphic to the
product B ×X0. After choosing a Kähler metric ω0 on X0, we can write

(222) |β|2h = F · dµ ∧ ωn−r
0

(n− r)!
,
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where F : B×X0 → [0,+∞] is lower semi-continuous and locally integrable; the rea-
son is of course that the local weight functions for (L, h) are upper semi-continuous
functions. At every point y ∈ B, we then have by construction

(223) |s(y)|2H,y =

∫
X0

F (y,−)
ωn−r
0

(n− r)!
.

By Fubini’s theorem, the function y ↦→ |s(y)|H,y is measurable; moreover, since F
is locally integrable and X0 is compact, we must have |s(y)|H,y < +∞ for almost
every y ∈ B. Being coherent, E is generated over B by a finite number of global
sections; the singular hermitian inner product |−|H,y is therefore finite and positive-
definite for almost every y ∈ B, hence for almost every y ∈ Y \ Z. In particular,
the first inclusion in Lemma 221 is an equality for almost every y ∈ Y \Z. We may
summarize the conclusion as follows.

Proposition 224. On Y \ Z, the singular hermitian inner products |−|H,y deter-
mine a singular hermitian metric on the holomorphic vector bundle E.

While we are not yet ready to show that (E,H) has semi-positive curvature, we
can already show that the function |s|H is always lower semi-continuous.

Proposition 225. For any open subset U ⊆ Y \ Z and any section s ∈ H0(U,E),
the function |s|H : U → [0,+∞] is lower semi-continuous.

Proof. As before, we may assume that U = B is the open unit ball in Cm; it is
clearly sufficient to show that |s|H is lower semi-continuous at the origin. In other
words, we need to argue that

|s(0)|H,0 ≤ lim inf
k→+∞

|s(yk)|H,yk

holds for every sequence y0, y1, y2, . . . ∈ B that converges to the origin. As in
(222), the given section s ∈ H0(B,E) determines a lower semi-continuous function
F : B ×X0 → [0,+∞] such that (223) is satisfied. By the lower semi-continuity of
F and Fatou’s lemma, we obtain∫

X0

F (0,−)
ωn−r
0

(n− r)!
≤

∫
X0

lim inf
k→+∞

F (yk,−)
ωn−r
0

(n− r)!

≤ lim inf
k→+∞

∫
X0

F (yk,−)
ωn−r
0

(n− r)!
,

which is the desired inequality up to taking square roots. □

23. Proof of the pushforward theorem, Part II. Having defined (E,H) on
the open subset Y \Z, our next task is to say something about the induced singular
hermitian metric H∗ on the dual vector bundle E∗. In particular, we need to prove
that the norm of any local section of F ∗ is uniformly bounded in the neighborhood
of any point in Z, and that its logarithm is an upper semi-continuous function. This
part of the argument relies on the existence of a uniform bound in the Ohsawa-
Takegoshi theorem, but not on the precise value of the constant. Let us start by
reformulating the statement of the Ohsawa-Takegoshi in terms of the pair (E,H).

Lemma 231. For every embedding ι : B ↪→ Y with y = ι(0) ∈ Y \Z, and for every
α ∈ Ey with |α|H,y = 1, there is a holomorphic section s ∈ H0(B, ι∗F ) with

s(0) = α and

∫
B

|s|2H dµ ≤ C0,
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where C0 is the same constant as in the Ohsawa-Takegoshi theorem.

Proof. After pulling everything back to B, we may assume that Y = B and y = 0.
Since |α|H,0 = 1, by Theorem 144 there exists an element β ∈ H0

(
X,ωX⊗L⊗I(h)

)
with

β|X0
= α ∧ df and ∥β∥2h =

∫
X

|β|2h ≤ C0.

In fact, one can take C0 = µ(B), but the exact value of the constant is not important
here. Using dt1 ∧ · · · ∧ dtr as a trivialization of the canonical bundle ωB , we may
consider β as a holomorphic section s ∈ H0(B,F ); the two conditions from above
then turn into

s(0) = α and

∫
B

|s|2H dµ ≤ C0,

due to the fact that dµ = cr(dt1 ∧ · · · ∧ dtr) ∧ (dt̄1 ∧ · · · ∧ dt̄r). □

Fix an open subset U ⊆ Y and a holomorphic section g ∈ H0(U,F ∗); after
replacing Y by the open subset U , we may assume without loss of generality that
g ∈ H0(Y,F ∗). Consider the measurable function

(232) ψ = log|g|H∗ : Y \ Z → [−∞,+∞].

Ultimately, our goal is to show that ψ extends to a plurisubharmonic function on
all of Y . The following boundedness result is the crucial step in this direction.

Proposition 233. Every point in Y has an open neighborhood U ⊆ Y such that
ψ = log|g|H∗ is bounded from above by a constant on U \ U ∩ Z.

Proof. Choose two sufficiently small open neighborhoods U ⊆ V ⊆ Y of the given
point, such that V is compact, U ⊆ V , and for every point y ∈ U , there is an
embedding ι : B ↪→ Y of the unit ball B ⊆ Cr with ι(0) = y and ι(B) ⊆ V . We
shall argue that there is a constant C ≥ 0 such that ψ ≤ C on U \ U ∩ Z.

Fix a point y ∈ U \Z. If ψ(y) = −∞, there is nothing to prove, so let us suppose
from now on that ψ(y) ̸= −∞. By definition of the metric on the dual bundle, we
can then find a vector α ∈ Ey with |α|H,y = 1 such that

ψ(y) = log
⏐⏐g(α)

⏐⏐.
Choose an embedding ι : B ↪→ Y such that ι(0) = y and ι(B) ⊆ V . Using
Lemma 231, we obtain a holomorphic section s ∈ H0(V,F ) with s(0) = α and∫

V

|s|2H dµ ≤ C0;

the integrand is of course only defined on the subset V \ V ∩ Z, but this does not
matter because V ∩ Z has measure zero. It follows that ψ(y) is equal to the value
of log|g(s)| at the point y, and so the desired upper bound for ψ is a consequence
of Lemma 234 below. □

Lemma 234. Fix K ≥ 0, and consider the set

SK =

{
s ∈ H0(V,F )

⏐⏐⏐⏐ ∫
V

|s|2H dµ ≤ K

}
.

There is a constant C ≥ 0 such that, for every section s ∈ SK , the holomorphic
function g(s) is uniformly bounded by C on the compact set U .
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Proof. Since g(s) is holomorphic on V , it is clear that each individual function g(s)
is bounded on U . To get an upper bound that works for every s ∈ SK at once, we
use a compactness argument. Given a section s ∈ H0(V,F ), we invert the process
from above and define

β = s⊗
(
dt1 ∧ · · · ∧ dtr

)
∈ H0(V, ωY ⊗ F ) = H0

(
f−1(V ), ωX ⊗ L⊗ I(h)

)
.

If s ∈ SK , then one has

∥β∥2h =

∫
V

|s|2H dµ ≤ K.

Because V is compact and f is proper, we can cover f−1(V ) by finitely many
open sets W that are biholomorphic to the open unit ball in Cn, and on which
L is trivial. Let z1, . . . , zn be a holomorphic coordinate system on W , choose a
nowhere vanishing holomorphic section s0 ∈ H0(W,L), and write |s0|2h = e−φ, with
φ plurisubharmonic on W . Then β|W = bs0⊗dz 1 ∧ · · · ∧dzn for some holomorphic
function b ∈ H0(W,OW ), and∫

W

|b|2e−φ(dx 1 ∧ dy1) ∧ · · · ∧ (dxn ∧ dyn) =

∫
W

|β|2h ≤ K.

As we are dealing with finitely many open sets, Proposition 125 shows that every
sequence in SK has a subsequence that converges uniformly on compact subsets to
some β ∈ H0

(
f−1(V ), ωX ⊗ L⊗ I(h)

)
. This is all that we need.

Indeed, suppose that the assertion was false. Then we could find a sequence
s0, s1, s2, . . . ∈ SK such that the maximum value of |g(sk)| on the compact set U
was at least k. Let β0, β1, β2, . . . denote the corresponding sequence of holomorphic
sections of ωX⊗L⊗I(h) on the open set f−1(V ); after passing to a subsequence, the
βk will converge uniformly on compact subsets to β ∈ H0

(
f−1(V ), ωX ⊗L⊗I(h)

)
.

Let s ∈ H0(V,F ) be the unique section of F such that

β = s⊗
(
dt1 ∧ · · · ∧ dtr

)
.

By Proposition 153, the sk converge to s in the Fréchet space topology on H0(V,F ).
Since g : F → OY is a morphism, the holomorphic functions g(sk) therefore con-
verge uniformly on compact subsets to g(s). But then |g(sk)| must be uniformly
bounded on U , contradicting our initial choice. □

The next step is to show that the function ψ = log|g|H∗ is upper semi-continuous
on Y \ Z. The proof is similar to that of Proposition 225.

Proposition 235. For every g ∈ H0(Y,F ∗), the function ψ = log|g|H∗ is upper
semi-continuous on Y \ Z.

Proof. After restricting everything to a suitable open neighborhood of any given
point y ∈ Y \ Z, we may assume without loss of generality that Y = B and Z = ∅
and y = 0. Then g ∈ H0(B,E∗), and it will be enough to show that ψ = log|g|H∗

is upper semi-continuous at the origin. In other words, we need to argue that

(236) lim sup
k→+∞

ψ(yk) ≤ ψ(0)

for every sequence y0, y1, y2, . . . ∈ B that converges to the origin. We may assume
that ψ(yk) ̸= −∞ for all k ∈ N, and that the sequence ψ(yk) actually has a limit.
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As we saw before, there is, for each k ∈ N, a holomorphic section sk ∈ H0(B,E)
such that ψ(yk) equals the value of log|g(sk)| at the point yk; the Ohsawa-Takegoshi
theorem allows us to choose these sections in such a way that

|sk(yk)|H,yk
= 1 and

∫
B

|sk|H dµ ≤ K

for some constant K ≥ 0. Passing to a subsequence, if necessary, we can arrange
that the sk converge uniformly on compact subsets to some s ∈ H0(B,E). Then
the holomorphic functions g(sk) converge uniformly on compact subsets to g(s),
and (236) reduces to showing that the value at the origin of log|g(s)| is less or equal
to ψ(0). By definition of the dual metric H∗, we have

ψ ≥ log|g(s)| − log|s|H ,

and so this is equivalent to proving that |s(0)|H,0 ≤ 1. As in (222) and (223), each
sk determines a lower semi-continuous function Fk : B ×X0 → [0,+∞] with

1 = |sk(yk)|2H,yk
=

∫
X0

Fk(yk,−)
ωn−r
0

(n− r)!
.

Likewise, s determines a lower semi-continuous function F : B × X0 → [0,+∞].
Since the local weight functions e−φ of the pair (L, h) are lower semi-continuous,
and since sk converges uniformly on compact subsets to s, we get

F (0,−) ≤ lim inf
k→+∞

Fk(yk,−).

We can now apply Fatou’s lemma and conclude the proof in the same way as in
Proposition 225. □

24. Proof of the pushforward theorem, Part III. In this section, we complete
the proof of Theorem 211 by showing that the pair (E,H) has semi-positive cur-
vature, and that H extends to a singular hermitian metric on F with the minimal
extension property. The key point is that we can prove the required mean-value
inequalities because the optimal value of the constant in the Ohsawa-Takegoshi
theorem is exactly the volume of the unit ball. To illustrate how this works, let us
first show that the singular hermitian metric H on Y \Z has the minimal extension
property (see §20). For the statement, recall that r = dimY , and that B ⊆ Cr is
the open unit ball.

Proposition 241. For every embedding ι : B ↪→ Y with y = ι(0) ∈ Y \ Z, and for
every α ∈ Ey with |α|H,y = 1, there is a holomorphic section s ∈ H0(B, ι∗F ) with

s(0) = α and
1

µ(B)

∫
B

|s|2H dµ ≤ 1.

Proof. The proof is the same as that of Lemma 231; we only need to replace the
constant C0 by its optimal value µ(B). □

Now let us prove that H extends to a singular hermitian metric on F with semi-
positive curvature. Keeping the notation from above, this amounts to proving that
the function ψ : Y \Z → [−∞,+∞) in (232) extends to a plurisubharmonic function
on Y . We already know that ψ is upper semi-continuous (by Proposition 235) and
bounded from above in a neighborhood of every point in Y (by Proposition 233).
What we need to prove is the mean-value inequality along holomorphic arcs in
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Y \ Z. The Ohsawa-Takegoshi theorem with sharp estimates renders the proof of
the mean-value inequality almost a triviality.

Proposition 242. For every holomorphic mapping γ : ∆ → Y \ Z, the function
ψ = log|g|H∗ satisfies the mean-value inequality

(ψ ◦ γ)(0) ≤ 1

π

∫
∆

(ψ ◦ γ) dµ.

Proof. If h is identically equal to +∞ on the preimage of γ(∆), the inequality is
clear, so we may assume that this is not the case. Since f : X → Y is submersive
over Y \ Z, we may then pull everything back to ∆ and reduce the problem to
the case Y = ∆. If ψ(0) = −∞, then the mean-value inequality holds by default.
Assuming from now on that ψ(0) ̸= −∞, we choose an element α ∈ E0 with
|α|H,0 = 1, such that

ψ(0) = log|g|H∗,0 = log|g(α)|.
Using the minimal extension property (in Proposition 241, with m = 1), there is a
holomorphic section s ∈ H0(∆, E) such that

s(0) = α and
1

π

∫
∆

|s|2H dµ ≤ 1.

The existence of this section is all that we need to prove the mean-value inequality.
By definition of the metric H∗ on the dual bundle, we have the pointwise inequality

|g|H∗ ≥ |g(s)|
|s|H

and therefore 2ψ ≥ log|g(s)|2 − log|s|2H ; here g(s) is a holomorphic function on ∆,
whose value at the origin equals g(α). Integrating, we get

1

π

∫
∆

2ψ dµ ≥ 1

π

∫
∆

log|g(s)|2 dµ− 1

π

∫
∆

log|s|2H dµ

Now log|g(s)|2 satisfies the mean-value inequality, and so the first term on the
right-hand side is at least log|g(α)|2 = 2ψ(0). Since the function x ↦→ − log x is
convex, and since the function |s|2H is integrable, the second term can be estimated
by Jensen’s inequality to be at least

− log

(
1

π

∫
∆

|s|2H dµ

)
≥ − log 1 = 0.

Putting everything together, we obtain

1

π

∫
∆

2ψ dµ ≥ 2ψ(0),

which is the mean-value inequality (up to a factor of 2). □

We have verified that ψ is plurisubharmonic on Y \ Z. We already know from
Proposition 233 that ψ is locally bounded from above in a neighborhood of every
point in Y ; consequently, it extends uniquely to a plurisubharmonic function on all
of Y , using Lemma 124. By duality, the singular hermitian metric H is therefore
well-defined on the entire open set Y (F ) where the sheaf F = f∗

(
ωX ⊗L⊗ I(h)

)
is locally free. We have already shown that H has the minimal extension property.
This finishes the proof of Theorem 211. □
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Proof of Corollary 214. Suppose that f : X → Y is submersive and that the sin-
gular hermitian metric h on the line bundle L is continuous. To prove that H is
continuous, it suffices to show that for every locally defined section s ∈ H0(U,F ),
the function |s|2H on U \U ∩Z admits a continuous extension to all of U . This is a
local problem, and so we may assume that Y = B is the open unit ball in Cr, with
coordinates t1, . . . , tr, and that s ∈ H0(B,F ). Define

β = s ∧ (dt1 ∧ · · · ∧ dtr) ∈ H0(B,ωB ⊗ F ) = H0
(
X,ωX ⊗ L⊗ I(h)

)
.

By Ehresmann’s fibration theorem, X is diffeomorphic to the product B×X0, and
as in (222), we can write

|β|2h = F · dµ ∧ ωn−r
0

(n− r)!

with F : B ×X0 → [0,+∞] continuous. Now

y ↦→
∫
X0

F (y,−)
ωn−r
0

(n− r)!

defines a continuous function on B that agrees with |s|2H on the complement of the
bad set Z, due to (223). □

25. Positivity of the determinant line bundle. In this section, we show that if
a holomorphic vector bundle E has a singular hermitian metric with semi-positive
curvature, then the determinant line bundle detE has the same property. The
proof in [Rau15, Proposition 1.1] relies on locally approximating a given singular
hermitian metric from below by smooth hermitian metrics [BP08, Proposition 3.1].

Proposition 251. If (E, h) has semi-positive curvature, so does (detE,deth).

Let us first analyze what happens over a point. Let V be a complex vector space
of dimension r, and |−|h a positive definite singular hermitian inner product on V ; in
the notation of §16, we have V0 = 0. Let P(V ) be the projective space parametrizing
one-dimensional quotient spaces of V , and denote by O(1) the universal line bundle
on P(V ). We have a surjective morphism V ⊗O → O(1), and so h induces a singular
hermitian metric on O(1), with singularities along the subspace P(V/Vfin) ⊆ P(V ).
To see this, choose a basis e1, . . . , er ∈ V such that e1, . . . , ek form an orthonormal
basis of Vfin with respect to the inner product ⟨−,−⟩h, and denote by [z1, . . . , zr]
the resulting homogeneous coordinates on P(V ). Then the local weight functions
of the metric on O(1) are given by the formula

log
(
|z1|2 + · · · + |zk|2

)
,

with the convention that zi = 1 on the i-th standard affine open subset.

Now the one-dimensional complex vector space detV =
⋀r

V is naturally the
space of global sections of an adjoint bundle on P(V ), because

detV ≃ H0
(
P(V ), ωP(V ) ⊗ O(r)

)
.

The isomorphism works as follows. The element e1 ∧ · · · ∧ er ∈ detV determines a
holomorphic r-form dz 1 ∧ · · · ∧ dz r on the dual vector space V ∗; after contraction
with the Euler vector field z1∂/∂z1+· · ·+zr∂/∂zr, we get a holomorphic (r−1)-form

Ω =

r∑
i=1

(−1)i−1zidz 1 ∧ · · · ∧ d̂z i ∧ · · · ∧ dz r
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on P(V ) that is homogeneous of degree r, hence a global section of the holomorphic
line bundle ωP(V )⊗O(r). Integration over P(V ) therefore defines a positive definite
singular hermitian inner product H on detV . We have

|e1 ∧ · · · ∧ er|2H =

∫
P(V )

cr−1 · Ω ∧ Ω(
|z1|2 + · · · + |zk|2

)r ,
which simplifies in the affine chart z1 = 1 to

|e1 ∧ · · · ∧ er|2H =

∫
Cr−1

dµ(
1 + |z2|2 + · · · + |zk|2

)r .
Now there are two cases. If Vfin ̸= V , then k < r, and the integral is easily seen to
be +∞. If Vfin = V , then k = r, and the integral evaluates to πr−1/(r − 1)!, the
volume of the open unit ball in Cr−1. In conclusion, we always have

|e1 ∧ · · · ∧ er|2H =
πr−1

(r − 1)!
· |e1 ∧ · · · ∧ er|2deth.

With this result in hand, we can now prove Proposition 251.

Proof. Let p : P(E) → X denote the associated Pr−1-bundle, and let OE(1) be the
universal line bundle on P(E). We have a surjective morphism p∗E → OE(1), and
by Lemma 182, the singular hermitian metric on E induces a singular hermitian
metric on the line bundle OE(1), still with semi-positive curvature. We have

ωP(E)/X ≃ p∗ detE ⊗ OE(−r),

and therefore detE ≃ p∗
(
ωP(E)/X⊗OE(r)

)
is the pushforward of an adjoint bundle.

The calculation above shows that, up to a factor of πr−1/(r − 1)!, the resulting
singular hermitian metric on detE agrees with deth pointwise. The assertion about
the curvature of (detE,deth) is therefore a consequence of Corollary 212. □

26. Consequences of the minimal extension property. In this section, we
derive a few interesting consequences from the minimal extension property. All of
the results below are true for smooth hermitian metrics with Griffiths semi-positive
curvature on holomorphic vector bundles; the minimal extension property is what
makes them work even in the presence of singularities.

Let F be a torsion-free coherent sheaf on X, of generic rank r ≥ 1, and suppose
that F has a singular hermitian metric with semi-positive curvature and the mini-
mal extension property. Let E be the holomorphic vector bundle of rank r obtained
by restricting F to the open subset X(F ); by assumption, the pair (E, h) has semi-
positive curvature. Proposition 251 shows that (detE,deth) also has semi-positive
curvature. Let det F be the holomorphic line bundle obtained as the double dual
of

⋀rF ; its restriction to X(F ) agrees with detE. Since X \X(F ) has codimen-
sion ≥ 2, the singular hermitian metric on detE extends uniquely to a singular
hermitian metric on det F . The following result is due to Cao and Păun [CP15,
Theorem 5.23], who proved it using results by Raufi [Rau15].

Theorem 261. Suppose that X is compact and that c1(det F ) = 0 in H2(X,R).
Then F is locally free, and (E, h) is a hermitian flat bundle on X = X(F ).

Proof. Since X is compact, the singular hermitian metric on det F is smooth and
has zero curvature (by Lemma 132). Restricting to the open subset X(F ), we
see that the same is true for (detE,deth). Now the idea is to use the minimal
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extension property to construct, locally on X, a collection of r sections of F that
are orthonormal with respect to h.

We can certainly cover X by open subsets that are isomorphic to the open unit
ball B ⊆ Cn and are centered at points x ∈ X \ Z where the singular hermitian
inner product |−|h,x is finite and positive definite. After restricting everything to
an open subset of this kind, we may assume that X = B, that the point 0 ∈ B lies
in the subset B \Z, and that |−|h,0 is a genuine hermitian inner product on the r-
dimensional complex vector space E0. Choose an orthonormal basis e1, . . . , er ∈ E0.
By the minimal extension property for F , we can find r holomorphic sections
s1, . . . , sr ∈ H0(B,F ) such that

si(0) = ei and
1

µ(B)

∫
B

|si|2h dµ ≤ 1.

Since the logarithm function is strictly concave, Jensen’s inequality shows that

(262)
1

µ(B)

∫
B

log|si|2h dµ ≤ log

(
1

µ(B)

∫
B

|si|2h dµ
)

≤ 0,

with equality if and only if |si|h = 1 almost everywhere.

Now let us analyze the singular hermitian metric on detE. The expression

Hi,j(x) = ⟨si(x), sj(x)⟩h,x
is well-defined outside a set of measure zero, and the resulting function is locally
integrable. Denote by H(x) the r× r-matrix with these entries; it is almost every-
where positive definite, and we have⏐⏐s1 ∧ · · · ∧ sr

⏐⏐2
deth

= detH.

Since deth is actually smooth and flat, we can choose a nowhere vanishing section
δ ∈ H0(B, det F ) such that |δ|deth ≡ 1. We then have s1 ∧ · · · ∧ sr = g · δ for a
holomorphic function g ∈ H0(B,OB) with g(0) = 1, and

|g|2 =
⏐⏐s1 ∧ · · · ∧ sr

⏐⏐2
deth

= detH.

From Hadamard’s inequality for semi-positive definite matrices, we obtain

|g(x)|2 = detH(x) ≤
r∏

i=1

Hi,i(x) =

r∏
i=1

⏐⏐si(x)
⏐⏐2
h,x
,

with equality if and only if the matrix H(x) is diagonal. Taking logarithms, we get

log|g(x)|2 ≤
r∑

i=1

log
⏐⏐si(x)

⏐⏐2
h,x
.

This inequality is valid almost everywhere; integrating, we find that

(263)
1

µ(B)

∫
B

log|g|2 dµ ≤
r∑

i=1

1

µ(B)

∫
B

|si|2h dµ.

Now log|g|2 is plurisubharmonic, and so the mean-value inequality shows that the
left-hand side in (263) is greater or equal to log|g(0)|2 = 0. At the same time,
the right-hand side is less or equal to 0 by (262). The conclusion is that all our
inequalities are actually equalities, and so H(x) is almost everywhere equal to the
identity matrix of size r × r. In other words, the sections s1, . . . , sr ∈ H0(B,F )
are almost everywhere orthonormal with respect to h.
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For any holomorphic section f ∈ H0(B,F ∗), we therefore have

|f |2h∗ =

r∑
i=1

|f ◦ si|2

almost everywhere on B; because the logarithms of both sides are plurisubharmonic
functions on B, the identity actually holds everywhere. The singular hermitian
metric h∗ is therefore smooth; but then h is also smooth, and the pair (E, h) is a
hermitian flat bundle.

To conclude the proof, we need to argue that F is locally free on all of B. The
sections s1, . . . , sr ∈ H0(B,F ) give rise to a morphism of sheaves

σ : O⊕r
B → F .

We already know that σ is an isomorphism on the open subset B(F ); by Hartog’s
theorem, its inverse extends to a morphism of sheaves

τ : F → O⊕r
B

with τ ◦ σ = id. Because F is torsion-free, this forces σ to be an isomorphism. □

Note. Our proof gives a different interpretation for the fact that (detE,deth) has
semi-positive curvature. Indeed, without assuming that deth is smooth and flat, we
have detH = |g|2e−φ, where φ : B → [−∞,+∞) is locally integrable and φ(0) = 0.
The various inequalities above then combine to give

0 ≤ 1

µ(B)

∫
B

φdµ,

which is exactly the mean-value inequality for φ.

The next theorem is a new result. It says that when X is compact, all global
sections of the dual coherent sheaf F ∗ arise from trivial summands in F . Equiva-
lently, every nonzero morphism F → OX has a section, which means that F splits
off a direct summand isomorphic to OX .

Theorem 264. Suppose that X is compact and connected. Then for every nonzero
f ∈ H0(X,F ∗), there exists a unique global section s ∈ H0(X,F ) such that |s|h is
a.e. constant and f ◦ s ≡ 1.

Proof. Because the singular hermitian metric on F has semi-positive curvature,
the function log|f |h∗ is plurisubharmonic on X, hence equal to a nonzero constant.
After rescaling the metric, we may assume without loss of generality that |f |h∗ ≡ 1.
As in the proof of Theorem 261, we cover X by open subsets that are isomorphic
to B ⊆ Cn and are centered at points x ∈ X \Z where |−|h,x is finite and positive
definite. We shall argue that there is a unique section of F with the desired
properties on each open set of this type; by uniqueness, these sections will then
glue together to give us the global section s ∈ H0(X,F ) that we are looking for.

We may therefore assume without loss of generality that X = B, that the origin
belongs to the subset B \ Z, and that |−|h,0 is a hermitian inner product on the
vector space E0. It is easy to see from

sup

{
|f(v)|
|v|h,0

⏐⏐⏐⏐ v ∈ E0 with |v|h,0 ̸= 0

}
= |f |h∗,0 = 1
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that there exists a vector v ∈ E0 with f(v) = 1 and |v|h,0 = 1. By the minimal
extension property, there is a section s ∈ H0(B,F ) such that

s(0) = v and
1

µ(B)

∫
B

|s|2h dµ ≤ 1.

Now f ◦ s is a holomorphic function on B, and by definition of h∗, we have

|f ◦ s|
|s|h

≤ |f |h∗ = 1.

Taking logarithms and integrating, we get

1

µ(B)

∫
B

log|f ◦ s|2 dµ ≤ 1

µ(B)

∫
B

log|s|2h dµ ≤ log

(
1

µ(B)

∫
B

|s|2h dµ
)

≤ 0,

using Jensen’s inequality along the way. By the mean-value inequality, the left-
hand side is greater or equal to log(f ◦ s)(0) = 0, and so once again, all inequalities
must be equalities. It follows that f ◦ s ≡ 1, and that the measurable function |s|h
is equal to 1 almost everywhere.

It remains to prove the uniqueness statement. Suppose that s′ ∈ H0(B,F ) is
another holomorphic section with the property that f ◦ s′ ≡ 1 and |s′|h = 1 almost
everywhere. Outside a set of measure zero, we have

|s′ − s|2h + |s′ + s|2h = 2|s|2h + 2|s′|2h = 4,

and since f(s′ + s) = 2, we must have |s′ + s|2h ≥ 4. This implies that |s′ − s|2h = 0
almost everywhere, and hence that s′ = s. □

E. Pushforwards of relative pluricanonical bundles

27. Introduction. In the previous chapter, we presented a general formalism for
constructing singular hermitian metrics with semi-positive curvature on sheaves of
the form f∗(ωX/Y ⊗L). The applications to algebraic geometry come from the fact

that the sheaves f∗ω
⊗m
X/Y with m ≥ 2 naturally fit into this framework. The main

result is the following; see [BP08, Corollary 4.2], and also [Tsu11, Theorem 1.12],
[PT14, Theorem 4.2.2].

Theorem 271. Let f : X → Y be a surjective projective morphism with connected
fibers between two complex manifolds. Suppose that f∗ω

⊗m
X/Y ̸= 0 for some m ≥ 2.

(a) The line bundle ωX/Y has a canonical singular hermitian metric with semi-
positive curvature, called the m-th Narasimhan-Simha metric. This metric
is continuous on the preimage of the smooth locus of f .

(b) If h denotes the induced singular hermitian metric on L = ω
⊗(m−1)
X/Y , then

f∗
(
ωX/Y ⊗ L⊗ I(h)

)
↪→ f∗ω

⊗m
X/Y

is an isomorphism over the smooth locus of f .

We can therefore apply Corollary 212 and conclude that for any m ≥ 1, the
torsion-free sheaf f∗ω

⊗m
X/Y has a singular hermitian metric with semi-positive curva-

ture and the minimal extension property. Over the smooth locus of f , this metric is
finite and continuous. The minimal extension property has the following remarkable
consequences.

Corollary 272. Suppose that Y is compact.



44 C. D. HACON, M. POPA, AND CH. SCHNELL

(a) If c1
(
det f∗ω

⊗m
X/Y

)
= 0 in H2(Y,R), then f∗ω

⊗m
X/Y is locally free and the

singular hermitian metric on it is smooth and flat.
(b) Any nonzero morphism f∗ω

⊗m
X/Y → OY is split surjective.

Proof. This follows from Theorem 261 and Theorem 264. □

Note. There are two or three points in the proof where we need to use invariance
of plurigenera. This means that Theorem 271 cannot be used to give a new proof
for the invariance of plurigenera.

28. The absolute case. Let us start by discussing the absolute case. Take X to
be a smooth projective variety of dimension n. Fix an integer m ≥ 1 for which the
vector space

Vm = H0(X,ω⊗m
X )

of all m-canonical forms is nontrivial. Our goal is to construct a singular hermitian
metric on the line bundle ωX , with singularities along the base locus of Vm, such
that all elements of Vm have bounded norm. We can measure the length of an
m-canonical form v ∈ Vm by a real number ℓ(v) ∈ [0,+∞), defined by the formula

(281) ℓ(v) =

(∫
X

(cmn v ∧ v)1/m
)m/2

.

The constant cn = 2−n(−1)n
2/2 is there to make the expression in parentheses

positive. A more concrete definition is as follows. In local coordinates z1, . . . , zn,
we have an expression

v = g(z1, . . . , zn)(dz 1 ∧ · · · ∧ dzn)⊗m,

with g holomorphic; the integrand in (281) is then locally given by

(282) |g|2/mcn(dz 1 ∧ · · · ∧ dzn) ∧ (dz̄1 ∧ · · · ∧ dz̄n).

For m ≥ 2, the length function ℓ is not a norm, because the triangle inequality fails
to hold. On the other hand, ℓ is continuous on Vm, with ℓ(v) = 0 iff v = 0; we also
have ℓ(λv) = |λ| · ℓ(v) for every λ ∈ C.

We can now construct a singular hermitian metric hm on the line bundle ωX by
using the length function ℓ. Given an element ξ in the fiber of ωX at a point x ∈ X,
we define

|ξ|hm,x = inf
{
ℓ(v)1/m

⏐⏐ v ∈ Vm satisfies v(x) = ξ⊗m
}

∈ [0,+∞].

In other words, we look for the m-canonical form of minimal length whose value at
the point x is equal to the m-th power of ξ; if x belongs to the base locus of Vm,
then |ξ|hm,x = +∞ for ξ ̸= 0. We obtain in this way a singular hermitian metric hm
on the line bundle ωX , with singularities precisely along the base locus of the linear
system Vm. The advantage of this construction is that it is completely canonical:
there is no need to choose a basis for Vm.

Note. Following Păun and Takayama, we may call hm the m-th Narasimhan-Simha
metric on the line bundle ωX , because Narasimhan and Simha [NS68] used this
metric in the special case ωX ample. A similar construction also appears in Kawa-
mata’s proof of Iitaka’s conjecture over curves [Kaw82, §2].

Proposition 283. The Narasimhan-Simha metric hm on ωX is continuous, has
singularities exactly along the base locus of Vm, and has semi-positive curvature.
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Proof. We compute the local weights of hm. Let z1, . . . , zn be local holomorphic
coordinates on a suitable open subset U ⊆ X, and set s0 = dz 1 ∧ · · · ∧ dzn, which
is a nowhere vanishing section of ωX on the subset U . Consider the function

φm = − log|s0|2hm
: U → [−∞,+∞).

The definition of hm shows that, for every x ∈ U ,

(284) φm(x) =
2

m
sup

{
log

1

ℓ(v)

⏐⏐⏐⏐ v ∈ Vm satisfies v(x) = s0(x)⊗m

}
.

For each v ∈ Vm, there is a holomorphic function gv : U → C with v|U = gv · s⊗m
0 .

If gv(x) ̸= 0, then the m-canonical form v/gv(x) contributes to the right-hand side
of (284), and so we obtain

(285) φm(x) =
2

m
sup

{
log|gv(x)|

⏐⏐⏐ v ∈ Vm satisfies ℓ(v) ≤ 1
}
.

We will see in a moment that the supremum is actually a maximum, because the
set of m-canonical forms v ∈ Vm with ℓ(v) ≤ 1 is compact. Evidently, φm(x) = −∞
if and only if x ∈ U belongs to the base locus of Vm.

Now observe that the family of holomorphic functions

Gm =
{
gv ∈ H0(U,OX)

⏐⏐ v ∈ Vm satisfies ℓ(v) ≤ 1
}

is uniformly bounded on compact subsets. Indeed, the fact that ℓ(v) ≤ 1 gives us
a uniform bound on the L2/m-norm of each gv, and then we can argue as in the
proof of Proposition 125, using the mean-value inequality. By the n-dimensional
version of Montel’s theorem, the family Gm is equicontinuous; due to (285), our
φm is therefore continuous, as a function from U into [−∞,+∞).

From (285), we can also determine the curvature properties of hm. For each fixed
v ∈ Vm, the function log|gv|2/m is continuous and plurisubharmonic, and equal to
−∞ precisely on the zero locus of gv. As the upper envelope of an equicontinuous
family of plurisubharmonic functions, φm is itself plurisubharmonic [Dem12, Theo-
rem I.5.7]. This shows that the Narasimhan-Simha metric on ωX has semi-positive
curvature. □

Another good feature of the Narasimhan-Simha metric is that all m-canonical
forms are bounded with respect to this metric. Indeed, if we also use hm to denote
the induced singular hermitian metric on ω⊗m

X , then by construction, we have the
pointwise inequality |v|hm

≤ ℓ(v) for every v ∈ Vm. In order to fit the Narasimhan-
Simha metric into the framework of Chapter D, we write

ω⊗m
X = ωX ⊗ ω

⊗(m−1)
X ,

and endow the line bundle L = ω
⊗(m−1)
X with the singular hermitian metric h

induced by hm. This metric is continuous and has semi-positive curvature.

Lemma 286. For every v ∈ Vm, we have ∥v∥h ≤ ℓ(v).

Proof. We keep the notation introduced during the proof of Proposition 283. The

weight of h with respect to the section s
⊗(m−1)
0 of the line bundle ω

⊗(m−1)
X is

e−(m−1)·φm ,
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where φm is the function defined in (285). Now fix an m-canonical form v ∈ Vm
with ℓ(v) = 1. On the open set U , the integrand in the definition of ∥v∥h is

|gv|2e−(m−1)·φm · cn(dz 1 ∧ · · · ∧ dzn) ∧ (dz̄1 ∧ · · · ∧ dz̄n).

Because of (285), we have φm ≥ log|gv|2/m, and therefore

|gv|2e−(m−1)·φm ≤ |gv|2 · |gv|−2(m−1)/m = |gv|2/m.

Looking back at the definition of ℓ(v) in (282), this shows that ∥v∥h ≤ ℓ(v). □

Since ℓ is not itself a norm, the inequality will in general be strict. One useful
consequence of Lemma 286 is the identity

(287) H0
(
X,ωX ⊗ L⊗ I(h)

)
= H0(X,ωX ⊗ L) = H0

(
X,ω⊗m

X

)
.

Note that the multiplier ideal I(h) may well be nontrivial; nevertheless, it imposes
no extra conditions on global sections of ω⊗m

X .

29. The Ohsawa-Takegoshi theorem for pluricanonical forms. To analyze
how the Narasimhan-Simha metric behaves in families, we will need a version of
the Ohsawa-Takegoshi theorem for m-canonical forms. Suppose that f : X → B
is a holomorphic mapping to the open unit ball B ⊆ Cr, with f projective and
f(X) = B, and such that the central fiber X0 = f−1(0) is nonsingular. To simplify
the discussion, let us also assume that f is the restriction of a holomorphic family
over a ball of slightly larger radius. As in (281), we have length functions ℓ and ℓ0
on X respectively X0; because X is not compact, it may happen that ℓ(v) = +∞
for certain v ∈ H0(X,ω⊗m

X ).

Theorem 291. For each u ∈ H0
(
X0, ω

⊗m
X0

)
, there is some v ∈ H0

(
X,ω⊗m

X

)
with

ℓ(v) ≤ µ(B)m/2 · ℓ0(u),

such that the restriction of v to X0 is equal to u ∧ (df1 ∧ · · · ∧ dfr)⊗m.

Proof. Without loss of generality, we may assume that ℓ0(u) = 1. Since X0 is a
projective complex manifold, invariance of plurigenera tells us that the fiber of the
coherent sheaf f∗ω

⊗m
X at the point 0 ∈ B is equal to H0

(
X0, ω

⊗m
X0

)
. Because B is

a Stein manifold, we can then certainly find a section

v ∈ H0
(
B, f∗ω

⊗m
X

)
= H0(X,ω⊗m

X )

with the correct restriction to X0. By assuming that f comes from a morphism to
a ball of slightly larger radius, we can also arrange that the quantity

ℓ(v) =

(∫
X

(cmn v ∧ v)1/m
)m/2

is finite. Of course, v will not in general satisfy the desired inequality.

The way to deal with this problem is to consider ω⊗m
X = ωX ⊗ ω

⊗(m−1)
X as an

adjoint bundle and to apply the Ohsawa-Takegoshi theorem to get another extension
of smaller length. The section v ∈ H0(X,ω⊗m

X ) induces a singular hermitian metric

on the line bundle ω⊗m
X , whose curvature is semi-positive. With respect to a local

trivialization

φ : ω⊗m
X |U → OU ,



ALGEBRAIC FIBER SPACES OVER ABELIAN VARIETIES 47

the weight of this metric is given by log|φ ◦ v|2. Endow the line bundle ω
⊗(m−1)
X

with the singular hermitian metric whose local weight is

m− 1

m
log|φ ◦ v|2.

It is easy to see that the norm of u with respect to this metric is still equal to
ℓ0(u) = 1. Theorem 144 says that there exists another section v′ ∈ H0(X,ω⊗m

X ),
with the same restriction to X0, whose norm squared is bounded by µ(B). To get
a useful expression for the norm squared, write

v′ = Fv,

with F meromorphic on X and identically equal to 1 on X0; then the inequality in
the Ohsawa-Takegoshi theorem takes the form∫

X

|F |2(cmn v ∧ v)1/m ≤ µ(B).

We can use this to get an upper bound for the quantity

ℓ(v′) =

(∫
X

|F |2/m(cmn v ∧ v)1/m
)m/2

.

To begin with, let us write (cmn v ∧ v)1/m = Ldµ, where L is a nonnegative real-
analytic function on X, and dµ is some choice of volume form. Using Hölder’s
inequality with exponents 1/m and (m− 1)/m, we have

ℓ(v′)2/m =

∫
X

|F |2/mLdµ ≤
(∫

X

|F |2Ldµ
)1/m (∫

X

Ldµ

)(m−1)/m

,

and therefore ℓ(v′) ≤ µ(B)1/2 · ℓ(v)(m−1)/m, which we may rewrite as

ℓ(v′)

µ(B)m/2
≤

(
ℓ(v)

µ(B)m/2

)(m−1)/m

.

Now we iterate this construction to produce an infinite sequence of m-canonical
forms v0, v1, v2, . . . ∈ H0(X,ω⊗m

X ), all with the correct restriction to X0. The

inequality from above shows that one of two things happens: either ℓ(vk) ≤ µ(B)m/2

for some k ≥ 0; or ℓ(vk) > µ(B)m/2 for every k ∈ N, and

lim
k→+∞

ℓ(vk) = µ(B)m/2.

If the former happens, we are done. If the latter happens, we apply Lemma 292: it
says that a subsequence converges uniformly on compact subsets to an m-canonical
form v ∈ H0(X,ω⊗m

X ). Now v satisfies ℓ(v) ≤ µ(B)m/2 (by Fatou’s lemma), and
its restriction to X0 is of course still equal to u ∧ (df1 ∧ · · · ∧ dfr)⊗m. □

Lemma 292. Let X be a complex manifold, and let v0, v1, v2, . . . ∈ H0(X,ω⊗m
X )

be a sequence of m-canonical forms such that ℓ(vk) ≤ C for every k ∈ N. Then a
subsequence converges uniformly on compact subsets to a limit v ∈ H0(X,ω⊗m

X ).

Proof. With respect to a local trivialization of ω⊗m
X , we have a sequence of holo-

morphic functions whose L2/m-norm is uniformly bounded. Using the mean-value
inequality, this implies that the sequence of functions is uniformly bounded on
compact subsets; now apply Montel’s theorem to get the desired conclusion. □
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Note. One interesting thing about the proof of Theorem 291 is that it looks very
similar to Viehweg’s covering trick (which we used for example in the proof of
Proposition 82). The advantage of the metric approach is that one can take a limit
to obtain a solution with the same properties as in the case m = 1.

30. The relative case. With the help of Theorem 291, it is quite easy to analyze
the behavior of the Narasimhan-Simha metric in families. Let us first consider the
case of a smooth morphism f : X → Y ; as in the statement of Theorem 271, we
assume that f is projective with connected fibers, and that f(X) = Y . Recall that
by invariance of plurigenera, the dimension of the space of m-canonical forms on
the fiber Xy = f−1(y) is the same for every y ∈ Y .

The restriction of the relative canonical bundle ωX/Y to the fiber Xy identifies
to the canonical bundle ωXy

of the fiber. We can therefore apply the construction
in §28 fiber by fiber to produce a singular hermitian metric hm on ωX/Y , called the
m-th relative Narasimhan-Simha metric; we shall give a more careful definition of
hm in a moment. The first result is that hm is continuous.

Proposition 301. Under the assumptions above, the relative Narasimhan-Simha
metric on ωX/Y is continuous.

Proof. Once again, this is an application of the Ohsawa-Takegoshi theorem for
pluricanonical forms, which allows us to extend m-canonical forms from the fibers
of f , with a uniform upper bound on the length of the extension. After shrinking Y ,
we can assume that Y = B is the open unit ball in Cr, with coordinates t1, . . . , tr.
We denote by Vm = H0(X,ω⊗m

X ) the (typically infinite-dimensional) vector space
of all m-canonical forms on X. Given v ∈ Vm and a point y ∈ Y , we have

v|Xy
= vy ⊗ (dt1 ∧ · · · ∧ dtr)⊗m

for a unique m-canonical form vy ∈ H0(Xy, ω
⊗m
Xy

). We denote by ℓ(v) the length

of v on X, and by ℓy(vy) the length of vy on Xy. The Ohsawa-Takegoshi theorem
for pluricanonical forms (in Theorem 291) implies that, possibly after shrinking Y ,
there is a constant C ≥ 0 with the following property:

(302)
For every y ∈ Y and every m-canonical form u on Xy of length ≤ 1,
there is an m-canonical form v ∈ Vm such that vy = u and ℓ(v) ≤ C.

Now let n = dimX. As the morphism f is smooth, every point in X has an open
neighborhood U with coordinates z1, . . . , zn−r, t1, . . . , tr. Then s0 = dz 1 ∧ · · · ∧
dzn−r gives a local trivialization of ωX/Y , and we consider the weight function

φm = − log|s0|2hm
: U → [−∞,+∞)

of the relative Narasimhan-Simha metric hm. On each fiber, φm is given by the
formula in (285); we can use the Ohsawa-Takegoshi theorem to obtain a more
uniform description. For each v ∈ Vm, we have

v|U = gv · (s0 ∧ dt1 ∧ · · · ∧ dtr)⊗m

for a unique holomorphic function gv : U → C. By (285) and (302), we have

φm(x) =
2

m
sup

{
log|gv(x)|

⏐⏐⏐ v ∈ Vm satisfies ℓ(v) ≤ C and ℓy(vy) ≤ 1
}

;

where y = f(x). We are going to prove that this defines a continuous function on
U .
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Fix a point x ∈ U , and let x0, x1, x2, . . . be any sequence in U with limit x. Set
yk = f(xk) and y = f(x). For every k ∈ N, choose an m-canonical form uk of
length ℓyk

(uk) = 1 on the fiber Xyk
, such that uk computes φm(xk). Extend uk to

an m-canonical form vk of length ℓ(vk) ≤ C on X by using (302); then

φm(xk) =
2

m
log

⏐⏐gvk(xk)
⏐⏐.

After passing to a subsequence, v0, v1, v2, . . . converges uniformly on compact sub-
sets to an m-canonical form v ∈ H0(X,ω⊗m

X ). Since ℓyk
(vn,yk

) = 1, Fatou’s lemma
shows that ℓy(vy) ≤ 1. Moreover, the holomorphic functions gvk converge uniformly
on compact subsets to gv, and therefore

(303) lim
k→+∞

φm(xk) =
2

m
log

⏐⏐gv(x)
⏐⏐ ≤ φm(x).

On the other hand, we can choose an m-canonical form u′ of length ℓy(u′) = 1 on
the fiber Xy, such that u′ computes φm(x). Extend u′ to an m-canonical form v′

of length ℓ(v′) ≤ C on X by using (302); then

φm(x) =
2

m
log|gv′(x)|.

Now it is easy to see from the definition of the length function that ℓyk
(v′yk

) tends
to ℓy(v′y) as k → +∞. In particular, the m-canonical form v′yk

on Xyk
has nonzero

length for k ≫ 0, which means that

2

m

(
log|gv′(xk)| − log ℓyk

(v′yk
)
)
≤ φm(xk).

Since the left-hand side tends to φm(x), we obtain

(304) φm(x) ≤ lim inf
k→+∞

φm(xk).

The two inequalities in (303) and (304) together say that φm is continuous. □

Next, we prove that hm has semi-positive curvature – just as in the case of
adjoint bundles, the proof of this fact is very short, because we know the optimal
value of the constant in Theorem 291.

Proposition 305. Under the assumptions above, the relative Narasimhan-Simha
metric on ωX/Y has semi-positive curvature.

Proof. Keep the notation introduced during the proof of Proposition 301. Because
the local weight function φm is continuous, it suffices to prove that φm satisfies the
mean-value inequality for mappings from the one-dimensional unit disk ∆ into U .
If the image of ∆ lies in a single fiber, this is okay, because we already know from
Proposition 283 that φm is plurisubharmonic on each fiber. So assume from now on
that the mapping from ∆ to Y is non-constant. Since the morphism f is smooth,
we can then make a base change and reduce the problem to the case where Y = ∆
and where i : ∆ ↪→ X is a section of f : X → ∆.

Now let x0 = i(0) and X0 = f−1(0), and choose some u ∈ H0(X0, ω
⊗m
X0

) with
ℓ0(u) = 1 that computes φm(x0). By Theorem 291, there exists an m-canonical
form v ∈ H0(X,ω⊗m

X ) with v|X0
= u ∧ df⊗m, whose length satisfies the inequality

ℓ(v) ≤ µ(∆)m/2 · ℓ0(u) = πm/2.
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In the notation introduced during the proof of Proposition 301, we then have

φm(x0) =
2

m
log

⏐⏐gv(x0)
⏐⏐.

If we define vy ∈ H0(Xy, ω
⊗m
Xy

) by the formula v|Xy = vy ∧ df⊗m, then we have

ℓ(v)2/m =

∫
X

(cmn v ∧ v)1/m =

∫
∆

ℓy(vy)2/m dµ.

Now we observe that for almost every y ∈ ∆, the ratio vy/ℓy(vy) is an m-canonical
form on Xy of unit length; by definition of the weight function φm, we have

φm(x) ≥ 2

m

(
log|gv(x)| − log ℓy(vy)

)
=

2

m
log|gv(x)| − log ℓy(vy)2/m.

If we now compute the mean value of φm ◦ i over ∆, we find that

1

π

∫
∆

φm(i(y)) dµ ≥ 1

π

∫
∆

2

m
log

⏐⏐gv(i(y))
⏐⏐ dµ− 1

π

∫
∆

log ℓy(vy)2/m dµ.

The first term on the right is greater or equal to 2/m log|gv(x0)| = φm(x0), because
the function gv ◦ i is holomorphic. To estimate the remaining integral, note that

1

π

∫
∆

log ℓy(vy)2/m dµ ≤ log

(
1

π

∫
∆

ℓy(vy)2/m dµ

)
= log

(
1

π
· ℓ(v)2/m

)
≤ 0,

by Jensen’s inequality and the fact that ℓ(v) ≤ πm/2. Consequently, φm does satisfy
the required mean-value inequality, and hm has semi-positive curvature. □

Note. Compare also Lemma 7 and Lemma 8 in [Kaw82].

After these preparations, we can now prove Theorem 271 in general.

Proof of Theorem 271. Suppose that f : X → Y is a projective morphism between
two complex manifolds with f(X) = Y . Let Z ⊆ Y denote the closed analytic
subset where f fails to be submersive. We already know that the restriction of the
line bundle ωX/Y to f−1(Y \ Z) has a well-defined singular hermitian metric hm
that is continuous and has semi-positive curvature. To show that hm extends to a
singular hermitian metric with semi-positive curvature on all of X, all we need to
prove is that the local weights of hm remain bounded near f−1(Z); this is justified
by Lemma 124. Păun and Takayama [PT14, Theorem 4.2.7] observed that this
local boundedness again follows very easily from the Ohsawa-Takegoshi theorem
for pluricanonical forms.

Fix a point x0 ∈ X with f(x0) ∈ Z. Since the problem is local on Y , we may
assume that Y = B is the open unit ball in Cr, with coordinates t1, . . . , tr, and
that f(x0) = 0. On a suitable neighborhood U of the point x0, we have coordinates
z1, . . . , zn; note that because f is most likely not submersive at x0, we cannot assert
that t1, . . . , tr are part of this coordinate system. Let s0 ∈ H0(U, ωX/Y ) be a local
trivialization of ωX/Y , chosen so that

dz 1 ∧ · · · ∧ dzn = s0 ∧ (dt1 ∧ · · · ∧ dtr).

Denote by φm the weight function of hm with respect to this local trivialization:

φm(x) = − log|s0|2hm
: U → [−∞,+∞)
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For v ∈ H0(X,ω⊗m
X ), we have v|U = gv · (dz 1 ∧ · · · ∧ dzn)⊗m for a holomorphic

function gv : U → C. As explained during the proof of Proposition 301, the Ohsawa-
Takegoshi theorem for pluricanonical forms implies that there is a constant C ≥ 0
with the following property: for every x ∈ U , there is some v ∈ H0(X,ω⊗m

X ) of
length ℓ(v) ≤ C such that

φm(x) =
2

m
log|gv(x)|.

For x sufficiently close to x0, there is a positive number R > 0 such that U con-
tains the closed ball of radius R centered at x. The mean-value inequality and
the fact that ℓ(v) ≤ C now combine to give us an upper bound for φm(x) that
depends only on C and R, but is independent of the point x. In particular, φm

is uniformly bounded in a neighborhood of the point x0 ∈ f−1(Z), and therefore
extends uniquely to a plurisubharmonic function on all of U .

The Narasimhan-Simha metric on each fiber Xy with y ̸∈ Z satisfies (287); by
the Ohsawa-Takegoshi theorem, this means that the inclusion

f∗
(
ωX/Y ⊗ L⊗ I(h)

)
↪→ f∗

(
ωX/Y ⊗ L

)
= f∗ω

⊗m
X/Y

is an isomorphism over Y \Z. Due to Corollary 214, the singular hermitian metric
on f∗ω

⊗m
X/Y is therefore finite and continuous on Y \ Z. □
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