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ABSTRACT. We revisit some of the basic results of generic vanishing theory, as pioneered by Green and Lazarsfeld, in the
context of constructible sheaves. Using the language of perverse sheaves, we give new proofs of some of the basic results of
this theory. Our approach is topological/arithmetic, and avoids Hodge theory.

1. INTRODUCTION
Let A be a compact complex torus of dimension g. Fix a field k of coefficients, and let

Char(A) := Hom (71 (A), Gy i) ~ G

m,k
be the k-linear character variety of the fundamental group; this is a torus of dimension 2¢g over k. Given a character
X € Char(A), we write L, for the associated rank-one local system on A. The goal of this paper is to revisit some
results describing the behaviour of the cohomology M & L, , where M is a fixed constructible sheaf (or complex) on
A, and x varies through points of Char(A). These results constitute the constructible sheaf variants of the pioneering
work of Green and Lazarsfeld [GL87,|GLI1], and have been revisited by many authors in the interim.

1.1. Generic vanishing. The first goal of this paper is to give a new short proof for the following vanishing theorem,
which is new in this generality.

Theorem 1.1 (Generic vanishing for perverse sheaves). Let M € Perv(A, k) be a perverse sheaf with k-coefficients.
Then

H' (A, M ®j, Ly) =0 foralli#0
Sor x lying in a non-empty Zariski open subset of Char(A).
By a standard argument, Theorem|[I.T|can be reformulated as the following assertion about constructible sheaves:

Corollary 1.2 (Generic vanishing for constructible sheaves). Let F' be a constructible sheaf on A with k-coefficients.
Then

H'(A,F ®) Ly) =0 foralli> dim(Supp F)
Sor x lying in a non-empty Zariski open subset of Char(A).

Theorem is an analogue for perverse sheaves of the “generic vanishing theorem” of Green and Lazarsfeld
[GL87]; indeed, Theorem [I.T]implies the Kodaira-Nakano type vanishing results of [GL87] via Hodge theory.

When A is an abelian variety and k = C, Theorem [I.1] was first proven in [KW15] using hard Lefschetz and Tan-
nakian categories arising via convolution, and independently in [Schnl5]] via Laumon-Rothstein’s Fourier transform
for D-modules on A. The new idea of our proof is to pass to the universal covering space of A, which is a complex
vector space, and then to apply Artin’s vanishing theorem for perverse sheaves on Stein manifolds; this was inspired
by [Schol5l, §IV], which proves a vanishing theorem for the F,-cohomology of Shimura varieties by invoking the
analog of Artin vanishing for the “perfectoid universal cover” of the Shimura variety. The implementation of this idea
relies on the Fourier-Mellin transform for constructible sheaves on abelian varieties, which coherently interpolates the
cohomology of all character twists M ® L., of M. More precisely, the Fourier-Mellin transform is given by a functor

FM, : D%(A, k) — Db, (Char(A))

coh

from the constructible derived category of k-linear sheaves on A to coherent complexes on Char(A), such that the
fiber of FM 4 (M) at a point x € Char(A) is the cohomology of M ® L,.
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1.2. Codimension estimates. From Theorem|[I.TJand some basic properties of the Fourier transform, one can deduce
some additional results about the “cohomology support loci”

S*(A, M) := {x € Char(A) | H'(A, M &y, L) # 0},

which are easily seen to be Zariski closed subsets of Char(A). The proof of Theorem immediately yields that
codim(S?(A, M)) > |i| for all i when M is perverse. To get better estimates, we need to specialize our assumptions
on k and A.

Theorem 1.3 (Codimension estimates for support loci). Assume that k is a field of characteristic 0, and that A is an
abelian variety. Let M € D%(A, k) be an algebraically constructible complex. Then one has

M €PDs°(Ak) = codim(S*(A, M)) > 2i foreveryi € Z,
M €?DZ°(Ak) = codim(S* (A, M)) > —2i for everyi € Z.
In particular, if M is a perverse sheaf, then codim(S*(A, M)) > |2i| for every i € Z.

The converse to Theorem@] is also true. In fact, both results can be deduced via the Riemann-Hilbert correspon-
dence from [Schnl35]]; the latter relies on Simpson’s work [[Sim93]] analyzing when subsets of a moduli space of rank
1 local systems are algebraic simultaneously in the Betti, de Rham, and Dolbeault realizations. The novelty of the
approach taken here to proving Theorem[I.3]is that it is essentially topological: we deduce the improved codimension
estimate formally from the Hard Lefschetz theorem and properties of the Fourier transform, without ever leaving the
world of constructible sheaves.

Although our approach to Theorem[I.3|relies only on the Hard Lefschetz theorem, it does not (yet) apply to ¢-adic
sheaves M on abelian varieties in characteristic p, even if we assume that M is of geometric origin. The primary
obstacle is that even when the Hard Lefschetz theorem for M is true, it is not clear whether the same holds true for
twists M @ L, of M by rank 1 local systems; this is conjectured to be true by Drinfeld in much larger generality, and
we refer to Remark [3.3]and Remark 3.7] for more discussion.

1.3. Linearity. The final result we shall discuss is one that gives a precise local description of the Fourier transform
FM 4 (M) for a simple perverse sheaf M of geometric origin on A. Roughly speaking, the result states that the stalk
of FM 4 (M) at the trivial character is given by a “linear complex” or a “derivative complex”. The precise statement
is given in Theorembelow. For this, we denote by S the co-ordinate ring of the formal completion of Char(A) at

the trivial character 1 € Char(A). As Char(A) = Spec(k[r1(A)]), we have S ~ S/y?n(Hl(A, k)).

Theorem 1.4 (Linearity of the Fourier transform). Let A be an abelian variety, and let k be a field of characteristic
0. Let M be a simple k-linear perverse sheaf on A of geometric origin. Then the completed stalk at 1 of FM 4 (M) €
Db , (Char(A)) is represented by the S-complex

s HTY A M) @, S — H(AM)® S — HTH A M)®, S — -,

where the differential arises from the natural map H'(A, M) — H*1(A, M) ®y Hy(A, k) that is adjoint to the cup
product H* (A, k) @ HY (A, M) — H*TY(A, M).

Theorem [I.4]is the constructible sheaf version of the key result of [GLOT]| (which dealt with the coherent context),
and is implied by the linearity result in [PS13] (which applies in the context of mixed Hodge modules); these results
form the essential ingredient in proving linearity properties of the cohomological support loci S*(A, M) of M. The
proofs of these results in both [GL91]] and [PS13]] rely on Hodge theory. In contrast, our proof is essentially arithmetic:
we deduce Theorem|I.4]by specializing to characteristic p, and using the theory of weights to prove a formality result
that implies the theorem via a version of the BGG correspondence.

We use the language of co-categories in the proof of Theorem [I.4] There are two reasons for this. First, we need a
version of the BGG correspondence that is compatible with Galois actions in a suitable sense, and this seemed cleanest
to formulate in the oo-categorical language. More importantly, this language helps clarify why the theory of weights
has consequences for formality; for instance, in we give a simple deduction of the formality result of [DGMS75]]
from Deligne’s purity theorem [Del80] by formalising the intuitive idea that a “mismatch of weights causes the Massey
products to vanish”. The notion of a symmetric monoidal co-category is crucial to this deduction. Besides Lurie’s
books [LurQ9, [Lur], there are many other sources that give a user friendly exposition of this theory, such as [Gr10].
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2. FOURIER-MELLIN TRANSFORMS AND GENERIC VANISHING

In this section, we prove Theorem [I.1] We use the formalism of constructible complexes and perverse sheaves in
the setting of complex manifolds; more details can be found in [HTTO8, Section 4.5] and [Dim04, Chapter 4]. Many
of the basic compatibility results proven below concerning the Fourier-Mellin transforms on compact complex tori
are analogs of analogous results for /-adic sheaves on algebraic tori proven by Gabber-Loeser [GL96]. We fix the
following notation:

Notation 2.1. Fix a field &, and a complex torus A of dimension g. Write D%(A, k) for the bounded derived category
of constructible complexes of k-modules on A; this triangulated category comes equipped with the constant sheaf
abusively denoted by k, and Verdier’s duality functor D 4 (—) := RHom, (—, k[2g]).

Let R = k[n1(A)] be the group algebra of the fundamental group 71 (A) of A; we always choose the base point at
0. Note that R is a regular noetherian ring, and Char(A) := Spec(R) is the character variety of A (relative to k). As
before, one has the corresponding constructible derived category D%(A, R) of R-modules on A and its Verdier duality
functor D4 r(—) := RHomp(—, R[2g]).

Let m : V — A be the universal cover of A, so V is a vector space, and there is a natural action of 71 (A) on V by
deck transformations. In particular, the sheaf £ i := mk is naturally a sheaf of R-modules on A.

The sheaf £ introduced above is a central player in this work. It may be viewed as the “universal” rank 1 local
system on A in the following sense:

Lemma 2.2. The R-module L g is locally free of rank 1. In fact, it is the R-local system associated to the tautological
character can : ™ (A) — R*.

Proof. Let U C A be a simply connected open subset. Then Ax, U — Uis isomorphic to Uy, (4)U — U. By
proper base change, it follows that (m k)| is identified with the constant sheaf R as R-modules, proving the first part.
The second part follows by unwinding definitions. O

As L is a local system, we may dualize it to obtain another local system £}, :== RHom (L g, R) of R-modules
on A. One then has:

Lemma 2.3. There is a canonical identification [—1]*L g ~ L},.

Proof. By the previous lemma, L is the local system associated to the tautological character can : w1 (A) — R*.
Thus, its dual £, corresponds to the character
7 (A) 2% R 5 R,
where ¢(g) = g~ !. Since [—1], acts via —1 on 71 (A), the previous composition is identified with
m(A) T 7 (4) 22 R
which proves the claim. ]

This construction satisfies the following compatibility:

Lemma 2.4. The following diagram is canonically commutative:

DY(A, k) —22) L pha, R)
DA,k(_)i lDA,R()
DY(A k) —=2E poa, R).

Here the vertical maps are antiequivalences.



Proof. Fix some K € DY(A, k). We must show that the natural map
L} @1, RHom, (K, k[2g]) — RHomg(Lr @ K, R[2g])

is an isomorphism of sheaves. This assertion is local on A. Moreover, since Lg is locally constant, it reduces to
the following statement: the functor D%(A, k) — DY(A, R) given by extension of scalars along k — R carries
RHom, (F, G) to RHom(F ®;, R, G ®y, R). This assertion is standard. O

Recall that the functor RT'(A, —) carries D2(A, R) to Dy, ¢(R), and, as A is compact, intertwines Verdier duality
on D%(A, R) with the trivial duality Dg(—) := RHomp(—, R) on Dy, ¢(R). Combining this with Lemma [2.4] we
obtain the following commutative diagram of functors:

£ - A,—
1) DY(A, k) — 2 DY, R) — 2 Dy (R)
DA,k()\L \LDA,R() iDR()
LY®k(— RT(A,—
DA k) — 22 pra py AT ().
In particular, using Lemma[2.3] we arrive at the following compatibility:
2) DR(RF(A,M@)k LR)) ~ RT(A, D([-1]*M) ®4 LR).

This allows us to define:

Definition 2.5. For M € DY(A, k), define its Fourier transform FM 4 (M) as
FMa(M) := RT'(A, M ®y LR) € Dpers(R).
To justify the name, we show the following: for any M € Db(A, k), the quasi-coherent complex FM 4 (M)
on Char(A) interpolates the cohomology of the character twists of M, as one would expect from a Fourier-type

transform. More precisely, given a point xy € Char(A) with residue field (), we obtain an induced character
¥ m(A) =% R* — k(x)*, and thus an associated rank 1 local system L,, of #()-modules on A. One then has:
Lemma 2.6. For any x € Char(A), there is a canonical isomorphism
FM4 (M) @% k(x) ~ RT(A, M ®, L,).
Proof. By the projection formula for A — x, the left side identifies with
RT(A, M @ Lr ®r k(X))-

As L is the R-local system associated to 7 (A) — R*, the base change L ®p k(x) is the k(x)-local system

can

associated to 1 (A) — R* — k(x)*. But the latter is clearly also simply L, , proving the claim. O

The key assertion responsible for Theorem [I.T]is:

Proposition 2.7. The functor FM s(—) carries? DZ°(A, k) into DZ°(R); the functor Dp(FM 4(—)) carries? D<C(A, k)

into DZ°(R). In particular; if M € Perv(A, k), then both FM 4 (M) and Dr(FMA(M)) lie in DZ°(R).

Proof. By equation (2)), it suffices to show FM 4 (—) carries ? D=°(A, k) into D=°(R). For this, recall that £ g := mk,
where 7 : V' — A is the universal cover. The projection formula gives

FM4 (M) := RT(A, L @) M) ~ RT.(V,7*M)

for any M € DY(A, k). Now if M € PDZ9(A, k), then 7* (M) € PD=°(V, k). Artin vanishing on the Stein space V'
(see [KS90, Theorem 10.3.8]) implies that RT.(V, —) carries ? DZ°(V, k) into DZ°(k), proving the claim. O

To pass from Proposition2.7]to the classical generic vanishing theorem, we recall the following (well-known) result
in commutative algebra:

Lemma 2.8. Say S is a noetherian ring with a dualizing complex wg, normalized so that the dualizing sheaf sits in
cohomological degree — dim(S). Fix M € D , (S) and some integer k. Then the dual D%(M) := RHomg(M,w®)

coh

lives in DZ~%(S) if and only if dim(Supp H*(M)) < k — i for all i

This result can be found in [Kas04, Proposition 5.2], and a variant is implicit in [Schol5, Corollary IV.2.3].
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Proof. For the forward implication, we recall the following fact about Grothendieck duality (see [Stal6, Tag 0A7U]). If
N is a finitely generated S-module, then Ext (N, w$) is 0 fori ¢ {— dim(Supp N), ....,0}. Now, for M € D% , (S),
consider the cohomological spectral sequence

By Extly(H (M), ws) = H™(Dg(M)).
As M is bounded and w$ has finite injective dimension, there are no convergence problems. Now, if dim(H*(M)) <
k — i for all 4, then the aforementioned fact shows that E;j = 01if 7 < —k — j. The spectral sequence then shows
D& (M) € D=7F(S).
For the converse, we need the following fact concerning the commutation of local duality with localization. If
(S,m) is local and p C S is a prime ideal of codimension c,, we have (wg)y ~ wg [cp], and hence, for any

M € D}, (S), we get DY(M), = D% (Mj)[cp]. Now assume that Dg(M) € D=7%(S). We must show that
dim(Supp H*(M)) < k — 4. For this, we may assume S is local with maximal ideal m, and that the statement is
known for all nontrivial localizations of S. Fix a nonmaximal prime p C S of codimension c,. Then our hypothesis
gives D (My)[cy] € DZ~F, and hence Dy (M) € DZ~F+e» By induction and exactness of localization, we learn
that dim(Supp H*(M),) < k — ¢, — i for any such p. In particular, if U = Spec(S) — {m}, then Supp H*(M)NU
has dimension < k — 1 — i since ¢, > 1 forany p € U. As Spec(.S) is obtained from U by adding a single closed
point that every point in U specializes to, it follows immediately that Supp H*(M) has dimension < k — 1. (I

Remark 2.9. In the situation of Lemmal[2.8] it is sometimes convenient to work with dualizing complexes normalized
slightly differently. Thus, set

Ds(M) = RHomg(M,wg[— dim(S5)]).
If S is Gorenstein, this reduces to the trivial duality functor RHom(—,.S) up to a twist. Lemma reinterpreted
for Dg instead of D$ and with k = dim(S), states: for M € D%, (S), one has Dg(M) € D=°(S) if and only if
codim(Supp H*(M)) > i for all i.

One can now prove the generic vanishing theorem readily:

Corollary 2.10. If M is a perverse sheaf on A, then one has the following:
(1) codim(Supp H (FM(M))) > i and codim(Supp H*(Dg(FMa(M)))) > i for all i;
(2) H(A, M ®y Ly,) = 0 forall i # 0 for x in a non-empty Zariski open subset of Char(A);
(3) x(A, M) = 0;
(4) x(A, M) =0ifand only if RT'(A, M ® L,) = 0 for some x € Char(A).

Proof. (1) follows from Proposition and Remark As a consequence of (1), there is a nonempty Zariski
open U C Char(A) such that FM 4(M)|y is a locally free Oy-module placed in degree 0. On the other hand,
if x € Char(A), then Lemma shows that FM 4 (M) ®% k(x) ~ RI(A,M ®pg Ly). Now, if x € U, then
FM4(M)®@%k(x) ~ (FM4(M))|u ®o,, £(x) is concentrated in degree 0 by our choice of U thus, RT'(A, M ®y, L, )
is also concentrated in degree 0, giving (2). Now (3) is immediate as x (4, M) = x(A4, M®; L, ) forany x € Char(A)
as they are both the Euler characteristics of different fibers of the perfect complex FM 4 (M) on the connected variety
Char(A). The same argument also proves < in (4). Conversely, the implication = in (4) comes from (2). (Il

Remark 2.11. It seems natural to ask if the results discussed in this section continue to hold for abelian varieties in
positive characteristic, with k being a finite ring whose order is invertible on the base. We do not know the answer to
this question. The fundamental question seems to be the following: given an abelian variety A over an algebraically
closed field of characteristic p, a prime ¢ different from p, and a constructible sheaf M of Fy-vector spaces on A, does
the direct limit

lim H*(A, [("]*M

ling (A, ["]" M)

vanish for ¢ > dim(Supp M)? In other words, if A, denotes the inverse limit of the tower

oAb At g

of multiplication by £ maps on A, is the analog of Artin vanishing true for A,,? While we do not know the answer to
this question, note that [Weil6] does affirmatively answer the variant of this question where A lives over F,, and M is
a Qg-sheaf of geometric origin.
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3. CODIMENSION INEQUALITIES VIA HARD LEFSCHETZ

In this section, we make stronger hypothesis: Let A be an abelian variety of dimension g over C, and assume that
k is a field of characteristic 0. Let R = k[m1(A)], let X = Spec(R), and let FM 4 : D%(A, k) — Dpe,s(R) be the
Fourier transform from §2| Recall that for any K € D)., ;(R), one has the cohomology support loci

SHK):={z € X | H(K ®g k() # 0}.

The subsets S*(K) C X are closed, and we set S'(A, M) := S*(FM4(M)) for any M € DY(A, k); thus, the k-
points of S*(A, M) coincide with the set of characters x : m1(A) — k* such that H*(A, M ®y, L) # 0. Our goal is
to prove the following estimate on the dimension of these subspaces:

Theorem 3.1. Fix M € D%(A, k). Then we have:
(1) If M € PD=<(A, k), then codim(S*(A, M)) > 2i forall i € Z.
(2) If M € PDZ°( A, k), then codim(S*(A, M)) > —2i forall i € Z.
In particular, if M € Perv(A, k), then codim(S*(A, M)) > |2 for all i.

Our strategy is to prove Theorem 3.1] by exploiting the Hard Lefschetz theorem on A. Recall the statement:

Theorem 3.2 (Hard Lefschetz). If c € H?(A, k) is the Chern class of an ample line bundle (ignoring twists) and if
N € Perv(A, k) is semisimple, then the cup product map

H™(A,N) <5 H'(A,N)
is an isomorphism for any i.

Remark 3.3. When N is of geometric origin, Theorem [3.2] follows from the theory of mixed perverse sheaves
[BBDS82] (which builds on Deligne’s [Del80]], and works over a base field of any characteristic) or the work of Saito
[Sai88]] on mixed Hodge modules. The general case was conjectured by Kashiwara [[Kas98]|; in fact, he conjectured the
same for any (i.e., not necessarily regular) simple holonomic D-module. For simple perverse sheaves, this conjecture
was proven using a specialization argument by Drinfeld [Dri01] relying crucially on the work of Lafforgue [Laf02]] and
assuming a finiteness conjecture of de Jong [dJO1] on the monodromy of lisse sheaves on varieties over finite fields;
the latter was proven independently by Gaitsgory [GaiO7|] and Bockle-Khare [BKO6]. An alternate analytic proof
was given by Sabbah [Sab05] and Mochizuki for semisimple local systems. The general case of simple holonomic
D-modules was settled in a series of works by Mochizuki [Moc11]].

For a simple perverse sheaf M, Theorem implies a non-trivial statement about the fibers of FM 4(M). To
“integrate” this fibral information over X, we use the following construction:

Proposition 3.4. The functor D(R) — D(A, k) defined by N — Ly := Lr ®gr N satisfies the following:
(1) Itis left-adjoint to M — RT(V,7*M), where w : V' — A is the universal cover, and the R-module structure
on RU(V,7*M) is induced by the 7 (A)-equivariance of .
(2) It is fully faithful.
Recall that L is an R-local system of rank 1, obtained by descending the constant R-local system R € D(V, k)
along the 71 (A)-torsor m : V' — A using the tautological 71 (A)-action on R. Thus, one may view the complex
L as the locally constant sheaf on A whose pullback to V' is identified with the constant sheaf NV, equipped with

its canonical 71 (A)-equivariant structure coming from the R-module action. Unraveling definitions, one sees that
Li(2) = L for any point z € Char(A).

Proof. For (1), given N € D(R) and M € D(A, k), we must check that
RHOmD(AJC) (,C;N7 M) >~ RHomR(N, RF(V, ﬂ'*M))
By taking a free resolution for NV, and observing that both sides behave similarly with respect to the free resolution,
we may assume N = . We must thus check that
RHomp(4 1) (Lr, M) ~ RT(V, 7" M).
As L := mk, and because m* ~ 7', the left side simplifies to RHom p vy (k, 7*M) ~ RI'(V, 7* M), as wanted.
For (2), fix N, N’ € D(R). We must check that the functor N — £ y induces an identification

RHOHIR(N, N/) ~ RHOHID(A’k)(LN,LN/).
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By (1), the right side simplifies to RHom g (N, RT'(V, 7* L n-)). Now 7* £ n- is the constant sheaf with value N’ (since
the same is true when N’ = R, by proper base change along 7). As V' is contractible, this gives RT'(V, 7* L) ~ N’,
which gives the desired identification. |

The full faithfulness above yields the following criterion for certain cup product maps to be 0.

Lemma 3.5. Fix some t € H (A, k) and x € X = Spec(k[m1(A)]). If codim(z) < i, then the cup product with t
map

Ut: LK(I) — LK(I)[Z']
is the 0 map.

Proof. By Proposition the group Hom p(4 1) (L (), Lr(x)[i]) identifies with Ext% (k(x), s(x)). The latter can
also be calculated as Exty_(x(x),s(x)), and hence vanishes if i > codim(z) since R, is a regular local ring of
dimension codim(z) < i. U

Exploiting the tension between a cup product map being an isomorphism (as in Theorem|3.2)) and 0 (as in Lemma/3.5)),
we can prove the main theorem of this section:

Theorem 3.6. Fix M € Perv(A, k). Then codim(Supp H*(FM4(M))) > 2i for all i > 0.

Proof. We may assume that ) is simple since the conclusion behaves well under exact sequences. For simple M, we
work by descending induction on i. The claim is clearly true for i > 0 as FM 4 (M) is bounded. Fix an integer ¢ > 0
and a point z € X of codimension < 2i. We must show that H*(FM4(M)), = 0. Induction lets us assume that
H¥(FM4(M)), = 0 for k > 4. This implies that H*(FM 4 (M) ®g k(z)) ~ H(FM4(M)),/m,, where m, C R,
is the maximal ideal. By Nakayama, it thus suffices to check that H*(FM 4 (M) ®g x(x)) = 0. Thanks to Lemma
this is equivalent to checking that H*(A, M ®;, L) = 0. Fixaclassc € H 2(A, k) corresponding to the Chern
class of an ample line bundle. The Hard Lefschetz theorem (see Theorem implies that the cup product with ¢’
map

a: H_i(A,M(X)k Ln(m)) i) Hi(A,M(X)k Ln(m))

is an isomorphism; here we implicitly use that M ®j L) is a semisimple perverse sheaf over m(x) This map is
induced by applying the functor H(A, M ®;, —) to the cup product with ¢! map

LR(Q?) [71] C_> 'Cn(a:) [Z]

Since z has codimension < 2i, Lemma [3.5]tells us that this last map is 0, and hence so is the map labelled « above.
Thus, « is both the 0 map and an isomorphism, so Hi(A, M Ry, Ln(x)) = 0, as wanted. O

Proof of Theorem[3.1] We first show that if M € Perv(A, k), then codim(S?(4,M)) > 2i for all i. A point
x € X lies in S*(A, M) exactly when H*(FM4(M)(x)) # 0. If codim(z) < 2i, then Theorem [3.6{implies that
FMa(M), € D<Y(R,), and hence H(FM 4 (M)(z)) = 0; this shows that any = € S*(A, M) has codim(z) > 2i.

The claim in (1) follows formally from the previous paragraph by expressing M as an iterated extension of shifted
perverse sheaves. For (2), observe that for any x € X, the complex RT'(A, M ®j, L,) is the x(x)-linear dual of
RT'(A, D4 (M) ®y L,—1): this results from the commutation of Verdier duality with RT'(A, —) and the formula
Dy (@) (M ®p Ly) = Da (M) ®p Ly—1. Hence, we have an equality

S'(A, M) =inv* S~ (A, Dar(M))

as subspaces of X (where inv : X — X denotes inversion on the torus X), which immediately yields (2) from (1). O
Remark 3.7. It seems natural to wonder if Theorem 3.1 continues to hold for abelian varieties over a field of positive
characteristic. More precisely, given an abelian variety A over an algebraically closed field of characteristic p and
a prime ¢ different from p, one may define the “open unit disc” version Char(A) (as a rigid space over Q) of the
character variety Char(A), together with a Fourier transform functor FM 4 : D%(A, Q) — D% , (Char(A)). One

may then ask if Theoremholds true for m(M ). For perverse sheaves M of geometric origin, the main obstacle
is proving the Hard Lefschetz theorem for the sheaves M ® £, for varying characters x. We do not know how to

ITo see this, one can assume that k is algebraically closed, in which case M Q@ L) is actually simple, as one sees for example by using the
classification of simple perverse sheaves as intermediate extensions of local systems.
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prove this result; note that Drinfeld’s conjecture Kash, (k) from [DriO1l §1.7] predicts a positive answer to a much
more general version of this question.

4. LINEARITY

Fix an abelian variety A over C, and let k be a field of characteristic 0. We follow the notation of §2]above. Our
goal is to show that the Fourier transform of a perverse sheaf has good linearity properties near the origin of Char(A),

solet S =~ Sy/r\n(H 1(A, k)) be the completed local ring of Char(A) at the origin. The main theorem of this section is:

Theorem 4.1. Let M € Perv(A, k) be a simple perverse sheaf of geometric origin. Then the completed stalk at
1 € Char(A) of FM4(M) € D%, (Char(A)) is represented by the S-complex

s H YA M)®, S — H(A M) @ S — HTW (A M) 2, S — -,

where the differential arises from the natural map H*(A, M) — H'""1(A, M) @ Hy(A, k) that is adjoint to the cup
product H* (A, k) @ H'(A, M) — H" (A, M).

Note that one can apply the theorem also to twists of M by torsion characters, so a similar result holds for the
completion of FM 4 (M) at torsion points in Char(A).

The strategy for proving the theorem is as follows. As the perverse sheaf M is of geometric origin, we may
specialize to the algebraic closure of a finite field. Now, by a version of the BGG correspondence, we reduce the
linearity assertion above to a formality statement for the action of RT'(A, k) on RI'(A, M). This formality is then
deduced from Deligne’s theory [Del80|| of weights (as cast in [BBD8&2])).

We recall the relevant version of the BGG correspondence in §4.1]using the language of co-categories [Lur09] and
higher algebra [Lur]. The payoff for bringing in these tools is the material in we give a quick deduction of some
rather strong formality results that follow almost immediately from the theory of weights using higher algebra. With
this ingredients in place, the strategy outlined in the previous paragraph is implemented in §4.3]in characteristic p, and
the characteristic 0 case follows by spreading-out.

4.1. Recollections on the symmetric and exterior algebra duality. We begin with reminders on the Koszul duality
relating exterior and symmetric algebras. The main difference, when compared to most standard standard references,
is that we do not restrict to the graded setting. All derived categories appearing in this section are viewed as stable
k-linear co-categories (or, equivalently, differential graded (dg) categories over k, up to quasi-equivalence) in the sense
of [Lur, Chapter 1]. The basic objects of interest are defined next:

Notation 4.2. Fix a field k and a k-vector space V' of dimension d with dual W. Let Sy = Sym™(V'), and let S be the
completion of Sy at the augmentation Sy — k given by V' — 0. Let E' := RHomg(k, k), viewed as an F;-k-algebra
or, equivalently, as an E';-algebra in the symmetric monoidal category D(k)ﬁ Then V' ~ m/m? is the cotangent space
of S, and H*(F) is an exterior algebra on W. Moreover, attached to F, one has the derived co-category D(FE) with
its distinguished object £ € D(E). Let D op(E) C D(E) be the full co-subcategory of those M € D(E) that have
finite dimensional total homology (as k-modules); this is also smallest full stable co-subcategory that contains k, see
Lemma below. We will occassionally use the the natural Gm-actiorﬂ on Sy (which gives Sym" (V') weight n);
this induces a G,,-action on F giving H*(E) ~ AW weight —i. We write a superscript of G, on a derived oo-
category to denote the G.,,,-equivariant version of the derived co-category; for example D (k)G describes the derived
oo-category of graded k-vector spaces, and the G,,-action on V' naturally lifts F to an object of D (k).

The following notion of formality for E; -k-algebras will play an important role in the sequel.

Definition 4.3. An F;-k-algebra A is formal if there exists an isomorphism a4 : A ~ H*(A) of E;-k-algebras
inducing the identity on cohomology; here H* (A) is viewed as a differential graded k-algebra with trivial differential
and H*(A) living in cohomological degree :.

We begin by observing that E is formal in the best possible way:

For any commutative ring A, the notion of an E-A-algebra is one formalization of a homotopy-theoretically robust notion of an “associative
algebra in D(A)”; this notion is equivalent to that of either Ao-A-algebras or differential graded A-algebra (or, for short, A-dga), see [Lurl
Proposition 7.1.4.6].

30ne can work equivalently with Z-graded objects. However, to avoid confusing this grading with the cohomological degree, we stick to the
G, -action perspective.
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Lemma 4.4. The F1-k-algebra E is canonically G.,-equivariantly formal, i.e., there exists a unique (up to con-
tractible ambiguity) G -equivariant isomorphism E ~ H* (E) of Ey-k-algebras in D(k)S™ inducing the identity
on cohomology.

Proof. This follows from exactly the same argument as the one used in Proposition Indeed, consider the full
oco-subcategory D,,—o of D(k)S™ spanned by complexes K with H*(K) have weight exactly —i. The symmetric
monoidal structure on D(k)%™) induces one on D,,—o, and our definition of the G,-action on V show that F
naturally lifts to an F;-algebra in D,,—. But every object in D,,—¢ is canonically a direct sum of its cohomology
groups (for weight reasons), so all E-algebras in D,,—( are formal. ]

For the rest of this section, we fix the (essentially unique) formality isomorphism « : B ~ H*(E) ~ N*W.

Remark 4.5. Let (R, m) be any regular local k-algebra with residue field k. Then we have RHomp(k, k) ~

RHomp(k, k) as E;-R-algebras, where R is the m-adic completion. Since R~S (non-canonically), we learn
that RHompg (k, k) is also formal by Lemma[4.4]

Remark 4.6. Let M* be a graded A*W-module. We may view M* as a complex with trivial differential by placing
M in degree 4; this complex is naturally a dg-module over the k-dga A*W. Let G,,, act on this complex by giving the
term M*? weight —i. The resulting complex is a G,,,-equivariant dg-module over the k-dga A*WW. Via the formality
isomorphism o : E ~ A*W, this construction gives a functor

Mod?" (A*W) := {graded A* W —modules} 2, D(E)Sm,
If one restricts to finitely generated graded modules on the left side, one obtains a functor
Mod%, (N*W) 25 Deop(E)S.
This functor will play a crucial role in this section.

In order to do calculations in D, (F), such as those of Hom-sets, we need an effectively computable projective
resolution of the generator k. A standard such resolution arises from a variant of the Koszul complex, recorded next:

Construction 4.7. The following quasi-isomorphism of F-complexes gives a G,,-equivariant resolution of k:
3) ( S T(W)[=n] @k E — ... —» T2(W)[=2] @ E — W[—1] &) E — E) =k
Here I (W) ~ (Sym"(V'))" has weight —n. To describe the differential, note that
Hom & (I"™(W)[—n] @y, B,I" ! [=n](W) @4 E) =~ Homy™ (I"(W)[-1], I" (W) @ E)
) ~ Homg™ (Sym" (V)", Sym" ' (V)" @, E[1])
~ Homy (Sym” (V) ", Sym™ (V)" @, V).

Under this isomorphism, the differential corresponds to the obvious map Sym” (V)" — Sym™ (V)" ® V", dual to
multiplication in the symmetric algebra. The reason this defines a complex is that the canonical map Sym™ " Ve
V ® V — Sym™ (V) vanishes on the subspace of V ® V that is dual to the quotient W @ W — A2W.

Using this resolution, we check that k generates D, (F), as promised earlier.
Lemma 4.8. The category D on(E) is the smallest stable co-subcategory of D(E) that contains k.

Proof. Using the resolution from Construction one checks that if M € D(E) lies in D="(k), then any map
E[—n] — M factors through the canonical map E[—n] — k[—n]. More precisely, the complexes RHom g (k[—n], M)
and RHom g (E[—n], M) are connective, and the canonical map from first one to the second one is surjective on H. In
particular, if M € D, ., (E), then one can find a map k[—n] — M in D, (E) whose cone @ has smaller dimensional
total homology than M as a k-vector space. Proceeding this way, it follows that D.,,(E) is generated by k under
finite direct sums, shifts, and cones. O

The next proposition relates perfect complexes on S to coherent complexes on E; the idea here is roughly that
perfect complexes on S can be computed via derived Cech descent along the map Spec(k) — Spec(.S). This result
may also be viewed as a variant of the BGG construction, the main difference being that we do not restrict to the
graded setting.



Proposition 4.9. The functor F := RHomg (k, —) gives an equivalence Dyer(S) — Deon(E) with inverse G :=
RHOHIE(]{?, 7)[d] Rk AV

Proof. The oo-category Dy, f(S) of perfect S-complexes is the smallest stable co-subcategory of D(S) that contains
S and is closed under retracts (by definition of perfect complexes). By Lemma the oco-category Do (FE) of
coherent E-complexes is the smallest stable co-subcategory of D(FE) that contains k. Moreover, this co-category is
automatically closed under retracts in D(E) by the definition of D, (E). Also, we have F'(S) = RHomg/(k, S) ~
k[—d] ®x (A?V)V by a Koszul cohomology calculation; as the latter module is identified with k[—d] (after fixing
a trivialization of A?V), the functor F' carries a generator to a generator. It thus suffices to check that F' induces
an isomorphism RHomg(S, S) ~ RHomg(k[—d], k[—d]) (and similarly for G, which actually reduces to the same
calculation). The left side is just .S, so we must calculate that the right side is also .S. In other words, we need to check
that the natural map S — RHompg/(k, k) is an isomorphism. This is a standard calculation (see the equivalences F
and C' in [DGO02, Theorem 2.1] for a much more general statement), and we briefly sketch how it works. Using the the
resolution in Construction[4.7]to resolve the first copy of & (and representing E as the Koszul complex over S on W to
ensure we have S-free modules everywhere), we learn that RHom g (k, k) is computed by the product totalization of a
fourth quadrant bicomplex whose n-th column is the (standard Koszul resolution over S for) k-complex Sym" (V') [n],
and the map Sym" (V')[n] — Sym”**(V)[n + 1] induced by the horizontal differential going from the n-th column to
the (n + 1)-st column classifies the standard S-module extension of Sym™ (V') by Sym™ ! (V). Collapsing to a single
complex then gives the desired identification RHomg (k, k) ~ S. O

Remark 4.10. The equivalences F' and G are G,,,-equivariant, and they are G,,,-equivariantly inverse to one another.
We write
GCm
Deon(E)Gm F? Dyperg (5)Gm
for the induced equivalences at the level of equivariant derived categories. With this notation, the constructions thus
far in this section may be summarized in the following commutative diagram:

- . P GGm
6)) Mod$} (AN*W) —= Deon(E)Gm <7T> per £ ()G
\ \L forget J{ forget
G

Dcoh(E) Dperf (S)

Here the functors FS= and GG are defined as Remark [4.10} the functor ® is defined in Remark and V¥ is
defined as the composition making the triangle commute.

The explicit identification of the composite G o W (or, better, G&™ o ®) in the diagram above forms the basis of the
BGG correspondence [BGG78] relating graded H*(E)-modules to linear S-complexes, and is recalled next.

Construction 4.11 (BGG). Let M* be a graded A*W-module. Assume that M is a finite dimensional k-vector
space for each 4, and M* = 0 for |i| > 0. By Remark [4.6|and our finiteness assumption, this gives M := &(M*) €
Dcoh(E)Gm. Our goal is to construct a canonical identification in D)., f(S)Gm of the form

GCm (M) ~ ( S M@, S - M' @S — ... 5> M" @ S — )[d] @ AV,

where M* has weight —i, and the map M® ®, S — M**! @, S is G,,-equivariant S-module map defined by the
canonical map M* — Mt @, V — M*! @ S coming from the action map W @ M*® — M1, In particular,
since M' @, S ~ S(i)® ™M) "the complex GG (M) is a linear complex, i.e. it can be represented by a complex
of graded free S-modules where the term in cohomological degree i is isomorphic to S(c + 7)®™ for suitable n; > 0
and constant ¢ independent of 4.

Since GG () := RHomg(k, —)[d] @i AV, it suffices to calculate RHomg(k, M). The G.,-equivariant reso-
lution from Construction 4.7|shows that RHom g (k, M) is the product totalization of the G,,,-equivariant bicomplex

K:=M" - M @V[l] - M*®Sym*(V)[2] = ... = M* @ Sym"(V)[n] — ....,
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with KP4 = MP+9 @, Sym”(V), trivial vertical differentials (since M* has a trivial differential), and horizontal
differentials M?*9 ®; Sym? (V) — MP+tetl @, SymP*! (V) from the action of W on M*. Taking the product
totalization, we learn that RHom g (k, M) is calculated by the following G.,,-equivariant perfect complex over S

oMY@, S 5> M @, S — ... 5 M ® S — ...,

as asserted.

4.2. Weights and pure complexes. We recall the basic structure of the category in which the /-adic cohomology of
smooth projective varieties over finite fields takes values.

Notation 4.12. Fix a prime p, a power ¢ = p”, and a prime £ different from p. Let k = Q. Fori € R, we say that
o € k* is a Weil number of weight i if |7(a))| = ¢ for every embedding 7 : k < C. Let W* C k* denote the set of all
possible Weil numbers of weight i. Note that W* W7 = () fori # j,and W*-WJ C Wi*J, For any variety X over
F, with base change X to F, the complex RI'(X, k) acquires a natural action of the (g-power) geometric Frobenius.
We view the resulting Galois representation RT'(X, k) as an object of the co-category Dy, f(k[t,¢~1]) having finite
length cohomology sheaves; here t acts by geometric Frobenius. By [Del80], any such complex is supported on
U;W* C Spec(k[t, t1]).

We isolate the main subcategory of interest:
Definition 4.13. A complex K € Dy, f(k[t,t7']) is pure of weight 0 if H(K) is supported set-theoretically on

W* C Spec(k[t,t™!]) for each i. The collection of all such complexes spans a full co-subcategory Dpyreo C
Dperf (k[t, t71D~

By perfectness, any K € Dyure,0 has finite length when viewed as a k[t, ¢ !]-complex, i.e., the complex has
finitely many non-zero cohomology modules, and each of those modules is a finite length k[t, ¢t ~*]-module. The key
observation is that pure complexes inhabit a discrete world. In fact, they are all equivalent to their cohomology groups
in an essentially unique way.

Proposition 4.14. For any K € Dyyyc0, there is a canonical isomorphism ok : K ~ &;H (K )[—i]. Moreover,
Dypureo C D(k[t, t™1]) is a discrete subcategory, i.e., Exty, ;-1 (K, L) = 0 fori < 0 and K, L € Dpure,o.

Proof. For any finite length K € D, ¢(k[t,t']), we have a canonical map
aK:K—>H H K 'z@ @Kw.
i xeW? i zeW?
This map is an isomorphism if K is acylic outside L;W* C Spec(k[t,t~']) (and thus for K € Dpyye,0)- Moreover, if

K € Dyure o, then the right side identifies with &; H*(K )[—i] by defintion, giving the desired identification. For the
second part, the same argument shows that

RHomyyg 1) (K, L) ~ | [ RHomyjy -1 (H'(K), H'(L)).

The right side clearly has no cohomology in negative degrees, proving the claim. ]
The fundamental examples of pure complexes come from geometry:

Example 4.15. Let X, be a proper variety over F,, and let M, be a pure perverse sheaf of weight 0 on M. If X and
M denote the base change of X, and My to Fy, then RT'(X, M) is pure of weight 0. When X is smooth and M is
lisse, this comes from [Del80, Corollary 3.3.6]; the general case comes from [BBDS82, Corollary 5.4.2].

Note that the category Dpr¢,o inherits a natural symmetric monoidal structure:

Construction 4.16. As W' - W7 C WtJ, the co-category Dpye.o is endowed with a symmetric monoidal structure
® given by the tensor product of the underlying complexes of k-vector spaces, with ¢ acting diagonally; under the
identification of Spec(k[t,t~1]) with the group G, this corresponds to convolution. The object RT'(X, k) € Dpure.0
as in Example is an F,-algebra for this symmetric monoidal structure.

Algebraic structures in Dy, o defined using this symmetric monoidal structure are formal:

Corollary 4.17. All Ey-algebras and their modules in Dy 0 are canonically formal.
11



Proof. This follows immediately from Proposition as the isomorphism K ~ @; H'(K)[—i] in that proposition is
compatible with the symmetric monoidal structure. (]

Remark 4.18. Corollary applies equally well to E,-algebras, showing that the E,-algebra RI'( X, k) is formal
for a smooth proper variety X/F,. Via the proper and smooth base change isomorphisms, it follows that the same
assertion holds true for smooth proper varieties X/C. In particular, after fixing an isomorphism k& ~ C and using
Artin’s comparison theorem RT'(X, k) ~ RT 5ing (X", C), this reproves the formality result from [DGMS75] for
algebraic varieties. In fact, the proof above essentially fleshes out a heuristic argument outlined in [DGMS75, page
246, paragraph 1] using the modern language of oo-categories.

4.3. Abelian varieties over finite fields. In this section, we use the theory of weights to establish a linearity result
for the stalk at the origin of the Fourier transform of a simple perverse sheaf of geometric origin. In fact, working
exclusively over finite fields, we are able to prove a stronger result thanks to the work of Lafforgue.

Notation 4.19. Let Aj be an abelian variety of dimension g over a finite field Fy, and write A for its base change to
F,. Setk = Q. Write E := RI'(A, k), viewed as an F;-k-algebra. Let S = k[r1(A),] be the completed group
algebrﬂ of the pro-/ part of the geometric fundamental group 71 (A) of A, so S is the completion of Sym™(H; (A4, k))
at its augmentation ideal; we then have a canonical identification £ ~ RHomg(k, k) arising from the K (7, 1)-nature
of abelian varieties. In particular, we may use the notation of §4.1|with V = H; (A, k), and W = H'(A, k). There
is a tautological character 7 (A) — S*, which defines an S-local system £g on A. For any M € DY(A, k), write
E:l\\/IA(M) = RT(A, M ®1,Ls) € Dpers(S). Note that there is a Gal(F, /F,)-action on S, E, and also on FM4 (M)
if M is defined over F,.

We can describe the stalk at 0 of the Fourier transform of certain sheaves explicitly:

Theorem 4.20. Let My € Perv(Ag, k) be absolutely irreducible, and let M be its base change to F7q. Then there is a
natural Gal(F,/F,)-equivariant identification

FM (M) ~ ( — H{(A, M) @y S — HH (A, M) @ S — ) € Dpers(9),

where the differentials on the right are defined by the natural map H'(A, M) — H""1 (A, M) ®y H1(A, k) coming
from the cup product action H* (A, k) @ H (A, M) — H*1 (A, M).

Proof. First, we observe that there is a canonical formality isomorphism can : E ~ H*(A, k) by purity via Corol-
lary This allows us to contemplate the following diagram:

forget Frobenius

MOd?pZ(H* (E))pure,o MOd?Z (H* (E))
l‘b
GGnL
> Deon(E)Gm ? Dpert(S)Cm
FGm
J{forget lforget
for Frobenius G
DCOh(E)pure,O oreet Trobeny Dcoh(E) F Dperf(s)

Here the second and third columns come from diagram (3); the category D o (F )pure,0 denotes coherent E-complexes
in Dyype 0 (i.€., the underlying complex with Frobenius action lies in D)y, 0), and similarly for Mod% (H*(E)) pure,05
the horizontal maps labelled ‘forget Frobenius’ are obtained by forgetting the Gal (F7q /F4)-action. Crucially, by Corol-
lary 4.17] the leftmost vertical map @ is an equivalence with inverse given by taking cohomology.

To prove the theorem, we are allowed to replace M, with a twist by rank 1 local system on Spec(F ;). By Lafforgue
[Laf02| Corollary VIL.8], we may thus assume that M is pure of weight 0. Now consider FM 4 (M) € Dy, f(S).

“More precisely, we define S as the completion of S := Z¢[71(A)¢] @z , k at the point So — k corresponding to the trivial character, where
Z¢[71(A)e] is the Iwasawa algebra of the pro-¢-fundamental group of A, and is identified non-canonically with a power series ring in 2g variables
over Z,. In particular, S is a power series in the same set of variables over k.
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This is a Gal(F,/F,)-equivariant complex, so its image under F is Gal(F,/F,)-equivariant as well. Moreover, by
construction, this image is canonically identified with

F(FM4(M)) := RHomg (k, FM 4 (M))
(6) ~ (FMa(M) ®s k)[—2g] @, (N9 H:1 (A, k)Y
~ RD(A, M) @y, (A9 H1 (A, k))V[-24],

where we used the Galois equivariant isomorphism RHomg (k, —) ~ (A29H;(A,k))Y ®5 k ®g (—) of functors, as
in Proposition 9] to arrive at the second isomorphism above. As this isomorphism is Galois equivariant, it follows
from purity of M (see Example that F(fl\\/IA(M)) is pure of weight 0 (note that (A%9 Hy (A, k))V[—2g] is pure
of weight 0), and hence comes from Doy, (E)pure,0. As the left most vertical map is an equivalence with inverse

given by taking cohomology, the preceding diagram shows that FM A(M) € Dypers(S) comes from H*(A, M) €
Mod, (H*(E))pure,0 in the diagram above. The result now follows from the explicit identification of the functor

GSm o ® given in Construction O
In particular, we get Theorem [4.T]using the material developed above.

Proof of Theorem[_1] Since M has geometric origin, one can use spreading out arguments to find an abelian va-
riety over a finite field so that the base change FM4 (M) ®g S can be calculated using ¢-adic cohomology as in

Notation €. 19] Then the result follows from Theorem O
REFERENCES

[BBD82] A. A.Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on singular spaces, I (Luminy, 1981), volume
100 of Astérisque, pages 5—171. Soc. Math. France, Paris, 1982.

[BGG78] 1. N. Bernstein, I. M. Gel’fand, and S. 1. Gel’fand. Algebraic vector bundles on P™ and problems of linear algebra. Funktsional. Anal.
i Prilozhen., 12(3):66-67, 1978.

[BKO6] Gebhard Bockle and Chandrashekhar Khare. Mod [ representations of arithmetic fundamental groups. II. A conjecture of A. J. de Jong.
Compos. Math., 142(2):271-294, 2006.

[Del80] Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Etudes Sci. Publ. Math., (52):137-252, 1980.

[DGO02] W. G. Dwyer and J. P. C. Greenlees. Complete modules and torsion modules. Amer. J. Math., 124(1):199-220, 2002.

[DGMS75] Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan. Real homotopy theory of Kihler manifolds. Invent. Math.,
29(3):245-274, 1975.

[Dim04]  Alexandru Dimca. Sheaves in topology. Universitext. Springer-Verlag, Berlin, 2004.

[dJo1] A.J. de Jong. A conjecture on arithmetic fundamental groups. Israel J. Math., 121:61-84, 2001.

[DriO1] Vladimir Drinfeld. On a conjecture of Kashiwara. Math. Res. Lett., 8(5-6):713-728, 2001.

[Gai07] D. Gaitsgory. On de Jong’s conjecture. Israel J. Math., 157:155-191, 2007.

[GL87] Mark Green and Robert Lazarsfeld. Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and
Beauville. Invent. Math., 90(2):389—-407, 1987.

[GLI1] Mark Green and Robert Lazarsfeld. Higher obstructions to deforming cohomology groups of line bundles. J. Amer. Math. Soc., 4(1):87—
103, 1991.

[GL96] Ofer Gabber and Frangois Loeser. Faisceaux pervers [-adiques sur un tore. Duke Math. J., 83(3):501-606, 1996.

[Gr10] Moritz Groth. A short course on co-categories. Available at https://arxiv.org/abs/1007.2925|

[HTTO08]  Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki. D-modules, perverse sheaves, and representation theory, volume 236 of
Progress in Mathematics. Birkhduser Boston Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi.

[Kas98] Masaki Kashiwara. Semisimple holonomic D-modules. In Topological field theory, primitive forms and related topics (Kyoto, 1996),
volume 160 of Progr. Math., pages 267-271. Birkhduser Boston, Boston, MA, 1998.

[Kas04] Masaki Kashiwara. t-structures on the derived categories of holonomic D -modules and coherent O-modules. Mosc. Math. J., 4(4):847—
868, 981, 2004.

[KS90] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds, volume 292 of Grundlehren der Mathematischen Wissenschaften [ Fun-
damental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.

[KW15] Thomas Kriamer and Rainer Weissauer. Vanishing theorems for constructible sheaves on abelian varieties. J. Algebraic Geom.,
24(3):531-568, 2015.

[Laf02] Laurent Lafforgue. Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math., 147(1):1-241, 2002.

[Lur] Jacob Lurie. Higher algebra. Available at http://www.math.harvard.edu/~lurie/,

[Lur09] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2009.

[Mocl1]  Takuro Mochizuki. Wild harmonic bundles and wild pure twistor D-modules. Astérisque, (340):x+607, 2011.

[PS13] Mihnea Popa and Christian Schnell. Generic vanishing theory via mixed Hodge modules. Forum Math. Sigma, 1:el, 60, 2013.

[Sab05] Claude Sabbah. Polarizable twistor D-modules. Astérisque, (300):vi+208, 2005.

[Sai88] Morihiko Saito. Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci., 24(6):849-995 (1989), 1988.

[Schnl5]  Christian Schnell. Holonomic D-modules on abelian varieties. Inst. Hautes. Etudes Sci. Publ. Math., 121(1):1-55, 2015.

13


https://arxiv.org/abs/1007.2925
http://www.math.harvard.edu/~lurie/

[Schol5]  Peter Scholze. On torsion in the cohomology of locally symmetric varieties. Ann. of Math. (2), 182(3):945-1066, 2015.

[Sim93] Carlos Simpson. Subspaces of moduli spaces of rank one local systems. Ann. Sci. Ecole Norm. Sup. (4), 26(3):361-401, 1993.

[Stal6] The Stacks Project Authors. Stacks project. http://stacks.math.columbia.edu, 2016.

[Weil6] Rainer Weissauer. Vanishing theorems for constructible sheaves on abelian varieties over finite fields. Math. Ann., 365(1-2):559-578,
2016.

14


http://stacks.math.columbia.edu

	1. Introduction
	1.1. Generic vanishing
	1.2. Codimension estimates
	1.3. Linearity
	Acknowledgements

	2. Fourier-Mellin transforms and generic vanishing
	3. Codimension inequalities via Hard Lefschetz
	4. Linearity
	4.1. Recollections on the symmetric and exterior algebra duality
	4.2. Weights and pure complexes
	4.3. Abelian varieties over finite fields

	References

