
39

Evasion-Robust Classification on Binary Domains

Bo Li, UC, Berkeley

Yevgeniy Vorobeychik, Vanderbilt University

The success of classification learning has led to numerous attempts to apply it in adversarial settings such as spam and

malware detection. The core challenge in this class of applications is that adversaries are not static, but make a deliberate

effort to evade the classifiers. We investigate both the problem of modeling the objectives of such adversaries, as well

as the algorithmic problem of accounting for rational, objective-driven adversaries. We first present a general approach

based on mixed-integer linear programming (MILP) with constraint generation. This approach is the first to compute an

optimal solution to adversarial loss minimization for two general classes of adversarial evasion models in the context of

binary feature spaces. To further improve scalability and significantly generalize the scope of the MILP-based method, we

propose a principled iterative retraining framework, which can be used with arbitrary classifiers and essentially arbitrary

attack models. We show that the retraining approach, when it converges, minimizes an upper bound on adversarial loss.

Extensive experiments demonstrate that the mixed-integer programming approach significantly outperforms several state-of-

the-art adversarial learning alternatives. Moreover, the retraining framework performs nearly as well, but scales significantly

better. Finally, we show that our approach is robust to misspecifications of the adversarial model.

Categories and Subject Descriptors: D.4.6 [Software]: Security and Protection

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Adversarial classification, classifier evasion, robust learning, mixed-integer linear pro-

gramming, adversarial examples

ACM Reference Format:

Bo Li and Yevgeniy Vorobeychik. ACM Trans. Knowl. Discov. Data. 9, 4, Article 39 (February 2018), 30 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The success of machine learning has led to its widespread use as a workhorse in a wide variety of
domains, from text and language recognition to trading agent design. It has also made significant
inroads into security applications, such as fraud detection, computer intrusion detection, and web
search [Fawcett and Provost 1997; Mahoney and Chan 2002]. The use of machine (classification)
learning in security settings has especially piqued the interest of the research community in recent
years because traditional learning algorithms are highly susceptible to a number of attacks [Barreno
et al. 2010; Barreno et al. 2008; Biggio et al. 2014; Laskov and Lippmann 2010; Nelson et al.
2011]. The class of attacks that is of interest to us are evasion attacks, in which an intelligent
adversary attempts to adjust its behavior so as to evade a classifier that is expressly designed to
detect it [Barreno et al. 2010; Lowd and Meek 2005; Karlberger et al. 2007].

Machine learning has been an especially important tool for filtering spam and phishing email,
which we treat henceforth as our canonical motivating domain. To date, there has been extensive
research investigating spam and phishing detection strategies using machine learning, most without
considering adversarial modification [Sahami et al. 1998; Ying and Jie 2012; Metsis et al. 2006].
Failing to consider an adversary, however, exposes spam and phishing detection systems to evasion
attacks. Typically, the predicament of adversarial evasion is dealt with by repeatedly relearning the
classifier. This is a weak solution, however, since evasion tends to be rather quick, and relearning
is a costly task as it requires one to label a large number of instances (in crowdsourced labeling,
one also exposes the system to deliberate corruption of the training data). Therefore, several efforts
have focused on proactive approaches of modeling the learner and adversary as players in a game
in which the learner chooses a classifier or a learning algorithm, and the attacker modifies either the
training or test data [Dalvi et al. 2004; El Ghaoui et al. 2003; Liu and Chawla 2009; Fawcett 2003;
Lowd and Meek 2005; Brückner and Scheffer 2011; Androutsopoulos et al. 2005].

While there has been considerable prior research on adversarial classifier evasion, there are sur-
prisingly few approaches for evasion-robust classification when feature spaces are binary. For ex-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:2 B. Li and Y. Vorobeychik

ample, Brückner and Scheffer [2009] and Brückner and Scheffer [2011] require unrestricted feature
spaces (in addition, they impose strong restrictions on the loss function and the form of adversar-
ial evasion cost). The few approaches that do consider binary features, such as Dalvi et al. [2004],
either assume that the adversary does not optimally respond to the defender’s robust classifier, or
restrict attention to zero-sum interactions where the adversary maximizes the defender’s loss [Teo
et al. 2007], which are both distinct from typical adversarial models of evasion in the literature
specifically focusing on classifier evasion attacks, and overly conservative, particularly when loss
functions are upper bounds on the zero-one loss (such as a hinge loss). The existence of this gap
is particularly remarkable given the importance of binary feature spaces in numerous actual adver-
sarial classification problems, such as spam filtering, where binary bag-of-words features are typ-
ical [Hinde 2003; Gyongi and Garcia-Molina 2005; Goodman et al. 2007; Rao and Reiley 2012],
and malware classification, where best performing classifiers often rely on binary features (e.g., in
pdf malware classification [Srndic and Laskov 2013]).

We bridge this gap in the context of a general adversarial modeling framework in which the adver-
sary trades off evasion success and cost of modifying an original malicious instance. This framework
generalizes most of the prior evasion modeling approaches, and we illustrate it using two special
cases that are closely connected to common adversarial models in prior literature. We formalize
the evasion robustness problem of the defender as adversarial loss minimization, which computes
the defender’s optimal classifier in the associated classifier-evader Stackelberg game, and propose
an exact solution using bi-level mixed-integer linear programming when the classifier is linear and
uses l1 regularization. We term the resulting approach a Stackelberg game multi-adversary model
(SMA). The baseline formulation is quite intractable, and we offer two techniques for making it
tractable: first, we cluster adversarial objectives, and second, we use constraint generation to itera-
tively converge upon an optimal solution. The principal merits of our proposed bi-level optimization
approach over the state-of-the-art are: a) it is able to capture a very general class of adversary mod-
els, including the model proposed by [Lowd and Meek 2005], as well as a novel cost function which
allows feature cross-substitution; in contrast, state-of-the-art approaches are specifically tailored to
their highly restrictive threat models; and b) it makes an implicit tradeoff between feature selection
through the use of sparse (l1) regularization and adversarial evasion (through the adversary model),
thereby solving the problem of adversarial feature selection.

To provide a more general scalable robust learning framework we then propose an iterative re-
training with adversarial examples approach, RAD, which can boost evasion robustness of arbitrary
learning algorithms using arbitrary evasion attack models. We show that RAD minimizes an up-
per bound on optimal adversarial risk. This is significant: whereas adversarial risk minimization is
a hard bi-level optimization problem with poor scalability properties (indeed, no method exists to
solve it for general attack models), RAD itself is extremely scalable in practice, as our experiments
show. We develop RAD for a more specific, but very broad class of adversarial models, offering a
theoretical connection to adversarial risk minimization even when the adversarial model is only an
approximation. Perhaps the most appealing aspect of the proposed approach is that it requires no
modification of learning algorithms: rather, it can wrap any learning algorithm “out-of-the-box.”

RAD closely relates to prior retraining approaches in machine learning [Goodman et al. 2007;
Smutz and Stavrou 2012], especially recent retraining methods proposed specifically in adversarial
learning [Teo et al. 2007; Goodfellow et al. 2014; Kantchelian et al. 2015; Kurakin et al. 2017].
Traditional retraining in machine learning is typically one-shot, either periodically ingesting new
data as the ground truth evolves (e.g., in spam detection [Goodman et al. 2007]), or by adding syn-
thetic (e.g., adversarial) instances into a data set and retraining once [Teo et al. 2007; Smutz and
Stavrou 2012]. Neither idea offers significant adversarial robustness. Approaches recently intro-
duced specifically for adversarial learning settings have proposed iterative retraining (by repeatedly
adding adversarial examples into data and retraining the classifier), but as an ad hoc procedure, for
example, interleaved with stochastic gradient descent [Goodfellow et al. 2014], with no theoretical
guarantees.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:3

This work significantly extends our prior publication in Neural Information Processing Sys-
tems [Li and Vorobeychik 2014]. Specifically, our contributions are:

(1) A general adversarial evasion framework on binary feature spaces based on two specific evasion
models and a novel equivalence-based cost function that explicitly accounts for feature cross-
substitution attacks, such as substitution of words by synonyms (Section 4.4; in particular, we
consider a new general framework for modeling adversarial evasion, and two specific adversar-
ial evasion models, whereas Li and Vorobeychik [2014] focused on only one of these, and did
not consider the more general modeling framework),

(2) SMA, a bi-level optimization framework and solution methods that make a principled tradeoff
between feature selection and adversarial evasion (Section 5; Li and Vorobeychik [2014] only
developed a MILP approach for one of the two adversarial evasion models),

(3) RAD, the first systematic framework for adversarial retraining with provable guarantees (not
considered by Li and Vorobeychik [2014]), and

(4) extensive experimental evaluation of SMA and RAD, including evaluation of robustness to mis-
specification of adversarial behavior (significantly extending the experimental analysis per-
formed by Li and Vorobeychik [2014]).

We illustrate the effectiveness of our methods on both spam filtering and handwritten digit recog-
nition tasks, where evasion attacks are extremely salient [Klimt and Yang 2004; LeCun and Cortes
2010].

2. RELATED WORK

Several streams of research have investigated the use of machine learning in adversarial settings in
general, as well as the design of spam filtering systems in particular. Spam detection, of course, has
received a great deal of attention (see, e.g., [Hinde 2003; Gyongi and Garcia-Molina 2005; Good-
man et al. 2007; Rao and Reiley 2012]). A common approach to spam detection involves the use of
classification learning, whereby spam and non-spam instances are labeled and a standard classifica-
tion algorithm is run to obtain a classifier that would predict a label on future observed emails [Car-
reras and Marquez 2001; Androutsopoulos et al. 2000]. While typically features of email text are
used, other approaches make use of additional characteristics, such as source addresses [Ramachan-
dran and Feamster 2006; Ramachandran et al. 2007]. More generally, machine learning systems
have been used in other malware and intrusion detection settings. For example, Lakhina et al. used
principal component analysis (PCA) for network anomaly detection [Lakhina et al. 2004].

2.1. Classifier Evasion

The problem of classifier evasion has been considered from an algorithmic perspective by casting it
as an optimization problem in which the attacker chooses an instance (a feature vector) to minimize a
cost function, penalizing deviations from an ideal attack, subject to a constraint that the new instance
is classified as benign [Dalvi et al. 2004; Lowd and Meek 2005; Nelson et al. 2011; Nelson et al.
2012a]. Formally, this evasion problem, termed adversarial classifier reverse engineering (ACRE),
has been cast in terms of a query model where the adversary has query access to the classifier
“oracle.” ACRE has been shown to be NP-Hard even when linear classifiers are used (if features
are binary), although algorithms with provable approximation guarantees have been developed first
in the context of a linear classifier [Lowd and Meek 2005] and then for general convex-inducing
classifiers [Nelson et al. 2012a]. Vorobeychik and Li [2014] studied the general problem of black-
box attacks on classifiers, showing that classifiers which can be learned in polynomial time can also
be reverse engineered to arbitrary precision in polynomial time. In much prior literature on evasion
attacks, the cost function which captures the cost to an attacker of changing features of an instance
has taken the form of an lp norm difference between an “ideal” instance and the instance chosen by
the attacker. One of our contributions is to describe the limitations of this cost function, and propose
a generalization that addresses these limitations by considering feature cross-substitution attacks.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:4 B. Li and Y. Vorobeychik

Evasion attacks have recently received considerable attention in the context of deep learning sys-
tems [Goodfellow et al. 2014; Papernot et al. 2016c; Nguyen et al. 2015]. Tabacof and Valle [2015]
analyzed the adversarial image space and showed that adversarial images appear in large regions
in the pixel space. Papernot et al. [2016c] studied the limitation of adversarial evasion examples
and showed that some instances are more difficult to manipulate than others. Sabour et al. [2015]
demonstrated that the attacker can change classification to an arbitrary class by malicious manipu-
lations. Even without knowing exactly the learning algorithm, several black-box attacks have been
proposed [Papernot et al. 2016a; Papernot et al. 2016b].

2.2. Evasion-Robust Classification

A number of efforts have attempted to address the issue of evasion and data poisoning attacks on
classifiers through game theoretic modeling and analysis [Parameswaran et al. 2010; Pita et al. 2011;
Dalvi et al. 2004].

In one of the earliest such efforts, Dalvi et al. [2004] played out the first two steps of best re-
sponse dynamics in this game: first, the adversary best responds to a baseline learner by computing
an optimal set of modifications, and subsequently the learner computes optimal parameters using the
adversarial model. Androutsopoulos et al. [2005] developed a two-player game between spammers
and email users to predict equilibrium strategies that could be used to tune spam filters. Vassilakis
et al. [2007] extended this model to account for human interactive proofs in conjunction with spam
filers. Similarly, Reshef and Solan [2006] consider the optimal behavior of spammers in response to
three specific strategies that can be used to combat spam: increasing email delivery costs, filtering,
and a do-not-spam registry. Globerson and Roweis [2006] considered a problem where features of a
classifier are deleted in an adversarial way at test time, and develop a learning algorithm which is ro-
bust to such feature deletion. Brückner and Scheffer [2009] focused on single-shot prediction games,
where the utility functions of learner and adversary are not necessarily antagonistic, and propose al-
gorithms to find the equilibria, including equilibrium learning algorithm parameters. Brückner and
Scheffer [2011] suggested an alternative game model, a Stackelberg game in which the learner
first sets the algorithm parameters, and the follower (attacker) would best respond by optimizing
its utility (which is connected to algorithm performance on data). Zhang et al. [2015] proposed a
general feature selection algorithm to optimize the generalization capability of both the linear and
non-linear wrapped classifier, as well as its security against evasion attacks. Liu and Chawla [2010]
formulated the interaction between a data miner and a adversary as a zero-sum Stackelberg game,
where the adversary (and not the learner) is the leader and the data miner is the follower. Zhou et al.
[2012] introduced an extension of Support Vector Machine optimization that considers attacks that
involve adding a displacement vector to each malicious instance to maximize the associated loss,
and Zhou and Kantarcioglu [2014] presented a similar extension to a Bayesian hierarchical mixtures
of experts model. Torkamani and Lowd [2013] leveraged similar ideas in developing an adversarial
learning algorithm that considers associations among labels for different objects (instances). In the
deep learning literature, a common approach to evasion defense has been to insert synthetic ad-
versarial evasion instances into training data and retraining [Goodfellow et al. 2014; Kurakin et al.
2017]. This general approach has been shown empirically to be effective, but has been integrated
into learning methods in an ad hoc way. Our proposed iterative retraining approach, in contrast, is
systematic and theoretically grounded.

2.3. Data Poisoning in Adversarial Machine Learning

In addition to the evasion attacks on classifiers, much work has focused on data poison-
ing/contamination attacks [Kearns and Li 1993; Newsome et al. 2006; Venkataraman et al. 2008;
Rubinstein et al. 2009; Huber 2011; Tyler 2008; Wagner 2004; Kloft and Laskov 2012]. Some of
the earliest treatments consider the robustness of learning algorithms to noise, including the exten-
sion of the probably approximately correct (PAC) model by [Kearns and Li 1993], as well as the
general literature on robust statistics (developing algorithms that are robust to data contamination
in a worst-case sense) [Huber 2011; Tyler 2008]. More recently, work has emerged to character-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:5

ize specific classes of deliberate attacks on machine learning systems. One class of attacks is red
herring attacks, which add words (features) that reduce the maliciousness score [Newsome et al.
2006; Venkataraman et al. 2008]. For example, Newsome et al. [2006] analyzed the red herring
attacks against conjunction learners. The attack introduces spurious features during training for the
learning systems. The true malicious instances, however, will lack the spurious features and thereby
bypass the filter. Rubinstein et al. [2009] have examined how an attacker can exploit the sensitivity
of PCA. Specifically, they showed that an attacker can systematically inject traffic to increase vari-
ance along the links of their target flow and mislead the anomaly detection system to require a high
computational expense (and, consequently, to significantly reduce its usability). Kloft and Laskov
[2012] demonstrated another class of attacks called boiling frog attacks on centroid anomaly detec-
tion. These attacks involve incremental contamination of systems that involve iterative re-training
(a common paradigm in machine learning applied to intrusion/spam detection) so that each incre-
mental change is sufficiently small to escape detection, but over time the attack can significantly
move the centroid. While data poisoning attacks are an important consideration, they are outside the
scope of this work.

3. PROBLEM DEFINITION

Let X ⊆ Rn be the feature space, with n the number of features. For a feature vector xi ∈ X ,
we let xij denote the jth feature. Suppose that the training set (xi, yi) is comprised of feature vec-
tors xi ∈ X generated according to some unknown distribution xi ∼ D, with yi ∈ {−1,+1} the
corresponding binary labels, where −1 means the instance xi is benign, while +1 indicates a ma-
licious instance. The learner aims to learn a classifier with parameters w, gw : X → {−1,+1},
to label instances as malicious or benign, using a training data set of labeled instance D =
{(x1, y1), ..., (xm, ym)}. Let Ibad be the subset of datapoints i with yi = +1; abusing notation,
we also use Ibad to correspond to the set of malicious feature vectors x in the training dataset. Fi-
nally, we assume that gw(x) = sgn(fw(x)) for some real-valued function fw(x). Henceforth, we
omit the subscript w where clear from context.

Traditionally, machine learning algorithms commonly minimize regularized empirical risk:

min
w

L(w) ≡
∑

i

l(f(xi), yi) + δ‖w‖pp, (1)

where l(a, y) is the loss associated with a prediction score a ∈ R when true classification is y. An
important issue in adversarial settings is that instances classified as malicious (in our convention,
corresponding to g(x) = +1) are associated with malicious agents who subsequently modify such
instances in order to evade the classifier (and be classified as benign). Conceptually, we capture such
adversarial evasion behavior as an oracle O(w, x), which returns, for a given parameter vector w and
original feature vector (in the training data) x, an alternative feature vector x′. For the moment, the
nature of this oracle, which captures adversary’s evasion behavior, is generic. Below, we consider
the issue of adversarial modeling in greater detail.

When the adversary modifies malicious instances according to a behavior oracle O(w, x), the
resulting effective risk for the defender is no longer captured by Equation 1, but must account for
adversarial response. Consequently, the defender would seek to minimize the following adversarial
risk (on training data):

min
w

LA(w;O) =
∑

i:yi=−1

l(f(xi),−1) +
∑

i:yi=+1

l(f(O(w, xi)),+1) + δ‖w‖pp. (2)

We make several observations about the adversarial risk function. First, note that adversarial behav-
ior depends on the original malicious instance xi in the training data: effectively, we are modeling
a collection of adversaries, each behaving quite distinctly, but their behavior is completely captured
by xi (their current malicious action) and w (how they respond to the classifier). In other words, we
suppose that every instance x ∼ D corresponds to a fixed label y ∈ {−1,+1}, where a label of

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:6 B. Li and Y. Vorobeychik

+1 indicates that this instance x was generated by an adversary. In the context of a threat model,
therefore, we take this malicious x to be an expression of revealed preferences of the adversary: that
is, x is an “ideal” instance that the adversary would generate if it were not marked as malicious (e.g.,
filtered) by the classifier. Second, adversarial risk function is the direct analog of empirical risk in
adversarial settings. In reality, this is a proxy for the expected risk which is what the learner is truly
trying to minimize. Third, we assume here, and throughout, that adversary’s response behavior is
known to the defender. Typically, this assumption is captured by using a model of the adversary’s
behavior. Essentially all prior literature in classifier evasion has made a far stronger assumption of
a particular model of adversary behavior, whereas our goal is to ultimately admit a broad class of
adversary models within this general framework. Later, we evaluate the question of robustness of
adversarial learning against mistakes in adversary modeling.

4. ADVERSARY MODELING

Generally, in prior literature evasion attacks have almost universally been modeled as optimization
problems in which attackers balance the objective of evading the classifier (by changing the label
from +1 to −1) and the cost of such evasion. We now define a very general adversarial modeling
framework which extends most of the specific models studied in prior literature [Lowd and Meek
2005; Biggio et al. 2014; Brückner and Scheffer 2011; Li and Vorobeychik 2014]. We then specialize
this framework to two important general models. Both are fundamentally optimization problems
aiming to trade off two conflicting goals: evading the classifier (trying to find an instance x′ such that
g(x′) = −1 and, perhaps, as far from the classification boundary as possible) and making minimal
changes to the original malicious instance x, as captured by the associated cost function c(x′, x).
The first model imposes a strict constraint that evasion is successful without being concerned about
precisely how benign the new malicious instance x′ appears, but instead imposes additionally a
budget constraint on the amount of change to the original feature vector x the adversary can tolerate.
In the case where no evasion is found which does not violate the cost budget, the attacker does not
undertake evasion.cover The second model explicitly trades-off evasion success and associated cost.
Our adversarial models are white-box, that is, the attacker knows the classifier, including the score
function.

Recall that we treat malicious instances in the dataset, x ∈ Ibad as ideal feature vectors capturing
behavior that the malicious actor would continue to perform if it were not for the classifier which
marks these as malicious. In both models, each such malicious feature vector x is treated as a distinct
adversary, and we call this the ideal instance xA for this adversary, and the adversary is assumed to
aspire to remain as close to this instance as possible while evading the classifier.

4.1. General Framework for Adversarial Evasion Modeling

We begin with a rather general framework for adversarial evasion modeling, formalized as Prob-
lem (3).

z = argmin
x′|h(x′)≤0

lA(x
′, xA) ≡ βr(f(x′)) + ηc(x′, xA) (3)

x∗ =

{
z z ∈ C
x otherwise,

In this problem, β, η ≥ 0 are exogenously specified parameters which allow us to specialize the
model to specific sub-classes (we illustrate two general examples below). h(x′) ≤ 0 represents
certain constraint for the modified instance x′. Moreover, r(a) is a non-decreasing function of a,
which captures the key adversarial objective of appearing more benign (having a smaller f(x)).
Finally, the adversary may be constrained in the kinds of modifications they can make, and we
express this constraint as C; in the model, if the optimal evasion z is infeasible, the attacker will stay
with the original malicious instance xi.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:7

4.2. Cost Minimization with Budget Constraint (CMBC)

Our first specific model, which we refer to as CMBC, is a generalization of the adversarial evasion
model proposed by [Lowd and Meek 2005]. To formalize this model, consider an attacker who in
the original training data uses an ideal feature vector from xi ∼ D denoted as xA (xA ∈ Ibad). This
attacker aims to solve the following optimization problem:

min
x′∈X:g(x′)=−1

c(x′, xA) (4a)

s.t. : c(x′, xA) ≤ Bc, (4b)

where Bc is the highest cost (deviation from xA) the adversary is willing to tolerate. If no evasion
instance within the cost budget is found, the adversary is assumed to continue with the original
feature vector xA. Note that this model specializes Problem (3) when β = 0, η = 1, h(x′) ≡
f(x′) ≤ 0, and C = {x′|c(x′, xA) ≤ Bc}.

Lowd and Meek [2005] proposed an iterative approximation algorithm to solve the optimization
problem 4 which yields a 2-approximation when the cost function is a weighted l1 distance, g(x) is
linear, and feature space is binary. Moreover, they proposed a polynomial time exact algorithm for
continuous feature spaces and linear classifiers. In principle, the approximation algorithm by Lowd
and Meek [2005] can be applied with non-linear classifiers as well, although with no guarantees,
and we use a generalization of it discussed in Appendix C as a general heuristic, after making the
modifications to account for the cost constraint in our model.

4.3. Balancing Evasion Cost and Success (BECS)

In our second specific model, referred to henceforth as BECS, the adversary has two competing
objectives: 1) appear as benign as possible to the classifier, and 2) minimize modification cost.
Just as in the first model, we assume that the attacker obtains no value from a modification to the
original feature vector if the result is still classified as malicious. Formally, the adversary is solving
the following optimization problem:

min
x′∈X

min{0, f(x′)}+ c(x′, xA). (5)

We assume that c(x′, xA) ≥ 0, c(x′, xA) = 0 iff x′ = xA, and c is strictly increasing in ‖x′ −xA‖2
and strictly convex in x′. Observe that this second model is, too, a special case of Problem (3), by
setting β = 1, η = 1, r(f(x′)) = min{0, f(x′)}, h(x′) ≡ 0, and C = ∅.

Because Problem (5) is non-convex, we instead minimize an upper bound:

min
x′

Q(x′) ≡ f(x′) + c(x′, xA). (6)

In addition, if f(xA) < 0, we return xA before solving Problem (6). If Problem (6) returns an
optimal solution x∗ with f(x∗) ≥ 0, we return xA; otherwise, return x∗. Problem (6) has two
advantages. First, if f(x) is convex and x is real-valued, this is a (strictly) convex optimization
problem, which has a unique solution, and we can solve it in polynomial time. An important special
case is when f(x) = wTx. The second one we formalize in the following lemma.

LEMMA 4.1. Suppose x∗ is the optimal solution to Problem (5), xi is suboptimal, and f(x∗) <
0. Let x̄ be the optimal solution to Problem (6). Then f(x̄) + c(x̄, xi) = f(x∗) + c(x∗, xi), and
f(x̄) < 0.

The following corollary then follows by uniqueness of optimal solutions for strictly convex objective
functions over a real vector space.

COROLLARY 4.2. If f(x) is convex and x continuous, x∗ is the optimal solution to Problem (5),
x̄ is the optimal solution to Problem (6), and f(x∗) < 0, then x̄ = x∗.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:8 B. Li and Y. Vorobeychik

A direct consequence of this corollary is that when we use Problem (6) to approximate Problem (5)
and this approximation is convex, we always return either the optimal evasion, or xi if no cost-
effective evasion is possible. An oracle O constructed on this basis will therefore return a unique
solution.

4.3.1. Coordinate Greedy. Many learning problems do not feature a convex g(x), or a continuous
feature space, so that the optimization problems which capture the attacker model above cannot be
efficiently solved. To address this, we propose to use CoordinateGreedy (CG) (Algorithm 1) to
approximate optimal attacker evasion. The key advantage of coordinate greedy is that it does not
need any specific information about the nature of the classifier or the cost function, although specific
variations, such as coordinate descent, can make use of this information. The high-level idea is to

ALGORITHM 1: CoordinateGreedy(CG): O(β, x)

1: Input: Parameter vector β, malicious instance x
2: Set k ← 0 and let x0 ← x
3: repeat
4: Randomly choose index ik ∈ {1, 2, ..., n}
5: xk+1 ←ik + ε
6: k ← k + 1

7: until
lnQ(xk)

lnQ(xk−1)
≤ ε

8: if f(xk) ≥ 0 then

9: xk ← x
10: end if
11: Output: Adversarially optimal instance xk.

iteratively choose a feature, and greedily update this feature to incrementally improve the attacker’s
utility (as defined by Problem (6)).

In general, this algorithm will only converge to a locally optimal solution. Indeed, the issue of
only being able to compute an attack heuristically with respect to a model is a fundamental problem
in most prior adversarial evasion modeling efforts, excepting several which make strong assump-
tions about adversarial cost and loss functions (e.g., Brückner and Scheffer [2011]). The concern is
that using such a heuristic approach as a means for making a classifier robust will fail as it underes-
timates the true attacks (which may achieve a better quality solution to the associated optimization
problem).

We address this fundamental limitation in two ways. First, we propose a version with random
restarts: run CG from L random starting points in feature space. As long as a global optimum has
a basin of attraction with positive Lebesgue measure, or the feature space is finite, this process
will asymptotically converge to a globally optimal solution as we increase the number of random
restarts. Thus, as we increase the number of random restarts, we expect to increase the frequency
that we actually return the global optimum.

In general, however, asymptotic convergence to a global optimum through random restarts can
be exponentially slow and, consequently, of limited help. We therefore consider empirically how
effective it is in our setting. Let pL denote the probability that the oracle based on coordinate greedy
with L random restarts returns a suboptimal solution to Problem (6). In Figure 1 we investigate how
fast pL converges to zero. A key observation from this figure is that this convergence tends to be
remarkably fast, necessitating relatively few random restarts.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:10 B. Li and Y. Vorobeychik

In order to solve the optimization problem 4 in the context of equivalence-based cost function, we
generalize the algorithm proposed by Lowd and Meek to l1 cost and linear classifiers. The general-
ized algorithm termed FindBooleanIMAC is presented in Appendix C. Note that the algorithm
becomes identical to Lowd and Meek’s when equivalence classes Fi are singletons (i.e., the cost
function reduces to l1 cost).

5. STACKELBERG GAME MULTI-ADVERSARY MODEL (SMA)

We now offer a principled and general approach to adversarial classification in the context of evasion
attacks modeled above. For now, we restrict attention to linear classifiers where f(x) = wTx and
l1 regularization is used. These restrictions are necessary for our exact optimization algorithms, but
will be subsequently relaxed as we propose an approximate but far more general and scalable ap-
proach in Section 6. Because the resulting classifier choice is formally a Stackelberg equilibrium in
which there is a single defender (classifier) and multiple followers (evaders), we term this approach
Stackelberg game multi-adversary model (SMA).

Since adversaries correspond to feature vectors xi which are malicious (and which we interpret
as the “ideal” instances xA of these adversaries), we henceforth refer to a given adversary by the
associated index i of a malicious instance in the data. We now rewrite the optimization problem (2)
for the general SMA model as a bi-level program in which the learner first chooses the weights w
and the attackers modify malicious instances xi into alternatives, x̃i, in response:

min
w

∑

i|yi=−1

l(wTxi,−1) +
∑

i|yi=1

l(wT x̃i, 1) + δ||w||1 (9)

s.t. : ∀i : yi = 1,

zi = argmin
x|h(x;w)≤0

lA(x, xi;w)

x̃i =

{
zi zi ∈ C
xi otherwise,

where lA(x, , xi;w) is an adversarial loss function that the attacker wishes to minimize (which may
depend on the learning parameters w), subject to constraints h(x;w) ≤ 0. An example of these
constraints is h(x;w) = wTx ≤ 0, that is, the attacker wishes to ensure that they are classified as
benign. The decision of the attackers also depends on whether or not their budget constraints are
satisfied by the optimal adversarial instance (for example, whether it’s so far from the original ma-
licious instance that malicious utility is largely compromised). This is represented by the constraint
that x̃i = zi if zi ∈ C, and otherwise the attacker does not change their original feature vector xi. A
natural example of a budget constraint is C = {z|c(z, xi) ≤ Bc}.

The power of our approach and the formulation (9) is that it admits, in principle, an arbitrary
adversarial loss function lA(x, x

A;w), and, consequently, an arbitrary cost function, unlike prior
approaches. The methods described below will generalize as long as we have an algorithm for
optimizing the adversary’s loss given a classifier.

In order to solve the optimization problem (9) we now describe how to formulate it as a (very
large) mathematical program, and then propose several heuristic methods for making it tractable.
The first step is to observe that the hinge loss function and ‖w‖1 can both be easily linearized using
standard methods. We therefore focus on the more challenging task of expressing the adversarial
decision in response to a classification choice w as a collection of linear constraints.

We begin by representing the adversary’s optimization problem using a collection of linear con-
straints. Define an auxiliary matrix T in which each column corresponds to a particular attack feature
vector x′, which we index using variables a; thus Tja corresponds to the value of feature j in the
attack feature vector with index a. Define another auxiliary binary matrix Q where Qai = 1 iff the
attack strategy a ∈ C for the attacker i.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:11

Next, define a matrix L where Lai is the loss of the strategy a to adversary i Finally, let zai be
a binary variable that selects exactly one feature vector a for the adversary i. First, we must have a
constraint that zai = 1 for exactly one strategy a:

∑
a zai = 1 ∀ i. Now, suppose that the strategy

a that is selected is the best available option for the attacker i; it may be below the cost budget, in
which case this is the strategy used by the adversary, or above budget, in which case xi is used.
We can calculate the resulting value of wT x̃i inside the loss function corresponding to adversarial
instances using

wT x̃i = ei =
∑

a

zaiw
T (QaiTa + (1−Qai)xi). (10)

This expression introduces bilinear terms zaiw
T , but since zai are binary, these terms can be lin-

earized using McCormick inequalities [McCormick 1976].
To ensure that zai selects the strategy which minimizes the adversary’s loss lA(·) among all

feasible options, captured by the matrix L, we introduce constraints
∑

a

zaiLai ≤ La′i +M(1− ra′),

where M is a large constant and ra′ is an indicator variable which is 1 iff h(Ta;w) ≤ 0 (that is, if
feature vector x associated with the attack a, satisfies the constraint h(x;w) ≤ 0). We calculate ra
for all a using constraints

(1− 2ra)h(Ta;w) ≤ 0.

The resulting full mathematical programming formulation is shown below.

min
w,z,r

∑

i|yi=0

max{0, 1− wTxi}+
∑

i|yi=1

max{0, 1 + ei}+ δ‖w‖1 (11)

s.t. : ∀a, i, j : zai, ra ∈ {0, 1} (12)
∑

a

zi(a) = 1 (13)

∀i : ei =
∑

a

mai(QaiTa + (1−Qai)xi) (14)

∀a, i, j : −Mzai ≤ maij ≤ Mzai (15)

∀a, i, j : wj −M(1− zai) ≤ maij ≤ wj +M(1− zai) (16)

∀a′, i :
∑

a

zaiLai ≤ La′i +M(1− ra′) (17)

∀a : (1− 2ra)h(Ta;w) ≤ 0. (18)

Variables mai allow us to linearize the Constraints (10), replacing them with Constraints (14)-(16).
Constraint 18 is the only non-linear constraint remaining (the hinge loss and l1 terms in the objec-
tive can be linearized using standard methods), and depends on the specific form of the function
h(Ta;w); we deal with it below in the two special cases of attack models we consider.

As is, the resulting mathematical program is intractable for two reasons: first, the best response
must be computed (using a set of constraints above) for each adversary i, of which there could be
many, and second, we need a set of constraints for each feasible attack action (feature vector) x ∈ X
(which we index by a). We tackle the first problem by clustering the “ideal” attack vectors xi into
a set of 100 clusters and using the mean of each cluster as xA for the representative attacker. This
dramatically reduces the number of adversaries and, therefore, the size of the problem. To tackle the
second problem, we use constraint generation to iteratively add strategies a into the above program
by computing optimal, or approximately optimal, attack strategy to add in each iteration.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:12 B. Li and Y. Vorobeychik

ALGORITHM 2: SMA(X)

T =randStrats() // initial set of attacks
X ′ ← cluster(X)
w0 ←MILP(X ′, T)
w ← w0

while T changes do
for xA ∈ I ′bad do

t =computeAttack(xA, w)
T ← T ∪ t

end for
w ←MILP(X ′, T)

end while
return w

The full SMA iterative algorithm using clustering and constraint generation is shown in Algo-
rithm 2. Here we can apply any clustering algorithm for the cluster() function, an we use K-nearest
neighbor algorithm to cluster the data [Peterson 2009]. The matrices Q and L in the mathematical
program can be pre-computed in each iteration using the matrix of strategies and corresponding T ,
as well as the set of constraints C. The computeAttack() function generates an optimal attack by
solving (often approximately) the optimization problem zi = argmin

x∈C1

lA(x, xi).

In the next several sections we instantiate this approach for two adversarial models described
above: CMBC and BECS. As we show below, both can be formulated as mixed-integer linear pro-
grams.

5.1. SMA for CMBC

Recall that the CMBC model minimizes the adversary’s cost c(x, xA) subject to the constraint that
wTx ≤ 0, that is, that the adversarial instance is classified as benign. Additionally, it uses the
cost constraint C = {x|c(x, xA) ≤ Bc}, which can be handled directly by the SMA mathematical
program described above.

The loss function in this case becomes lA(x, x
A;w) = c(x, xA). The non-linear constraint (18),

on the other hand, now becomes (1 − 2ra)w
TTa ≤ 0. While this constraint introduces bilinear

terms, these can be linearized since ra are binary. In particular, we can replace it with the following
constraints:

∀a :
∑

j

wjTaj ≤ 2
∑

j

Tajtaj

∀a, j : −Mra ≤ taj ≤ Mra

∀a, j : wj −M(1− ra) ≤ taj ≤ wj +M(1− ra),

where we introduce a new variable taj to assist in linearization. The full SMA mathematical program
thus becomes a mixed-integer linear program in the context of the CMBC attack model.

Finally, we can implement the iterative constraint generation approach by executing a variant of
the Lowd and Meek algorithm in each iteration in response to the classifier w computed in previous
iteration. Specifically, Algorithm 3 computes the attacker’s best response, which in turn makes use
of Algorithm 6 FindBooleanIMAC to compute approximately optimal attack strategies in response
to a given classifier w, subject to the cost budget constraint.

5.2. SMA for BECS

In the context of the BECS evasion attack model, the attacker’s loss becomes lA(x, x
A;w) =

wTx + c(x, xA) (the upper bound of the original BECS adversarial loss function). As mentioned
in Section 4.3, there is no constraint C, and h(x;w) ≡ 0, which also eliminates the non-linear con-

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:13

ALGORITHM 3: computeAttack(CMBC) (xA, w)

Get matrix T
Generate matrix C, L based on T,Bc

Randomly select x− from Igood
t←FindBooleanIMAC(xA, x−, w)
return t

straint (18). the attacker’s best response computation computeAttack() can be calculated by using
Algorithm 1 for the BECS adversary model.

ALGORITHM 4: computeAttack(BECS) (x,w)

1: Input: Parameter vector w, malicious instance x
2: Set k ← 0 and let x0 ← x
3: repeat
4: Randomly choose index ik ∈ {1, 2, ..., n}
5: xk+1 ←ik + ε
6: k ← k + 1

7: until
lnQ(xk)

lnQ(xk−1)
≤ ε

8: if f(xk) ≥ 0 then

9: xk ← x
10: end if
11: Output: Adversarially optimal instance xk.

6. SCALING UP: ADVERSARIAL LEARNING THROUGH RETRAINING

The SMA optimization approach is exact, but it suffers from three limitations: 1) it assumes specific
structure of the attack models which must be embedded in the optimization approach itself, 2) it
requires substantial modifications of the learning algorithm, and is restricted to linear classification
with l1 regularization, and 3) it suffers from significant limitations in scalability as shown in the
experiments below. Indeed, these are very general issues exhibited by a number of approaches have
been proposed for making learning algorithms more robust to adversarial evasion attacks [Dalvi
et al. 2004; Li and Vorobeychik 2014; Li and Vorobeychik 2015; Teo et al. 2007; Brückner and
Scheffer 2011]. Recently, retraining with adversarial data has been proposed as a means to increase
robustness of learning [Goodfellow et al. 2014; Kantchelian et al. 2015; Teo et al. 2007].1 How-
ever, to date, such approaches have not been systematic and have not been formally connected to
adversarial risk minimization formalized in Section 3.

Thus, we present a systematic retraining algorithm, RAD, for retraining with adversarial data (Al-
gorithm 5). Our key observation is that RAD is a principled approximation to SMA: specifically,
it minimizes an upper bound on adversarial loss. RAD systematizes some of the prior insights in-
volving adversarial examples and retraining, and enables us to provide a formal connection between
retraining with adversarial data, and adversarial risk minimization in the sense of Equation 2.

The RAD algorithm is general in terms of the adversarial models as well as the malicious in-
stances. At the high level, it starts with the original training data X and iterates between computing
a classifier and adding adversarial instances to the training data that evade the previously computed
classifier, if they are not already a part of the data. A significant enhancement in terms of the speed of
the approach can be obtained by clustering malicious instances as done for SMA: this would reduce

1Indeed, neither [Teo et al. 2007] nor [Kantchelian et al. 2015] focuses on retraining as a main contribution, but observes its
effectiveness.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:14 B. Li and Y. Vorobeychik

ALGORITHM 5: RAD: Retraining with ADversarial Examples

1: Input: training data X
2: Ni ← ∅ ∀ i ∈ Ibad
3: repeat
4: w ← Train(X ∪i Ni)
5: new ← ∅
6: for i ∈ Ibad do
7: x′ = O(w, xi)
8: if x′ /∈ Ni then
9: new ← new ∪ x′

10: end if
11: Ni ← Ni ∪ x′

12: end for
13: until new = ∅
14: Output: Parameter vector w

both the number of iterations, as well as the number of data points added per iteration. Experiments
(in the appendix E) show that this is indeed quite effective.

A baseline termination condition for RAD is that no new adversarial instances can be added
(either because instances generated by O have already been previously added, or because the ad-
versary’s can no longer benefit from evasion). If the range of O is finite (e.g., if the feature space
is finite), RAD with this termination condition would always terminate. In practice, our experi-
ments demonstrate that when termination conditions are satisfied, the number of RAD iterations is
quite small (between 5 and 20). Moreover, while RAD effectively increases the importance of mali-
cious instances in training, this does not appear to significantly harm classification performance in
a non-adversarial setting. In general, we can also control the number of rounds directly, or use an
additional termination condition, such as that the parameter vector w changes little between succes-
sive iterations. However, we assume henceforth that there is no fixed iteration limit or convergence
check.

6.1. Theoretical Analysis

To analyze what happens if the algorithm terminates, we define the regularized empirical risk in the
last iteration of RAD as:

LR
N (w,O) =

∑

i∈D∪N

l(fw(xi), yi) + δ||w||pp, (19)

where a set N = ∪iNi of data points has been added by the algorithm (we omit its dependence on
O to simplify notation). We now characterize the relationship between LR

N (w,O) and L∗
A(O) =

minw LA(w,O), where LA(w,O) represents the loss of adversary based on any model parameters.

PROPOSITION 6.1. L∗
A(O) ≤ LR

N (w,O) for all w,O.

PROOF. Let w̄ ∈ argminw LR
N (w,O). Consequently, for any w,

LR
N (w,O) ≥ LR

N (w̄,O)

=
∑

i:yi=−1

l(fw̄(xi),−1) +
∑

i:yi=+1

∑

j∈Ni∪xi

l(fw̄(xj),+1) + δ||w̄||pp

≥
∑

i:yi=−1

l(fw̄(xi),−1) +
∑

i:yi=+1

l(fw̄(O(w̄, xi)),+1) + δ||w̄||pp

≥ min
w

LA(w;O) = L∗
A(O),

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:15

where the second inequality follows because in the last iteration of the algorithm, new = ∅ (since
it must terminate after this iteration), which means that O(w, xi) ∈ Ni for all i ∈ Ibad.

In general, retraining, systematized in the RAD algorithm, effectively minimizes an upper bound
on optimal adversarial risk.2 This offers a conceptual explanation for the previously observed ef-
fectiveness of such algorithms in boosting robustness of learning to adversarial evasion. Formally,
however, the result above is limited for several reasons. First, for many adversarial models in prior
literature, adversarial evasion is NP-Hard. While some effective approaches exist to compute op-
timal evasion for specific learning algorithms [Kantchelian et al. 2015], this is not true in general.
Although approximation algorithms for these models exist, using them as oracles in RAD is prob-
lematic, since actual attackers may compute better solutions, and Proposition 6.1 no longer applies.
Second, we assume that O returns a unique result, but when evasion is modeled as optimization, op-
tima need not to be unique. Third, there does not exist effective general-purpose adversarial evasion
algorithms the use of which in RAD would allow reasonable theoretical guarantees.

These challenges were partially addressed by our general-purpose coordinate greedy algorithms
for computing optimal adversarial evasion: coupled with random restarts, we can naturally ensure,
with enough restarts, that we eventually obtain an optimal solution with high probability. Moreover,
we showed empirically that probability pL of computing suboptimal instances essentially vanishes
with relatively few restarts. We now generalize the above result to offer guarantees in this case as
well.

PROPOSITION 6.2. Let B = |Ibad|. L∗
A,01(O) ≤ LR

N (w,OL) + δ(p) with probability at least

1 − p, where δ(p) = B

(
pL +

√
log2 p−8BpL log p−log p

2B

)
, and LR

N (w,OL) uses any loss function

l(fw(x), y) which is an upper bound on the 0/1 loss.

PROOF. Let w̄ ∈ argminw LR
N (w,OL). Consequently, for any w,

L∗
A,01(OL) = min

w
LA,01(w;OL)

≤
∑

i:yi=−1

l01(fw̄(xi),−1) +
∑

i:yi=+1

l01(fw̄(O(w̄, xi)),+1) + α||w̄||pp.

Now,
∑

i:yi=+1

l01(fw̄(O(w̄, xi)),+1) ≤
∑

i:yi=+1

l01(fw̄(OL(w̄, xi)),+1) + δ(p)

with probability at least 1 − p, where δ(p) = BpL +

√
log2 p−8Bpl log p−log p

2 , by the Chernoff
bound, and Lemma 4.1, which assures that an optimal solution to Problem 6 can only over-estimate
mistakes. Moreover,

∑

i:yi=+1

l01(fw̄(OL(w̄, xi)),+1) ≤
∑

i:yi=+1

∑

j∈Ni

l(fw̄(xj),+1),

since OL(w̄, xi) ∈ Ni for all i by construction, and l is an upper bound on l01. Putting everything
together, we get the desired result.

6.2. RAD with Stochastic Gradient Descent

RAD works particularly well with online methods, such as stochastic gradient descent. Indeed, in
this case we need only to make gradient descent steps for newly added malicious instances, which

2Note that the bound relies on the fact that we are only adding adversarial instances, and terminate once no more instances
can be added. In particular, natural variations, such as removing or re-weighing added adversarial instances to retain original
malicious-benign balance lose this guarantee.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:16 B. Li and Y. Vorobeychik

can be added one at a time until convergence. Note that this is different from interleaving adversarial
example generation and stochastic gradient descent steps, as suggested in prior work [Goodfellow
et al. 2014; Kurakin et al. 2017]. In fact, the latter approaches lose the theoretical guarantees de-
scribed above, particularly when original instances are replaced with synthetic adversarial exam-
ples, as suggested by Kurakin et al. [2017].

6.3. RAD and Multi-Class Classification

Discussion so far dealt entirely with binary classification. We now observe that extending it to multi-
class problems is quite direct. Specifically, while previously the attacker aimed to make an instance
classified as +1 (malicious) into a benign instance (−1), for a general label set Y , we can define a
malicious set M ⊂ Y and a target set T ⊂ Y , with M ∩ T = ∅, where every entity represented by
a feature vector x with a label y ∈ M aims to transform x so that its label is changed to T . In this
setting, let g(x) = argmaxy∈Y f(x, y). We can then use the following empirical risk function:

∑

i:yi /∈M

l(f(xi), yi) +
∑

i:yi∈M

l(f(O(w, xi)), yi) + λ||w||pp, (20)

where O aims to transform instances xi so that g(O(w, xi)) ∈ T . The relaxed version of the BECS
adversarial model can then be generalized to

min
x,y∈T

−f(x, y) + c(x, xi).

Similar generalization is possible for the CMBC model.

7. EXPERIMENTS

In this section we investigate the effectiveness of the two proposed methods: the Stackelberg game
multi-adversary model (SMA) solved using mixed-integer linear programming and the adversarial
retraining framework RAD.

We consider four data sets for our evaluation: the Enron dataset [Cohen 2009], Ling-spam
dataset [Androutsopoulos et al. 2000], UCI dataset [Lichman 2013], and MNIST dataset [LeCun
and Cortes 2010]. In particular, the Enron email dataset contains approximately 500,000 emails
generated by employees of the Enron Corporation. The Ling-spam dataset includes 2412 Linguist
messages, obtained by randomly downloading digests from the archives, separating their messages,
and removing text added by the lists server. There are 481 spam messages. Attachments, HTML
tags, and duplicate spam messages received on the same day were not included. The UCI dataset
contains 4601 email instances, and about 30% of them are spam messages. MNIST is a handwritten
digits dataset containing 28 × 28 images, which represent digit 0-9 for multi-class classification
problem.

7.1. Evaluation of SMA

We draw a comparison to three baselines: 1) “traditional” machine learning algorithms (we re-
port the results in comparison with standard SVM; comparisons to Naive Bayes and Neural
Network classifiers proved similar), 2) Stackelberg prediction game (SPG) algorithm with linear
loss [Brückner and Scheffer 2011], and 3) SPG with logistic loss [Brückner and Scheffer 2011].
Both (2) and (3) are state-of-the-art alternative methods developed specifically for adversarial clas-
sification problems. Xu et al. [2009] demonstrate a connection between robustness to evasion attacks
and regularization. Since we consider adversarial cost functions based on l1 distance, the relevant
regularization in our setting is l∞. Our first set of results, shown in Figure 2, is a performance
comparison of SMA based on the CMBC threat model to four baselines, evaluated with respect to
an adversary striving to evade the classifier, subject to cost budget constraints. The four baselines
include SVM, l∞ regularized SVM (SVM-reg), and SPG with different loss functions. The results
demonstrate that SMA approaches significantly outperforms the baselines, including l∞ regularized
SVM. The intuition is two-fold: first, the connection between robustness regularization assumes

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:25

scalability is dramatically improved compared to SMA: indeed, with RAD, we are able to easily scale
the approach to thousands of features, whereas SMA scales only to dozens of features.

An important challenge in all adversarial learning approaches to date is the specific assumptions
they make on adversarial behavior. While RAD makes few specific requirements on the adversarial
model, it still requires some adversarial model to be used in training. We therefore experimentally
evaluate how robust RAD is when this model does not represent actual adversarial behavior. Our
experiments indeed demonstrate considerable robustness of RAD to several model misspecifications.
We believe that the most significant strength of RAD is that it can make use of arbitrary learning
algorithms essentially “out-of-the-box”, and effectively and quickly boost their robustness to nearly
arbitrary evasion attack models, in contrast to most prior adversarial learning methods which are
algorithm-specific.

ACKNOWLEDGMENTS

This research was supported in part by the National Science Foundation (IIS-1649972, IIS-1526860, CNS-1640624, CNS-

1238959), Army Research Office (W911NF-16-1-0069), Office of Naval Research (N00014-15-1-2621), Air Force Research

Laboratory (FA8750- 14-2-0180), the National Institutes of Health (R01LM10207), Symantec Research Labs Graduate

Fellowship, and Sandia National Laboratories.

REFERENCES

Ion Androutsopoulos, John Koutsias, Konstantinos V Chandrinos, George Paliouras, and Constantine D Spyropoulos. 2000.
An evaluation of naive bayesian anti-spam filtering. arXiv preprint cs/0006013 (2000).

Ion Androutsopoulos, Evangelos F Magirou, and Dimitrios K Vassilakis. 2005. A Game Theoretic Model of Spam E-
Mailing.. In CEAS.

Marco Barreno, Peter L Bartlett, Fuching Jack Chi, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, Udam
Saini, and J Doug Tygar. 2008. Open problems in the security of learning. In Proceedings of the 1st ACM workshop on

Workshop on AISec. ACM, 19–26.

Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. 2010. The security of machine learning. Machine Learning

81, 2 (2010), 121–148.

Battista Biggio, Giorgio Fumera, and Fabio Roli. 2014. Security evaluation of pattern classifiers under attack. Knowledge

and Data Engineering, IEEE Transactions on 26, 4 (2014), 984–996.

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge University Press.

Michael Brückner and Tobias Scheffer. 2009. Nash equilibria of static prediction games. In Advances in neural information

processing systems. 171–179.

Michael Brückner and Tobias Scheffer. 2011. Stackelberg games for adversarial prediction problems. In Proceedings of the

17th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 547–555.

Xavier Carreras and Lluis Marquez. 2001. Boosting trees for anti-spam email filtering. arXiv preprint cs/0109015 (2001).

William W Cohen. 2009. Enron email dataset. (2009).

Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, and others. 2004. Adversarial classification. In Proceedings

of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 99–108.

Laurent El Ghaoui, Gert René Georges Lanckriet, Georges Natsoulis, and others. 2003. Robust classification with interval

data. Computer Science Division, University of California.

Tom Fawcett. 2003. In vivo spam filtering: a challenge problem for KDD. ACM SIGKDD Explorations Newsletter 5, 2
(2003), 140–148.

Tom Fawcett and Foster Provost. 1997. Adaptive fraud detection. Data mining and knowledge discovery 1, 3 (1997), 291–
316.

Amir Globerson and Sam Roweis. 2006. Nightmare at test time: robust learning by feature deletion. In Proceedings of the

23rd international conference on Machine learning. ACM, 353–360.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and harnessing adversarial examples. arXiv

preprint arXiv:1412.6572 (2014).

Joshua Goodman, Gordon V. Cormack, and David Heckerman. 2007. Spam and the ongoing battle for the inbox. Commun.

ACM 50, 2 (2007), 25–33.

Zoltan Gyongi and Hector Garcia-Molina. 2005. Spam: It’s not just for inboxes anymore. Computer 38, 10 (2005), 28–34.

Stephen Hinde. 2003. Spam: the evolution of a nuisance. Computers & Security 22, 6 (2003), 474–478.

Peter J Huber. 2011. Robust statistics. Springer.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:26 B. Li and Y. Vorobeychik

A. Kantchelian, J. D. Tygar, and A. D. Joseph. 2015. Evasion and Hardening of Tree Ensemble Classifiers. arXiv pre-print.
(2015).

Christoph Karlberger, Günther Bayler, Christopher Kruegel, and Engin Kirda. 2007. Exploiting Redundancy in Natural
Language to Penetrate Bayesian Spam Filters. WOOT 7 (2007), 1–7.

Liyiming Ke, Bo Li, and Yevgeniy Vorobeychik. 2016. Behavioral Experiments in Email Filter Evasion. In AAAI Conference

on Artificial Intelligence.

Michael Kearns and Ming Li. 1993. Learning in the presence of malicious errors. SIAM J. Comput. 22, 4 (1993), 807–837.

Bryan Klimt and Yiming Yang. 2004. The enron corpus: A new dataset for email classification research. In Machine learning:

ECML 2004. Springer, 217–226.

Marius Kloft and Pavel Laskov. 2012. Security analysis of online centroid anomaly detection. The Journal of Machine

Learning Research 13, 1 (2012), 3681–3724.

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. 2017. Adversarial Machine Learning at Scale. In International Con-

ference on Learning Representations.

Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diagnosing network-wide traffic anomalies. In ACM SIG-

COMM Computer Communication Review, Vol. 34. ACM, 219–230.

Pavel Laskov and Richard Lippmann. 2010. Machine learning in adversarial environments. Machine learning 81, 2 (2010),
115–119.

Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. AT&T Labs [Online]. Available: http://yann.

lecun. com/exdb/mnist (2010).

Bo Li and Yevgeniy Vorobeychik. 2014. Feature cross-substitution in adversarial classification. In Advances in Neural Infor-

mation Processing Systems. 2087–2095.

Bo Li and Yevgeniy Vorobeychik. 2015. Scalable Optimization of Randomized Operational Decisions in Adversarial Clas-
sification Settings. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics.
599–607.

M. Lichman. 2013. UCI Machine Learning Repository. (2013). http://archive.ics.uci.edu/ml

Wei Liu and Sanjay Chawla. 2009. A game theoretical model for adversarial learning. In Data Mining Workshops, 2009.

ICDMW’09. IEEE International Conference on. IEEE, 25–30.

Wei Liu and Sanjay Chawla. 2010. Mining adversarial patterns via regularized loss minimization. Machine Learning 81, 1
(2010), 69–83.

Daniel Lowd and Christopher Meek. 2005. Adversarial learning. In Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining. ACM, 641–647.

Matthew V Mahoney and Philip K Chan. 2002. Learning nonstationary models of normal network traffic for detecting novel
attacks. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 376–385.

Garth P McCormick. 1976. Computability of global solutions to factorable nonconvex programs: Part IConvex underesti-
mating problems. Mathematical Programming 10, 1 (1976), 147–175.

Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. 2006. Spam filtering with naive bayes-which naive bayes?.
In CEAS. 27–28.

B. Nelson, B. Rubinstein, L. Huang, A. Joseph, S. Lee, S. Rao, and J. D. Tygar. 2012a. Query strategies for evading convex-
inducing classifiers. Journal of Machine Learning Research 13 (2012), 1293–1332.

Blaine Nelson, Benjamin IP Rubinstein, Ling Huang, Anthony D Joseph, Steven J Lee, Satish Rao, and JD Tygar. 2012b.
Query strategies for evading convex-inducing classifiers. The Journal of Machine Learning Research 13, 1 (2012),
1293–1332.

Blaine Nelson, Benjamin IP Rubinstein, Ling Huang, Anthony D Joseph, and JD Tygar. 2011. Classifier evasion: Models
and open problems. In Privacy and Security Issues in Data Mining and Machine Learning. Springer, 92–98.

James Newsome, Brad Karp, and Dawn Song. 2006. Paragraph: Thwarting signature learning by training maliciously. In
Recent advances in intrusion detection. Springer, 81–105.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily fooled: High confidence predictions
for unrecognizable images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
427–436.

Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016a. Transferability in Machine Learning: from Phenomena to
Black-Box Attacks using Adversarial Samples. arXiv preprint arXiv:1605.07277 (2016).

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami. 2016b. Practi-
cal Black-Box Attacks against Deep Learning Systems using Adversarial Examples. arXiv preprint arXiv:1602.02697

(2016).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:27

Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Ananthram Swami. 2016c. The limi-
tations of deep learning in adversarial settings. In 2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 372–387.

Manoj Parameswaran, Huaxia Rui, and S Sayin. 2010. A game theoretic model and empirical analysis of spammer strategies.
In Collaboration, Electronic Messaging, AntiAbuse and Spam Conf, Vol. 7.

Leif E Peterson. 2009. K-nearest neighbor. Scholarpedia 4, 2 (2009), 1883.

James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen, and Erin Steigerwald. 2011. GUARDS: game theoretic security
allocation on a national scale. In The 10th International Conference on Autonomous Agents and Multiagent Systems-

Volume 1. International Foundation for Autonomous Agents and Multiagent Systems, 37–44.

Anirudh Ramachandran and Nick Feamster. 2006. Understanding the network-level behavior of spammers. ACM SIGCOMM

Computer Communication Review 36, 4 (2006), 291–302.

Anirudh Ramachandran, Nick Feamster, and Santosh Vempala. 2007. Filtering spam with behavioral blacklisting. In Con-

ference on Computer and Communications Security. 342–351.

Justin M. Rao and David H. Reiley. 2012. The Economics of Spam. Journal of Economic Perspectives 26, 3 (2012), 87–110.

Eran Reshef and Eilon Solan. 2006. The effects of anti-spam methods on spam mail. In Conference on Email and Anti-Spam.

Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish Rao, Nina Taft, and JD
Tygar. 2009. Antidote: understanding and defending against poisoning of anomaly detectors. In Proceedings of the 9th

ACM SIGCOMM conference on Internet measurement conference. ACM, 1–14.

Sara Sabour, Yanshuai Cao, Fartash Faghri, and David J Fleet. 2015. Adversarial manipulation of deep representations. arXiv

preprint arXiv:1511.05122 (2015).

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. 1998. A Bayesian approach to filtering junk e-mail. In
Learning for Text Categorization: Papers from the 1998 workshop, Vol. 62. 98–105.

C. Smutz and A. Stavrou. 2012. Malicious PDF detection using metadata and structural features. In Annual Computer

Security Applications Conference. 239–248.

Nedim Srndic and Pavel Laskov. 2013. Detection of Malicious PDF Files Based on Hierarchical Document Structure. In
Annual Network & Distributed System Security Symposium.

Pedro Tabacof and Eduardo Valle. 2015. Exploring the space of adversarial images. arXiv preprint arXiv:1510.05328 (2015).

Choon Hui Teo, Amir Globerson, Sam T Roweis, and Alex J Smola. 2007. Convex Learning with Invariances.. In NIPS,
Vol. 20. 1489–1496.

MohamadAli Torkamani and Daniel Lowd. 2013. Convex Adversarial Collective Classification. In Proceedings of The 30th

International Conference on Machine Learning. 642–650.

David E Tyler. 2008. Robust statistics: Theory and methods. J. Amer. Statist. Assoc. 103, 482 (2008), 888–889.

Dimitrios K Vassilakis, Ion Androutsopoulos, and Evangelos F Magirou. 2007. A Game-Theoretic Investigation of the Effect
of Human Interactive Proofs on Spam E-mail.. In Conference on Email and Anti-Spam.

Shobha Venkataraman, Avrim Blum, and Dawn Song. 2008. Limits of learning-based signature generation with adversaries.
(2008).

Yevgeniy Vorobeychik and Bo Li. 2014. Optimal randomized classification in adversarial settings. In International Confer-

ence on Autonomous Agents and Multiagent Systems.

David Wagner. 2004. Resilient aggregation in sensor networks. In Proceedings of the 2nd ACM workshop on Security of ad

hoc and sensor networks. ACM, 78–87.

Huan Xu, Constantine Caramanis, and Shie Mannor. 2009. Robustness and regularization of support vector machines. Jour-

nal of Machine Learning Research 10, Jul (2009), 1485–1510.

KONG Ying and ZHAO Jie. 2012. Learning to Filter Unsolicited Commercial E-Mail. International Proceedings of Com-

puter Science & Information Technology 49 (2012).

Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S Yeung, and Fabio Roli. 2015. Adversarial feature selection against
evasion attacks. (2015).

Yan Zhou and Murat Kantarcioglu. 2014. Adversarial Learning with Bayesian Hierarchical Mixtures of Experts. In SIAM

International Conference on Data Mining. 929–937.

Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Bowei Xi. 2012. Adversarial support vector machine learning.
In SIGKDD International Conference on Knowledge Discovery and Data Mining. 1059–1067.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

39:28 B. Li and Y. Vorobeychik

APPENDIX

B. COMPARISON BASED ON DIFFERENT EQUIVALENCE CLASS SIZES

To demonstrate the impact of feature cross-substitution attacks, we show comparisons for NB,
SVM with linear kernel, SVM with rbf kernel and Neural Network classifiers based on the baseline
Distance-based 16 (a) and the Equivalence-based 16 (b)-(d) cost function with Enron data.

(a) (b) (c) (d)

Fig. 16. Impacts of different equivalence class sizes for (a) Distance-based cost function, (b) Equivalence-based cost func-
tion with max-2-letter substitution, (c) Equivalence-based cost function with max-3-letter substitution, (d) Equivalence-based
cost function with max-4-letter substitution.

For the equivalence-based cost function, we applied max-2,3,4-letter substitution respectively to
form equivalence classes with increasing sizes. From the comparison results in Figure 16, it is
obvious that the feature cross-substitution attacks elevate the test error on a large scale, and such
attack gains more power when the equivalence class size increases.

C. GENERAL INSTANCE SUBSTITUTION ALGORITHM FOR EQUIVALENCE-BASED COST

FUNCTION

Here we simulate the behavior of an adversary as running an algorithm
FindBooleanIMAC(xA, x−) to substitute features from the “ideal” instance xA based on

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

Evasion-Robust Classification on Binary Domains 39:29

ALGORITHM 6: FindBooleanIMAC(xA, x−)

y ← x−

flag ← false
repeat

yprev ← y
for all i ∈ Cy do

if Fi ∩ Cy = ∅ or MatchClass(i, Cy) ≤ 0 then
toggle i in y
if c(y) = 1 then

toggle i in y
end if

end if
end for
count← 0
for all i1 /∈ Cy, i2, i3 ∈ Cy do

randomly choose i1 /∈ Cy, i2, i3 ∈ Cy and i2 6= i3
if Fi2 ∩ Cy = ∅ and Fi3 ∩ Cy = ∅; or MatchClass(i2, Cy) ≤ 0 and MatchClass(i3, Cy) ≤ 0
then

toggle i1, i2, i3 in y
count← count+ 1
if c(y) = 1 then

toggle i1, i2, i3 in y
count← count− 1

end if
end if

end for
if flag and count > 0 then

flag ← false
end if
if count = 0 and flag = false then

flag ← true
for all i1 /∈ Cy, i2 ∈ Cy, i3 ∈ Cy do

toggle i1, i2, i3 in y
if c(y) = 1 then

toggle i1, i2, i3 in y
end if

end for
end if

until yprev = y
return y

an arbitrary ham instance x− to generate the alternative instance x′ for the adversary. This is a gen-
eralization of the one proposed by Lowd and Meek, which is run only based on the distance-based
cost function, to support our proposed equivalence-based cost function.

Here c(y) represents the classifier, which maps the input to malicious (1) or benign (0). Within the
algorithm, function MatchClass(i, Cv) is used to help decide whether it is possible for a feature
i ∈ Cv to be substituted by the others from its class Fi, which leads to no cost. Here Cv denotes
the vector contains features with different values in v and xA. We employ MatchClass(i, Cv) to
guarantee that the number of original substitutable pairs from xA would not decrease, which leads
to cost as 0. This means we would only change features in Cy that cannot be substituted by features
within its class. MatchClass(i, Cv) =

∑
j∈Fi∩Cv

1 {fi ⊕ fj = 1} − ∑
j∈Fi∩Cv

1 {fi ⊕ fj = 0}.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 4, Article 39, Publication date: February 2018.

	Introduction
	Related Work
	Classifier Evasion
	Evasion-Robust Classification
	Data Poisoning in Adversarial Machine Learning

	Problem Definition
	Adversary Modeling
	General Framework for Adversarial Evasion Modeling
	Cost Minimization with Budget Constraint (CMBC)
	Balancing Evasion Cost and Success (BECS)
	Coordinate Greedy

	Cost Function Models
	Distance-Based Cost Function
	Equivalence-Based Cost Function

	Stackelberg Game Multi-Adversary Model (SMA)
	SMA for CMBC
	SMA for BECS

	Scaling Up: Adversarial Learning through Retraining
	Theoretical Analysis
	RAD with Stochastic Gradient Descent
	RAD and Multi-Class Classification

	Experiments
	Evaluation of SMA
	Evaluation of RAD
	Comparison of RAD to Optimal
	 Effectiveness of RAD
	Experiments with Multi-class Classification
	 Oracles based on Human Evasion Behavior for RAD
	Evaluation of Robustness of RAD

	Conclusions
	Comparison based on different equivalence class sizes
	General instance substitution algorithm for equivalence-based cost function
	RAD Based on Equivalence-based Cost Function for CMBC
	Experiments for Clustering Malicious Instances

